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Abstract Gamma-band oscillations are implicated in modulation of attention, integration of

sensory information and flexible communication among anatomically connected brain areas. How

networks become entrained is incompletely understood. Specifically, it is unclear how the spectral

and temporal characteristics of network oscillations can be altered on rapid timescales needed for

efficient communication. We use closed-loop optogenetic modulation of principal cell excitability in

mouse hippocampal slices to interrogate the dynamical properties of hippocampal oscillations.

Gamma frequency and amplitude can be modulated bi-directionally, and dissociated, by phase-

advancing or delaying optogenetic feedback to pyramidal cells. Closed-loop modulation alters the

synchrony rather than average frequency of action potentials, in principle avoiding disruption of

population rate-coding of information. Modulation of phasic excitatory currents in principal neurons

is sufficient to manipulate oscillations, suggesting that feed-forward excitation of pyramidal cells

has an important role in determining oscillatory dynamics and the ability of networks to couple with

one another.

DOI: https://doi.org/10.7554/eLife.38346.001

Introduction
Gamma-band (approximately 30 to 120 Hz) oscillations have been implicated in the modulation of

attention and perception, in action initiation, spatial navigation and memory encoding, and have

also been proposed to underlie flexible information routing among anatomically connected regions

(Akam and Kullmann, 2010; Akam and Kullmann, 2014; Börgers and Kopell, 2003; Fries, 2005;

Kirst et al., 2016; Lisman, 2010; Rodriguez et al., 1999; Salinas and Sejnowski, 2001;

Schnitzler and Gross, 2005). Central to several of these proposed roles is the ability of gamma

oscillations in different areas to enter into, and exit, states of synchrony with one another

(Akam et al., 2012; Fries, 2015; Varela et al., 2001). Evidence for behavioral-state-dependent cou-

pling and uncoupling comes from variable oscillatory coherence among distinct components of the

visual cortex, correlating with selective stimulus attention (Bosman et al., 2012; Grothe et al.,

2012). An earlier study in the rodent hippocampal formation showed that the CA1 subfield can flip

between a state of coherence with the medial entorhinal cortex at ~110 Hz and a state of coherence

with the CA3 subfield at ~40 Hz, correlating with information flow through the temporo-ammonic

and Schaffer collateral pathways, respectively (Colgin et al., 2009). Although several experimental

confounds cloud the interpretation of coherence measured from local field potential (LFP) recordings
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(Buzsáki and Schomburg, 2015), these studies provide some of the most compelling evidence that

gamma-band oscillatory entrainment underlies flexible functional connectivity.

Although the cellular mechanisms underlying gamma oscillations have been extensively studied

(Bartos et al., 2007; Buzsáki and Wang, 2012), there remain uncertainties over the fundamental

determinants of their dynamics and the relative contributions of excitatory and inhibitory signalling.

Gamma-band oscillations can be induced in vitro in the presence of blockers of ionotropic glutamate

receptors (Whittington et al., 1995), or in vivo by optogenetic stimulation of parvalbumin-positive

interneurons (Cardin et al., 2009; Sohal et al., 2009), underlining the importance of fast perisomatic

inhibition (Bartos et al., 2002; Fisahn et al., 2004; Mann et al., 2005). Robust population oscilla-

tions can also be simulated in exclusively inhibitory networks (Wang and Buzsáki, 1996). These

experimental and computational observations emphasize the importance of inhibitory kinetics. Nev-

ertheless, gamma-band oscillations can be entrained by sinusoidal optogenetic stimulation of pyra-

midal neurons in an in vitro hippocampal slice preparation (Akam et al., 2012). This observation

implies that phasic depolarization of principal cells can determine the gamma rhythm and argues

against a model where the only role of pyramidal cells is to tonically depolarize a network of recipro-

cally coupled interneurons (Bartos et al., 2007; Tiesinga and Sejnowski, 2009).

Further insight into the dynamical mechanisms of synchronization between oscillating networks

comes from examining the phase response curve (PRC) of the network oscillation, defined as the

phase advance or delay produced by a transient stimulation, as a function of the instantaneous

phase at which the stimulus is delivered. The finding that gamma in an in vitro hippocampal slice

preparation shows a biphasic PRC (Akam et al., 2012) is consistent with the hypothesis that this

oscillation can be entrained by appropriately modulated afferent activity. The shape of the PRC is

furthermore accurately reproduced with a simple neural mass model (Wilson and Cowan, 1972),

where extracellular electrical or optogenetic stimuli are represented as transient perturbations of the

instantaneous level of excitation or inhibition (Akam et al., 2012). Recent theoretical work has

derived population PRCs for oscillations in spiking network models, providing an insight into how

mechanisms of oscillation generation determine entrainment properties (Akao et al., 2018;

Kotani et al., 2014). Nevertheless, there remains a large gap between the PRC and understanding

the determinants of the oscillatory frequency and interactions between gamma-generating circuits.

