Heritability of Gray Matter Structural Covariation and Tool Use Skills in Chimpanzees

(Pan troglodytes): A Source-Based Morphometry and Quantitative Genetic Analysis

William D. Hopkins1,2, Robert D. Latzman3, Mary Catherine Maren4, Steven J. Schapiro4, Aida Gómez-Robles5 & Chet C. Sherwood5

1 Neuroscience Institute, Georgia State University, Atlanta, GA 30302
2 Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
3 Department of Psychology, Georgia State University, Atlanta, GA 30302
4 Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602
5 Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
Abstract

Nonhuman primates, and great apes in particular, possess a variety of cognitive abilities thought to underlie human brain and cognitive evolution, most notably, the manufacture and use of tools. In a relatively large sample (\(N = 226\)) of captive chimpanzees (\(Pan troglodytes\)) for whom pedigrees are well-known, the overarching aim of the current study was to investigate the source of heritable variation in brain structure underlying tool use skills. Specifically, using source-based morphometry (SBM), a multivariate analysis of naturally occurring patterns of covariation in gray matter across the brain, we investigated 1) the genetic contributions to variation in SBM components, 2) sex and age effects for each component, and 3) phenotypic and genetic associations between SBM components and tool use skill. Results revealed important sex- and age-related differences across largely heritable SBM components and associations between structural covariation and tool use skill. Further, shared genetic mechanisms appear to account for a heritable link between variation in both the capacity to use tools and variation in morphology of the superior limb of the superior temporal sulcus and adjacent parietal cortex. Findings represent the first evidence of heritability of structural covariation in gray matter among nonhuman primates.

Keywords: Source-based morphometry, gray matter covariation, heritability, tool use, chimpanzee
Primates, in general, and great apes specifically have been particularly important species in comparative neuroscience studies because of their phylogenetic similarity to humans. Furthermore, compared to more distantly related primate species, great apes display a variety of behavioral and cognitive abilities that are thought to underlie human brain and cognitive evolution, such as rudimentary linguistic skills, delay of gratification, complex social cognition, and with specific reference to this study, the manufacture and use of tools (Savage-Rumbaugh ES 1986; Savage-Rumbaugh ES and R Lewin 1994; de Waal FBM 1996; Shumaker RW et al. 2011; Vaesen K 2012; Beran MJ 2015). Indeed, save humans, the complexity and scope of tool manufacture and use in chimpanzees is unmatched among primates. For instance, a variety of forms of tool manufacture and use have been described across different geographical regions of Africa as well as in different captive settings (Whiten A et al. 1999; Whiten A et al. 2001; Shumaker RW et al. 2011). Within communities of wild chimpanzees, there is evidence of intergenerational transmission of local forms of tool use expression suggesting that social learning plays an important role in the acquisition and maintenance of these specific traditions. Thus, the manufacture and use of tools in chimpanzees is highly adaptive skill and was likely strongly selected for in human evolution after the split from the last common ancestor with chimpanzees.

Despite the significance of tool manufacture and use in primate evolution, there are relatively few studies on their genetic and neural basis in nonhuman primates, and particularly chimpanzees. In humans, meta-analyses of functional brain imaging data have identified a set of connected regions within the frontal, parietal and temporal cortex, particularly in the left hemisphere, that are implicated in planned tool use actions.
SBM analysis in chimpanzees

(Johnson-Frey SH 2004; Frey SH et al. 2005). There is also evidence that lesions to regions within this circuit can result in deficits in the representation and execution of planned motor actions, including language and speech (Goldenberg G and J Randerath 2015; Weiss PH et al. 2015). Studies in captive chimpanzees have previously found that variation in skill and hand use are linked to variation in gray matter volume and asymmetry, particularly within premotor, parietal and primary motor cortex, as well as the cerebellum (Hopkins WD et al. 2007; Cantalupo C et al. 2008; Gilissen E and WD Hopkins 2013; Hopkins WD et al. 2017).

Here, instead of using an a priori region-of-interest approach and method, we assessed phenotypic associations in tool use skill with structural covariation in gray matter measured from magnetic resonance images (MRI). Specifically, we used source-based morphometry (SBM), a relatively new method used to characterize gray matter structural covariation in a sample of MRI scans of chimpanzees (Alexander-Bloch A et al. 2013; Bard KA and WD Hopkins 2018). Unlike univariate analytic methods, such as voxel-based morphometry (VBM), SBM is a multivariate, data-driven analytic approach that utilizes information about relationships among voxels to group voxels carrying similar information across the brain. Without requiring prior determination of regions of interest, the resulting components or sources are identified based on the spatial information between voxels grouped in a natural manner and represent similar covariation networks between subjects; thus, this approach has been described as a multivariate version of VBM (Xu L et al. 2009). Previous studies in humans have identified roughly 30 distinct gray matter sources that encompass a variety of different cortical regions that are presumably involved in different behavioral and cognitive...

Based on the components derived from the SBM analysis, we subsequently correlated individual variation in the weighted scores for each subject and component with a measure of tool use skill previously measured in the chimpanzees (Hopkins WD et al. 2009). Of specific interest was whether performance measures of tool use skill were associated with source-based component scores, that reflected structural covariation in gray matter in regions within the frontal, parietal and temporal cortex.

