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ABSTRACT

Motivated by conversations with operators and by possibilities to
unlock future Internet-based applications, we study how to en-
able Internet Service Providers (ISPs) to reliably offer connectiv-
ity through disjoint paths as an advanced, value-added service. As
ISPs are increasingly deploying Segment Routing (SR), we focus on
implementing such service with SR. We introduce the concept of
robustly disjoint paths, pairs of paths that are constructed to remain
disjoint even after an input set of failures, with no external inter-
vention (e.g., configuration change). We extend the routing theory,
study the problem complexity, and design efficient algorithms to
automatically compute SR-based robustly disjoint paths. Our algo-
rithms enable a fully automated approach to offer the disjoint-path
connectivity, based on configuration synthesis. Our evaluation on
real topologies shows that such an approach is practical, and scales
to large ISP networks.
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1 INTRODUCTION

For an Internet Service Provider (ISP), providing disjoint paths to
its customers might be one of those advanced connectivity services
that generate more revenues. This is what emerged from our dis-
cussion with a national ISP that we call “reference ISP”. When we
met them, this ISP’s operators themselves steered the discussion to-
wards possibilities to provide disjoint paths between sites to which
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a customer is connected. They were motivated by requests from
banks and financial customers.

We have quickly realized that the disjoint-path connectivity ser-
vice has a much bigger market than our reference ISP. An illustra-
tion is provided by the NANOG email discussion about a major out-
age of the Bell network on August 4th, 2017 [30]. The email thread
started with Bell’s customers complaining that both Internet and
mobile connectivity were completely absent in East Canada, affect-
ing banking, ATM, land lines and even 911 services. When a single
fibre cut was indicated as the cause of the outage, someone ex-
pressed doubts that ISPs really provide geographically diverse cir-
cuits, irrespectively of what they promise and sell. The following
emails discussed the impossibility to work around this limitation
by relying on two providers, as their networks may share the same
physical infrastructure (fibres, conduit, etc.), without the ISPs even
knowing it — as they do not share information between each other.

The discussion we had with the reference ISP’s operators was
indeed focused on providing disjoint paths within a single ISP, their
own. A possible solution [46] to achieve this goal is to deploy two
parallel networks, say a red and a blue copy of the same topology,
and configure the intra-domain routing protocol (IGP) so that any
packet is forwarded in only one of the two networks - i.e., pack-
ets that enter the red copy are only forwarded in the red copy. The
few links between the two networks are only used if one of the two
copies is partitioned. This architecture provides disjoint paths by
design, but it is very expensive since the entire network is doubled.
The reference ISP’s operators were therefore reluctant to deploy it.
Of course, they were also aware that MPLS tunnels can be created
over arbitrary paths with RSVP-TE [5], including disjoint ones, on
an existing infrastructure. However, they were in the process of
moving away from MPLS, in order to avoid its operational limita-
tions [36], its sub-optimal usage of resources [31] and its scalability
challenges with respect to the routers’ state [13, 21].

Looking at other ISPs, our operators were instead considering
Segment Routing (SR). SR [14] is a recent architecture that several
service providers already deployed [29, 40, 43]. It is a source rout-
ing technology enabling to force packets via a sequence of nodes,
called segments, by adding information about those nodes inside
the packet headers. The actual paths followed by packets are then
determined by the concatenation of the shortest paths from each
segment to the following one. These shortest paths are computed
by an underlying IGP, and updated by the IGP itself after failures.

In this paper, we tackle the problem of configuring disjoint paths
with Segment Routing. We consider such problem jointly with prac-
tical operational requirements indicated by our reference ISP.
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The first and foremost of those requirements is to automate the
operation of the disjoint-path service. We investigate an approach
based on configuration synthesis, where a compiler computes pairs
of robustly disjoint paths for input pairs of source and destination
routers connecting a customer. We define robustly disjoint paths as
pairs of paths that are disjoint in the presence and absence of any
link failure ! in an operator-provided set (e.g., for classes of more
frequent failures like all single-link failures [28, 45], or for specific
shared risk link groups [17, 41]). Robustly disjoint paths exploit
the fact that the same sequence of segments generally maps to dif-
ferent paths (after IGP re-convergence) if the previous ones are
disrupted by a failure. They enable to minimize the involvement
of human operators and possible centralized network controllers,
while also maximizing the likelihood that expected or dangerous
failures do not disrupt the disjoint-path service.