The present study investigates the dynamical properties of gamma oscillations by using closed-

loop optogenetics to create an artificial feedback loop between the oscillatory network activity (as

assessed by the LFP) and excitatory input to the principal cell population. Specifically, we delivered

analogue-modulated excitation whose strength was a function of the instantaneous phase and ampli-

tude of the oscillation. This approach is quite distinct from previous closed-loop applications of

optogenetics (Grosenick et al., 2015), which have adopted one of four main strategies. First, several

studies have used the detection of a change in the state of a network, such as the onset of an elec-

trographic seizure (Krook-Magnuson et al., 2013; Paz et al., 2013) or sharp-wave ripple

(Stark et al., 2014), to trigger light delivery and return the network to its ground state. Second, light

pulses have been timed according to the phase of a theta oscillation (Siegle and Wilson, 2014),

while examining the consequences for behaviour. In the latter example, the theta oscillation itself

was not altered. Third, optogenetics has been used to regulate the overall activity of a population of

neurons at a desired level (Newman et al., 2015). Fourth, optogenetic depolarization of interneur-

ons, triggered by spikes in an individual principal cell, has been used to simulate a feedback inhibi-

tory loop to interrogate their role in gamma (Sohal et al., 2009; Veit et al., 2017). The goal of the

present investigation is qualitatively different: to understand how the spectral characteristics of

gamma are affected by rhythmic excitation arriving at different phases. Computational simulations

have suggested that closed-loop optogenetics could be used to adjust the phase of gamma

(Witt et al., 2013), but whether it can alter its frequency or amplitude remains unclear.

Results

Closed-loop feedback modulation of affects gamma oscillations in CA1
We expressed the red-shifted optogenetic actuator C1V1 (Yizhar et al., 2011) in the mouse hippo-

campus CA1 under the Camk2a promoter to bias expression to excitatory neurons. The local field

potential (LFP) was recorded in the CA1 pyramidal cell layer in acute hippocampal slices. A slowly
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increasing ramp of light (peak wavelength 590 nm) was delivered via a light-emitting diode (LED)

coupled to the epifluorescence port of an upright microscope, eliciting a gamma oscillation

Figure 1. Closed-loop modulation of gamma oscillation. (a) Experimental design. The LFP in CA1 was used to modulate a ramp command generated

by the PC via a field-programmable gate array (FPGA). The modulated ramp voltage command was then passed to the light-emitting diode (LED)

driver, which implemented a threshold-linear voltage-to-current conversion. (b) Unmodulated oscillation recorded in CA1 induced by a linear ramp LED

driver command. Black trace: LFP with an expanded section showing the characteristic shape of the gamma oscillation (inset). Red trace: LED ramp

command. Bottom: LFP Morlet wavelet spectrogram. (c) Closed-loop oscillation clamp applied between 6 and 8 s, obtained by multiplying the ramp

command by (1 + k1LFP + k2dLFP/dt), with dLFP/dt averaged over 2 ms intervals. For this example, k1 = 0 mV�1, k2 = 25 ms mV�1. The oscillation

amplitude was reduced by approximately 60% (insets), with no net change in frequency.

DOI: https://doi.org/10.7554/eLife.38346.002

The following source data is available for figure 1:

Source data 1. Figure 1 source data

DOI: https://doi.org/10.7554/eLife.38346.003
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Figure 2. Gamma clamp allows bidirectional modulation of frequency and power. (a) In-phase modulation led to an increase in gamma power and

frequency. Top: 200 ms-long segments of the LFP before, during and after closed-loop modulation of the LED driver. Middle: spectrogram. Bottom,

left: two cycles of the average oscillation before and during the oscillation clamp. The average LED command (red trace, arbitrary scale) is shown

superimposed on the clamped oscillation. Right: power spectral density before (blue), during (red) and after (grey) clamp. The polar plot shows the

Figure 2 continued on next page
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(Figure 1a,b), as previously reported in rodents (Adesnik, 2018; Adesnik and Scanziani, 2010;

Akam et al., 2012; Butler et al., 2016; Pastoll et al., 2013), cats (Ni et al., 2016) and monkeys

(Lu et al., 2015).

In order to investigate the role of phasic excitation in setting the dynamical properties of gamma,

we used the LFP itself to manipulate the optogenetic drive in real time. The LED driver command

was multiplied by a simple function of the instantaneous value of the LFP and its time-derivative: (1

+ k1 LFP + k2 dLFP/dt), where k1 and k2 are positive or negative constants. These operations were

implemented with a field-programmable gate array (FPGA) and applied for a defined duration (typi-

cally 1 or 2 s) during the ramp. This yielded a change in the spectral properties of the oscillation,

which lasted for the duration of the closed-loop feedback (Figure 1c). Because both the LFP and its

time-derivative fluctuated about 0, the ‘gamma clamp’ had little effect on the average illumination

intensity relative to an unmodulated ramp. Changes in the oscillation frequency or power could

therefore not be attributed to a net increase or decrease in the average optogenetic drive to pyra-

midal neurons.

We adjusted the clamp function by altering the values of k1 and k2 and asked whether the fre-

quency and/or power of the gamma oscillation can be modulated bidirectionally. Changes in spec-

tral properties were related to the phase difference between the LFP and the LED drive during the

clamp, as estimated from the cross-spectrum at maximal magnitude. In-phase modulation, achieved

by setting k1 positive and k2 = 0, led to an increase in oscillatory power and frequency (Figure 2a).

Modulating the ramp in anti-phase relative to the LFP, by setting k1 negative, led to a decrease in

both frequency and power (Figure 2b). Advancing the phase of the clamp by approximately 90˚,
achieved by setting k1 = 0 and k2 positive, increased the frequency of the oscillation whilst decreas-

ing its power (Figure 2c). Finally, a decrease in frequency and increase in power was achieved by

delaying the trough of the clamp modulation relative to the LFP, by setting k2 negative (Figure 2D).