In addition, we also tested for genetic associations between individual differences in gray matter structural covariation and tool use skill in the chimpanzee sample using quantitative genetic analyses. Notably, following methods we and others have previously used in humans (Eyler LT et al. 2012; Jansen AG et al. 2015; Strike LT et al. 2015), chimpanzees and other nonhuman primates (Rogers J et al. 2007; Fears SC et al. 2009; Kochunov PV et al. 2010; Fears SC et al. 2011; Gomez-Robles A et al. 2015; Gomez-Robles A et al. in press), we initially estimated heritability for (1) each component derived from the SBM analysis and (2) tool use performance measures (Hopkins WD et al. 2015). For those SBM components that showed significantly heritability and phenotypically correlated with tool use performance, we then performed genetic correlations to test whether common genes underlie their expression (i.e., pleiotropy). Evidence of significant genetic association would suggest that potentially common genes underlie individual variation in both tool use skill and gray matter structural covariation.
Materials and Method

Subjects

This study includes data from 226 captive chimpanzees (136 females, 85 males), comprising 88 chimpanzees housed at the Yerkes National Primate Research Center (YNPRC) and 138 chimpanzees housed at the National Center for Chimpanzee Care (NCCC). Ages at the time of their in vivo magnetic resonance image scans ranged from 8 to 53 years \((Mean = 27.04, SD = 6.74)\). Of the 226 chimpanzees for which MRI scans were obtained, measures of tool use skill were available for 204 individuals, including 123 females and 81 males. Of these 204 apes, 134 were housed at NCCC and 70 at the YNPRC. These subjects were included in all analyses pertaining to phenotypic associations between tool use skill and the SBM components. All tool use data were collected within three years of the acquisition of the MRI scans. We note here that the NCCC and YNPRC are genetically isolated populations of captive chimpanzees. That is to say, these populations were created from separate founder chimpanzees and there was no interbreeding between chimpanzees living in these two facilities. We took advantage of this opportunity to evaluate consistency and reproducibility in the estimates of heritability in SBM components and their association with tool use skill measures in our analyses ((see Baker M 2016)).

Tool Use Skill

The apparatus and procedure used to quantify tool use skill, as well as heritability, have been described in detail elsewhere (Hopkins WD et al. 2009; Hopkins WD et al. 2015). Briefly, to assess tool use skill, we recorded the latency to insert a small stick into a hole to extract food, averaged across a total of 50 trials in each
chimpanzee. The average latency scores were converted to standardized z-scores within
the NCCC and YNPRC to account for differences in the duration of experience that
chimpanzees at each colony had with the tool use device. In previously published studies
(Hopkins WD et al. 2015), we found average tool latency to be significantly heritable (h^2
$= .395, \text{s.e.} = .129, \ p < .001$) and this was the case for chimpanzees at both the NCCC (h^2
$= .356, \text{s.e.} = .155, \ p < .007$) and YNPRC ($h^2 = .463, \text{s.e.} = .190, \ p < .007$) when
analyzed separately.

Magnetic Resonance Image Collection

All chimpanzees were scanned during one of their annual physical examinations.
Magnetic resonance image (MRI) scans followed standard procedures at the YNPRC and
NCCC and were designed to minimize stress. Thus, the animals were first sedated with
ketamine (10 mg/kg) or telazol (3-5mg/kg) and were subsequently anaesthetized with
propofol (40–60 mg/(kg/h)). They were then transported to the MRI scanning facility and
placed in a supine position in the scanner with their head in a human-head coil. Upon
completion of the MRI, chimpanzees were briefly singly-housed for 2-24 hours to permit
close monitoring and safe recovery from the anesthesia prior to return to the home social
group. All procedures were approved by the Institutional Animal Care and Use
Committees at YNPRC and NCCC and also followed the guidelines of the Institute of
Medicine on the use of chimpanzees in research. Seventy-seven chimpanzees (all from
YNPRC) were scanned using a 3.0 Tesla scanner (Siemens Trio, Siemens Medical
Solutions USA, Inc., Malvern, Pennsylvania, USA). T1-weighted images were collected
using a three-dimensional gradient echo sequence (pulse repetition = 2300 ms, echo time
= 4.4 ms, number of signals averaged = 3, matrix size $= 320 \times 320$, with 0.6 x 0.6 x 0.6
SBM analysis in chimpanzees

resolution). The remaining 149 chimpanzees (11 from YNPRC, 138 from NCCC) were scanned using a 1.5T G.E. echo-speed Horizon LX MR scanner (GE Medical Systems, Milwaukee, WI). T1-weighted images were collected in the transverse plane using a gradient echo protocol (pulse repetition = 19.0 ms, echo time = 8.5 ms, number of signals averaged = 8, matrix size = 256 x 256, with 0.7 x 0.7 x 1.2 resolution).

