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Abstract 

Purpose: To undertake an early proof of concept study on a novel, semi-automated texture-

based scoring system in order to enhance the association between MRI lesions and 

clinically significant cancer.  

 

Patients and methods: With ethics approval, 536 imaging volumes were generated from 20 

consecutive patients who underwent mpMRI at time of biopsy. Volumes of interest (VOIs) 

included zonal anatomy segmentation and suspicious MRI lesion for cancer (Likert scale 

score greater than 2). Entropy (E), measuring heterogeneity, was computed from VOIs and 

plotted as a multiparametric score defined as Entropy Score (ES) = E ADC+ E Ktrans + E 

Ve+ E T2WI.  The reference test that was used to define the ground truth comprised 

systematic saturation biopsies coupled with MRI targeted sampling. This generated 422 

cores in all that were individually labelled and oriented in 3D.   
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Diagnostic accuracy for detection of clinically significant prostate cancer (SPCa), defined as 

Gleason score of 3+4 (or higher) or more than 3mm of any grade of cancer on a single core, 

was assessed using Receiver Operating Characteristics, correlation and descriptive 

statistics. Proportion of cancerous lesions detected by ES and Visual Scoring (VS) were 

statistically compared using paired McNemar test.  

 

Results: Any cancer (Gleason Score 6 to 8) was found in 12 of the 20 (60%) patients with a 

median PSA of 8.22ng/ml.  SPCa (ES=17.96 ±0.72 NAT; CI 95%) showed a significant 

higher ES than non-SPCa (ES=15.33 ±0.76 NAT). ES correlated with Gleason Score (rs 

=0.5683, p=0.033) and maximum cancer core length (ρ = 0.781; p=0.0009). The Area Under 

the Curve for ES (0.89) and visual scoring (VS) (0.91) were not significantly different 

(p=0.75) for detection of SPCa among MRI lesions. Best ES estimated numerical threshold 

of 16.61 NATural information unit (NAT) led to a sensitivity of 100% and negative predictive 

value of 100%. The proportion of MRI lesion which found to positive for SPCa using this ES 

threshold (54%) was significantly higher (p<0.001) than those  using VS (24% of score 3,4,5) 

in a paired analysis using McNemar test. 53% of MRI lesion would have avoided biopsy 

sampling without missing significant disease.  

 

Conclusion: Capturing heterogeneity of PCa across multiple MRI sequences with ES 

yielded high performances for the detection and stratification of SPca. ES outperformed 

visual scoring in predicting positivity of lesions, holding promise in the selection of targets for 

biopsy and calling for further understanding of this association. 

 

Key words: prostate cancer, detection, stratification, MRI, texture analysis, histogram, 

pharmacokinetic model, image processing, biopsy, entropy, radionomics 
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Introduction 

Current diagnostic strategies for prostate cancer detection have relied upon prostate specific 

antigen (PSA) and random sampling of the gland using transrectal ultrasound (TRUS) 

guided biopsy. We now know that this approach is associated with an over-representation of 

clinically insignificant cancer as well as an under-representation of clinically significant 

cancer (1).  

 

MpMRI has been introduced into the pathway in order to mitigate some of the deficiencies 

associated with the standard of care. Its introduction has been associated with an increased 

detection of  clinically significant PCa  and, in certain circumstances it has provided a 

strategy to address the problem of over-diagnosis(1–3) raised in major screening trials(4–6).  

 

In current practice, prostate mpMRI visual reporting requires considerable expertise and is 

prone to inter-observer variability even when applying standardised guidelines, like Prostate 

Imaging Reporting And Data System (PI-RADS) version 2.0 (7). It also takes a considerable 

amount of time to do given the number of sequences that need to be looked at and 

compared with each other and possibly with previous imaging. Quantitative parameters 

derived from functional sequences, do not offer a reliable alternative as they are prone to 

substantial variabilities (8).  