Detailed inspection of the ramp command waveform during the clamp shows that it was in some

cases distorted relative to the LFP, as expected from its non-sinusoidal shape (Cole and Voytek,

2017) (e.g. Figure 2c,d), and so the LED-LFP phase differences were only approximate.

Attempts to estimate the instantaneous oscillation phase, for instance using a Hilbert transform,

and to use this to phase-advance or phase-delay a template of the LFP, compressed or stretched in

time, were unsuccessful: the phase jitter and cycle-to-cycle variability in the amplitude and frequency

of the gamma oscillation (see LFP traces in Figure 2) prevented accurate estimation of these param-

eters in the face of closed-loop feedback.

Oscillation clamp is broadly consistent with the phase response curve
of gamma
Changes in frequency and power, expressed in relation to the approximate phase difference

between the LED command and the LFP, were qualitatively consistent across experiments

(Figure 3a–c). Moreover, as the LED-LFP phase difference was rotated through a complete cycle,

the effect on the oscillation in the two-dimensional plane defined by the change in oscillation fre-

quency and power also rotated through 360˚, such that with the appropriate phase of closed-loop

feedback the network oscillation could be pushed in any desired direction in the oscillation fre-

quency-power space (Figure 3c).

To gain a mechanistic insight, we asked if the characteristic relationship between the frequency

change and the LED-LFP phase difference could be explained by the shape of the phase-response

Figure 2 continued

phase relationship between the LED command and the LFP. (b) Anti-phase modulation led to decreases in both frequency and power. (c) An increase

in oscillation frequency, together with a decrease in power, was obtained with ~90˚ phase-advance of the LED driver command over the LFP. (d) A

decrease in frequency, together with an increase in power, was obtained when the LED modulation was delayed relative to the LFP by ~145˚. Scale bars

apply to all panels.

DOI: https://doi.org/10.7554/eLife.38346.004

The following source data is available for figure 2:

Source data 1. Figure 2 source data

DOI: https://doi.org/10.7554/eLife.38346.005
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Figure 3. Dissociable modulation of oscillation frequency and power. (a) Dependence of frequency change on the phase relationship between the LED

modulation and the LFP (positive values indicate LED phase advance relative to LFP). Changes in frequency are plotted as Fclamped/Funclamped, where

the unclamped frequency was averaged from the gamma oscillation for 1 s before and 1 s after the gamma clamp was applied. Data are shown as

mean ±SEM (n = 19 experiments). A positive phase difference indicates that the modulation was phase-advanced relative to the LFP. (b) Dependence

Figure 3 continued on next page
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curve (PRC) previously reported (Akam et al., 2012). In that study, a brief ‘kick’ was applied on top

of the LED ramp command, and the phase advance or delay of subsequent oscillations was related

to the phase of the LFP at which the transient occurred. A phase delay was observed when the tran-

sient optogenetic stimulus was delivered at the trough of the LFP, when pyramidal neurons are most

likely to fire. The maximal phase advance, in contrast, occurred when the stimulus was delivered

approximately one third of a cycle after the trough of the LFP. Assuming linear behaviour, the effect

of modulating the light intensity in closed loop can be obtained by averaging the product of the

phase shift and the LFP over the entire cycle of the oscillation. The circular cross-correlogram

between the typical LFP shape and the PRC should then predict the effect of modulating the opto-

genetic drive by the shape of the LFP itself at arbitrary degrees of phase advance or delay

(Figure 3d). In-phase modulation is expected, on the basis of this calculation, to phase-advance the

oscillation, and thus to result in an increase in oscillatory frequency over successive cycles. Anti-

phase modulation, in contrast, is predicted to phase-delay the oscillation, and thus to decrease its

frequency. The circular cross-correlation is, moreover, asymmetrical, broadly consistent with the

shape of the relationship between the change in frequency and LED-LFP phase difference observed

in the clamp experiments (Figure 3a).

Although the shape of the PRC is consistent with the changes in gamma frequency achieved with

closed-loop modulation at different LED-LFP phase differences, on its own it says nothing about

changes in power. Power was maximally decreased with a phase advance of the LED command over

the LFP around 90˚, whilst it was maximally increased with a phase delay around 90˚ (Figure 3b).

The relative phases at which frequency and power were altered are, however, consistent with the

behaviour of a normal form description of a super-critical Hopf bifurcation in the vicinity of its limit-

cycle. In this scenario, the LFP would approximate an observed variable, and the optogenetic drive

would act in the direction of a hidden variable at a +90˚ angle to the LFP.

A deeper understanding of the characteristic changes in frequency and power of the LFP with dif-

ferent LED-LFP phase differences requires an insight into how neurons spike and ultimately how

membrane currents respond to the fluctuations in optogenetic drive. We therefore performed sin-

gle-cell recordings in parallel with the LFP recordings.

