Agustí-Juan, I;
Hubert, G;
(2017)
Environmental design guidelines for digital fabrication.
Journal of Cleaner Production
, 142
(4)
pp. 2780-2791.
10.1016/j.jclepro.2016.10.190.
Preview |
Text
Agusti Juan_Environmental design guidelines for digital fabrication_AAM.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Digital fabrication represents an innovative technology with the potential of expanding the boundaries of architecture. The potential to fabricate elements directly from design information is transforming many design and production disciplines. In particular, 3D printing has become the key of modern product development. As the use of additive manufacturing grows, research into large-scale processes is beginning to reveal potential applications in construction. The combined methods of computational design and robotic fabrication have the well-demonstrated potential to create formal and structural advances in architecture. However, their potential contribution to the improvement of sustainability in construction must be evaluated. In this study, we identified environmental guidelines to be considered during the design of digitally fabricated architecture. The key parameters were extracted from the Life Cycle Assessment (LCA) of three case studies. The environmental assessment performed indicated that the relative sustainability of the projects depended primarily on the building material production. Specifically, the impact of digital fabrication processes was negligible compared to the materials manufacturing process. Furthermore, the study highlighted the opportunities of integrating additional functions in structural elements with digital fabrication to reduce the overall environmental impact of these multi-functional elements. Finally, the analysis proved the potential of digital fabrication to reduce the amount of highly industrialized materials in a project, which are associated with high environmental impacts.
Type: | Article |
---|---|
Title: | Environmental design guidelines for digital fabrication |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.jclepro.2016.10.190 |
Publisher version: | https://doi.org/10.1016/j.jclepro.2016.10.190 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Digital fabrication, LCA, Environment, Construction, Sustainability |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment |
URI: | https://discovery.ucl.ac.uk/id/eprint/10062204 |
Archive Staff Only
View Item |