Some recent developments in image analysis (by means of neural networks) are now 

making the possibility of automatic MRI-segmentation of both the prostate itself and of the 

MRI-lesions within it (9,10).  Automated assessment of the lesions, if it were indeed 

possible, opens up the possibility of fully automated MRI reporting in the future and access 

to and computation of information not perceived by visual assessment in the context of 

radiomic analysis of standard of care images (11,12).   
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Tumour heterogeneity is considered to be one of the main drivers of progression and 

resistance to treatment (13). The degree of histological PCa heterogeneity (i.e. the gradual 

loss of a structured cellular architecture) is reflected at tissue level by the Gleason grade 

(14,15) and was found at an intratumoral level as opposed to benign tissue (15–17) by 

whole genomic sequencing.  

 

Heterogeneity of PCa may also be noninvasively assessed using parameters derived from 

imaging. Entropy computes heterogeneity of a given volume (12,18,19), measuring spatial 

randomness of image intensities. A higher entropy represents a more disordered distribution 

of values within the tissue (20), potentially reflecting  biological feature of heterogeneity of 

prostate cancer, as in other carcinomas using MRI  (20).  

 

There are evidences suggesting that lesion entropy could be derived from specific mpMRI 

sequences for the detection, stratification and prognosis of PCa (21–24). Combining Entropy 

from different MRI sequences might improve its ability for cancer detection and stratification, 

as image generated by each sequence reflects different aspects of the underlying lesion 

histopathology  and does not necessary detect a cancer focus due to histology variation in 

tissue composition(25). 

 

Our aim is to undertake an early proof of concept study on a novel texture-based scoring 

system, relying on entropy, in order to enhance the association of MRI derived target 

generation with clinically significant cancer. 
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Material and Methods 

 Study population and image acquisition (standard test) 

Under local ethics committee approval, that waive written informed consent, we analysed the 

data of 21 consecutive patients referred for suspicion of PCa without contraindications to 

MRI. Patients underwent mpMRI prior to biopsy except those with suspicious of high risk 

disease. In such case, biopsies were carried out first.  All patients were scanned on a 1.5 T 

MRI system with a pelvic phased-array (Siemens Magnetom Avanto), using the same 

mpMRI protocol (T2 weighted imaging, DWI with generation of ADC maps and DCE 

imaging) in 2013 and 2014. The details of the protocol are listed in Appendix Table 1 and 

are in line with the European Society of Urogenital Radiology (ESUR) 2012 guidelines that 

were available at the start of the study (26).  

 

Two radiologists (with 6 and 3 years experiences in prostate mpMRI interpretation 

respectively) reported the scans according to a Likert scale from 1 to 5 (27). All sequences 

were used to allocate the score. Lesions with scores 3 to 5 were considered to be suspicious 

for cancer.  After consensus review of the images with the urologist performing the biopsy, a 

map of 36 regions of interest (ROIs) was generated before the procedure(28). Visual scoring 

of MRI was the standard test. 

 

Reference standard: Biopsy procedure and correlation 

All patients underwent subsequent transrectal ultrasound (TRUS) guided biopsy as per local 

protocol which implied a saturation TRUS biopsy for PSA under 15ng/ml with a 22 cores 

template. Each core, either systematic or targeted, was labelled according to its location and 

sent in a separate jar for analysis. In case of suspicious lesion at mpMRI prior biopsy, 
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targeted biopsies were performed using cognitive registration by a single urologist trained to 

this technique, prior systematic sampling(29). A dedicated uro-pathologist reported the 

biopsy. A drawing reporting location and numbering of the cores was issued for each patient 

and sent to pathology. Systematic TRUS biopsy combined with targeted biopsy corresponds 

to the reference test. Significant disease was defined as the presence of Gleason pattern 4 

(primary or secondary) and/or more than 3 mm cancer in a single core (30). 

 

Biopsy and MRI maps were compared in consensus to establish concordance for cancer 

leading to true positive, false positive, false negative and true negative MRI regions. 

 

Index test : Image processing 

Image processing protocol is illustrated in Appendix figure 1.  