Gamma clamp affects the timing, not rate, of pyramidal neuron firing
Although the average illumination intensity was not altered during the gamma clamp, for certain

LED-LFP phase relationships gamma power increased or decreased robustly. Inhibitory currents in

principal neurons, rather than spikes or excitatory currents, have previously been shown to be the

main determinant of the LFP (Oren et al., 2010), suggesting that the change in power during the

clamp is not a direct effect of the optogenetic drive but results instead from a change in pyramidal

neuron synchrony or phase, in a reciprocal relationship with the degree and temporal synchrony of

interneuron recruitment. To determine how the clamp affects pyramidal neuron firing, we repeated

experiments with an additional patch pipette to record from individual pyramidal neurons in cell-

attached mode. Individual action potentials were used to align the simultaneously recorded LFP,

and to estimate the phase at which they occurred. During an unmodulated ramp, pyramidal cells

tended to spike sparsely, close to the trough of the oscillation, consistent with previous studies of

pharmacologically induced oscillations (Fisahn et al., 1998). During the clamp, an increase in oscil-

latory power was associated with a corresponding increase in the degree of synchrony of pyramidal

cell firing: the circular dispersion of LFP phase at which pyramidal cells fired decreased relative to

Figure 3 continued

of power change on the phase difference plotted as in (a). (c) Change in frequency plotted against change in power for different LED – LFP phase

differences (colour code at right). (d) Average LFP and phase response (PRC) curve from Akam et al. (2012) (left). The circular cross-correlogram at

right yields a prediction of the effect of a continuous modulation on the oscillation phase, and therefore on its frequency, in rough agreement with the

observed relationship in (a).

DOI: https://doi.org/10.7554/eLife.38346.006

The following source data is available for figure 3:

Source data 1. Figure 3 source data

DOI: https://doi.org/10.7554/eLife.38346.007
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Figure 4. Gamma clamp alters the synchrony and phase, rather than rate, of principal cell firing . (a) Example closed loop modulation increasing

gamma power. Top: red trace showing ramp command. Middle: spectrogram. Bottom: sample traces before (Unclamped) and during (Clamped)

closed-loop modulation, showing the LFP and the cell-attached recording with identified spikes highlighted. LFP troughs are indicated by open circles.

Six representative LFP traces, aligned by spike time, are shown at right. The polar plot indicates the distribution of spike phase for unclamped (black)

Figure 4 continued on next page
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the unclamped situation (Figure 4a). Conversely, a decrease in power was accompanied by a relative

desynchronization of pyramidal cell firing. This relationship was qualitatively consistent, as indicated

by the change in vector length obtained from the circular average of spike phases (Figure 4c). The

vector length increased when oscillation power increased (p=0.02, n = 12, sign test), and decreased

when oscillation power decreased (p=0.025, n = 5). Strikingly, however, there was no change in the

overall firing rate of pyramidal cells when the oscillation power was increased or decreased by the

clamp. Changes in power were thus achieved by tightening the synchrony of firing, or by desynchro-

nizing action potentials, rather than by altering the overall activity of pyramidal neurons.

Increases in oscillatory frequency were accompanied by a phase advance of pyramidal cell firing

relative to the LFP (Figure 4b,c, p=8�10�7, n = 7, Hotellier test – Zar, 2009). A trend for a phase

delay was observed in a small number of experiments where frequency-lowering clamp was tested

(n = 3). This observation is consistent with the view that changes in the phase of pyramidal neuron

action potentials are causally upstream of changes in gamma frequency, even though the current

generators of the LFP itself are dominated by GABAergic signaling (Gulyás et al., 2010;

Hájos et al., 2004; Oren et al., 2010).

Excitatory current phase in principal cells determines changes in gamma
spectral properties
In the examples illustrated in Figure 4a and b, the optogenetic modulation was applied with a phase

advance over the LFP of ~0˚ and ~45˚ respectively. Why does in-phase modulation result in an

increase in power, and phase-advanced modulation result in an increase in frequency? To gain a

mechanistic insight into how gamma clamp operates, we examined the phase of excitation experi-

enced by pyramidal neurons during different clamp regimes.

We repeated experiments as above, but with one pipette used to voltage–clamp a pyramidal

neuron at the estimated GABAA reversal potential (approximately –70 mV), and the other pipette to

record the LFP. We then measured the inward current at each phase of the gamma oscillation, as

defined by the LFP, and repeated this over consecutive cycles to obtain an average time-course

(Figure 5a). The minimum (that is, least negative) inward current during the average cycle was sub-

tracted to yield an estimate of the phasic excitatory current, which could then be represented as a

vector representing its average phase and amplitude (Figure 5b). During unclamped gamma, the

excitatory current was small, and its average phase relative to the LFP varied among experiments, as

expected from the very sparse synaptic connectivity among pyramidal neurons in CA1

(Deuchars and Thomson, 1996). Gamma clamp imposed a large phasic inward current (Figure 5b).

Subtracting the vector representing the baseline phasic inward current yielded a vector representing

the net excitatory current imposed by the gamma clamp (DE). This lagged behind the LED modula-

tion, reflecting in part the opsin activation and deactivation kinetics (Figure 5c, and arrows in

Figure 5b, right). For the example illustrated in Figure 5 an 83˚ phase advance of the LED over the

LFP resulted in DE with mean phase of 247˚, where the LFP trough is defined as 0˚. This yielded an

increase in frequency and decrease in power of the gamma oscillation.