A second requirement that we consider is to limit the number
of segments added to data-plane packets when implementing ro-
bustly disjoint paths. This is both to limit the data-plane overhead
due to SR segments in packet headers, and to comply with hard-
ware limitations of commercial routers [38]. We design a compiler
based on algorithms that are parametric with respect to the maxi-
mum number of segments that can be used for a single path.

Our third requirement is that robustly disjoint paths do not sig-
nificantly degrade data-plane performance. Since they implement
an advanced, likely expensive service, we assume that robustly dis-
joint paths are used for a relatively low amount of traffic, and hence
do not highly contribute to link utilization or significantly interfere
with the ISP’s traffic engineering. Yet, we would like the installed
paths to provide good data-plane performance, at least when there
are no failures. Our algorithms therefore calculate robustly disjoint
aiming at minimizing the worst-path latency. Low-delay robustly
disjoint paths provide support for a range of cutting-edge (and fu-
ture) applications. For example, they (i) improve performance of
multipath transport protocols, for example avoiding MPTCP [32]
sub-flows to self-congest; (ii) offer theoretical guarantees against
security attacks [11]; and (iii) enable latency-sensitive applications,
like telesurgery [3]. We note that this is achieved by the means of
an objective function, that can be easily adapted to other goals -
e.g., optimizing bandwidth instead of or in addition to delay.

We did not find any prior work aiming at keeping paths dis-
joint after failures, with or without SR. Our previous work [3] is
the closest to this approach. While using SR to implement disjoint
paths, it however provides no guarantee in the case of a failure, and
did not minimize path delays. Other contributions that do consider
post-failure conditions, with and without SR, focus on connectiv-
ity preservation (e.g., [2, 15, 27]), congestion avoidance (e.g., [26])
or compliance with BGP policies (e.g., [6]).

To design our solution, we face efficiency and scalability chal-
lenges. In particular, computing robustly disjoint paths that mini-
mize delay implies considering (at least implicitly) all the possible
pairs of paths and their modification in all the considered failure
scenarios. We note that the basic problem of minimizing the worst
path delay over disjoint paths is strongly NP-complete even with-
out considering failures [25].

!Note that we can simulate node failures by a convenient set of link failures.
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Figure 1: Example of robustly disjoint paths installed by our
solution. AIl IGP link cost are 1. The shown segments ensure
that the paths from a to i and from b to j remain disjoint after
any single link failure.

We address those challenges with theoretical and algorithmic
contributions. We formalize the problem and discover, perhaps sur-
prisingly, that minimizing the worst delay across a pair of robustly
disjoint paths becomes computationally tractable when such paths
are implemented with SR and the maximum number of segments
is fixed (Sec. 3). We also formulate a necessary and sufficient con-
dition for paths to be robustly disjoint upon an input set of failures
(e.g., the most common ones, specified by operators) (Sec. 3). We
use this condition to design algorithms that efficiently find low-
delay robustly disjoint paths by pruning the search space (Sec. 4).

We evaluate our approach by performing extensive simulations
(Sec. 5) on 3 large ISPs, the Rocketfuel topologies [35] and the
largest topologies in the Internet Topology Zoo [24]. Since we have
no way to guess shared-risk link groups in our topologies, we used
our algorithms to compute paths that are robustly disjoint for any
single-link, random 3-link and any 2-link failure scenarios. Obvi-
ously, our approach does not scale indefinitely, and our experi-
ments on all 2-link failures already start to expose some of its lim-
itations both in terms of supported source-destination pairs and
computation time. Yet, our algorithms compute low-delay robustly
disjoint paths, using a few segments, in (sub-)seconds in most of
our experiments. Also, the computed paths tolerate a much larger
set of failures than those for which they are guaranteed to remain
disjoint. Overall, our evaluation suggests that our approach would
enable real ISPs to offer disjoint-path connectivity robustly with
respect to the most common failures.

