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Abstract. Vascular graphs can embed a number of high-level features,
from morphological parameters, to functional biomarkers, and repre-
sent an invaluable tool for longitudinal and cross-sectional clinical in-
ference. This, however, is only feasible when graphs are co-registered
together, allowing coherent multiple comparisons. The robust registra-
tion of vascular topologies stands therefore as key enabling technology
for group-wise analyses. In this work, we present an end-to-end vascu-
lar graph registration approach, that aligns networks with non-linear
geometries and topological deformations, by introducing a novel over-
connected geodesic vascular graph formulation, and without enforcing
any anatomical prior constraint. The 3D elastic graph registration is
then performed with state-of-the-art graph matching methods used in
computer vision. Promising results of vascular matching are found using
graphs from synthetic and real angiographies. Observations and future
designs are discussed towards potential clinical applications.

1 Introduction

Vascular graphs can be obtained from angiographies using connectivity paradigms
and network extraction algorithms by embedding high-level features, such as
spatial location, direction, scale, and bifurcations. However, the correct extrac-
tion of subject-specific vascular topologies, in complex (cerebro)vascular net-
works, can be challenging when rather tortuous and tangled structures are
present. In other cases, anatomical cycles and their variants (i.e. the circle of
Willis, anastomoses and fenestrations) , the presence of pathology (e.g. tan-
gled arterio-venous malformations, neoplastic and embryologic plexiforms), and
image-related limitations (e.g. unresolved kissing vessels) dramatically increase
the network complexity, and sometimes impede the extraction of the vascular
topology as a tree. A viable approach is to consider a data-driven vectorial
prior from an early group-wise vascular graph registration. Defining a group-
wise vectorial prior first embeds the likelihood of connectivity patterns from a
population, and subsequently injects a probabilistic prior towards the inference
of the most meaningful subject-specific vascular topology. The same vectorial
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Fig. 1. Geodesic Vascular Graph and GM problem of non-linearly deformed topologies.
Extraction of a fully-connected topology from an initial set of nodes (left). Associated
graph representations and minimum spanning trees for two topologically different in-
stances (G and G?) of the same underlying vascular anatomy (center). Graphs align-
ment and nodes matching for the generalised GM problem (right).

prior could also embed morphometric parameters, functional and hemodynamic
descriptors and surrogate biomarkers, constituting thus a labelled multi-spectral
vascular atlas. By registering the obtained vectorial atlas over a set of similar
vascular graphs, a number of group-level clinical analyses would be allowed, from
inter-subject comparisons of the underlying vascular morphology, to longitudi-
nal studies of vascular pathologies, on which clinical prediction and therapeutic
inference ultimately depend. The robust alignment of multiple topologies is of
critical relevance and represents a methodological bottleneck for population-level
analyses. The alignment of networks and vectorial graphs raised increasing inter-
est among the scientific community in the last decade. Motivated by registering
acyclically connected structures from biomedical imaging, (e.g. vascular and res-
piratory trees), [1,/4,/13H16] introduced different registration techniques, which
mostly rely on pairwise matching distances between junction nodes and con-
necting edges. Following an initial alignment, these methods usually minimise
a similarity cost function or maximise a probabilistic likelihood between pairs
of nodes/edges or sub-trees and graph kernels, and hierarchically evaluate the
correspondences at different levels of tree-depth. Whilst only few formulations
would register generic spatial graphs [14], in all cases the considered topolo-
gies were either hierarchically pre-defined as trees, or determined beforehand
on a specific anatomical compartment. Also, since these methods exploit node
locations, branches geometry, arborescence depth, or the parent-child relation
of a rooted tree, they require the explicit tree topology to accurately capture
the underlying vasculature, where each bifurcation is correctly annotated as its
connectivity pattern. The registration of noisy topologies, (i.e. mis-connections,
missing branches and short-cuts), and non-linearly deformed geometries remains
a challenging and open problem. In this preliminary work, we address vascular
graph matching (GM) by relaxing assumptions on the acyclic (un)directed graph
structure and the anatomical hierarchical prior from any vascular compartment.
The idea is to consider and register the vasculature as an over-connected graph: a
redundant topology encoding the likelihood of connections between neighbouring
nodes with minimal paths. This enhanced connectivity pattern would compen-



sate for topological inaccuracies, for non-linear deformations of branches, and
would enrich the registration space-search with distinctive features. The pair-
wise graph registration problem can be subsequently solved using generic GM
algorithms. In the following sections, the proposed approach is first described,
then, an experimental set-up is presented, comprising graphs from synthetic and
real angiographies. The accuracy of different GM algorithms is evaluated on cor-
rect nodes correspondences. Observations and conclusions are discussed, focusing
on future developments and potential applications.