Comparing across different clamp regimes reveals how gamma frequency and power change in

relation to the phasic excitation experienced by principal cells (Figure 6a,b). An increase in gamma

frequency was achieved when the average excitatory current phase occurred during the down-stroke

Figure 4 continued

and clamped (red) periods (averaged from 32 trials). The circular histograms sample spikes in 30˚ bins, and show a decrease in dispersion of spike

phase during gamma clamp (LFP trough = 0˚). (b) Example closed loop modulation increasing gamma frequency, plotted as for (a). The polar plot

indicates phase advance of spiking. (c) Left: Bidirectional changes in power were associated with corresponding changes in the vector length (R)

obtained by averaging all spike phases. This is consistent with a decrease in phase dispersion observed with an increase in power, and conversely, an

increase in phase scatter with a decrease in power. Changes in power, however, did not affect the average rate of spiking, when compared with trials

when gamma clamp was not applied (middle). Right: increased gamma frequency was associated with a significant phase advance of spiking. *p<0.05;

***p<0.001. Numbers of experiments are indicated in the bars.

DOI: https://doi.org/10.7554/eLife.38346.008

The following source data is available for figure 4:

Source data 1. Figure 4 source data

DOI: https://doi.org/10.7554/eLife.38346.009
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Figure 5. Gamma clamp imposes a phasic excitatory current to pyramidal neurons. (a) Top: sample LFP (navy) and

simultaneously recorded holding current in one pyramidal neuron held at –70 mV (blue) before, during and after

feedback modulation increasing oscillatory frequency. Bottom: spectrogram. (b) Two cycles of the average LFP

Figure 5 continued on next page
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of the LFP (~180˚ to 360˚), whilst a decrease in frequency was achieved when excitation was applied

during the upstroke (~0˚ to 180˚). An increase in power, on the other hand, was achieved with excita-

tion around the trough (~270˚ to 90˚), and a decrease in power occurred with excitation around the

peak (~90˚ to 270˚). Given that, under baseline conditions, pyramidal neurons fire maximally near to

the trough of the LFP (0˚), these data imply that the increase in frequency occurs because they are

brought to firing threshold earlier (see also Figure 4b,c). An increase in power, on the other hand,

occurs because pyramidal neurons are synchronized by adding a depolarization when they are most

likely to fire (see also Figure 4a,c).

Gamma clamp affects inhibitory currents
Finally, we asked how inhibitory currents in a subset of pyramidal neurons are altered by the closed-

loop optogenetic manipulation, by voltage-clamping them around the glutamate reversal potential

(0 mV). The mean phase and amplitude of outward inhibitory currents were calculated in a similar

way, by subtracting the minimal current from the circular average of the outward GABAA-receptor-

mediated current (Figure 7). In contrast to excitatory currents, phasic inhibitory currents under base-

line conditions were large, consistent with the major role of feedback interneurons in gamma

(Figure 7a,b). Changes in inhibitory currents (DI) were relatively smaller than for excitatory currents

and were dominated by effects on the power of the oscillation. Thus, for a +83˚ LED-LFP phase

advance, which led to a decrease in gamma power and increase in frequency (same cell as in Fig-

ure 5), there was little change in the average phase of the inhibitory current, although it was

decreased in amplitude (Figure 7c). Aligning the average currents by the LFP across different trials

whilst the cell was held at �70 mV or 0 mV, and during unclamped and clamped periods, yielded an

insight into the relationship between excitatory and inhibitory conductances during the oscillatory

cycle (Figure 7d). For the example shown in Figure 5 and Figure 7a–c, the effective cycle changed

from one dominated by phasic inhibition to one with similar relative amplitudes of phasic inhibition

and excitation, with excitation leading inhibition in both cases (Figure 7d, left). In contrast, for a

133˚ LED-LFP phase delay, which led to a decrease in frequency and increase in power, the inhibitory

current increased (Figure 7d, right). Similar results were obtained in eight cells.

Discussion
The present study shows that closed-loop optogenetic manipulation of principal cells allows predict-

able, bidirectional and dissociable changes in the power and frequency of gamma oscillations. We

observed a broad consistency between the frequency manipulation achieved with closed-loop opto-

genetic feedback and that predicted from the phase response behavior previously observed with

intermittent optogenetic stimuli (Akam et al., 2012). Optogenetically and pharmacologically

induced gamma also exhibited similar dynamical properties in that study, implying that the principles

uncovered in the present work are not specific to the way gamma oscillations were elicited.

Previous studies have stressed the importance of fast-spiking parvalbumin-positive (PV+) inter-

neurons in gamma (Cardin et al., 2009; Sohal et al., 2009) (but see (Veit et al., 2017)). PV+ basket

cells tend to fire with very little phase dispersion, close to one-to-one with each cycle of the

Figure 5 continued

waveform and membrane current without (Unclamped) and with gamma clamp (Clamped). The average phase-

advanced LED command during feedback modulation is shown superimposed (red). The minimum (least negative)

inward current was subtracted (dashed lines) to estimate the phasic excitation. The red arrows indicate the

temporal relationship between the peak LED driver command and the maximal excitatory current. Bottom: polar

plots indicating the cycle-average of the excitatory current during unclamped (left) and clamped (right) periods of

the trial shown in (a). The vectors indicate the average phases of the currents. (c) Left: difference vector obtained

from the vectors in (b), representing the net phasic excitatory current imposed by gamma clamp. Right: phase

difference between LED and LFP for the same experiment.