Quantitative maps from DCE imaging were computed with correction of motion artefacts. 

The two parameters were the Volume Transfer Constant (Ktrans in ml/min) and Fraction of 

extracellular extravascular space (Ve, no unit) (see Appendix 1 for processing 

pharmakocinetic model).  

 

All quantitative maps, ADC map and 3D DCE-derived maps (Ktrans and Ve), were aligned in 

the anatomical reference space (T2-WI) using automatic rigid registration. Therefore, the 

same volume was analysed across the difference sequences. 

 

Masks to generate Volume of interest (VOI) were manually segmented in T2-WI within a 

dedicated platform by an individual trained across datasets of prostate mpMRI-histology 

correlation and performing image guided procedure based on mpMRI. The mask 

segmentation was then propagated across sequences. The different VOIs according to 
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zonal anatomy were the prostate (excluding seminal vesicles), the peripheral zone (PZ), the 

transition zone (TZ). Patient related VOIs were the MRI suspicious lesions at Visual Scoring, 

normal peripheral zone (nPZ) and benign prostate hyperplasia nodules (BPHn). Those are 

referred as discrete VOIs.  

 

As results, a set of VOIs at MRI was generated for: prostate, PZ, TZ, nPZ, BPHn, non-

cancerous and cancerous area, including lesion at Visual Scoring for 4 imaging parameters. 

Texture analysis was computed from the VOIs as a 3D assessment using a statistical 

analysis of the histogram, known as 1st order analysis (11,18,22). Entropy was directly 

computed for the VOI, corresponding to the whole lesion in 3D (19) (appendix 3). 

The computation entropy has been calibrated to sample the relevant information from a 

0.2cc lesion, as considered as the minimum volume of significant disease when Gleason 

pattern 4 is identified (31). Methods of calibration are detailed in Appendix 3. Consequently, 

all sequences are sampled with the same precision for the relevant information. 

 

Entropy unit is NATural unit of information (NAT) for each parameter.  

 

To assess the entropy derived from different images, we introduced an entropy score (ES) 

representing the combined entropy within each VOI to characterise quantitatively a volume 

in the same manner mpMRI is visually reported with a multiparametric approach.  

 

ES for a  is defined in the present work as 
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Statistical analysis: 

Power calculation was performed to demonstrate significant differences in the mean value of 

Ktrans between cancer foci and benign tissue (( , two-tailed 

hypothesis).  

 

Statistical analysis was performed by using R software (The R Project for Statistical 

Computing, Vienna, Austria, http://www.R-project.org). Figure 1 describes the different level 

of analysis and study workflow. 

 

The quantitative parameters and derivative metrics were tested as paired data to compare 

the values of cancer VOIs to the matching normal tissue (either nPZ or BPHn depending of 

the zone of origin of the tumour). 

 

We used a variance analysis test of Friedman for paired data to assess if the tested 

parameters were independent for a given type of VOI. 

 

Performances for detection were assessed at two levels of analysis (figure1). Analysis A 

considered all VOIs related to patient. Analysis B considered only visually scored lesions 

(either cancerous or not). 
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For continuous data and Entropy score at the two aforementioned level of analysis, 

Receiving Operator Characteristics (ROC) curves were generated and AUC calculated 

(pROC package) to perform binary classification between significant PCa (SPCa) and  and 

non SPCa (either insignificant or non cancerous). Comparison of the AUC (significance if 

p<0.05) of ES was carried out against each ES component taken individually. To fulfil 

primary objective we compared AUC of Visual Scoring (VS) to Entropy Score (ES). 

 

Logistic regression (LR) modelling was performed for both A and B analysis including each 

single entropy parameter and promising raw quantitative value for Ktrans, Ve and ADC and 

clinical data. Performances of the model were assessed using ROC curves for both A and B 

analysis. The AUC of the LR models, VS and ES were compared.  

 

Sensibility, specificity, positive and negative predictive values are also calculated for LR 

models and the ES for both level of analysis using best calculated threshold from the ROC. 

