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Abstract. A widely observed phenomenon in deep learning is the degra-
dation problem: increasing the depth of a network leads to a decrease in
performance on both test and training data. Novel architectures such as
ResNets and Highway networks have addressed this issue by introduc-
ing various flavors of skip-connections or gating mechanisms. However,
the degradation problem persists in the context of plain feed-forward net-
works. In this work we propose a simple method to address this issue. The
proposed method poses the learning of weights in deep networks as a con-
strained optimization problem where the presence of skip-connections is
penalized by Lagrange multipliers. This allows for skip-connections to be
introduced during the early stages of training and subsequently phased
out in a principled manner. We demonstrate the benefits of such an
approach with experiments on MNIST, fashion-MNIST, CIFAR-10 and
CIFAR-100 where the proposed method is shown to greatly decrease the
degradation effect and is often competitive with ResNets.
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1 Introduction

The representation view of deep learning suggests that neural networks learn an
increasingly abstract representation of input data in a hierarchical fashion [7, 8,
25]. Such representations may then be exploited to perform various tasks such
as image classification, machine translation and speech recognition.

A natural conclusion of the representation view is that deeper networks will
learn more detailed and abstract representations as a result of their increased
capacity. However, in the case of feed-forward networks it has been observed
that performance deteriorates beyond a certain depth, even when the network
is applied to training data. Recently, Residual Networks (ResNets; [10]) and
Highway Networks [21] have demonstrated that introducing various flavors of
skip-connections or gating mechanisms makes it possible to train increasingly
deep networks. However, the aforementioned degradation problem persists in
the case of plain deep networks (i.e., networks without skip-connections of some
form).

A widely held hypothesis explaining the success of ResNets is that the in-
troduction of skip-connections serves to improve the conditioning of the opti-
mization manifold as well as the statistical properties of gradients employed
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during training. [19] and [20] show that the introduction of specially designed
skip-connections serves to diagonalize the Fisher information matrix, thereby
bringing standard gradient steps closer to the natural gradient. More recently,
[1] demonstrated that the introduction of skip-connections helps retain the cor-
relation structure across gradients. This is contrary to the gradients of deep
feed-forward networks, which resemble white noise. More generally, the skip-
connections are seen to reduce the effects of vanishing gradients by introducing
a linear term [11].

The goal of this work is to address the degradation issue in plain feed-
forward networks by leveraging some of the desirable optimization properties
of ResNets. We approach the task of learning parameters for a deep network
under the framework of constrained optimization. This strategy allows us to in-
troduce skip-connections penalized by Lagrange multipliers into the architecture
of our network. In our setting, skip-connections play an important role during
the initial training of the network and are subsequently removed in a princi-
pled manner. Throughout a series of experiments we demonstrate that such an
approach leads to improvements in generalization error when compared to ar-
chitectures without skip-connections and is competitive with ResNets in some
cases. The contributions of this work are as follows:

– We propose an alternative training strategy for plain feed-forward networks
which reduces the degradation in performance as the depth of the network in-
creases. The proposed method introduces skip-connections which are penal-
ized by Lagrange multipliers. This allows for the presence of skip-connections
to be iteratively phased out during training in a principled manner. The pro-
posed method is thereby able to enjoy the optimization benefits associated
with skip-connections during the early stages of training.

– A number of benchmark datasets are used to demonstrate the empirical
capabilities of the proposed method. In particular, the proposed method
greatly reduces the degradation effect compared to plain networks and is on
several occasions competitive with ResNets.

2 Related work

The hierarchical nature of many feed-forward networks is loosely inspired by the
structure of the visual cortex where neurons in early layers capture simple fea-
tures (e.g., edges) which are subsequently aggregated in deeper layers [14]. This
interpretation of neural networks suggests that the depth of a network should
be maximized, thereby allowing the network to learn more abstract (and hope-
fully useful) representations [3]. However, a widely reported phenomenon is that
deeper networks are more difficult to train. This is often termed the degrada-
tion effect in deep networks [10, 21]. This effect has been partially attributed to
optimization challenges such as vanishing and shattered gradients [1, 12].

In the past these challenges have been partially addressed via the use of su-
pervised and unsupervised pre-training [2] and more recently through careful
parameter initialization [6, 9] and batch normalization [15]. In the past couple
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of years further improvements have been obtained via the introduction of skip-
connections. ResNets [10, 11] introduce residual blocks consisting of a residual
function F together with a skip-connection. Formally, the residual block is de-
fined as:

xl+1 = Fl(xl,Wl) + W′
lxl (1)

where Fl : Rn → Rn′
represents some combination of affine transformation,

non-linearity and batch normalization parameterized by Wl. The matrix W′
l

parameterizes a linear projection to ensure the dimensions are aligned1. More
generally, ResNets are closely related to Highway Networks [21] where the output
of each layer is defined as:

xl+1 = Fl(xl,Wl) · T (xl,Hl) + xl · (1− T (xl,Hl)), (2)

where · denotes element-wise multiplication. In Highway Networks the output
of each layer is determined by a gating function:

T (xl,Hl) = sigmoid (Hlxl)

inspired from LSTMs. We note that both ResNets and Highway Networks were
introduced with the explicit goal of training deeper networks.