DOI: https://doi.org/10.7554/eLife.38346.010

The following source data is available for figure 5:

Source data 1. Figure 5 source data

DOI: https://doi.org/10.7554/eLife.38346.011
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Figure 6. Excitatory current phase determines changes in frequency and power. (a) Change in gamma frequency

and power, plotted against the phase of the net excitatory current (DE) calculated as in Figure 5. Confidence

intervals are SEM (n = 13). (b) Fclamped/Funclamped plotted against Pclamped/Punclamped for different excitatory current

phases, indicated by the colour code below, aligned with the average LFP waveform. Pyramidal neurons spike

around the trough of the LFP (0˚).
DOI: https://doi.org/10.7554/eLife.38346.012

The following source data is available for figure 6:

Source data 1. Figure 6 source data

DOI: https://doi.org/10.7554/eLife.38346.013
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oscillation in vitro (Bartos et al., 2007; Gulyás et al., 2010). Our attempts to achieve gamma clamp

by targeting interneurons rather than pyramidal cells have thus far been unsuccessful because their

out of phase recruitment powerfully suppresses the oscillation (data not shown). The weaker phase-

locking of pyramidal than PV+ cell firing to gamma oscillations, together with their sparse firing on

successive cycles of gamma (Csicsvari et al., 2003; Gulyás et al., 2010; Tukker et al., 2007), may

however confer a broader dynamic range over which they can influence the phase, frequency and

amplitude of the oscillation. Taken together with previous evidence that open-loop sinusoidal opto-

genetic stimulation of principal cells can entrain a gamma oscillation (Akam et al., 2012), the pres-

ent data underline the importance of action potential timing in principal cells in the spectral and

temporal properties of hippocampal gamma, notwithstanding the evidence that the LFP itself is

dominated by inhibitory currents in principal cells (Oren et al., 2010), and argue against a model

where the function of principal cells is only to depolarize a population of reciprocally connected

interneurons.

Closed-loop manipulations have been applied previously in the context of network oscillations,

using either electrical and optogenetic stimuli delivered at specific phases of theta or gamma oscilla-

tions, in order to probe the mechanisms of long-term plasticity induction (Huerta and Lisman, 1995;

Pavlides et al., 1988) or sharp-wave ripple generation (Stark et al., 2014), or to test the theta

phase-dependence of memory encoding and retrieval (Siegle and Wilson, 2014). A similar strategy

has been used to interrupt experimental thalamocortical seizures (Berényi et al., 2012). However,

these studies have not aimed at modulating the amplitude or frequency of an on-going oscillation.

We have focused on gamma because a local circuit is sufficient to generate the oscillation, and

we have previously shown that the phase response behaviour of hippocampal gamma is well

described by a simple dynamical model (Akam et al., 2012). The circuits underlying theta and other

oscillations either involve longer-range connections in the brain or are poorly defined. They are

therefore less likely to be amenable to local optogenetic manipulation. This does not exclude the

possibility that, for instance, theta oscillations in the hippocampus could be manipulated by closed-

loop modulation of excitability in the basal forebrain.

The ability to alter the amplitude and frequency of gamma suggests a versatile tool to test the

roles of gamma in information routing and other high-level brain functions, both in health and in dis-

ease states such as schizophrenia (Uhlhaas and Singer, 2010). Hitherto, most experimental manipu-

lations of oscillations have relied on periodic stimulation, which can entrain network oscillations

(Akam et al., 2012) or evoke oscillations in an otherwise asynchronous network (Cardin et al., 2009;

Sohal et al., 2009). Transcranial stimulation designed to entrain oscillations in vivo can bias percep-

tion (Neuling et al., 2012; Romei et al., 2010; Thut et al., 2011) and bidirectionally affect perfor-

mance in motor (Joundi et al., 2012) and working memory (Polanı́a et al., 2012) tasks. However,

external periodic stimulation is not well suited to desynchronize network activity or to suppress oscil-

latory dynamics. Furthermore, if periodic stimulation is used, the desired change in amplitude or fre-

quency is achieved at the cost of imposing an externally determined phase on the oscillation. This

will prevent the oscillation from entraining to endogenous periodic signals such as those arising from

other oscillating networks or periodic sensory stimuli.

Closed-loop stimulation, in which signals recorded from a network are used in real time to bias its

state, in principle provides an alternative way of manipulating network oscillations, and has been

used to interfere with pathological rhythms in models of Parkinson’s disease (Rosin et al., 2011), to

suppress Parkinsonian tremor (Brittain et al., 2013), and in a model of thalamocortical epilepsy

(Butt et al., 2005). This approach relies on an artificial feedback loop which either counteracts or

amplifies the endogenous feedback responsible for synchronizing the network (Rosenblum and

Pikovsky, 2004). Importantly, optogenetics has the advantage over electrical stimulation that the

modulation can be distributed across a population of neurons. We have, moreover, shown that

closed-loop manipulation of a gamma oscillation can be achieved without a net increase or decrease

in the average firing rate of neurons, implying that it would not necessarily perturb information rep-

resented as an average firing rate code.

