Demirtas, M;
Ponce-Alvarez, A;
Gilson, M;
Hagmann, P;
Mantini, D;
Betti, V;
Romani, GL;
... Deco, G; + view all
(2019)
Distinct modes of functional connectivity induced by movie-watching.
Neuroimage
, 184
pp. 335-348.
10.1016/j.neuroimage.2018.09.042.
Preview |
Text
Demirtas_Modes_of_movie_watching.pdf - Accepted Version Download (1MB) | Preview |
Abstract
A fundamental question in systems neuroscience is how endogenous neuronal activity self-organizes during particular brain states. Recent neuroimaging studies have demonstrated systematic relationships between resting-state and task-induced functional connectivity (FC). In particular, continuous task studies, such as movie watching, speak to alterations in coupling among cortical regions and enhanced fluctuations in FC compared to the resting-state. This suggests that FC may reflect systematic and large-scale reorganization of functionally integrated responses while subjects are watching movies. In this study, we characterized fluctuations in FC during resting-state and movie-watching conditions. We found that the FC patterns induced systematically by movie-watching can be explained with a single principal component. These condition-specific FC fluctuations overlapped with inter-subject synchronization patterns in occipital and temporal brain regions. However, unlike inter-subject synchronization, condition-specific FC patterns were characterized by increased correlations within frontal brain regions and reduced correlations between frontal-parietal brain regions. We investigated these condition-specific functional variations as a shorter time scale, using time-resolved FC. The time-resolved FC showed condition-specificity over time; notably when subjects watched both the same and different movies. To explain self-organisation of global FC through the alterations in local dynamics, we used a large-scale computational model. We found that condition-specific reorganization of FC could be explained by local changes that engendered changes in FC among higher-order association regions, mainly in frontal and parietal cortices.
Archive Staff Only
View Item |