Best estimated threshold was computed as maximizing the sum of Se and Sp. 

 

Applying this best estimated threshold, we compared proportions of positive lesions for 

SPCa estimated by VS and ES in the B analysis population with a paired McNemar test. 

 

The correlation of ES with Gleason score was performed using the Spearman coefficient. 

The Correlation of ES with the Maximum Core Length was assessed using the Pearson 

coefficient. 

All statistical tests were conducted at the two-sided 5% significance. 
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Results: 

 Population and descriptive results: 

From the 21 patients enrolled, one patient found to be ineligible for inadequate DCE 

imaging.  

From the 20 remaining patients, PCa was detected among 12 (60%) patients following those 

biopsies either form systematic or targeted cores. Patient characteristics are shown in Table 

1. Reference test represents a data set of 442 biopsy cores independently labelled and 

oriented in space.  Median time between MRI and biopsy was 35 days. The total number of 

targets was 28 of which 7 were positive for cancer. Targets were scored 3, 4 and 5 in 

respectively 20, 5 and 3 cases. Detection rate of any cancer was 2/20 (10%), 2/5 (40%) and 

3/3 (100%) for the same range of score. All targets from MRI were segmented in the post 

processing software. 

 

Full imaging workflow was successfully carried out in all cases, leading to a data set of 536 

independent volumes. After correlation with histology findings, 60 MRI sequences specific 

volumes were generated from 15 cancer foci after fusion of the sequences and maps in the 

T2WI space. Histogram generation and texture analysis were available for all the 536 VOIs. 

 

The descriptive results of quantitative parameters, derived metrics and ES are plotted in 

table 2. Appendix Table 3 shows mean values for quantitative parameters and E in  paired 

match analysis between cancer VOIs and normal paired tissue. 

 

 There was a consistent trend for Entropy of each parameter for positive targets to be higher 

than negative as shown in box plot in appendix figure 2.  
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The Friedman test showed independence (p=0.0005) of each individual component of the 

ES enabling a meaningful score. 

 

For stratification of the disease, significant cancer (ES=17.73 ±0.1.23 NAT) showed a 

significant higher Entropy Score than non-significant cancer (ES=15.33 ±0.78 NAT, 

p=0.0025). 

 

The Pearson‘s correlation coefficient of the ES of cancerous VOIs with the maximum cancer 

core length (MCL) found to be positive with ρ = 0.781 (p=0.0009). 

 

The Spearman’s correlation coefficient of the ES of cancerous VOIs with matching biopsy 

Gleason score was also positive with rs =0.5683 and p=0.033. 

 

 Performances of the Index test (ES) for discrimination of MRI lesions: 

Table 3 summarizes diagnostic performances for ES and regression model for both A and B 

analyses. 

For analysis A, there was a significant difference (p=0.0009) in ES between positive VOIs for 

significant cancer (mean 17.973± 01.23 NAT; CI 95%) and those negative (mean 15.33 ± 

0.78 NAT). 
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ROC curves were built for the ES, entropy and mean value of each individual MRI parameter 

for detection of significant cancer. ROC curves were generated and AUC calculated from a 

total of 240 imaging volumes representing 70 VOIs from MRI suspicious lesions and normal 

tissue (figure 2). AUC results and comparison are summarized in appendix table 4. 

 

ES achieved an AUC of 0.88 (0.76, 0.97; 95% CI) and was higher than any other single 

parameter. Best threshold for ES was 16.69 NAT with Sensitivity 100% (95% CI 63.06 – 

100) of and Specificity of 69.35% (95% CI 56.35 - 80.44). The diagnostic accuracy was 

72.86 (95% CI 60.9 - 82.8). The Youden's index was 0.69 (95% CI 0.19 - 0.80) 

 

For analysis B, there was a significant difference (p=0.001) in ES between VOIs positive for 

significant cancer (mean 17.21± 1.00 NAT) and those negative (mean 16.11 ± 0.1.19 NAT; 

CI 95%). 