Recently, the goal of learning deep networks without skip-connections has be-
gun to receive more attention. [24] propose a novel re-parameterization of weights
in feed-forward networks which they call the Dirac parameterization. Instead of
explicitly adding a skip-connection, they model the weights as a residual of the
Dirac function, effectively moving the skip-connection inside the non-linearity. In
related work, [1] propose to initialize weights in a CReLU activation function in
order to preserve linearity during the initial phases of training. This is achieved
by initializing the weights in a mirrored block structure. During training the
weights are allowed to diverge, resulting in non-linear activations.

Finally, we note that while the aforementioned approaches have sought to
train deeper networks via modifications to the network architecture (i.e., by
adding skip-connections) success has also been obtained by modifying the non-
linearities [5, 16].

3 Variable Activation Networks

The goal of this work is to train deep feed-forward networks without suffering
from the degradation problem described in previous sections. To set notation,
we denote x0 as the input and xL as the output of a feed-forward network with
L layers. Given training data {y,x0} it is possible to learn parameters {Wl}Ll=1

by locally minimizing some objective function

{Ŵl}Ll=1 = arg min C
(
y,xL; {Wl}Ll=1

)
. (3)

1 Unless stated otherwise we will assume F retains the dimension of xl and set W′
l to

the identity.
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First-order methods are typically employed due to the complexity of the ob-
jective function in equation (3). However, directly minimizing the objective is not
practical in the context of deep networks: beyond a certain depth performance
quickly deteriorates on both test and training data. Such a phenomenon does
not occur in the presence of skip-connections. Accordingly, we take inspiration
from ResNets and propose to modify equation (1) in the following manner:

xl+1 = Fl(xl,Wl) + (1−αl) · xl (4)

where αl ∈ [0, 1]n determines the weighting given to the skip-connection. More
specifically, αl is a vector were the entry i dictates the presence and magnitude
of a skip-connection for neuron i in layer l. Due to the variable nature of param-
eters αl in equation (4), we refer to networks employing such residual blocks as
Variable Activation Networks (VAN).

The objective of the proposed method is to train a feed-forward network un-
der the constraint that αl = 1 for all layers, l. When the constraint is satisfied
all skip-connections are removed. The advantage of such a strategy is that we
only require αl = 1 at the end of training. This allows us to initialize αl to some
other value, thereby relaxing the optimization problem and obtaining the advan-
tages associated with ResNets during the early stages of training. In particular,
whenever αl 6= 1 information is allowed to flow through the skip-connections,
alleviating issues associated with shattered and vanishing gradients.

As a result of the equality constraint on αl, the proposed activation function
effectively does not introduce any additional parameters. All remaining weights
can be trained by solving the following constrained optimization problem:

{Ŵl}Ll=1 = argmin C
(
y,xL; {Wl,αl}Ll=1

)
such that αl = 1 for l = 1, . . . , L.

(5)
The associated Lagrangian takes the following simple form [4]:

L = C
(
y,xL; {Wl,αl}Ll=1

)
+

L∑
l=1

λT
l (αl − 1), (6)

where each λl ∈ Rn are the Lagrange multipliers associated with the constraints
on αl. In practice, we iteratively update αl via stochastic gradients descent
(SGD) steps of the form:

αl ← αl − η
(
∂C
∂αl

+ λl

)
(7)

where η is the step-size parameter for SGD. Throughout the experiments we will
often take the non-linearity in Fl to be ReLU. Although not strictly required,
we clip the values αl to ensure they remain in the interval [0, 1]n.

From equation (6), we have that the gradients with respect to Lagrange
multipliers are of the form:

λl ← λl + η′ (αl − 1) , (8)
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We note that since we require αl ∈ [0, 1]n, the values of λl are monotonically
decreasing. As the value of Lagrange multiplier decreases, this in turn pushes
αl towards 1 in equation (7). We set the step-size for the Lagrange multipliers,
η′, to be a fraction of η. The motivation behind such a choice is to allow the
network to adjust as we enforce the constraint on αl.

4 Experiments

We present experiments to demonstrate that the proposed method is able to
effectively alleviate the degradation problem in deep networks. We first demon-
strate the capabilities of the proposed method using a simple, non-convolutional
architecture on the MNIST and Fashion-MNIST datasets [22] in Section 4.1.
More extensive comparisons are then considered on the CIFAR datasets [17] in
Section 4.2.