Image Processing and SBM Analysis

All T1-weighted MRI scans were realigned in the AC-PC plane and skull-stripped using the BET function in FSL (Zhang Y et al. 2001; Smith SM et al. 2004) and resampled at .7 mm isotropic voxels. Following this initial preprocessing step, the images were analyzed following the steps used for voxel-based morphometry analyses using FSL (Analysis Group, FMRIB, Oxford, UK) (Smith SM et al. 2004). Specifically, images were registered to a chimpanzee template brain, then segmented into gray and white matter as well as CSF. Subsequently, a study-specific gray matter template brain was created and each subject’s segmented scan was non-linearly registered to the template brain and the Jacobian warping matrix was saved for each subject. The gray matter intensity values were then multiplied by the Jacobian warp to estimate the modulated gray matter volume within each voxel.

For the SBM, the individual modulated gray matter volumes were analyzed using the software program GIFT (Group ICA of fMRI Toolbox) (http://mialab.mrn.org/software/gift/index.html). In SBM, the images are concatenated into a 2-D array or matrix with the number of subjects and voxels as the matrix. Subsequently, principal components analysis (PCA) is performed on the matrix to reduce dimensionality using the Minimum Description Length (MDL) algorithm, which was
estimated to be 24 for the combined chimpanzee sample. Consistent with other SBM studies in humans (Xu L et al. 2009; Grecucci A et al. 2016), the data were then subjected to spatial PCA using the Infomax algorithm, which produces a source and mixing matrix. The source matrix is a subject X PCA array with each value presenting the relative contributions of each subject’s data to the composition of each PCA. The source matrix values were the primary dependent measure of interest. To visualize the component structures, we used the mixing matrix which is a 3D volume that depicts the characteristics of the spatial characteristics and covariation in gray matter for each PCA. Values within the mixing matrices are represented as standardized scores and can therefore take on both negative and positive values. Consistent with previous studies, we thresholded each PCA component at an absolute value of 3.00 and included only those clusters that survived this threshold as significant.

Heritability Analyses

From the SBM analysis, one outcome measure is the individual subject’s weighted score in deriving each independent component. Much like in factor or principal component analysis, each subject’s weighted score can vary on a continuous scale from negative to positive with the absolute indicating the magnitude of their score. To estimate heritability in our chimpanzee sample, the outcome measures for all identified SBM components were subjected to a quantitative genetic analysis to estimate heritability using the software program SOLAR (Almasy L and J Blangero 1998). SOLAR uses a variance components approach to estimate the polygenic component of variance when considering the entire pedigree (see Rogers J et al. 2007; Fears SC et al. 2009; Fears SC et al. 2011; Hopkins WD 2013; Hopkins WD, AC Keebaugh, et al. 2014; Hopkins WD,
We used SOLAR in two ways in this study. First, we used it to estimate and statistically determine whether the weighted component scores were significantly heritable in the entire chimpanzee sample as well as within each population to assess the reproducibility. Second, we used SOLAR to calculate genetic correlations between the tool use performance data and the SBM component scores. Covariates included sex, age, scanner magnet and rearing history of the subjects (i.e., wild-caught, mother-reared or human-reared).

Results

Descriptive SBM Results

From the SBM analysis, there were 24 components identified that were distributed throughout the cortex and cerebellum. An anatomical description of the 24 components and their volumes are provided in Table 1. 3D renderings of each component are shown in Supplemental Figure 1.

Heritability of SBM Component Scores

For the SOLAR analyses, we estimated the heritability for the standardized SBM z-scores for each component. Age, sex, rearing history and scanner magnet served as covariates in these analyses. The proportion of variability attributed to genetic factors and the covariates are shown in Table 2. Significant heritability estimates were found for 18 of the 24 components with significant h^2 values ranging from .246 to .886, suggesting moderate to strong effects. Significant covariate effects of scanner magnet were found for 20 components which was not surprising given that the gray and white matter contrast is influenced by the scanner magnet. Age accounted for a significant proportion of variance in components 8, 11, 14, 19 and 21, respectively. Sex accounted for a significant
proportion of variance in components 10, 12, 13, 15 19, and 23 while the rearing history variable was not significant for any components.

Sex and Age Covariate Effects

To further evaluate the contributions of the factors sex and age, we performed several follow-up analyses. For the SBM components in which age was a significant effect, we fit polynomial lines between age and weighted scores for components 8, 11, 14, 19 and 21 using stepwise multiple regression. The outcome measures were the component scores, while the predictor variables were sex, scanner strength, the linear age, then curvilinear age variables. We calculated the significance in change in R^2 to determine which age distribution best explained the variability in the SBM component score. The scatterplots between age and the SBM-weighted scores, as well as the best fit line are shown in Figures 1a to 1e. For component 8, the overall model was significant; $R=0.239 F(4, 219)=3.313, p = .012$. Significant changes in R^2 (.170 to .235) were found for the linear; $F(1, 220)=6.179, p = .012$ but not the curvilinear (.235 to .239); $F(1, 219)=0.379, p = .539$ age variable. Component 8 is comprised of the right cerebellum and left cuneus and the association was positive with older individuals having higher values compared to younger individuals. For component 11, the overall model was significant; $R=0.487 F(4, 219)=17.012, p = .001$. Significant changes in R^2 (.149 to .219) were found for the linear; $F(1, 220)=20.876, p = .001$, but not the curvilinear (.219 to .223); $F(1, 219)=2.153, p = .144$ age variable. Component 11 included the dorsal lateral prefrontal cortex, frontopolar and anterior cingulate cortex and the associations were negative with older individuals having lower values compared to younger apes. For component 14, the overall model was significant; $R=0.405 F(4, 219)=10.751, p = .001$.

