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Abstract

Despite the large improvements in performance attained by deep learning in com-
puter vision, one can often further improve results with some additional post-processing
that exploits the geometric nature of the underlying task. This commonly involves dis-
placing the posterior distribution of a CNN in a way that makes it more appropriate for
the task at hand, e.g. better aligned with local image features, or more compact. In this
work we integrate this geometric post-processing within a deep architecture, introducing
a differentiable and probabilistically sound counterpart to the common geometric voting
technique used for evidence accumulation in vision. We refer to the resulting neural mod-
els as Mass Displacement Networks (MDNs), and apply them to human pose estimation
in two distinct setups: (a) landmark localization, where we collapse a distribution to a
point, allowing for precise localization of body keypoints and (b) communication across
body parts, where we transfer evidence from one part to the other, allowing for a globally
consistent pose estimate. We evaluate on large-scale pose estimation benchmarks, such
as MPII Human Pose and COCO datasets, and report systematic improvements.

1 Introduction
The advent of deep learning has reduced the amount of hand-engineered processing required
for computer vision by integrating many operations such as pooling, normalization, and re-
sampling within Convolutional Neural Networks (CNN). The succession of such operations
gradually discards the effects of irrelevant signal transformations, allowing the higher layers
of CNNs to exhibit increased robustness to small input perturbations. While this invariance
is desirable for high-level vision tasks, it can harm tasks such as pose estimation where one
aims at precise spatial localization, rather than abstraction.

It is therefore common to apply some form of computer vision-based post-processing on
top of CNN-based scores to obtain sharp, localized geometric features. One of the first steps
in this direction has been the use of structured prediction on top of semantic segmentation,
e.g. by combining image-based DenseCRF [21] inference with CNNs for semantic segmen-
tation [10], training both systems jointly [38], or more recently learning CNN-based pairwise
terms in structured prediction modules [9, 23]. All of these works involve coupling decisions
so as to reach some consistency in the labeling of global structures, typically coming in the
form of smoothness constraints. While this is meaningful for tasks where information is
spread out, such as semantic segmentation, we are interested in more general transforma-
tions, some of which are illustrated in Fig. 1. For instance, we consider the task of keypoint
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Figure 1: The low spatial resolution of CNNs results in overly smooth heatmaps (mass), as
shown in the image on the left. Rather than stretch the CNN’s capabilities in order to obtain
spatially sharp responses, we propose instead to append a dispacement field as another CNN
output that rearranges the per-pixel confidence scores, lending more evidence to the ground
truth positions. The ox and oy-components of different displacement fields o(x) are shown on
the top (the middle row shows the same components presented as a vector field and displayed
in color, for illustrative purposes). These are combined by a Mass Displacement module into
a sharp decision, shown in the bottom row.

detection by effectively collapsing the spatially spread output of a CNN into better localized
structures. Even though in principle this could be cast in structured prediction terms, the re-
sulting optimization problem amounts to maximizing a submodular function [6] and can only
be approximately optimized. We therefore turn to bottom-up, rather than optimization-based
methods, and pursue their incorporation in the context of deep learning.

Our starting point is the understanding that requiring high spatial accuracy from a purely
CNN-based deep architecture is misusing the network’s abilities: by design, the CNN feature
maps get increasingly smooth as we go deeper. We can instead combine these smooth CNN-
based classification results with an equally smooth displacement field obtained from another
CNN branch, indicating to every pixel where its value (or mass) should be displaced. This is
achieved by separately predicting values of x- and y- components of the displacement vectors
of all pixels. Even though the displacement field may be smooth, if its value is accurate, then
result can become sharp – in Fig. 1 we are displaying some indicative examples of a smooth
response being manipulated by smooth displacement fields that turn it into quite different
shapes, that could be appropriate for a variety of visual tasks.

What we are proposing can be understood as reinventing geometric voting in the context
of deep learning: in a host of computer vision tasks [3, 4, 15, 22, 25, 29] voting can be used
to first associate an observation with positions that it supports and then shortlist structures
that are supported by multiple observations, e.g. many points voting for a line or a cycle [3],
object parts voting for an object’s 2D [22] or 3D pose [30], or many object hypotheses
voting for a single object bounding box [16]. Our work was actually motivated by the recent
success of such schemes for landmark localization in [27], instance segmentation in [35],
and bounding box post-processing in [16].