 

The same ROC curves (figure 2) were built for the 132 imaging volumes representing the 33 

MRI lesions (targets of score greater than 2 and cancer). The AUC for the ES to detection 

SPCa was 0.89 (0.76, 0.99; 95% CI), with a trend to be higher than other E or quantitative 

value for any other parameter (appendix table 4). 

 

Best ES threshold was found for 16.61 NAT, with sensitivity of 100% and specificity of 72%. 

 

Using this threshold of 16.61 NAT for detection of significant PCa, we calculated a negative 

predictive value (NPV) of 100%, Positive Predictive Value (PPV) of 53.3%. The diagnostic 
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accuracy was 78.79 % (95% CI 61.09 - 91.02). Youden index of ES was 0.72 (95% CI 0.14 - 

0.88). 

AUC of  LR model using E Ktrans, E VE, E T2WI, mean ADC did not show significant 

difference to AUC of ES with value of 0.93 for both A and B analysis.  

 

Performances of index against standard test:  Entropy Score vs.  Visual 

Scoring  

ROC curve was plotted for VS in B analysis. AUC reached 0.91 which was not significant 

either with ES (p= 0.75) or Logistic regression model (p=0.74) as shown in figure 2. 

 

18 MRI lesions over the 33 were under the ES threshold of 16.61 NAT from analysis B. 

None of them harboured significant PCa.  (table 4). 

 

The proportion of lesion which was found to be positive using this ES threshold (53%) was 

significantly higher (p<0.001) than positive lesions with VS (24% of score 3,4,5) in a paired 

analysis using McNemar test.  

 

An estimated detection rate for score 3, 4 and 5 MRI lesions would have been respectively 

52%, 100% and 100% and result in avoiding to sample 54% of the MRI lesions if the 

estimated ES threshold was applied in this data set. 
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Discussion 

 In this report, we focus on MRI generated lesion for detection and stratification of 

SPca. We used the concept of radiomics and texture analysis to enhance the association of 

imaging findings with SPCa. Particularity of this preliminary report relies on the choice of a 

feature, heterogeneity, that can be both identified in biology of cancer and imaging features. 

We showed an association of a texture feature, heterogeneity, with the presence of SPCa 

within an MRI lesion. 

 

Our report illustrates the growing interest in the use of radiomics to mine the  amount of 

information that medical imaging presents to increase the diagnostic accuracy(12,32,33). 

Also, the recent developments in the field of image analysis permit to envisage automatic 

segmentation of prostate MRI(9,34,35). This is therefore critical need to link imaging findings 

to biology and cancer outcomes(36). 

 

In oncology, intra tumour heterogeneity drives neoplastic progression(13). Regarding PCa, 

recent reports further explored the heterogeneity of PCa  at molecular and genetic 

analysis(17), even when considering the intratumoral level(15,16). It has been previously 

reported that heterogeneity of PCa is linked to prognosis(15).  

 

MRI signature of prostate cancer is complex, heterogeneous and still not fully decrypted. 

Neovascularization, cellularity, proportion of histological components are reported to 

quantitatively and qualitatively impact overall detection of prostate cancer across different 

sequences (37,38). Even subtype of Gleason influences detectability of cancer foci by 

mpMRI (39). 
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We questioned in this experiment the association between this biological feature of 

heterogeneity and MRI signature of SPCa using texture analysis. 

 

This study presents original aspects in the unified analysis of texture of three different 

sequences, incorporating T2-WI, DWI, DCE imaging, within one quantitative score capturing 

heterogeneity of distinct tissue component of PCa in the purpose of validation of MRI lesions 

for biopsy. Capturing radiomics features across multiple MRI sequences has already been 

described for breast, liver and nasopharingeal carcinomas and even linked to stratification 

and prognosis of the disease (20,40,41). To our knowledge no unified score based on 

radiomics features extracted from MRI findings has been described in this purpose.  This 

work adds to the hypothesis of texture analysis as a link between biology of carcinomas and 

its visualization using MRI.   