4.1 MNIST and Fashion-MNIST

Networks of varying depths were trained on both MNIST and Fashion-MNIST
datasets. Following [21] the networks employed in this section were thin, with
each layer containing 50 hidden units. In all networks the first layer was a fully
connected plain layer followed by l layers or residual blocks (depending on the
architecture) and a final softmax layer. The proposed method is benchmarked
against several popular architectures such as ResNets and Highway Networks
as well as the recently proposed DiracNets [24]. Plain networks without skip-
connections are also considered. Finally, we also considered VAN network where
the constraint αl = 1 was not enforced. This corresponds to the case where
λl = 0 for all l. This comparison is included in order to study the capacity and
flexibility of VAN networks without the need to satisfy the constraint to remove
skip-connections. For clarity, we refer to such networks as VAN (λ = 0) networks.
For all architectures the ReLU activation function was employed together with
batch-normalization. In the case of ResNets and VAN, the residual function
consisted of batch-normalization followed by ReLU and a linear projection.

The depth of the network varied from l = 1 to l = 30 hidden layers. All
networks were trained using SGD with momentum. The learning rate is fixed
at η = 0.001 and the momentum parameter at 0.9. Training consisted of 50
epochs with a batch-size of 128. In the case of VAN networks the αl values were
initialized to 0 for all layers. As such, during the initial stages of training VAN
networks where equivalent to ResNets. The step-size parameter for Lagrange
multipliers, η′, was set to be one half of the SGD step-size, η. Finally, all Lagrange
multipliers, λl, are initialized to -1.

Results The results are shown in Figure 1 where the test accuracy is shown as a
function of the network depth for both the MNIST and Fashion-MNIST datasets.
In both cases we see clear evidence of the degradation effect: the performance of
plain networks deteriorates significantly once the network depth exceeds some
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Fig. 1: Results on MNIST (left) and fashion-MNIST (right) for various different archi-
tectures as the depth of the network varies from 1 to 30. Mean average test accuracy
over 10 independent training sessions is shown. We note that with the exception of
plain networks, the performance of all remaining architectures is stable as the number
of layers increases.

critical value (approximately 10 layers). As would be expected, this is not the
case for ResNets, Highway Networks and DiracNets as such architectures have
been explicitly designed to avoid this behavior. We note that VAN networks do
not suffer such a pronounced degradation as the depth increases. This provides
evidence that the gradual removal of skip-connections via Lagrange multipliers
leads to improved generalization performance compared to plain networks. Fi-
nally, we note that VAN networks obtain competitive results across all depths.
Further, we note that VAN (λ = 0) networks, where no constraint is placed on
skip-connections, obtain competitive results across all depths.

4.2 CIFAR

As a more challenging benchmark we consider the CIFAR-10 and CIFAR-100
datasets. These consist of 60000 32×32 pixel color images with 10 and 100 classes
respectively. The datasets are divided into 50000 training images and 10000 test
images.

We follow [10] and train deep convolutional networks consisting of four blocks
each consisting of n residual layers, consisting of residual functions of the form
conv-BN-ReLU-conv-BN-ReLU. This corresponds to the pre-activation function
[11]. The convolutional layers consist of 3 × 3 filters with downsampling at the
beginning of blocks 2, 3 and 4. The network ends with a fully connected softmax
layer, resulting in a depth of 8n+ 2.

Networks were trained using SGD with momentum over 165 epochs. The
learning rate was set to η = 0.1 and divided by 10 at the 82nd and 125th
epoch. The momentum parameter was set to 0.9. Networks were trained using
mini-batches of size 128. Data augmentation followed [18]: this involved random
cropping and horizontal flips. Weights were initialized following [9]. As in Sec-
tion 4.1, we initialize αl = 0 for all layers. Furthermore, we set the step-size
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Fig. 2: Left: Results on CIFAR-10 dataset are shown as the depth of networks increase.
We note that the performance of both VAN and plain networks deteriorates as the
depth increases, but the effect is far less pronounced for VAN networks. Right: Training
and test error curves are shown for networks with 26 layers. We also plot the mean α
residuals: 1

L

∑L
l=1(1−αl)

2 on the right axis.

parameter for the Lagrange multipliers, η′, to be one tenth of η and all La-
grange multipliers, λl, are initialized to -1. On CIFAR-10 we ran experiments
with n ∈ {1, 2, 3, 4, 5, 6, 8, 10} yielding networks with depths ranging from 10 to
82. For CIFAR-100 experiments were run with n ∈ {1, 2, 3, 4}.