All of these approaches however are plagued by the heuristic nature of geometric vot-
ing, that makes them only applicable as post-processing steps. For example in [27] posterior
probabilities are being displaced and then accumulated which results in score maps that can
be larger than one – disqualifying them from training with losses appropriate for classifica-
tion. The authors end up using the cross-entropy loss for the original CNN and the L2 loss
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Figure 2: Architecture of a Mass Displacement Network (MDN): the convolutional layers of
a CNN are trained with loss functions that allow for some uncertainty in the localization of
landmarks, accommodating their inherently smooth responses. A voting operation combines
these and collapses the smooth CNN predictions into sharp landmarks. We treat the voting
mechanism as a differentiable module and use it for end-to-end training.

for the second stage, while also not training the displacement fields end-to-end – as such
it is unclear if the displacement fields are really pointing to the positions that they should.
Instead, in this work we develop this somehow ad-hoc post-processing into a module that
can easily be combined with existing architectures and trained end-to-end.

In particular, we treat geometric voting as a differentiable operation, allowing us to train
the CNN-based score maps and displacement fields in an end-to-end manner, ensuring that
both arguments to the voting function are optimizing the final system’s performance. Each
displaced point is dilated by a kernel to support a region around its novel position, and in the
output space every position accumulates evidence from input points that can support it.

Since our approach combines spatial transformation with the geometric manipulation of
a probability mass function, we call it a Mass Displacement Network (MDN). Its structure
is shown in Fig. 2 and typical outputs in Fig. 3. We explore two tasks: (i) human body
landmark localization through within-part voting, where the coarse score map of a part is
sharpened by a voting process (ii) human pose estimation through across-part voting, where
every body part score map votes for the presence of other parts. We provide systematic
demonstrations of improvements achieved by MDNs over strong baselines on large-scale
benchmarks in human pose estimation both in single person and multi-person setups.

Apart from the works mentioned already, our approach has connections to Spatial Trans-
former Networks (STNs) [20] to bring raw images into correspondence and remove intra-
class variation that can be modelled in terms of image deformations. The tacit assumption
underlying STNs is that the input and output fields are related by a diffeomorphic transfor-
mation, such as a similarity transformation or an affine map, meaning that the dimensionality
of structures is preserved. Instead, here we consider transformations that allow us to collapse
2D structures into lower-dimensional structures, such as points, or lines. Furthermore, STNs
typically consider a single global parametric transformation, while we have a non-parametric
transformation determined by a fully convolutional layer. Finally, as we explain in Sec. 2,
STNs are designed like image interpolation operations, and are typically used at the input
of a network, while we cater for evidence accumulation, and our module is intended to be
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input image confidence scores c(x) displacement oydisplacement ox refined localization m(x)

input image heatmaps c(x) displacement ox displacement oy refined localization m(x)

Figure 3: When presented with an image, the three convolutional branches of our network
deliver the smooth heatmaps c(x) and horizontal and vertical displacement fields ox and oy
shown in the middle row (for simplicity, for every kind of output here we display a sum over
all planes corresponding to different keypoints). The MDN combines these into the sharper
heatmaps m(x) producing the final joint estimates (on the right).

appended at the end of a network, or generally after some decisions have been produced
by a CNN. Finally, in [14] the authors introduced active CNNs, which allow a neuron to
pick incoming neurons from input positions determined dynamically through a CNN-based
deformation. While this work shares with us the idea of using a CNN-based deformation
field, our approach is adapted for collapsing densities and accumulating evidence to certain
positions and [14] is tuned for discarding the effect of deformations.

2 Mass Displacement Networks
We start by describing the non-probabilistic, geometric voting process currently employed
as post-processing in recent works [23, 27] and then propose another principled variant that
relies on the noisy-or rule [28] allowing us to use the cross-entropy loss during training. We
then turn to the equations used for end-to-end training of the resulting MDN.

