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Supplementary Methods 

Two-dimensional (2D)-assembling of surface receptors 

To test the hypothesis that mechanical forces arising from ligand-receptor interactions 

can be amplified to enable measurements of biologically relevant signals with high 

precision, we designed different patterns with a prescribed 2D-assembling of 

transduction arrays. The dip-pen lithography (DPN) and micro-contact printing (µCP) 

were used to create arrays parallel or transverse to the long axis of the conventional 

gold-coated nanomechanical cantilever arrays of (100 µm wide and 500 µm long IBM 

Rushlikon). The DPN has the advantage of enabling receptor patterns to be fabricated 

with nanometre precision
1-3

 whilst µCP allows fabrication to be achieved more 

rapidly in a single step
4
. Parallel arrays were arranged as a 30 µm or 50 µm wide strip 

running centrally along the entire length of the cantilever covering 30%, 50% or 

100% of the total surface area, respectively. Transverse arrays were arranged as 30 

µm wide strips running along the width of the cantilever, and corresponding to 30% 

of the total surface area. A control cantilever had 100 µm wide strips running 

centrally along the entire of its length, and corresponding to 100% of the total surface 

area. SAMs of mercaptoundecanoic acid (MUA) and mercaptohexadecanoic acid 

(MHA) were used to create transduction arrays. MUA was used to create 30 µm wide 

strips for both parallel and transverse arrays as well as for control cantilevers. MHA 

was used to create 50 µm strips in the parallel arrays as well as for control 

nanomechanical cantilevers. These SAMs were chosen because of their capacity to be 

attached to a variety of receptor molecules, allowing the detection of a diversity of 

ligands. For example, in this study, MUA SAMs were attached to the VSR and anti-

IgG antibody to enable detection of vancomycin (Van) and immunoglobulin G (IgG) 

respectively. Further, these SAMs are alkanethiols with less than 20 carbons and are 
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known to enable stable printing patterns with defined boundaries
4
 and by 

functionalizing mechanical sensors with SAMs of carboxylic terminating groups, the 

scaffolds can be switched between ‘oxidized’ and ‘reduced’ states when the pH of the 

surrounding environment is changed
5
. To block nonspecific interactions, the un-

patterned areas on the cantilever surface were passivated using SAMs of 

undecanethiol (UDT) in the case of MUA, and hexadecanethiol (HDT) for MHA. 

 

Preparation of silicon substrates 

Silicon substrates measuring 1 cm x 1 cm each was cleaned by incubating in a freshly 

prepared piranha solution, consisting of H2SO4 and H2O2 (1:1) for 20 min. They were 

then briefly rinsed in ultrapure water followed by a rinse in pure ethanol before drying 

on a hotplate at 75 °C. The silicon substrates were examined under an optical 

microscope to confirm their cleanliness before transferring to an electron beam 

evaporation chamber (BOC Edwards Auto 500, U.K.) where they were coated at a 

rate of 0.7 nms
-1

 with a 2 nm layer of titanium, which act as an adhesion layer, 

followed by a 20 nm layer of gold. Once the required thickness of gold was obtained, 

the silicon substrates were left in the chamber for 1-2 h to cool under vacuum. 

 

Printing of transduction arrays  

µCP stamps 

Transduction arrays were printed on the gold-coated silicon substrates using SAMs of 

MUA as the printing ink. The protocol for printing MUA SAMs onto gold-coated 

silicon substrates is summarized in Supplementary Figure 1. The PDMS stamp was 

first cleaned by rinsing in pure ethanol before it was dried under nitrogen gas. The 

stamp was then impregnated with MUA by incubating in a freshly prepared solution 
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of MUA in ethanol at a total SAM concentration of 2 mM for 1 min. Excess MUA 

solution was removed from the PDMS stamp by blowing nitrogen gas over the PDMS 

stamp. The impregnated stamp was then placed in a conformal contact with the gold-

coated surface for 2 min where gentle pressure (using a one penny coin) was applied 

on the PDMS stamp to allow close contact with a gold surface so that the MUA 

SAMs could diffuse from the PDMS stamp onto the substrate and enable uniform 

molecular printing. 

 

 

Supplementary Figure 1. Printing of transduction arrays using µCP stamps. a 

Schematic representation of a PDMS stamp in which it is inked with self-assembled 

monolayers (SAMs) of mercaptoundecanoic acid (MUA) (red). b The inked PDMS 

stamp is brought into conformal contact with the gold-coated (yellow orange) silicon 

substrate (grey) to enable the SAMs to diffuse from the PDMS stamp onto gold 

surface. c Schematic representation of MUA arrays arranged on a gold-coated silicon 

substrate generated by micro-contact printing. d The same MUA array following 

exposure to UDT SAMs in which the un-patterned areas on the gold-coated silicon 

substrate were passivated with UDT (green). 
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The PDMS stamp was removed after 2 minutes and the un-patterned areas on the 

gold-coated surfaces passivated by covering the entire surface with undecanethiol 

(UDT) for 20 min. This was followed by a rinse in pure ethanol and dried under 

nitrogen gas. Because of the fragile nature of cantilever arrays, the PDMS stamps 

were used to print SAMs onto the arrays only after mastering the procedure and if the 

printing was deemed satisfactory with the gold-coated silicon substrates. 

 

 

Supplementary Figure 2. Gold-coated silicon substrate printed using a µCP stamp. a 

Scanning electron microscopy (SEM) image showing patterns of self-assembled 

monolayers (SAMs) of mercaptoundecanoic acid (MUA) on gold-coated silicon 

substrate prepared by micro-contact printing (µCP). Scale bar, 100 µm. b Atomic 

Force Microscopy (AFM) image showing SAMs of MUA (yellow patterns) and 

undecanethiol (UDT) (dark orange un-patterned area) on gold-coated silicon substrate 

prepared by µCP. Scale bar, 10 µm. 