 

There was a significant difference in ES between SPCa and benign tissue and as well with 

insignificant cancer foci. Clinical potential relevance for stratification of the disease is further 

illustrated by the strong positive correlation with GS, important driver of oncologic outcome 

(42), and MCL. ES presented stronger correlation (rs = 0.5683 ; p= 0.03)  with GS than 

previous reports of inverse correlation of ADC of r=– 0.376 by Oto et Al.(43) or r=– 0,39 by 

Verma et al.(44). Entropy of ADC for a whole lesion was found to be an independent 

predictor of biochemical failure by Rosenkrantz et al(24) 

 

Supporting the potential value of radiomics, Vignati et al.(45) found excellent AUC of 0.96 for 

a texture parameter based on T2WI alone for differentiating Gleason 6 and >6 in a radical 

prostatectomy cohort, limiting translation in a diagnostic setting.  
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In a recent report, Ginsburg et al.(46) trained a model based on numerous radiomics 

features in multi-institutional data-set for detection of cancer on a voxel basis. Their maximal 

AUC of 0.71 was lower than our results and based on a single sequence analysis. 

Rosenktrantz et al.(47) applied different features of 1st order to discriminate lesions with 

Gleason >6 to others among visually scored lesions. Harboring similar range of values to our 

results, Entropy of ADC alone failed to discriminate those even in their larger cohort. 

 

In our experiment, the lack of significance of entropy of each sequence taken individually 

(figure 2) underlies that heterogeneity assessment by MRI should be  

 

performed through a multiparametric approach, as diagnosis is performed with visual 

scoring(48,49).   

 

 As a multi-sequence strategy, ES achieved similar and very good performances to a logistic 

regression model integrating imaging features (including mono-sequential entropy), by 

comparison of AUC (0.93 vs 0 .89, p=0.32). ES outperformed the LR model when 

considering NPV (100%) and Se (100%). This is important findings to envisage 

generalization of ES. A LR model has to be calibrated for a given population when ES needs 

calibration of the sequences acquisition which can be achieved with phantoms (33).  

Pending validation studies, we could envisage development of pre-calibrated phantom to 

setup MRI scanners of different  magnetic field strengths associated with automated 

reporting of MRI.  
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Visual Scoring already has been reported of utility for detection of PCa using on  targeted 

approach in the Precision trial, as multicenter randomized control trial against random TRUS 

biopsy(2). Detection of significant disease was 12% higher with targeted biopsy compared to 

standard TRUS biopsy. Proportion of insignificant disease was also lower using the MRI 

guided strategy. 

 

The Precision trial also successfully tested the strategy to avoid biopsy in 28 % patient with 

negative imaging findings(2). However, Visual scoring of mpMRI was described with 

variability, especially in NPV ranging from 63% to 95%(50). High and replicable negative 

predictive value would avoid to unnecessary sample some lesion without missing the 

clinically significant cancer while high sensitivity is conserved.  

 

Process leading to visualisation of MRI lesions and radiologists’ general impression appear 

to be difficult to systematize as expressed by non-negligible inter observer variability of 

visual scoring with either the Likert  or PIRADS v2 scoring systems(1,2,7). ES, as a 

quantitative score, offers to overcome this limitation. ES is, by definition, little sensitive to 

volume segmentation.  

 

Performances of the Entropy Score were comparable to Visual Scoring with AUC of 0.89 

and 0.91 (p=0.75). With an optimized threshold, ES significantly showed higher proportion 

(54%) of positive lesion for SPCa than VS (24%), without missing SPCa. Depending of the 

PIRADS v2 score, rate of false positive generated by VS has been reported ranging from 

17% to 88% in a population undergoing targeted biopsy.  The positive association of ES 

from MRI lesions to SPCa offers the possibility to select the MRI generated lesions to target 

with biopsy. 
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Automated texture analysis attempts to replicate a deep learning process empowered by 

computer calculation capabilities,  but are highly dependent of quality of input data and their 

clinical relevance(10). The current workflow leading to computation of the ES can be fully 

automated.   