2 Methods

Aiming at the pairwise alignment of vascular topologies within a deformable
and anatomical prior-free framework, we first introduce a novel over-connected
geodesic vascular graph (GVG), then the generic GM problem is presented to-
gether with the proposed affinity metrics based on vessels geometry and their
redundant geodesic connectivity. The two-steps registration pipeline is described
also listing the considered GM algorithms.

Geodesic Vascular Graph. We define the undirected geodesic vascular graph
G = (N, E) in R3, as the set of nodes n; € N, and the associated set of connect-
ing geodesic edges e, € F, encoding the graph adjacency list. Each geodesic edge
e, is defined as the 3D shortest path joining a generic pair of nodes, by solving
the Eikonal equation [8] over a vascular smoothly connected manifold as in [12].
However, an exhaustive search is here performed by connecting all pairs of nodes
independently, or up to a pre-defined spatial neighborhood v. This determines
an over-connected vascular graph of minimal paths, which fully captures the
underlying vasculature with enhanced geodesic redundancy (Fig. 1). Together
with the formulation of the over-connected G, we also introduce a set of edge-
and node-attributes. The edge-attributes e, = {py,ly, u,} comprise the dense
sampling p, of each shortest path in 3D (i.e. the point coordinates sequence as
in Fig. 2,3), its associated euclidean length I, and the geodesic integral energy
u, integrated along the path, as in [12]. The node-attributes n; = {c;,d;} in-
clude the spatial location c; as coordinates in R?, and the geodesic node degree
di=r& Tg, uv, With &, the set of incident edges of cardinality |&,.

Graph Matching Problem and Affinity Metrics. As presented in [19],
the problem of matching a pair of graphs G4 and G” requires the definition of
an affinity matrix K to measure the similarity between each pair of nodes and
edges. Given the node cardinality i = [n#}|, and j = |njB |, the symmetric affinity
matrix K € R¥*% encodes the similarity between nodes along its diagonal
elements, whereas the edges similarity is encoded in the off-diagonal ones. Given
K, the problem of graph matching consists in finding the optimal correspondence
X between all the nodes (Fig. 1), so that a compatibility functional J(X) is
maximised with a quadratic assignment problem (QAP) [11],

max J(X) = vec(X)" K vec(X), (1)



where X is constrained to be a one-to-one mapping between the sets of nodes
n# and n?, and vec(X) denotes the vectorisation of the correspondence matrix.
We formulate both node- and edge-similarity metrics for the definition of the
affinity matrix K, by adopting the matrix factorisation as in [19], i.e. K 4z and
K45 respectively. In detail, we define

cAB DAB
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with a3 + a2 =1, and (2)
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where CA8 and DA are the pairwise £2-norm matrices between the two sets
of node coordinates {cf‘,cf}7 and geodesic degrees {d#, d;»g}7 as well as PAB,
LAZ and UAZ are the pairwise average symmetric distance matrices of the
connecting minimal paths {pg‘7 p3}, and the pairwise /2-norm matrices between
the sets of the euclidean lengths {2, 12} and geodesic integral energies {u?, uZ},
respectively. The normalisation factors oc p,p L, u are the standard deviations
estimated from the off-diagonal elements of the associated distance matrices over
the considered population of graphs. Lastly, oy, 81 and 2 weight the geometrical
similarities among nodes and edges, whereas as and (3 represent the respective
geodesic trade-off. We refer to [19] for the composition of K from the factorised

components K4z and Kgas, and for the QAP solver implementation.