Significant changes in R^2 (.373 to .402) were found for the linear; $F(1, 220)=5.656, p = .018$, but not the curvilinear (.401 to .405); $F(1, 219)=0.825, p = .365$ age variable.

Component 14 was comprised of the anterior temporal, inferior temporal and anterior insular cortex. The linear association was negative, suggesting that older subjects have lower values. For component 19, the overall model was significant; $R=.543 F(4, 219)=22.885, p = .001$. Significant changes in R^2 (.439 to .541) were found for the linear; $F(1, 220)=31.043, p = .001$ but not the and curvilinear (.541 to .543); $F(1, 219)=0.724, p = .396$ age variables. Component 19 was comprised of frontopolar cortex, and older chimpanzees had relatively higher weighted scores compared to middle-aged and younger individuals. Finally, for component 21, the overall model was significant; $R=.255 F(4, 219)=3.803, p = .005$. Significant changes in R^2 (.148 to .197) were found for the linear; $F(1, 220)=3.824, p = .052$ and the curvilinear (.197 to .255); $F(1, 219)=6.153, p = .014$ age variables. Component 21 was comprised of vermis of the cerebellum. Older and younger chimpanzees had relatively lower weighted scores compared to middle-aged individuals. The mean weighted z-scores for components 10, 12, 13, 15 19, and 23 in male and female chimpanzees are shown in Figure 2. Males had significantly higher weighted scores compared to females on all components with the exception of 13 (see Table 1 for descriptions of the regions).

Phenotypic and Genetic Associations between Tool Use Skill and SBM Components

For this analysis, we used partial correlation coefficients between the standardized z-scores of the tool use latency measures and each SBM component while statistically controlling for sex, scanner magnet, rearing history, and age of the subjects. Three subjects (all females) were removed from this analysis because they were identified as
outliers on their tool use performance measure based on boxplots of the standardized z-scores. Significant positive associations were found between tool use latency scores and two SBM regions, including components 3 ($r = -.211, p = .003$) and 13 ($r = -.168, p = .019$) (see Figure 3). Component 3 consisted of the posterior superior temporal sulcus and superior parietal cortex while component 13 was comprised of primary visual cortex and cuneus. The associations were negative, thus subjects with slower average latency scores contributed less to the component scores within each of these regions. Finally, we calculated genetic correlations between the tool use skill measures and each of the SBM components (see Table 3). Significant and large genetic correlations were found between tool use skill and components 3 ($\rho_{HG} = .519, p = .03$) and 13 ($\rho_{HG} = .717, p = .02$).

Reproducibility Between Chimpanzee Populations

Recall that we tested two colonies of genetically unrelated chimpanzees that were scanned on different platforms. Thus, to assess the consistency in results between the two colonies, we performed several additional analyses. First, we performed separate heritability analyses in the NCCC ($n = 138$) and YNPRC ($N = 88$) chimpanzees for each SBM component derived from the entire sample (see Figure 4). Within the NCCC samples, 17 of the 24 components were significantly heritable compared to only 7 within the YNPRC sample. Further, the average heritability across all 24 components was significantly higher in the NCCC ($h^2 = .575$) compared to YNPRC ($h^2 = .233$) sample $t(23) = 3.434, p = .002$. Ten of the 24 SBM components showed consistently significant or non-significant heritability in both the NCCC and YNPRC samples (Components 1, 2, 3, 4, 15, 16, 19, 20, 22 and 24, respectively). In addition, we assessed the phenotypic correlations between the tool use performance measures and the SBM components scores
within the NCCC and YNPRC samples. These data are shown in Table 3. As can be seen, for component 3 significant negative associations were found between tool use skill and the SBM weighted component scores for the entire sample as well as within both the NCCC and YNPRC samples. A similar pattern was observed for component 13, although the YNPRC did not reach conventional levels of statistical significance ($p < .05$). Indeed, although the estimate did not reach the $p < .05$ level of significance, the magnitude of the correlation within the YNPRC sample (-.150) was very similar to the significant ($p < .05$) association in the full combined sample (-.168).

Discussion

There were five main findings in this study. First, we found 24 gray matter SBM components in chimpanzees. Second, gray matter structural covariation was influenced by sex and age. Third, a majority of the SBM components were significantly heritable, suggesting that genetic factors may influence their expression across subjects. Fourth, heritability of the SBM components were modestly consistent between two genetically isolated populations of captive chimpanzees. Finally, we found significant phenotypic and genetic correlations between tool use skill and two SBM components. These latter findings have several important implications for primate brain evolution and the emergence of tool manufacture and use.

With respect to the 24 component revealed by the SBM analysis, this is fewer than the number reported in at least some previous reports in human brains (Xu L et al. 2009). The differing numbers of components may reflect inherent differences in the covariation of gray matter between humans and chimpanzees; however, we cannot rule out that the potential differences in SBM organization between humans and chimpanzees.
may be a result of different sample size, scanner parameters, voxel resolution, or other methodological factors. Notwithstanding, many of the components identified in our chimpanzee sample have been similarly described in human SBM analyses (Grecucci A et al. 2016).