Extrapolating from in vitro gamma to the brain in situ presents several technical challenges,

including the need for optical fibers to illuminate the tissue and the potential for photoelectrical arti-

facts. Moreover, oscillations are generally less prominent because the current generators from multi-

ple oscillating and non-oscillating populations overlap, complicating the evaluation of phase and

frequency. Nevertheless, the present study identifies some general principles to guide attempts to
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Figure 7. Gamma clamp afffects phasic inhibitory currents in pyramidal neurons. (a) Top: sample LFP (navy) and

simultaneously recorded holding current in one pyramidal neuron held at 0 mV (blue) before, during and after

feedback modulation increasing oscillatory frequency. Bottom: spectrogram. Same cell as in Figure 5. (b) Two

cycles of the average LFP waveform and membrane current without (Unclamped) and with gamma clamp

(Clamped). The average phase-advanced LED command during feedback modulation is shown superimposed

(red). The minimum (least positive) outward current was subtracted (dashed lines) to estimate the phasic inhibition.

(c) Polar plots indicating the cycle-average of the inhibitory current during unclamped (left) and clamped (right)

periods of the trial shown in (a). The vectors indicate the average phases of the currents. (d) Left: phasic inhibition

(vertical scale) plotted against phasic excitation (horizontal scale) estimated by aligning cycle-average membrane

conductances by the LFP without (black) and with (red) oscillation clamp with +83˚ LED-LFP phase advance. Same

Figure 7 continued on next page
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achieve bidirectional and dissociable modulation of oscillatory frequency and power in vivo. This

should allow a definitive test of the causal role of gamma in functions such as attention modulation

and information routing (Sohal, 2016).

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Mus musculus)

Wild type, C57bl6 mice UCL Biological Services

Genetic reagent Viral vector (C1V1):
AAV5-CaMKIIa-
C1V1(E122T/E162T)
-TS-eYFP

UNC Vector
Core

Serotype: 5
C1V1: AAV-CaMKIIa-
C1V1(E122T/E162T)-
TS-EYFP

Other Equipment
(viral injections):
Sterotaxic frame

Kopf Instruments Model 900

Chemical
compound, drug

Salts, drugs Sigma

Other Equipment
(LED light source)

Cairn Instruments OptoLED, 590 nm

Other Equipment
(LED light source)
Custom assembled LED

Thorlabs High-power
mounted LED:
M590L2; Tube lens:
SM1V10;
Planoconvex lens:
LA1951-A-N-BK7;
Coupler: SM1T2;
Adapter for
microscope:
SM1A14

Other Equipment (LED driver) Thorlabs DC2100

Other Equipment
(Upright microscope)

Olympus BX51WI,
UMPLFLN
20X W IR

Other Equipment
(Upright microscope)

Scientifica SliceScope, UMPLFLN
20X W IR

Other Equipment
(Amplifier)

Molecular Devices Multiclamp
700B

Other Equipment
(Data acquisition card)

National Instruments PCI-6221

Other Equipment
(computing)
Real-time controller

National Instruments cRIO-9022

Continued on next page

Figure 7 continued

cell and clamp regime as shown in (a–c). Right: representative example of excitatory and inhibitory conductances

obtained with 133˚ LED-LFP phase delay. Same cell but different clamp regime. The cycles are arbitrarily anchored

to the trough of the LFP (*). The arrows indicate the direction of the excursion.

DOI: https://doi.org/10.7554/eLife.38346.014

The following source data is available for figure 7:

Source data 1. Figure 7 source data

DOI: https://doi.org/10.7554/eLife.38346.015
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Other Equipment
(computing). FPGA

Xilinx Virtek-5

Software,
algorithm

LabVIEW National Instruments LabVIEW, LabVIEW
Real-Time 2013,
2014, 2015, 2016,
2017

Custom virtual instruments

Software,
algorithm

R www.R-project.org Ver. 3.3.0 for Mac

All procedures followed the Animals (Scientific Procedures) Act, 1986, and were reviewed by the

UCL Institute of Neurology Animal Welfare and Ethical Review Body. P21 male C57 mice were anes-

thetized with isoflurane and placed in a stereotaxic frame (Kopf Instruments). A suspension of AAV5-

CaMKIIa-C1V1(E122T/E162T)-TS-eYFP (UNC Vector Core, titre 5 � 1012 IU/ml) was injected at a rate

of 100 nl/min into four sites in both hippocampi (injection volume: 300–500 nl per site). The antero-

posterior injection coordinate was taken as 2/3 of the distance from bregma to lambda. The lateral

coordinates were 3.0 mm from the midline, and the ventral coordinates were 3.5, 3.0, 2.5 and 2.0

mm from the surface of the skull.

Hippocampal slices were prepared at least 4 weeks later. Animals were sacrificed by pentobarbi-

tone overdose and underwent transcardiac perfusion with an oxygenated solution containing (in

mM): 92 N-methyl-D-glucamine-Cl, 2.5 KCl, 1.25 NaH2PO4, 20 HEPES, 30 NaHCO3, 25 glucose, 10

MgCl2, 0.5 CaCl2, 2 thiourea, 5 Na-ascorbate and 3 Na-pyruvate, with sucrose added to achieve an

osmolality of 315 mOsm/L. Brain slices (400 mm thick) were prepared at room temperature and then

incubated at 37˚C for 12 min in the same solution. They were subsequently stored at room tempera-

ture, in a solution containing (in mM): 126 NaCl, 3 KCl, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, 24

NaHCO3, 10 glucose, shielded from light, before being transferred to the stage of an upright micro-

scope (Olympus BX51WI or Scientifica SliceScope), where they were perfused on both sides with the

same solution at 32˚ C. Expression of C1V1 in CA1 was verified by epifluorescence, and CA3 was

ablated to focus on local gamma-generating mechanisms.

