DEVELOPMENT OF A FAST-ACTING, TIME-RESOLVED GAS SAMPLING SYSTEM FOR COMBUSTION AND FUELS ANALYSIS

Midhat Talibi, Paul Hellier, Ramanarayanan Balachandran, Nicos Ladommatos University College London

CONTENTS

- Introduction
- In-cylinder gas sampling valve
- Single cylinder engine test facility
- Exhaust emission results
- In-cylinder gas composition results
- Conclusions

INTRODUCTION

Rising concerns over the hazardous health effects of fossil fuel by-products, including poor air quality and rapid increase in GHG emissions.

Concentrated efforts towards greater fuel efficiency and producing 'cleaner' emissions by optimizing engine combustion behaviour.

Figure source : IFP Energies

Key to developing novel strategies for future combustion systems lies in comprehensively understanding the evolution of engine in-cylinder species and their reaction mechanisms.

IN-CYLINDER GAS SAMPLING VALVE

- Based on the 'percussion' principle
- Electromagnetic actuation
- Sensitive proximity sensor to measure valve lift
- Poppet valve sits in 'soft' copper valve seat

IN-CYLINDER GAS SAMPLING VALVE

- Sampling valve installed in place of one of the inlet valves.
- Valve penetration up to 9mm inside chamber

Tip of the sampling valve in the engine head

2016-01-0791

HEATED DILUTION TUNNEL

- Buffer the gas samples and mix them with heated N₂ to increase the sample volume
- Undiluted and diluted gas sample streams were fed to the standalone CO₂ analyser and to the emissions analyser rack and the mass ratio calculated

SINGLE CYLINDER TEST ENGINE

- Four-stroke, single cylinder, compression-ignition engine
- Naturally aspirated (capability for intake air boosting)
- Direct injection engine with a high pressure common rail – fuel injection pump system
- Compression ratio 18.3:1
- Capability to measure incylinder gas pressure (to a resolution of 0.2 CAD)

Ford 2.0I single cylinder diesel engine assembly

TEST FACILITY SCHEMATIC

H₂-DIESEL FUEL, EXHAUST NO_X EMISSIONS

H₂-DIESEL FUEL, EXHAUST NO_X EMISSIONS

- For loads below 4 bar, negligible levels of NO_x formed
- Above 4 bar, NO_x formation rates accelerated significantly
- Suggests thermal synergy of H₂-diesel co-combustion
- Sharp increase in NO_x coincides with H_2 flame temperatures reaching NO_x formation temperatures

IN-CYLINDER GAS SAMPLING TESTS

- Gas samples extracted with two different sampling arrangements relative to the fuel spray; in the core of the diesel fuel spray and between two spray cones.
- Change in sampling arrangement achieved through rotation of the centrally-located injector

IN-CYLINDER GAS SAMPLING TESTS

 For each of the two relative sampling arrangements, gas samples were extracted at three sampling instants within the engine cycles.

Sampling instant (middle of sampling window) (CAD ATDC)	Duration of sampling window (CAD)	Diesel fuel injection period (µs)
10 (premixed combustion)	6	325
25 (early diffusion combustion)	10	325
40 (late burning stage)	15	325

Gaseous sample extraction time CAD ATDC during the engine cycle and the corresponding sampling window in CAD

IN-CYLINDER GAS SAMPLING WITH $H_2 - THC$ AND PM

IN-CYLINDER GAS SAMPLING WITH $H_2 - NO_X$

- At 10 CAD, NO_x levels significantly higher between sprays.
- Due to H_2 combustion adding to diesel flame temperatures, leading to high temperatures, hence greater NO_x production
- At 25 CAD, NO_x levels increase in spray core region
- At 40 CAD, redistribution of in-cylinder gases lowers NO_x levels

IN-CYLINDER GAS SAMPLING WITH $H_2 - NO_X$

- At 10 CAD, NO_x levels significantly higher between sprays.
- Due to H₂ combustion adding to diesel flame temperatures, leading to high temperatures, hence greater NO_x production
- At 25 CAD, NO_x levels increase in spray core region
- At 40 CAD, redistribution of in-cylinder gases lowers NO_x levels

IN-CYLINDER GAS SAMPLING WITH $H_2 - NO_X$

- At 10 CAD, NO_x levels significantly higher between sprays.
- Due to H₂ combustion adding to diesel flame temperatures, leading to high temperatures, hence greater NO_x production
- At 25 CAD, NO_x levels increase in spray core region
- At 40 CAD, redistribution of in-cylinder gases lowers NO_x levels

IN-CYLINDER GAS SAMPLING WITH H_2 and $CH_4 - NO_X$

- For both CH₄ and H₂, NO_x levels higher between sprays as compared to within the spray core, suggesting higher gas temperatures in that region.
- NOx levels generally higher with H₂ than CH₄, as H₂ burns at a higher adiabatic flame temperature

IN-CYLINDER GAS SAMPLING WITH H_2 and $CH_4 - PM$

- PM higher in spray core than between sprays with H₂
- However, PM higher between sprays than in spray core with CH₄
- Suggests significant quantities of particulates being produced by CH₄, since CH₄ concentration higher in the region between sprays.

IN-CYLINDER GAS SAMPLING WITH H₂-CH₄ mixtures – NO_X

- NO_x levels highest when with $20CH_4$:80H₂ mixtures, and in the region between sprays.
- H₂ burns at higher temperatures compared to CH₄ and diesel fuel.
- After 40 CAD, NO_x levels similar between the two sampling arrangements.

CONCLUSIONS

- A novel gas sampling system was developed to analyse in- cylinder gas composition and particulate concentration.
- In-cylinder NO_x levels were higher between two diesel fuel sprays than in the spray core, in the case of both H₂-diesel fuel and CH₄-diesel fuel co-combustion, during the early stages of combustion.
- The contrast in species concentrations was significantly less after 40 CAD ATDC, due to effects of redistribution of in-cylinder gases during the expansion stroke.
- With H₂, PM levels were higher in diesel fuel spray compared to between sprays. On the other hand, with CH₄, PM levels were significantly higher between the two diesel fuel sprays.
- Exhaust NO_x emissions were observed to increase very rapidly with the addition of H_2 but only when the combined temperatures from H_2 -diesel fuel co-combustion exceeded the NO_x formation temperature threshold.

Thank you

Midhat Talibi m.talibi@ucl.ac.uk UCL Mechanical Engineering, UK

- M. Talibi et al., "Effect of hydrogen-diesel fuel co-combustion on exhaust emissions with verification using an in–cylinder gas sampling technique," *International Journal of Hydrogen Energy*, vol. 39, no. 27, pp. 15088–15102, Sep. 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.07.039
- M. Talibi, "Co-combustion of diesel and gaseous fuels with exhaust emissions analysis and incylinder gas sampling," University College London, 2015.
- M. Talibi et al., "Development of a Fast-Acting, Time-Resolved Gas Sampling System for Combustion and Fuels Analysis," SAE Int. J. Engines 9(2):2016, doi:10.4271/2016-01-0791