Graph Registration. Although some GM algorithms do not require any spa-
tial initialisation of the graphs, we present a two-steps approach (Fig. 2, 3) by
combining an early coarse alignment strategy to facilitate the further registration
by reducing biases due to pure rigid mis-alignment.

Rigid Alignment. The globally-optimal iterative closest point (Go-ICP) [17] is
run on G4 and GZ as coarse geometrical initialisation. Here, the dense cloud of
samples, i.e. the nodes coordinates {cf‘,cf} and the sequences of edge points
{p2,pB}, is retrieved for the spatial rigid pre-alignment. Go-ICP searches the
entire 3D motion space, and, under the minimisation of an Ly error metric based
on a branch-and-bound scheme, guarantees the global optimality of the rigid

mapping, even in presence of noisy data, outliers, and partial samples overlap.

Fine Graph Matching. Classic GM algorithms employed in computer vision,
are considered for the fine registration. We account for Graduated Assignment
(GA) [5], Spectral Matching (SM) [9], Spectral Matching with Affine Constraints
(SMAC) [3], Probabilistic Matching (PM) [1§], Integer Projected Fixed Point
(IPFP-U/SM) [10], Re-weighted Random Walk Matching (RRWM) [2], and the
current state-of-the-art, the non-rigid Factorized Graph Matching (FGM) [19].
The deformable graph matching problem, detailed in [19], formulates the un-
known graph correspondence being constrained with a geometric transformation
T. A composition of transformations (i.e. similar, affine, and non-rigid) are incor-
porated into the compatibility function (eq. ), and subsequently estimated by
optimising jointly the correspondence matrix X and the composite transforma-
tion T itself. We employed the undirected-graph versions of the listed algorithms.
Implementations and configurations are available from authors’ websites.
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Fig. 2. Example of sGVG, simulated deformations, rigid alignment and resulting GM.

3 Experiments and Results

Dataset. A set of 10 synthetic over-connected geodesic vascular graphs (sGVG)
and associated minimum spanning trees (sGVT) are obtained from 3D vascular
tree images [6] (isotropic 100x100x 100 voxels), as in section 2] Each graph com-
prises 80 nodes, i.e. the vascular junction and end-points, over-connected within
a neighbourhood of radius v = 35 (Fig. 2). A total of 10 fully over-connected
geodesic vascular graphs (aGVG) as well as the respective minimum spanning
trees (aGVT) of the basilar artery are derived as in section [2]from Time-of-Flight
MRI angiographies (0.35x0.35%0.5 mm), where anatomical vascular junctions
and endpoints were manually labelled (Fig. 3) following [7].

Synthetic Graphs. We randomly deform the synthetic datasets sGVG and sGVT
with a non-linear geometrical displacement field (i.e. max magnitude Dsgo,
Daow, Dsoy of the graph spatial embedding), a topological pruning (i.e. re-
ducing by T30%, Ta0%, Ts0% the original connectivity), and a combination of
both, for a representative set of alterations (Fig. 2). The deformed graphs were
then registered with the respective unaltered topologies. The accuracy of the
GM is given by the percentage of correct correspondences, and differences of
registration performances between sGVG and sGVT are evaluated with a paired
Wilcoxon signed rank test.

Angiographic Graphs. Both aGVG and aGVT are pairwise aligned, covering
all possible inter-subject combinations within the same dataset. The matching
accuracy is given by the percentage of correct correspondence among the la-
belled nodes. Differences between aGVG and aGV'T are evaluated with a paired
Wilcoxon signed rank test.

Synthetic Graph Matching. In Fig. 4 (charts), the GM accuracy is reported
for the synthetic datasets, for each algorithm and for the simulated levels of de-
formation. The affinity metrics trade-offs are arbitrarily defined as oz = [0.5,0.5],
and § = [0.25,0.25,0.5] in all cases, to balance the similarity features. Similar
trends of performances are observed for the considered GM algorithms across
different levels of increasing deformation. Overall, FGM reported the best match-
ing accuracy together with RRWM in both sGVG and sGVT, whereas the other
algorithms showed globally varying performances. Purely geometrical displace-
ments did not affect the registration, whereas more severe topological pruning
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Fig. 3. aGVG label set |7] and pairwise registration of anatomical topologies.

showed a visible drop of accuracy in both sGVG and sGVT, as well as the com-
bination of joint deformations at different degrees. Overall, better matching is
found for sGVG compared to sGVT at the same level of alteration. A significant
accuracy drop (p < 0.05) is found for the registration of tree-like structures,
proportional to the combined deformation. This suggests that the proposed reg-
istration pipeline would benefit from both geometrical and geodesic information
arising from a more dense and redundant over-connected pattern, rather than
an explicit vascular tree hierarchy, in presence of non-linear deformations.