2 USING SEGMENT ROUTING TO KEEP
PATHS DISJOINT

Consider the network shown in Fig. 1, where circles represent the
routers (or nodes), and the lines between them map to their physi-
cal interconnections (or edges). Suppose that the network is owned
by a connectivity provider (e.g. an ISP). Its customers (e.g. large
enterprise networks) send traffic between their sites, geographi-
cally distributed locations that are connected to some nodes of the
provider’s network. The squares in Fig. 1 represent two sites of a
customer requiring disjoint paths from its left site to its right one.

The provider’s operators face two technical problems to offer
connectivity via disjoint paths to their customers. First, they have
to compute and configure (manually or automatically) two disjoint
paths between the customer’s sites. Second, they have to repair
(manually or automatically) the disjoint paths when failures dis-
rupt one of the configured paths.
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To address those problems, the operators cannot exclusively rely
on the Interior Gateway Protocols (IGPs) that provide connectiv-
ity between the provider’s nodes. Those protocols allow the nodes
to share a network graph, weighted on the edges, and to forward
packets over the shortest paths in this graph. More than one path
can be used to forward traffic from a source to a destination, us-
ing a feature called Equal Cost Multi-Path, or ECMP. With ECMP,
traffic is balanced across all the shortest path from any two nodes,
applying a hash function on a per-packet basis. Despite that edge
weights can be tweaked to influence the shortest paths, guarantee-
ing that the paths computed by an IGP are disjoint is hard, or gen-
erally impossible for more than one source-destination pair (e.g.
multiple customers or customers’ sites).

Our solution exploits Segment Routing (SR), a source routing
protocol running on top of an IGP. SR is used to automatically com-
pute paths that are disjoint between two input customer’s sites and
remain so, after the convergence of the IGP, for any failure in a set
specified by the operators. We now give an intuition of how SR
is used in our solution, using the example in Fig. 1 and supposing
that the provider intends to configure two disjoint paths, one from
a to i and the other from b to j.

In a nutshell, SR enables to add lists of segments sq, ..., s to
packets. Each segment s; represents a node that has to be visited
before the packet reaches the destination. Packets are forwarded
over the IGP paths from each segment to the next one. For instance,
the disjoint paths in Fig. 1 are implemented by instructing a and b
to respectively add the segment lists (a — g — i)and (b - h — j)
to packets for i and j. Because of this SR configuration, packets
received by a and destined to i first follow the shortest path from
ato g, thatis (a, ¢, g), and then the shortest path from g to i, which
is (g, 1). The segment list (b — h — j) analogously results into the
path (b,d, h, j). Note that for ease of notation, we always include
the initial and final nodes of a path in the segment list.

Our solution exploits SR’s ability to implicitly specify backup
paths. When a link fails, the same list of segments often translates
into different paths (around the failure) as a consequence of the
re-computation of the IGP shortest paths. Our compiler computes
convenient segment lists enforcing the resulting paths to remain
disjoint. As an illustration, the segment list used in Fig. 1 ensures
that the paths from a and b to respectively i and j remain disjoint
after any single link failure. For example, if the link (c, g) fails, the
segment list (a, g, i) translates into the path (a, e, f,g,i), which is
still disjoint from the non-affected path (b,d, h, j).

Our approach is proactive, fast, and requires no external
intervention. The computed segment lists are used during normal
operation. When one of the input failure case occurs, no changes
are applied to any segment list, nor to any node configuration: the
IGP automatically re-converges to a new pair of disjoint paths, in
sub-second time even in large networks, according to prior stud-
ies [16]. SR also allows us to define a segment list for each source-
destination pair, and hence avoid the main limitations of an IGP-
only approach (i.e. dependency between source-destination pairs).

3 ROBUSTLY DISJOINT PATHS THEORY

We model the network as a doubly weighted directed graph G =
(V,E, igp, lat) where igp : E — Z7T such that igp(x,y) denotes
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Figure 2: Illustration of the sr-path (a — ¢ — f).

the IGP weight configured on link (x,y) and lat : E — R™ repre-
sents the link latencies in milliseconds. As often network topolo-
gies have parallel links, we model this by assuming that the net-
work is preprocessed so that each edge is given a unique id identi-
fying it. So that, for instance, two edges from node x to node y are
represented by (x,y, 1) and (x, y, 2). This avoids using the concept
of multigraph and the messy set operations that come with it.