Second, gray matter structural covariation in the chimpanzee brain was influenced by age and sex. Males and females differed significantly on 6 of the 24 components and these differences presumably underlie behavioral, affective, motor or cognitive functions that distinguish the two sexes. Certainly male and female chimpanzees differ with respect to social behavior, such as aggression and grooming partners, as well as in their role within the community where, for example, males typically patrol the home range and females do not (Goodall J 1986; Boesch C and H Boesch-Achermann 2000; Mitani JC and DP Watts 2005; Lehmann J and C Boesch 2008). Further, there is some evidence of sex differences in learning, hand use, and performance on tool use tasks in chimpanzees (Pandolfi SS et al. 2003; Lonsdorf EV et al. 2004; Gruber T et al. 2010; Bogart SL et al. 2012; Sanz CM et al. 2016). While it is tempting to speculate that the observed sex-dependent gray matter covariation differences reported here underlie male-female behavioral differences, we have no direct evidence to support this assertion. This will require additional studies beyond the scope of this report.

Age significantly and linearly correlated with 4 components and showed a significant quadratic association for one component. For components 8 and 19, we found positive associations between age and the weighted scores, suggesting that older individuals are contributing more to the generation of these components than younger individuals. These two sources largely comprised prefrontal, premotor and portion of the
cerebellum and the most parsimonious explanation is that maturational factors contribute
to the increased covariation in gray matter density within these regions (Terribilli D et al.
2011; Lemaitre H et al. 2012). Age was negatively correlated with components 11 and 14
which included superior frontal, supplementary motor and anterior temporal cortex
suggesting a reduction in covariation with increasing age. The associations between age
and component 21 is slightly more difficult to interpret because it exhibited curvilinear
relationship. Older and younger chimpanzees had relatively lower weighted scores than
middle-aged apes for this component, which was comprised entirely of the cerebellum.

It is worth noting that, within the larger context of studies on age-related changes
in the great ape brain (Gearing M et al. 1994; Gearing M et al. 1997; Rosen RF et al.
2008; Perez SE et al. 2013; Edler MK et al. 2017), the results reported here are somewhat
novel. For instance, Sherwood and colleagues (2011) failed to find any significant age-
related changes in overall gray and white matter volume in a sample of 99 chimpanzees.
More recently, Autrey and colleagues (2014), in a sample of 219 chimpanzee MRI scans,
reported that chimpanzees show (1) increasing gyrification with age, (2) a cubic
association between age and white matter volume, and (3) a negative association between
age and the depth and width of the fronto-orbital sulcus. Recall that here, we found
significant linear and quadratic associations between gray matter covariation and age, a
finding not previously reported in the chimpanzee brain at least with respect to gray
matter variation.

Regarding heritability, there are some reports of the genetic contributions to
individual differences in cortical organization in nonhuman primates, including
chimpanzees (Rogers J et al. 2007; Fears SC et al. 2009; Kochunov PV et al. 2010;
Rogers J et al. 2010). For instance, Gomez-Robles et al. (2015) have previously reported modest heritability of cortical shape and for different linear measures of sulci in chimpanzees. Our findings similarly reveal moderate heritability in most (18 of 24 components, see Table 2), but not all structurally co-varying gray matter regions in the chimpanzee brain. We also found modest consistency in heritability between the NCCC and YNPRC chimpanzee populations. Ten of the 24 components showed consistent heritability (or lack thereof) between the two populations. One limitation in our effort to replicate the heritability results between the two chimpanzee populations were (1) differences in the sample sizes (2) variation in the scanner platform and magnet strength and (3) the composition of the number of differentially reared chimpanzees. There were 138 NCCC chimpanzees and 88 YNPRC and all the NCCC chimpanzees were scanned on a 1.5T machine while 77 of the YNPRC apes were scanned on a 3T machine and remaining on a 1.5T magnet. Additionally, the proportion of nursery-reared chimpanzees was higher in the YNPRC compared to NCCC chimpanzees. Previous studies have shown that differences in early rearing can influence gray matter structural covariation in chimpanzees (Bard KA and WD Hopkins 2018) and therefore these experiences may have altered the genetic basis of development as manifest by reduced heritability.

Finally, we found that individual variation in tool use motor skill was associated with structural covariation in two SBM components that were largely comprised of superior temporal, parietal, and cerebellar cortex. The phenotypic associations between tool use performance and components 3 and 13 were consistent and significant within each chimpanzee population. Further, we found significant genetic correlations between tool use skill and components 3 and 13, which include areas within the posterior superior
temporal sulcus, posterior cingulate, visual cortex and the brainstem, suggesting that common genetic mechanisms may underlie their expression.