Results Results for experiments on CIFAR-10 are shown in Figure 2. The left
panel shows the mean test accuracy over five independent training sessions for
ResNets, VAN, VAN (λ = 0) and plain networks. While plain networks provide
competitive results for networks with fewer than 30 layers, their performance
quickly deteriorates thereafter. We note that a similar phenomenon is observed
in VAN networks but the effect is not as dramatic. In particular, the performance
of VANs is similar to ResNets for networks with up to 40 layers. Beyond this
depth, ResNets outperform VAN by an increasing margin. This holds true for
both VAN and VAN (λ = 0) networks, however, the difference is reduced in
magnitude in the case of VAN (λ = 0) networks. These results are in line with
[11], who argue that scalar modulated skip-connections (as is the case in VANs
where the scalar is 1 − αl) will either vanish or explode in very deep networks
whenever the scalar is not the identity.

The right panel of Figure 2 shows the training and test error for a 26 layer
network. We note that throughout all iterations, both the test and train accuracy
of the VAN network dominates that of the plain network. The thick gold line
indicates the mean residuals of the αl parameters across all layers. This is defined
as 1

L

∑L
l=1(1 − αl)

2 and is a measure of the extent to which skip-connections
are present in the network. Recall that if all αl values are set to one then all
skip-connections are removed (see equation (4)). From Figure 2, it follows that
skip-connections are fully removed from the VAN network at approximately the
120th iteration.
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Fig. 3: Left: Results on CIFAR-100 dataset are shown as the depth increases from 10 to
34 layers. We note that the performance of both VAN and plain networks deteriorates
as the depth increases, but the effect is far less pronounced for plain networks. Right:
Training and test error curves are shown for VAN and plain networks with 18 layers.
The mean α residuals, 1

L

∑L
l=1(1−αl)

2, are shown in gold along the right axis.

A comparison of the performance of VAN networks in provided in Table 1.
We note that while VAN networks do not outperform ResNets, they do out-
perform other alternatives such as Highway networks when networks of similar
depths considered. However, it is important to note that Highway networks did
not employ batch-normalization, which is a strong regularizer. In the case of
both VAN and VAN (λ = 0) networks, the best performance is obtained with
networks of 26 layers while ResNets continue to improve their performance as
depth increases. Finally, current state-of-the-art performance, obtained by Wide
ResNets [23] and DenseNets [13], are also provided in Table 1.

Figure 3 provides results on the CIFAR-100 dataset. This dataset is consider-
ably more challenging as it consists of a larger number of classes as well as fewer
examples per class. As in the case of CIFAR-10, we observe a fall in the per-
formance of both VAN and plain networks beyond a certain depth; in this case
approximately 20 layers for plain networks and 30 layers for VANs. Despite this
drop in performance, Table 1 indicates that the performance of VAN networks
with both 18 and 26 layers are competitive with many alternatives proposed
in the literature. Furthermore, we note that the performance of VAN (λ = 0)
networks is competitive with ResNets in the context of the CIFAR-100 dataset.

Training curves are shown on the right hand side of Figure 3. As in the
equivalent plot for CIFAR-10, the introduction and subsequent removal of skip-
connections during training leads to improvements in generalization error.

5 Discussion

This manuscript presents a simple method for training deep feed-forward net-
works which greatly reduces the degradation problem. In the past, the degrada-
tion issue has been successfully addressed via the introduction of skip-connections.
As such, the goal of this work is to propose a new training regime which retains
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Table 1: Comparison of VAN networks results (test error %) on CIFAR-10 and CIFAR-
100. For VAN networks we report the best value as well as the mean and standard
deviation over five independent training runs. We add a ∗ to denote results which did
not employ batch-normalization.

Architecture # Layers CIFAR-10 CIFAR-100

Highway Network∗ 32 8.80 -
Highway Network∗ 19 7.54 32.39
DiracNet (width-1) 34 7.10 -
ELU∗ 18 6.55 24.28
VAN (λ = 0) 26 6.29 (6.40± 0.16) 27.04 (27.42 ± 0.26)
VAN (λ = 0) 34 6.28 (6.45± 0.14) 26.46 (26.81 ± 0.31)
VAN 18 6.23 (6.49± 0.16) 28.20 (28.42 ± 0.36)
VAN 26 6.08 (6.35± 0.21) 27.70 (28.01 ± 0.39)
DiracNet (width-2) 34 5.60 26.72
ResNet 164 5.46 24.33
Wide ResNet (width-10) 28 4.00 19.25
DenseNet 160 3.46 17.18

the optimization benefits associated with ResNets while ultimately phasing out
skip-connections. This is achieved by posing network training as a constrained
optimization problem where skip-connections are introduced during the early
stages of training and subsequently phased out in a principled manner using La-
grange multipliers. Throughout a series of experiments we demonstrate that the
proposed training strategy greatly reduces the degradation problem, providing
an alternative to ResNets.
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