Throughout this paper, we denote the size of V by n and the size
of E by m. We write the in and out neighbours of a node x € V(G)
as N7(G,x) = {y € V(G) | (y,x) € E(G)} and N*(G,x) = {y €
V(G) | (x,y) € E(G)}, respectively.

We define the following set operations on graphs. For any sub-
set of edges f C E(G), G\ f represents the graph that we ob-
tain from removing all edges in f from G, G; U Gy = (V(Gy) U
V(GQ),E(Gl) U E(Gg)) and G1 NG = (V(G1) n V(Gg), E(Gl) n
E(G2)). We write G = 0if E(G) = 0.

We denote the weight of apathp = (v1,...,v,) inGby igp(p) =
er;ll igp(vi, vi41). A shortest path between two nodes s and t is
a path p from s to ¢t of minimum weight, that is, a path minimiz-
ing igp(p). We denote the directed acyclic graph (DAG) formed by
all the shortest paths from a given node x € V(G) by SP(x). The
shortest paths between two nodes x and y also form a DAG that
we denote by SP(x,y). Given any edge set f C E(G), we define
SP(x,y, f) as the subgraph formed by the shortest paths from x to

yonG\ f.

3.1 Modelling segment routing

We formalize the behaviour of SR by defining a segment routing
path, or sr-path, of length k from s to ¢ as a sequence p = (x; —
X2 — ... > xx_1 — x) where each x; € V(G), x; = s and
xx = t. To avoid confusion, we use the vector notation g, g, . . . for
sr-paths and p, g, . . . for paths on G.

Segment routing paths determine the paths taken by packets.
We call the latter forwarding paths. To introduce the definition of
forwarding paths, we use the example in Fig. 2 where the sr-path
is (a — ¢ — f). In this network, packets sent by node a on the sr-
path (a — ¢ — f) can either follow path (a, b, ¢) or path (a, d, ¢) to
reach node c as there is ECMP between nodes a and c. Then, node
¢ will forward the packets along the path (c, e, f) to reach node f.

We note that when packets are forwarded along a sr-path from
node x to y they can use any path in SP(x,y). Routers use hash
functions [22] to select a specific path among several equal cost
ones. Since network operators cannot configure routers’ hash func-
tions, we assume that any given packet can be forwarded on any
of the equal cost paths. For a sr-path p = (x; — ... — x;) we
therefore define the forwarding graph of p to be the subgraph
formed by the union of the shortest paths from x1 to xj on G that
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Figure 3: Disjoint sr-paths from a to f and from g to h.

visit nodes x1, . .., x in that order. We denote it by forw(p). It is
easy to see that forw(x — y) = SP(x,y) and that, more generally,
forw(xy — ... = xp) = Ui‘;% forw(x; — xj41). For simplicity,
we omit the brackets ().

We now define disjoint sr-paths. Recall from the above discus-
sion on ECMP that packets using a sr-path p; can be forwarded
on any edge belonging to the forwarding graph forw(p1). Hence,
we say that two sr-paths p1 and pa are disjoint if and only if the
resulting forwarding graphs do not have edges in common, i.e.
forw(p1) N forw(pa) = 0.

For example, suppose that a customer asks for two disjoint sr-
paths to be installed in the network in Fig. 2, from a source site
directly connected to the nodes a and g to a destination site at-
tached to f and h. Fig. 3 shows two disjoint sr-paths (g, ¢, h) and
(a,1,f) from the customer’s source to the customer’s destination
sites. They are disjoint sr-paths because the corresponding forward-
ing graphs, respectively identified by blue and orange arrows, do
not share any link.

3.2 Robustly disjoint sr-paths

Our final goal is to support paths that remain disjoint for input sets
of link failures. In the following, we denote the input failure set
as . Each element f of # is a subset of the set of edges that can
fail at the same time. We assume that no failure in f disconnects
the graph or otherwise it would even not be possible to provide
connectivity at all, let alone disjoint paths.

Robustly disjoint paths for ¥ are sr-paths that are disjoint in G
and in any G \ f, for any element f € ¥ . For example, we can set
F = {{e} | e € E(G)} = & for paths that are robustly disjoint for
any single-link failure. In practice, more or less failure cases can
be included in 7, depending on the operators’ needs. If SRLGs are
known, then they can be added to the set. For instance, if three
edges ey, e2, e3 share the same physical resources and are likely to
fail together, operators can add {e1, e2, e3} to . In the following,
our examples focus on single-link failure scenarios, i.e. ¥ = &;
however, our theory is general with respect to the elements in ¥ .