As noted above, component 3 is comprised of the cuneus and the superior portion of the superior temporal sulcus (STS) that projects dorsally into the parietal lobe while component 13 includes occipital regions. Clinical and functional neuroimaging studies in humans have clearly implicated portions of the parietal lobe as playing an important role in providing visual feedback during planned visuo-motor actions, such as grasping an object or in the use of tools (Johnson-Frey SH 2004; Stout D and T Chaminade 2012; Gilissen E and WD Hopkins 2013; Caminiti R et al. 2015; Bruner E and A Iriki 2016). Furthermore, some have suggested that expansion of the parietal lobe and cuneus was associated with the emergence of increasing complex motor, cognitive and linguistic functions during primate brain evolution (Gannon PJ et al. 2005; LeRoy F et al. 2015; Bruner E and A Iriki 2016; Bruner E et al. 2017). Our results suggest that these as yet unknown genetic mechanisms, may account for a heritable link between variation in the capacity to use tools and variation in the morphology of the inferior and superior parietal lobe. Such heritable covariation is key for natural selection as an explanation for the co-evolution of tool skill and cortical structure in humans and apes. Indeed, our results suggest that increased selection for tool use skill may have resulted selective changes in the size, connectivity or organization of the parietal cortex in humans after that split form the last common ancestor.

In summary, the findings reported here are the first evidence of heritability in structural covariation in gray matter among nonhuman primates. Though this study focused on associations between tool use skill and gray matter structural covariation,
future studies should expand this analytic approach to additional behavioral and cognitive phenotypes. This approach could potentially identify brain regions in chimpanzees that exhibit heritable variation associated with particular behavioral or cognitive abilities, providing insight into neuroanatomical targets that could have been selected for expansion in hominins after the split from a last common ancestor. Additionally, this approach could be used to identify key brain regions as foci for subsequent gene expression analyses that could lead to the discovery of candidate genes linked to typical and atypical praxic functions.
Acknowledgements

This research was supported by NIH grants NS-42867, NS-73134, and HD-60563, NSF INSPIRE grant SMA-1542848, Cooperative Agreement OD-011197 to MD Anderson Cancer Center, and National Center for Research Resources P51RR165 to YNPRC, which is currently supported by the Office of Research Infrastructure Programs/OD P51OD11132). MRIs used in this study are part of the National Chimpanzee Brain Resource (supported by NIH NS-092988). We would like to thank Yerkes National Primate Research Center and the National Center for Chimpanzee Care and their respective veterinary and care staffs for assistance in collection of the MRI scans. American Psychological Association and Institute of Medicine guidelines for the treatment of animals were followed during all aspects of this study. Inquiries regarding this paper may be sent to: William D. Hopkins, Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, Georgia 30302-5030. Email: whopkins4@gsu.edu or whopkin@emory.edu
References

SBM analysis in chimpanzees

For Peer Review

SBM analysis in chimpanzees 24

manufacture of tools by animals. Baltimore, MD: Johns Hopkins University Press.

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H,
Zhang Y, De Stafano N, Brady JM, Matthews PM. 2004. Advances in functional and
structural MR image analysis and implementation of FSL. Neuroimage. 23 (S1):208-219.

Philosophical Transactions of the Royal Society B: Biological Sciences. 367:75-87.

Strike LT, Couvy-Duchesne B, Hansell NK, Cuellar-Partida G, Medland SE, Wright MJ.

Terribilli D, Schaufelberger MS, Duran FL, Zanetti MV, Curiati PK, Menezes PR,
Scazufca M, Amaro E, Jr., Leite CC, Busatto GF. 2011. Age-related gray matter volume

35:203-262.

Weiss PH, Ubben SD, Kaesberg S, Kalbe E, Kessler J, Liebig T, GFink GR. 2015. Where
language meets meaningful action: a combined behavior and lesion analysis of aphasia

Whiten A, Goodall J, McGrew W, Nishida T, Reynolds V, Sugiyama Y, Tutin C,
138:1489-1525.

Whiten A, Goodall J, McGrew WC, Nishida T, Reynolds V, Sugiyama Y, Tutin CEG,

Table 1

Anatomical Description and Volume of Each SBM Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component 1</td>
<td></td>
</tr>
<tr>
<td>Precuneus (L), Precentral gyrus (L), Medulla oblongata</td>
<td>4264.18</td>
</tr>
<tr>
<td>Component 2</td>
<td></td>
</tr>
<tr>
<td>Lateral cerebellar hemispheres (inferior), bilateral</td>
<td>8019.00</td>
</tr>
<tr>
<td>Component 3</td>
<td></td>
</tr>
<tr>
<td>Superior parietal cortex, bilateral</td>
<td>6313.60</td>
</tr>
<tr>
<td>Component 4</td>
<td></td>
</tr>
<tr>
<td>Anterior cingulate cortex (R), Dorsolateral prefrontal cortex (R),</td>
<td>5621.77</td>
</tr>
<tr>
<td>Supplemental motor area (R)</td>
<td></td>
</tr>
<tr>
<td>Component 5</td>
<td></td>
</tr>
<tr>
<td>Primary visual cortex (L)</td>
<td>7319.62</td>
</tr>
<tr>
<td>Component 6</td>
<td></td>
</tr>
</tbody>
</table>
Frontopolar cortex (B)

Component 7

Primary motor and premotor cortex (dorsal) (B)

Component 8

Cuneus (L), Lateral cerebellar hemisphere (R)

Component 9

Cuneus (B), Hippocampal formation (R)

Component 10

Lateral cerebellar hemispheres (B)