 

As a potential tool, longitudinal analysis of ES in an MRI guided active surveillance 

population might be of interest to detect progression of cancer leading to change in 

management(51). Even E from other imaging modality, like Positron Emission Tomography  

scan, can possibly be added and extend performances.  

 

Our choice of a biopsy population permits to avoid the bias of selection of patient undergoing 

radical prostatectomy, with inclusion of patient potentially eligible for active surveillance and 

without the diagnosis of PCa. The reference standard, providing ground truth, meets the 

criteria of standard of care by sampling systematically the whole gland with addition of 

targeting MRI lesion. In a recent meta-analysis, no difference was shown between cognitive 

and fusion biopsy for detection rate(52).  

 

 Limitations 

Regardless the high number of generated imaging volumes, the cohort is relatively small 

even if some statistical differences have been found either for quantitative values or ES. This 

early proof of concept study was powered to detect a significant difference in quantitative 

parameters, not specifically ES. Technically, mpMRI did not include high b value sequences 

and was acquired at 1.5T. Some refinements might increase the accuracy of ES , for 

example using 3T scanner to increase the signal to noise ratio. ES for selection of targets 
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was tested for lesion generated by VS, standard test for reporting  mpMRI. A fully automated 

workflow to compute ES can be implemented and would currently rely on generation of MRI 

lesion with human assistance, by its segmentation on a single sequence, awaiting validation 

of automation of this step by the means of artificial neural networks.   

 

Also, the computed threshold in this experiment depends of the chosen conservative 

definition of clinically significant prostate cancer, including Gleason 6. Variation of this 

debated definition will probably impact performances(53).  

 Research implications 

This early proof concept study has multiple research implications. Validation of imaging 

biomarkers has to follow an established process (36). Mainly, association of ES, 

heterogeneity at imaging, has to be confirmed as meaningful signature of significant prostate 

cancer based on biological features and ultimately patient outcomes (54). Testing this score 

in a larger, prospectively acquired biopsy naïve population with a robust reference test is a 

mandatory. We plan to confront those preliminary findings for detection in the PROMIS trial 

cohort that fulfils those criteria in a retrospective analysis(1). This is a compulsory step 

before to undertake a prospective validation study in a new population. For longitudinal 

analysis, quantitative assessment of progression using ES of MRI lesion in a surveillance 

setting would first need a longitudinal descriptive study linked to clinical outcomes. This 

would require a robust histologic gold standard where an MRI lesion is systematically 

resampled at different time points. A deep understanding of the heterogeneity of prostate 

tissue, either benign or cancerous, is needed at both histology and biomolecular level of 

analysis. There is a need of high quality data to input in texture analysis platforms (10).  

Other and more complex texture analysis features might outperform the entropy and need to 

be tested (32).  
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Conclusion 

We report results of a proof of concept study which shows association between a 

quantitative texture-based Entropy Score, linked to heterogeneity across MRI sequences, 

and SPCa. For similar overall performances to Visual Scoring, ES presented higher 

proportion of positive lesions for SPCa without compromising NPV and Se. This permits to 

envisage selection of MRI generated targets for biopsy.  Multiple steps are needed to 

validate those initial findings as an imaging biomarker. 
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Tables  

 

 

 

Table 1. Included Patients characteristics 

 

Number patients 20 

Median age (years, range) 65 (55-74) 

Median PSA (ng/ml, range) 

8.22 (4.54-

52.72) 

Number of patients with positive biopsy 12 

Number of patients under active surveillance 2 

Number of patients biopsy naive 14 

Number of patients with previous negative TRUS biopsy 4 

Number of high risk patients 2 

Number of patient mpMRI naive 20 

Maximum Gleason score per patient   

Gleason 6 (3+3) 8 

Gleason 7 (3+4) 3 

Gleason 8 (4+4) 1 

Median number of target per patient (range) 1.5 (0-3) 