Additive and Noisy-OR voting. We consider that both our local evidence functions and
the output structures reside in a two-dimensional space. In particular we consider that for any
position x=(x,y) a convolutional network provides us with two outputs: firstly a heatmap,
i.e. an estimate of the local confidence for the presence of a feature c(x), and secondly an
estimate of the predicted structure’s position. The latter is expressed as an horizontal/vertical
displacement o(x) that should be applied to x to obtain the refined estimate x′:

x′(x) = x+o(x) = (x,y)+(ox(x,y),oy(x,y)).

For landmark localization in within-part voting the displacement field can act like a sharp-
ening correction signal, while for across part voting it reflects supports of relative body part
locations. We can accommodate spatial uncertainty in the predicted position by supporting a
structure not only at x′, but also in the vicinity of the same point. This can be accomplished
by dilating the heatmap c(x) with a kernel, e.g. K(xo− x′) = exp

(
−‖xo−x′‖2/2σ2

)
, that

allows us to smoothly decrease our support as we move further away from x′. Combining
evidence from multiple points is typically done through summation:

m(xo) = ∑
x

K(xo− [x+o(x)])c(x), (1)

where for every output position xo we sum the support delivered by all input positions x.
This has been the setting used for instance in [27] and [23] for landmark localization and
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instance segmentation, respectively. In these works a CNN is trained with a cross-entropy
loss for c(x) and a regression loss for o(x), while Eq. 1 is used at test time to deliver more
accurate estimates of the desired structures.

The operation in Eq. 1 can be justified in the context of image interpolation, as in the case
of Spatial Transformer Networks [20], or in standard Kernel Density Estimation (KDE), but
not as a method of accumulating evidence [34]. The main problem, detailed in Appendix A,
is that we cannot simultaneously guarantee that the input and output fields both lie in [0,1],
so that they can be trained with the cross-entropy loss, and that a confident posterior at x will
confidently support its displaced replica at x+o(x), i.e. K(0)=1.

We can guarantee both requirements by replacing summation with maximization (i.e.
perform a “Transformed-Max-Pooling operation”). Our experiments with this approach were
underwhelming, understandably because we do not accumulate evidence from many points,
but rather rely on the single most confident one. Instead we propose differentiable approxi-
mations of the maximum operation [2, 28, 32] that allow us to softly combine multiple pieces
of evidence while ensuring that the outputs are probabilistically valid.

In particular we use the noisy-or combination rule [28] which provides a probabilis-
tic counterpart to a logical OR-ing operation. We consider that we have J pieces of ev-
idence about the presence of a feature, each being true with a probability of p j, j=1. . .J.
The noisy-or operation expresses the probability p of the presence of the feature as follows:
1−p=∏

J
j=1(1−p j), namely the feature is absent if all supporting pieces of evidence are

simultaneously absent – as such, any additional piece of evidence can only increase the es-
timated value of p. If now we replace p j in the above formula with K(xo− [x+o(x)])c(x)
we obtain the following rule for combining evidence in the MDN:

m(xo) = 1−∏
x
[1−K(xo− [x+o(x)])c(x)] . (2)

We can use a first-order approximation to obtain Eq. 1 from Eq. 2 if all of the individual
terms K(xo− [x+o(x)])c(x) are very small, which in hindsight gives some explanation for
the practical success of Eq. 1. However, in Eq. 2 we have m(xo)∈[0,1] which allows us to use
the cross-entropy loss throughout training, by virtue of being probabilistically meaningful.
Our experiments show that this yields equally good results as the currently broadly used
heuristic of regressing to Gaussian functions [7, 26, 31], while being simpler and cleaner.

3 Experimental Evaluation
We present experiments in two setups: firstly, single-person pose estimation on the MPII
Human Pose dataset [1], where the position and scale of a human is considered known
in advance. This disentangles the performance of the pose estimation and object detec-
tion systems. Secondly, we consider human pose estimation “in-the-wild” on the COCO
dataset [24], where one needs to jointly tackle detection and pose estimation. We use dif-
ferent baselines for both setups, since there is no common strong baseline for both. In both
cases MDNs systematically improve strong baselines.