Component 11

Anterior cingulate cortex (B), Frontopolar cortex (B), Dorsolateral prefrontal cortex (B)

Component 12

Primary visual cortex (R)

Component 13

Primary visual cortex (B), Cuneus (B)
Component 14

Anterior temporal cortex (B), Anterior insular cortex (B),
Inferior temporal cortex (R) 4870.26

Component 15

Anterior temporal cortex (B) 9169.76

Component 16

Basal forebrain (B) 5470.51

Component 17

Primary motor and somatosensory cortex (dorsal) (B) 8646.34

Component 18

Lateral cerebellar hemispheres (B) 10408.68

Component 19

Frontopolar cortex (B) 5212.23

Component 20

Lateral cerebellar hemispheres (B) 8719.75
Component 21

<table>
<thead>
<tr>
<th>Brain Region</th>
<th>Volume (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellar vermis (B)</td>
<td>9140.95</td>
</tr>
</tbody>
</table>

Component 22

<table>
<thead>
<tr>
<th>Brain Region</th>
<th>Volume (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary visual cortex (B)</td>
<td>9248.31</td>
</tr>
</tbody>
</table>

Component 23

<table>
<thead>
<tr>
<th>Brain Region</th>
<th>Volume (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellar vermis and medial hemisphere (B)</td>
<td>8076.21</td>
</tr>
</tbody>
</table>

Component 24

<table>
<thead>
<tr>
<th>Brain Region</th>
<th>Volume (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior parietal cortex (B)</td>
<td>8040.95</td>
</tr>
</tbody>
</table>

Volumes are in mm³. (R) = right hemisphere, (L) = left hemisphere, (B) = bilateral
Table 2

Heritability and Covariate Effects for Each SBM Component

<table>
<thead>
<tr>
<th>Component</th>
<th>h^2</th>
<th>s.e.</th>
<th>p</th>
<th>Covariates</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.378</td>
<td>.156</td>
<td>.004</td>
<td>Scanner</td>
<td>.290</td>
</tr>
<tr>
<td>2</td>
<td>.868</td>
<td>.115</td>
<td>.0000001</td>
<td>Scanner</td>
<td>.127</td>
</tr>
<tr>
<td>3</td>
<td>.854</td>
<td>.101</td>
<td>.0000001</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.314</td>
<td>.132</td>
<td>.003</td>
<td>Scanner</td>
<td>.218</td>
</tr>
<tr>
<td>5</td>
<td>.341</td>
<td>.162</td>
<td>.01</td>
<td>Scanner</td>
<td>.131</td>
</tr>
<tr>
<td>6</td>
<td>.216</td>
<td>.112</td>
<td>.065</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.184</td>
<td>.161</td>
<td>.107</td>
<td>Scanner</td>
<td>.395</td>
</tr>
<tr>
<td>8</td>
<td>.260</td>
<td>.141</td>
<td>.025</td>
<td>Age</td>
<td>.035</td>
</tr>
<tr>
<td>9</td>
<td>.374</td>
<td>.126</td>
<td>.00007</td>
<td>Scanner</td>
<td>.197</td>
</tr>
<tr>
<td>10</td>
<td>.497</td>
<td>.171</td>
<td>.001</td>
<td>Scanner, Sex</td>
<td>.252</td>
</tr>
<tr>
<td>11</td>
<td>.658</td>
<td>.171</td>
<td>.0003</td>
<td>Scanner, Age</td>
<td>.189</td>
</tr>
<tr>
<td>12</td>
<td>.366</td>
<td>.159</td>
<td>.006</td>
<td>Scanner, Sex</td>
<td>.103</td>
</tr>
<tr>
<td>13</td>
<td>.565</td>
<td>.157</td>
<td>.0003</td>
<td>Scanner, Sex</td>
<td>.433</td>
</tr>
<tr>
<td>14</td>
<td>.304</td>
<td>.153</td>
<td>.016</td>
<td>Scanner, Age</td>
<td>.151</td>
</tr>
<tr>
<td>15</td>
<td>.146</td>
<td>.147</td>
<td>.139</td>
<td>Scanner, Sex</td>
<td>.215</td>
</tr>
<tr>
<td>16</td>
<td>.038</td>
<td>.111</td>
<td>.363</td>
<td>Scanner</td>
<td>.292</td>
</tr>
<tr>
<td>17</td>
<td>.465</td>
<td>.137</td>
<td>.00001</td>
<td>Scanner</td>
<td>.305</td>
</tr>
<tr>
<td>18</td>
<td>.154</td>
<td>.148</td>
<td>.127</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>.531</td>
<td>.149</td>
<td>.00005</td>
<td>Scanner, Sex, Age</td>
<td>.252</td>
</tr>
<tr>
<td>20</td>
<td>.830</td>
<td>.121</td>
<td>.0000001</td>
<td>Scanner</td>
<td>.076</td>
</tr>
<tr>
<td>21</td>
<td>.579</td>
<td>.166</td>
<td>.00003</td>
<td>Scanner, Age</td>
<td>.008</td>
</tr>
<tr>
<td>22</td>
<td>.000</td>
<td>.000</td>
<td>.5000</td>
<td>Scanner</td>
<td>.034</td>
</tr>
<tr>
<td>23</td>
<td>.246</td>
<td>.153</td>
<td>.039</td>
<td>Scanner, Sex</td>
<td>.136</td>
</tr>
<tr>
<td>24</td>
<td>.252</td>
<td>.129</td>
<td>.014</td>
<td>Scanner</td>
<td>.219</td>
</tr>
</tbody>
</table>