 

The accuracy of the printed patterns on the gold-coated surfaces was checked by 

scanning electron microscopy. Supplementary Figure 2a shows a typical image of the 

PDMS stamps. The printed pattern was examined using atomic force microscopy 

(AFM) as shown in the Supplementary Figure 2b. In addition, the gold-coated 
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surfaces were exposed to moist air which preferentially condensed on the MUA 

coated surfaces. When viewed under a light microscope the hydrophilic MUA coated 

areas appeared dark in contrast to the hydrophobic UDT coated areas (Supplementary 

Figure 3a-c). 

 

Dip-pen nanolithography  

SAMs of MHA were printed onto gold-coated silicon substrates using dip-pen 

nanolithography. The printing process involved using a sharp scanning AFM 

cantilever tip to transfer SAMs of MHA as the printing ink directly onto the 

designated surface and to create the desired pattern. Supplementary Figure 3d shows 

the MHA pattern on a gold-coated silicon substrate which is clearly distinct from the 

underlying un-patterned areas.  

 

 

Supplementary Figure 3. Examination of the impact of mechanical connectivity on 

the signal response. a SAMs of MUA array networks arranged as a narrow strip (solid 
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line) running centrally along the entire length of the cantilever sensor and continuous 

with the hinge region. b MUA SAMs arranged in strips transverse to the long axis of 

the nanomechanical cantilever (solid lines) creating mechanical networks which are 

discontinuous with each other and with the hinge region. c Array networks of MUA 

SAMs (dark area) arranged continuously from the free end of the nanomechanical 

cantilever arrays but terminating at various distances from the hinge region. In a-c the 

un-patterned areas on the nanomechanical cantilever sensor (light background) were 

passivated using UDT SAMs to block nonspecific interactions. d Atomic Force 

Microscopy (AFM) image of MHA SAM patterns (central square) on the Au-coated 

silicon substrate prepared by dip-pen nanolithography (DPN). Scale bar, 1 µm. 

 

Having established that the dip-pen nanolithography could be successfully used to 

write the array patterns on gold-coated silicon substrates, we then applied the same 

procedure to create transduction arrays on the nanomechanical cantilevers. 

 

Location specific mechanical force in cell response  

In Supplementary Figure 4, we show that when human epithelial cells (MDA- 

MB231) from malignant tumours and noncancerous cells (MCF10A) are injected into 

the cantilever liquid chamber, the cancer targeting peptides preferentially bind more 

to the breast cancer cells than to noncancerous epithelial cells. In addition, we find 

that the geometrical lengths of the regions covered by receptors and their location 

play a very significant role in the sensitivity of the mechanical force generated by 

cell-ligand binding interactions. 
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Supplementary Figure 4. Impact of receptor location on mechanical signaling. The 

detailed experiments depict the differential binding force of the receptor (decapeptide 

18-4) to cancer cells while it is coated on the cantilever in three different geometrical 

locations. In the experiments, the cantilevers were exposed to breast cancer cells 

and/or normal cell lines at a concentration of 25 cells ml
-1

 in phosphate-buffered 

saline (PBS) solution. A relatively high mechanical force is observed when only the 

hinge region is coated with the peptide 18-4 compared to when the entire cantilever is 

coated with capture molecules. Similarly, negligible mechanical force is detected 

when the free-end of the nanomechanical cantilever is coated with capture molecules. 

The control experiment in which normal epithelial cells (MCF10A) were injected, 

exhibited insignificant mechanical force, indicating a weak binding strength of 

decapeptide capture molecules toMCF10A cells. 

 

Derivation of expression for binding interactions 

We first proposed that solvent effects are dominant factors important in pre-

determining mechanical forces exerted by cells or molecules. Accordingly, we 

considered that an analyte can interact with a surface target and so the reactions are 

quantified by considering the distributions between analyte’s concentrations in 
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solution [analyte] and membrane-bound receptors [R]. The reactions are quantified 

using 

 

    .
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where n is the stoichiometric coefficient of the reaction and analyte.R is the bound 

complex. The expression between an analyte and receptor is 
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where Kd is the surface thermodynamic equilibrium dissociation constant. The total 

concentration of the surface receptor [R]T is 
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Using equations (2) and (3), the fraction of an analyte bound at the surface is 

determined by the expression 
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where θ = [(analyte)n.R]/[R]T is the fraction of the surface occupied by the binding 

sites. If we assume that the change in the equilibrium mechanical force (Feq) 

involved in the analyte-receptor complex scales in direct proportion to the surface 

coverage (Feq = Fmaxθ), then expression (4) is adjusted to yield 
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Analysis mechanical force 

The differential stress measurements obtained from cantilever chips are typically 

associated with multiple parameters including the number of repeated measurements, 

concentration and the number of cantilevers where each has eight individual 

cantilever arrays. The differential equilibrium mechanical forces for a wide range of 

concentrations of analytes (0.0005 – 1000 µM) or cells (10 – 1000 cells ml
-1

) were 

determined using 4 chips for each ligand. For each analyte concentration, the 

arithmetic mean of the differential mechanical force data (Feq) across 4 chips was 

calculated using the equation 

 

diff

eq

F
F

n
 

           (6) 

where n is the number of measurements, Fdiff is the differential equilibrium 

mechanical force calculated by subtracting the in-situ reference force Fzref (MCH or 

PEG) coated cantilever from the absolute mechanical response Fzmea obtained from 

VSR, anti-IgG, and cancer targeting peptides coated cantilevers. The standard 

deviation of the mechanical force data (σ) was calculated using the equation  
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The standard error (SE) of the differential mechanical force for each analyte 

concentration was calculated using the equation 

          (8) 
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