Median maximum target score per patient (range) 3 (3-5) 

Number of positive targets for any cancer (n significant cancer)   

score 3/5 2/19 (0) 

score 4/5 2/5 (2) 

score 5/5 3/3 (3) 

Mean Maximum core length (range) 5.5 (1-17) 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Table 2. Values of Entropy Score for different VOIS: 

 

Entropy Score 

Volume of interest (n) mean median standard deviation CI 95% 

Prostate (20) 18.31 18.78 1.17 0.51 

whole Peripheral Zone (20) 17.96 18.56 1.30 0.57 

whole Transition Zone (20) 17.96 18.20 1.26 0.55 

Normal Peripheral Zone (19)*** 15.58 15.47 3.84 1.72 

BPH nodule (18)*** 16.26 16.38 5.30 2.45 

Target (28) 16.31 16.31 1.22 0.45 

Positive Target (5)* 17.21 16.87 1.00 0.42 

Negative Target (23)* 16.11 15.88 1.19 0.50 

Cancer (12) 16.93 16.81 1.59 0.90 

Significant Cancer (8)** 17.73 17.40 1.23 0.85 

Non-significant cancer (4)** 15.33 15.12 0.78 0.76 

*p=0.035; **p=0.0025; ***p=0.04 
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Table 3. Comparison of performances of the Entropy Score and Multi logistic 

regression models: 

 

 A analysis All VOIs B Analysis-MRI Lesions 

 Entropy Score Regression Model Entropy Score Regression Model 

Sensitivity % (95% 

CI) 

100 (63.0 - 100)  87.5 (47.3 - 99.6) 100 (63.0 - 100)  87.5 (47.3 - 99.6) 

Specificity % (95% 

CI) 

69.3 (56.3 - 80.4)  88.71 (78.1 - 95.3) 72 (50.6 - 87.9)  84.3 (63.9 - 95.4) 

PPV % (95% CI) 29.6 (13.7 - 50.1) 50 (95% CI 23.0 - 76.) 53.3 (26.5 - 78.7)  63.6 (30.7 - 89.0)  

NPV % (95% CI) 100 (91.7 - 100)  98.2 (90.4 - 99.9) 100 (81.4 - 100) 95.4 (77.1 - 99.8) 

Diagnostic 

Accuracy % (95% 

CI) 

72.8 (60.9 - 82.8)  88.5 (78.7 - 94.9)  78.7 (61.0 - 91.0)  84.8 (68.1 - 94.8) 

Youden index (95% 

CI) 

0.69 (0.19 - 0.8) 0.76 (0.25 - 0.95) 0.72 (0.14 - 0.88) 0.72 (0.11 - 0.95) 

AUC  (95% CI) 0.88 (0.76, 0.97) 0.93 (0.84, 0.99) 0.89 (0.76, 0.99) 0.93 (0.82, 1.00) 

p value for AUC 

comparison 

0.16 0.32 

PPV: positive predictive value; NPV: negative predictive value; CI: 

confidence interval; AUC: area under the curve; VOI: volume of interest. 
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Table 4: Contingency table for lesion detection by VS and ES 

 

 

 

 Visual Scoring Entropy Score 

 3,4 and 5 <16.61Nat >16.61Nat 

Positive for SPCa 8 0 8 

Negative for SPCa 25 18 7 

Number of lesions 33 18 15 

Detection rate 0.24* 0 0.53* 

 

*significant difference p<0.0001 
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Figures Legends : 

 

Figure 1. Study profile and different levels of statistical analysis with matching investigated 

population 

Figure 2 ROC curves. (A) for detection of significant cancer using entropy score and each of 

its component within the MRI lesions and (B) ROC curves for ES (AUC 0.89) and VS (0.91) 

are plotted for B analysis(p=0.75) 

Figure 3 shows two examples of high and low entropy score of cancerous lesions of 

Gleason (3+3)in A and (3+4) in B with Entropy Score of 14.71 NAT and 18.75 NAT 

respectively. 
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