3.1 Single person pose estimation
Dataset & Evaluation: We evaluate several variants of MDNs on the MPII Human Pose
dataset [1] which consists of 25K images containing over 40K people with annotated body
joints. We follow the single person evaluation protocol, i.e. use a subset of the data with
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Model No voting Bilinear kernel k f=3 k f=5 k f=7 k f=9 k f=11 k f=13

Baseline, additive

84.31

87.54 87.70 88.01 88.11 88.15 88.19 88.19
Baseline, noisyOR 87.49 87.63 87.84 87.98 88.08 88.19 88.11
Baseline, max 86.69 86.38 86.22 86.03 85.96 85.34 85.12
Spatial Transformer [20] 88.28 not applicable

MDN-additive 88.60 × 88.63 × × 88.61 ×
MDN-noisyOR 88.61 × 88.58 × × 88.32 ×

Table 1: Relative performance of the MDN applied to isolated landmarks and trained with
different combination rules. All models are based on ResNet-152 and tested on the validation
set of MPII Single person. The third baseline is obtained by applying a max operation instead
of a sum or a product. k f denotes the kernel size in case of a Gaussian kernel.

Model Resnet-50 Resnet-101 Resnet-152 Hourglass-8

Baseline, no voting 83.29 84.28 84.31 89.24
Baseline, additive, bilinear kernel 86.50 87.50 87.54 89.43
Baseline, noisyOR, bilinear kernel 86.42 87.46 87.49 89.49

MDN-additive, bilinear kernel 87.23 88.42 88.60 89.72
MDN-noisyOR, bilinear kernel 87.25 88.52 88.61 89.64

Table 2: Ablation of interplay between MDN and architectural choices (PCKh on MPII-val).

isolated people assuming their positions and corresponding scales to be known at test time.
We follow the standard evaluation procedure of [1] and report performance with the common
Percentage Correct Keypoints-w.r.t.-head (PCKh) metric [37]. As in [7, 26], we refine the
test joint positions by averaging network predictions obtained with the original and horizon-
tally flipped images.

Implementation: We conduct the first exhaustive set of experiments by fine-tuning
ImageNet-pretrained ResNet architectures [17]. We substitute the output linear layer and the
average pooling that precedes it with a bottleneck convolution layer of spatial support 1×1
that projects its 2048-dimensional input down to 512 dimensions. This acts like a buffer
layer between the pretrained network and the pose-specific output layers. As in [27], we re-
duce the amount of spatial downsampling in such networks by reducing the stride of the first
residual module in conv5 block from 2 or 1, and employ atrous convolutions afterwards [10].
As a result, the network takes as an input a cropped image of size 256×256, produces a set
of feature planes with spatial resolution of 16×16 (rather than 8×8). These are then bilin-
early upsampled to produce the outputs of size 64×64. On top of this common network
trunk operate three convolutional branches that deliver the three inputs of the MDN, namely
heatmaps (̧x) and displacement fields ox, oy. Each such branch is a single convolutional layer
of spatial support 1×1 which maps the 512 feature planes to N=16 dimensions, where N is
the number of landmarks to be localized. The outputs of these branches are passed to the
MD layer, which in turn outputs the final refined localizations at the same resolution.

We also present preliminary experimental results with hourglass networks [26], that have
even higher performance on MPII – we apply a similar re-purposing as the one outlined
above by introducing additional convolutional heads for predicting displacement fields after
each stack of the network (where the final estimates for the displacements are obtained by
taking a sum over predictions at each step).

Training: We test the performance of both additive and noisyOR MDNs. We train the
network with three kinds of supervision signals applied to the following outputs:
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Figure 4: Examples of MDN-based improvements in human pose estimation through within-
part voting (MPII dataset, Single person track, ResNet-152) on the left and cross-part voting
(COCO dataset, Mask-RCNN-ResNet50-FPN) on the right. Top row: baseline performance,
typical failure cases; bottom row: MDN-corrected body pose estimates.

