UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Simulated ground motions for seismic risk assessment of structures

Tsioulou, Alexandra; (2018) Simulated ground motions for seismic risk assessment of structures. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Thesis.pdf]
Preview
Text
Thesis.pdf

Download (8MB) | Preview

Abstract

The recent advances in computational efficiency and the scarcity/absence of recorded ground motions for specific seismicity scenarios have led to an increasing interest in the use of ground motion simulations for seismic hazard analysis, structural demand assessment through response-history analysis, and ultimately seismic risk assessment. Two categories of ground motion simulations, physics-based and stochastic site-based are considered in this study. Physics-based ground motion simulations are generated using algorithms that solve the fault rupture and wave propagation problems and can be used for simulating past and future scenarios. Before being used with confidence, they need to be validated against records from past earthquakes. The first part of the study focuses on the development of rating/testing methodologies based on statistical and information theory measures for the validation of ground motion simulations obtained through an online platform for past earthquake events. The testing methodology is applied in a case-study utilising spectral-shape and duration-related intensity measures (IMs) as proxies for the nonlinear peak and cyclic structural response. Stochastic site-based ground motion simulations model the time-history at a site by fitting a statistical process to ground motion records with known earthquake and site characteristics. To be used in practice, it is important that the output IMs from the developed time-histories are consistent with these prescribed at the site of interest, something that is not necessarily guaranteed by the current models. The second part of the study presents a computationally efficient framework that addresses the modification of stochastic ground motion models for given seismicity scenarios with a dual goal of matching target IMs for specific structures, while preserving desired trends in the physical characteristics of the resultant time-histories. The modification framework is extended to achieve a match to the full probability model of the target IMs. Finally, the proposed modification is validated by comparison to seismic demand of hazard-compatible recorded ground motions. This study shows that ground motion simulation is a promising tool that can be used for many engineering applications.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Simulated ground motions for seismic risk assessment of structures
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author [year]. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/10062053
Downloads since deposit
444Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item