Epifluorescence imaging and C1V1 stimulation were achieved with LEDs (OptoLED, Cairn Instru-

ments, or assembled from Thorlabs components using an M590L2 590 nm LED and a DC2100 high-

power LED driver). The light source was coupled to the epifluorescence illuminator of the micro-

scope, with a silver mirror in the place of a dichroic cube. Wide-field illumination was delivered via a

20x, 0.5 NA water immersion objective. The current delivered to the LED was kept in the linear

input-output range, and the irradiance was <5 mW/mm2. Light ramps typically lasting 8 s were deliv-

ered every 30 – 45 s.

LFPs were recorded in the CA1 pyramidal layer using patch pipettes filled with extracellular solu-

tion and a Multiclamp 700B amplifier (Molecular Devices), and band-pass filtered between 1 and 200

or 500 Hz. A linear LED ramp command was generated via a multifunction data acquisition card

(National Instruments PCI-6221) and, together with the LFP, was digitized using a real-time controller

(National Instruments cRIO-9022) with a Xilinx Virtex-5 FPGA (cRIO-9133) operating at a loop rate of

10 kHz. The ramp was multiplied by (1 + k1LFP + k2dLFP/dt), stepping through different values of k

in a pseudo-random order for successive trials. dLFP/dt was calculated as the difference between

successive digitization values in the FPGA, averaged over successive 2 ms intervals to minimize high-

frequency noise. The output of the FPGA/real-time controller was sent to the LED driver, and digi-

tized in parallel with the LFP at 10 kHz on the data acquisition PC.

To study the phase relationship of action potentials and the LFP oscillation, a cell-attached

recording was obtained using a second patch pipette held in voltage clamp mode, low-pass filtered

at 10 kHz and digitized in parallel with the LFP and LED command signal. The phasic excitatory or

inhibitory current was recorded in the same way, but using a whole-cell pipette containing (in mM):

K-gluconate (145), NaCl (8), KOH-HEPES (10), EGTA (0.2), Mg-ATP (2) and Na 3 -GTP (0.3); pH 7.2;

290 mOsm. Phasic conductances (Figure 7d) were estimated from Ohm’s law, assuming a driving

force of 70 mV.
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Off-line analysis was performed in LabVIEW (National Instruments) and R. Time-frequency spec-

trograms were calculated using a Morlet wavelet transform and are displayed as heat maps. Because

the gamma oscillation was non-stationary, its frequency was estimated by calculating the short-term

Fourier transform and then averaging the mean instantaneous frequency for successive overlapping

intervals. The power of the oscillation was estimated in the same way, by averaging the power at the

mean instantaneous frequency.

Spikes were identified using threshold crossing. The instantaneous oscillation phase was esti-

mated by passing a 200 ms segment of the LFP centered on the spike through a Hanning window,

and then calculating its phase and frequency using the Extract Single Tone VI in LabVIEW.

To estimate the phase relationship between spikes or membrane currents and the gamma oscilla-

tion, we first identified successive troughs of the LFP using the WA Multiscale Peak Detection VI in

LabVIEW. Gamma cycles that deviated more than 20% from the modal period were rejected. The

membrane current waveform between successive troughs was then expressed as a function of

instantaneous phase and averaged over all accepted cycles in the interval. The minimal (least nega-

tive) inward current recorded at �70 mV was subtracted to yield the average phasic excitatory cur-

rent waveform. To estimate the phasic inhibitory current waveform, the minimal outward current was

subtracted whilst holding cells at 0 mV.
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Berényi A, Belluscio M, Mao D, Buzsáki G. 2012. Closed-loop control of epilepsy by transcranial electrical
stimulation. Science 337:735–737. DOI: https://doi.org/10.1126/science.1223154, PMID: 22879515

Börgers C, Kopell N. 2003. Synchronization in networks of excitatory and inhibitory neurons with sparse, random
connectivity. Neural Computation 15:509–538. DOI: https://doi.org/10.1162/089976603321192059,
PMID: 12620157

Bosman CA, Schoffelen JM, Brunet N, Oostenveld R, Bastos AM, Womelsdorf T, Rubehn B, Stieglitz T, De
Weerd P, Fries P. 2012. Attentional stimulus selection through selective synchronization between monkey visual
areas. Neuron 75:875–888. DOI: https://doi.org/10.1016/j.neuron.2012.06.037, PMID: 22958827

Brittain JS, Probert-Smith P, Aziz TZ, Brown P. 2013. Tremor suppression by rhythmic transcranial current
stimulation. Current Biology 23:436–440. DOI: https://doi.org/10.1016/j.cub.2013.01.068, PMID: 23416101

Butler JL, Mendonça PR, Robinson HP, Paulsen O. 2016. Intrinsic cornu ammonis area 1 Theta-Nested gamma
oscillations induced by optogenetic theta frequency stimulation. Journal of Neuroscience 36:4155–4169.
DOI: https://doi.org/10.1523/JNEUROSCI.3150-15.2016, PMID: 27076416

Butt SJ, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G. 2005. The temporal and spatial origins
of cortical interneurons predict their physiological subtype. Neuron 48:591–604. DOI: https://doi.org/10.1016/j.
neuron.2005.09.034, PMID: 16301176
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