(a) the heatmaps c(x) learned with pixelwise binary cross entropy loss. The supervision
signal is presented in the form of binary disks centered at each keypoint location;
(b) two displacement planes {ox, oy} learned with robust Huber loss applied solely in the
εc-vicinity of the ground truth position of every keypoint. The ground truth value for each
point (x j

i ,y
j
i ) in the εc-vicinity of joint j voting for joint k is defined as follows:

ô( j,k)
x,i =

(x j
i−xk

0)

d
[|x j

i−x j
0| ≤ εc], (3)

where (xm
0 ,y

m
0 ) is the ground truth position of joint m and d is a normalization factor (defined

below). The vertical component ôy is defined analogously.
(c) the final refined localizations m(x). In this case, depending on the aggregation rule, we
apply either MSE regression loss (for additive mass displacement) or binary cross entropy
loss (in case of noisyOR aggregation). The final supervision signal is formulated in the form
of a Gaussian (additive MDN) or a binary disk (noisyOR MDN) in the same way as in (a)
but with a smaller value of εm=1. We note that supervising the network with a single loss (c)
is possible and produces similar final results but at cost of significantly slower convergence.

All networks are trained using the training set of MPII Single person dataset with arti-
ficial data augmentation in the form of flipping, scaling and rotation, as described in [26].
We employ the RMSProp update rule, initial learning rate 0.0025, learning rate decay 0.99,
and as in [26] use a validation set of 3k heldout images for our ablation study. We perform
evaluation on two separate tasks of within-part and cross-part voting:
(a) local mass displacement (within body part voting) – in this setting, the displacement
field branches receive their supervision signal in the form of local distributions of horizontal
and vertical displacements defined as in 3, where j=k and d=εc;
(b) global mass displacement (cross body part voting) – the implementation of the cross
voting mechanism is similar to the previous case, but j 6=k and d=X , where X×X is the out-
put resolution. In this case, we found it more effective to restrict connectivity between joints
and perform cross-joint voting along the kinematic tree starting from the center of the body.

Evaluation results. In Table 1 we compare Mass Displacement Networks for within-
part voting over a set of increasingly complicated baselines: a) a network trained with the
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Model
No

voting
Bilinear

kernel
Gaussian kernel
k f=5 k f=11

Baseline, additive 83.96 87.72 87.64 87.73
MDN-additive 88.05 88.08 87.83

Table 3: Relative performance of ResNet-152-MD applied to cross-voting between joints.

Model Head Should. Elbow Wrist Hip Knee Ankle Mean-test Mean-val

Yang et al. [36] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0∗ 88.5∗

Chen et al. [11] 98.6 96.4 92.4 88.6 91.5 88.6 85.7 92.1∗ –
Chou et al. [12] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8∗ –
Chu et al. [13] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5∗ 89.4∗

Newell et al. [26] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9∗ 89.4∗

Wei et al. [33] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 –
Insafutdinov et al. [19] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 –
Belagiannis & Zisserman [5] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1 86.3

Hourglass-8-MDN 98.2 96.4 91.6 87.4 90.8 87.9 84.3 91.3∗ 89.7∗

Resnet-152-MDN 97.7 95.8 90.4 85.1 88.9 85.6 81.6 89.7 88.6

Table 4: Comparison with the state of the art on MPII Single person test set. Mean-val
denotes PCKh on the validation set. (*) – models built upon the Hourglass architecture [26].

binary cross-entropy loss with a single objective in the form of a joint heatmap, b) a net-
work outputting the first round of posterior probabilities and displacements independently
with following aggregation of corresponding votes in the form of post-processing, i.e. with-
out end-to-end training, c) a modified Spatial Transformer network (STN) [20] aiming on
shrinking the produced distributions from iteration to iteration and, just as our architecture,
trained end-to-end. In this case, the spatial transformation is not defined globally but instead
learned in the form of a vector field describing pixel-wise linear translation. We also evaluate
the baseline performance for different filter sizes and gauge the impact of this choice.

We observe that MDNs yield a substantial boost over the different simpler baselines,
even when end-to-end training is used, as in the case of STNs (see Fig. 4). The support
of the kernel determines the computational complexity of the MD module; we note that
by training MDNs end-to-end we achieve excellent results even with 2×2 bilinear kernels,
rather than using extended Gaussian kernels that make the inference prohibitivly slow.