$h^2 =$ heritability coefficient, s.e. = standard error. Covariates indicates those variables that accounted for a significant proportion of variance in the SBM scores and proportion of variance accounted for them.
Table 3

Phenotypic Correlations Between Tool Use Skill and SBM Component Scores for the Entire Sample and within the NCCC and YNPRC Chimpanzee Colonies

<table>
<thead>
<tr>
<th>Overall</th>
<th>NCCC</th>
<th>YNPRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+0.018</td>
<td>+0.103</td>
</tr>
<tr>
<td>2</td>
<td>-0.035</td>
<td>-0.046</td>
</tr>
<tr>
<td>3</td>
<td>-0.211</td>
<td>-0.202</td>
</tr>
<tr>
<td>4</td>
<td>+0.057</td>
<td>+0.106</td>
</tr>
<tr>
<td>5</td>
<td>+0.026</td>
<td>-0.023</td>
</tr>
<tr>
<td>6</td>
<td>-0.053</td>
<td>-0.104</td>
</tr>
<tr>
<td>7</td>
<td>-0.111</td>
<td>-0.061</td>
</tr>
<tr>
<td>8</td>
<td>-0.110</td>
<td>-0.127</td>
</tr>
<tr>
<td>9</td>
<td>-0.058</td>
<td>+0.004</td>
</tr>
<tr>
<td>10</td>
<td>-0.055</td>
<td>-0.041</td>
</tr>
<tr>
<td>11</td>
<td>+0.028</td>
<td>+0.104</td>
</tr>
<tr>
<td>12</td>
<td>-0.017</td>
<td>-0.027</td>
</tr>
<tr>
<td>13</td>
<td>-0.168</td>
<td>-0.296</td>
</tr>
<tr>
<td>14</td>
<td>+0.031</td>
<td>+0.065</td>
</tr>
<tr>
<td>15</td>
<td>-0.030</td>
<td>+0.057</td>
</tr>
<tr>
<td>16</td>
<td>+0.078</td>
<td>-0.003</td>
</tr>
<tr>
<td>17</td>
<td>+0.126</td>
<td>+0.091</td>
</tr>
<tr>
<td>18</td>
<td>+0.079</td>
<td>+0.146</td>
</tr>
<tr>
<td>19</td>
<td>-0.002</td>
<td>-0.017</td>
</tr>
<tr>
<td>20</td>
<td>+0.030</td>
<td>-0.005</td>
</tr>
<tr>
<td>21</td>
<td>+0.075</td>
<td>+0.100</td>
</tr>
<tr>
<td>22</td>
<td>+0.008</td>
<td>-0.038</td>
</tr>
<tr>
<td>23</td>
<td>+0.022</td>
<td>+0.015</td>
</tr>
<tr>
<td>24</td>
<td>-0.027</td>
<td>-0.017</td>
</tr>
</tbody>
</table>

Bolded values are significant at \(p < 0.05 \)
Figure Captions

Figure 1: Scatterplots showing significant associations between age and SBM components a) 8 b) 11 c) 14 d) 19 and e) 21. Left panel shows the scatterplot between age and the weighted SBM component scores and the right panel shows regions comprising each component.

Figure 2: Left panel: Mean SBM weighted scores for males and females for components 10, 12, 13, 15 19, and 23. Right panel: Brain regions comprising each component.

Figure 3: upper and lower left panel = Scatterplot between tool use performance measures and weighted scores for SBM components 3 (left) and 13 (right). Upper and lower bottom panel shows brain regions in SBM component 3 and 13.

Figure 4: Heritability for each SBM component in the NCCC (red) and YNPRC (blue) chimpanzee populations.
Figure 1: Scatterplots showing significant associations between age and SBM components a) 8 b) 11 c) 14 d) 19 and e) 21. Left panel shows the scatterplot between age and the weighted SBM component scores and the right panel shows regions comprising each component.

254x190mm (72 x 72 DPI)
Figure 2: Left panel: Mean SBM weighted scores for males and females for components 10, 12, 13, 15, 19, and 23. Right panel: Brain regions comprising each component.
Figure 3: upper and lower left panel = Scatterplot between tool use performance measures and weighted scores for SBM components 3 (left) and 13 (right). Upper and lower bottom panel shows brain regions in SBM component 3 and 13.

254x190mm (72 x 72 DPI)
Figure 4: Heritability for each SBM component in the NCCC (red) and YNPRC (blue) chimpanzee populations.

254x190mm (72 x 72 DPI)
Component 1
Component 2
Component 3
Component 4
Component 5
Component 6
Component 7
Component 8
Component 9
Component 10
Component 11
Component 12
Component 13
Component 14
Component 15
Component 16
Component 17
Component 18
Component 19
Component 20
Component 21
Component 22
Component 23
Component 24