Angiographic Graph Matching. The accuracy of the pairwise registration
for both aGVG and aGVT datasets is reported in Fig. 4 (table). The affin-
ity metrics trade-offs adopted here are the same as those for the synthetic ex-
periments. Overall, discrete matching is obtained for the state-of-the-art FGM
(61.26 + 21.91%), as well as for GA (65.16 £ 20.39%) and SM (62.83 £+ 22.96%).
The considered angiographic dataset presented large deformations and anatom-
ically different variants (Fig. 3). In line with results of section [3| the registra-
tion of over-connected topologies (aGVG) showed significantly higher accuracy
(p < 0.05), compared to the respective hierarchical minimum spanning trees
(aGVT). Globally, nodes mismatch occurred in correspondence of nodes with
lower degree and centrality, where higher confusion is found for spatially close
vascular end-points and neighbouring branches. Conversely, the correspondence
of superior/inferior and left/right branches was correctly preserved in the ma-
jority of cases.

4 Discussion and Conclusions

We presented a vascular graph matching approach to pairwise and elastically
register similar topologies, in presence of non-linear deformations. A novel for-
mulation of the vascular network is first introduced using an over-connected
geodesic vascular graph. Then, the non-rigid nodes correspondence assignment
is solved with a two-steps alignment comprising an optimal rigid registration
of the network geometrical embedding, and a set of graph matching algorithms
employed in computer vision. For the first time, a general registration of vascu-
lar graphs, accounting for noisy over-connected topologies with possible cycles,
could be performed by relaxing the explicit hierarchical vessel-tree structure or
connectivity patterns specific of a vascular compartment. The use of multiple
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Fig. 4. Accuracy of GM: synthetic datasets sGVG vs. sGVT (charts), and angiographic
datasets aGVG vs. aGVT (table). Values are mean £+ SD, (median), * =p < 0.05.

GM strategies, on the one hand, is motivated by the unconstrained formulation
of the GVG, on the other hand, it is justified by the different connectivity lattice
of the introduced GVG. The latter can dramatically differ from the connectivity
patterns found in computer vision applications (i.e. 3D polygonal subdivision
and/or triangulations in 2D), therefore, established GM algorithms may show
rather different performances. Early results show, however, good matching from
synthetic vascular graphs even in presence of mild-to-moderate non-linear de-
formations. With the same registration pipeline, we aligned over-connected and
redundant topologies, as well as hierarchical undirected tree-structures. Despite
these share the same similarity features, the graph matching reported signif-
icantly different accuracies, where better nodes correspondences are found for
the over-connected topologies. This suggests that the overhead information from
the redundant connectivity may enrich the registration space-search with more
distinctive cues. Similarly, the registration of geodesic vascular graphs from an-
giographic datasets reported appreciable matching, even in cases of large spatial
deformations and anatomically different topologies, whereas the registration of
the associated tree-like structures showed significantly lower accuracies, in line
with the synthetic experiments. On the basis of this early evidence, we assume
the problem of vascular tree- and graph-registration could be generalised with a
multi-spectral network alignment, where further developments towards a more
robust design for vascular applications may better incorporate both geometrical
and geodesic vascular features. Although most of the GM algorithms considered
in this work are used for 2D applications in computer vision, their general formu-
lation allows the alignment of any generic network, regardless the dimensional
embedding, and offer a rich ground for ad-hoc methodological developments.
From a clinical perspective, the successful vascular graph alignment would lead
to the definition of a co-registered group-wise prior to improve the inference of
patient specific anatomical topologies. In last instance, the co-registration of a
vascular vectorial prior would pave the way for group-wise analyses with poten-
tial applications in neurovascular cross-sectional and longitudinal studies.
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