UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Interacting Hopf Algebras: the theory of linear systems

Zanasi, Fabio; (2015) Interacting Hopf Algebras: the theory of linear systems. Doctoral thesis (Ph.D), Université de Lyon. Green open access

[thumbnail of thesis2015 (1).pdf]
thesis2015 (1).pdf - Published version

Download (9MB) | Preview


Scientists in diverse fields use diagrammatic formalisms to reason about various kinds of networks, or compound systems. Examples include electrical circuits, signal flow graphs, Penrose and Feynman diagrams, Bayesian networks, Petri nets, Kahn process networks, proof nets, UML specifications, amongst many others. Graphical languages provide a convenient abstraction of some underlying mathematical formalism, which gives meaning to diagrams. For instance, signal flow graphs, foundational structures in control theory, are traditionally translated into systems of linear equations. This is typical: diagrammatic languages are used as an interface for more traditional mathematics, but rarely studied per se. Recent trends in computer science analyse diagrams as first-class objects using formal methods from programming language semantics. In many such approaches, diagrams are generated as the arrows of a PROP — a special kind of monoidal category — by a two-dimensional syntax and equations. The domain of interpretation of diagrams is also formalised as a PROP and the (compositional) semantics is expressed as a functor preserving the PROP structure. The first main contribution of this thesis is the characterisation of SVk, the PROP of linear subspaces over a field k. This is an important domain of interpretation for diagrams appearing in diverse research areas, like the signal flow graphs mentioned above. We present by generators and equations the PROP IH of string diagrams whose free model is SVk. The name IH stands for interacting Hopf algebras: indeed, the equations of IH arise by distributive laws between Hopf algebras, which we obtain using Lack’s technique for composing PROPs. The significance of the result is two-fold. On the one hand, it offers a canonical string diagrammatic syntax for linear algebra: linear maps, kernels, subspaces and the standard linear algebraic transformations are all faithfully represented in the graphical language. On the other hand, the equations of IH describe familiar algebraic structures — Hopf algebras and Frobenius algebras — which are at the heart of graphical formalisms as seemingly diverse as quantum circuits, signal flow graphs, simple electrical circuits and Petri nets. Our characterisation enlightens the provenance of these axioms and reveals their linear algebraic nature. Our second main contribution is an application of IH to the semantics of signal processing circuits. We develop a formal theory of signal flow graphs, featuring a string diagrammatic syntax for circuits, a structural operational semantics and a denotational semantics. We prove soundness and completeness of the equations of IH for denotational equivalence. Also, we study the full abstraction question: it turns out that the purely operational picture is too concrete — two graphs that are denotationally equal may exhibit different operational behaviour. We classify the ways in which this can occur and show that any graph can be realised — rewritten, using the equations of IH, into an executable form where the operational behaviour and the denotation coincide. This realisability theorem — which is the culmination of our developments — suggests a reflection about the role of causality in the semantics of signal flow graphs and, more generally, of computing devices.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Interacting Hopf Algebras: the theory of linear systems
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10062538
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item