In Table 2 we repeat the same evaluation for different feature extractors with a varying set
of network architectures – the results indicate that there is a consistent improvement thanks
to the MDN module, and that in all tasks the noisy-or and the additive voting yield virtually
identical results. This confirms that we can discard the ad-hoc choice of training the second
stage with regression, and replace it with the more meaningful cross-entropy loss.

We next evaluate MDNs on the task of passing information across different joints (cross-
voting). The corresponding results are shown in Table 3. All models have now been trained to
produce three kinds of outputs: posterior probabilities, local displacement fields and across-
part displacements. This explains the drop in the baseline’s performance, which was forced
to a harder multi-task learning setting (see Table 1 for comparison of the single-task network
performance). However, employing an MD layer in the global setting leads to substantial
improvement in the localization performance.

Comparison with the state-of-the-art methods is provided in Table 4. It shows that the
MDN version of Resnet-152 outperforms all methods not based on Hourglass architecture,
while Hourglass-MDN gives a 0.4 point boost over the corresponding baseline and is com-
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Method APkp APkp
50 APkp

75 APkp
M APkp

L ARkp ARkp
50 ARkp

75 ARkp
M ARkp

L

Mask R-CNN, keypoints [18] 62.7 87.0 68.4 57.4 71.1 – – – – –
Mask R-CNN, masks+keypoints [18] 63.1 87.3 68.7 57.8 71.4 – – – – –
RMPE [8] 61.0 82.9 68.8 57.9 66.5 – – – – –
CMU-Pose [8] 61.8 84.9 67.5 57.1 68.2 66.5 87.2 71.8 60.6 74.6
G-RMI, COCO only [27] 64.9 85.5 71.3 62.3 70.0 69.7 88.7 75.5 64.4 77.1

Mask R-CNN-MDN, keypoints 63.9 87.2 70.0 58.5 72.3 70.7 91.9 76.2 64.8 78.8

Table 5: Performance of the state-of-the-art pose estimation models trained exclusively on
COCO data and tested on COCO test-dev (same as in [18]).

petitive with the most complex methods, including, for example, attention mechanisms or
adversarial training [7, 11, 12, 13].

Finally, our experiments have shown that stacking several mass displacement modules
in different ways (within+across, across+within, or several modules of the same kind) does
not further improve performance. This could be explained by the fact that within-part voting
is included in cross-joint aggregation (each joint also votes for itself) and, at the same time,
dropping across-joint connections in simple cases allows the model to focus on local aggre-
gation more efficiently. As a result, local voting performs better in the single person setting
while cross-joint scheme turned out to be effective in the multi-person scenario.

3.2 Multi-person pose estimation
We have obtained similar improvements also on the challenging task of multi-person pose
estimation in the wild, which includes both people detection and pose estimation. We have
built on the recently-introduced Mask-RCNN system of [18] which largely simplifies the task
by integrating object detection and pose estimation in an end-to-end trainable architecture.

As in our previous experiments, we have extended the Mask-RCNN architecture with
two displacement branches (ox and oy) that operate in parallel to the original classification,
bounding box regression and pose estimation heads. In the setting of cross-part voting, we
trained the whole architecture on COCO end-to-end, using identical experimental settings as
those reported in [18]. As shown in Table 5, our MDN-based modification of Mask-RCNN
yields a substantial boost in performance over the original Mask-RCNN architecture. We
also obtain results that are directly comparable to [27], while employing a substantially sim-
pler and faster architecture. Finally, in the supplementary material we show that adding the
mass displacement module with additional supervision on displacements further improves
performance of detection branches.

4 Conclusion
In this work we have introduced Mass Displacement Networks, a principled approach to in-
tegrate voting-type operations within deep architectures. MDNs provide us with a method
to accumulate evidence from the image domain through an end-to-end learnable operation.
We have demonstrated systematic improvements over strong baselines in human pose esti-
mation, in both the single-person and multi-person settings. The geometric accumulation
of evidence implemented by MDNs is generic and can apply to other tasks such as surface,
curve and landmark estimation in 3D volumetric data in medical imaging, or curve tracking
in space and time – we intend to explore these in the future.
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