To formalize robustly disjoint paths, we need to account for the
effect of failures in # . Failures generally force forwarding graphs
associated to sr-paths to change. Figure 4 illustrates this point on
our running example. If link (c,e) fails then, once the packets
reach node c, in order to reach f, they follow the new shortest path
(c,d, ). Similarly, if link (e, f) fails, the new shortest path to f be-
comes path (c,e, h,f). We denote the forwarding graph of a sr-
path p after the removal of a given f € F by forw(p, f). Formally,
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Figure 4: Effects of failures on a forwarding graph.

ifp=(x1 —> ... > xi)then

k-1 k-1
forw(p, f) = U forw(x; = xit1,f) = U SP(xi, Xi+1. f)-
i=1 i=1

We are now ready to give a formal definition of robustly disjoint
sr-paths. Given two sr-paths p1 = (x1 = ... - x;) and ps =
(y1 = ... = yr) we say that they are robustly disjoint if and
only if all the following conditions are met:

(1) p1 and po are disjoint sr-paths:
forw(p1) N forw(p2) = 0
(2) p1 and pg are disjoint sr-paths in G \ f for all f € F:
Vf € F forw(pi, f) N forw(pa, f) =0

We stress that these paths are always well defined as we assume
that 7 does not contain failures disconnecting the graph.

3.3 The robustly disjoint sr-path problem

One of the operational requirements we consider is to compute
paths with good data-plane performance - i.e. low delay. To for-
malize the actual problem that our algorithms solve, we have to
define the latency of a sr-path. In general, a sr-path corresponds
to a forwarding graph, which can contain many paths. We define
the latency of a sr-path p as the worst-case latency over all possible
paths:

lat(p) = max{lat(q) | q is a s-t path on forw(p)}.

We can now formalize our problem and prove its computational
complexity.

Min-max robustly disjoint sr-path problem (RDP): Given a doubly
weighted graph G = (V. E, igp, lat), two sources s, s2 € V(G), two
destinations t1,t2 € V(G), a failure set ¥ and an integer K, find
two robustly disjoint sr-paths p1 = (s1 = x1 = ... = x; = 1)
and po = (s2 = y1 — ... = yr = to), with k,r < K, that
minimize max(lat(p1 ), lat(p2)).

ProrosITION 3.1. RDP is NP-hard.

PRrROOF. Given a directed graph G and 4 nodes s1, s2, t1, t2, de-
ciding whether there exist two edge disjoint paths, one from s to
so and the other from #1 to t2, is NP-complete [44].
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To prove that RDP is NP-hard, we reduce this problem, which
we call disjoint path problem, to deciding whether the RDP has one
feasible solution. Let G = (V,E) and s1, s2, t1, t2 be disjoint path
instance. We build an RDP instance as follows. We define a graph
H = (V,E,igp, lat) where E' = {(x,y,1), (x,y,2) | (x,y) € E},
igh = 1 and lat = 0. We also set K = nand ¥ = E’, and keep
the same nodes s1,s2, 1, f2 as source-destination tuple. In other
words, we duplicate each edge of the original graph. Thus, for each
x,y € V forw(x — y) = fail(x — y). This means that if we can
find two disjoint sr-paths in H, they will also be robustly disjoint.
Each solution of the built RDP instance can be efficiently mapped
to a solution of the original problem by replacing each segment
with any of the corresponding shortest path.

Also, checking that two sr-paths are robustly disjoint can be
done in polynomial time, yielding the statement. O

There is one good news from a practical viewpoint, though. RDP
is fixed-parameter tractable with respect to K, meaning that it
is efficiently solvable for any given fixed value of K (the maximum
length of an sr-path). This is a consequence of the fact that the num-
ber of sr-path pairs of length K is O(nX~2), which is polynomial if
K is a constant. Note that the search space is still very large for high
values of K. Fortunately, we are mostly interested in solutions with
low values of K, that would limit the data-plane overhead while
also being compatible with commercial routers’ capabilities. In the
evaluation, we also show that robustly disjoint paths tend to exist
for many source-destination tuples and practical failure sets in real
ISP networks.

4 COMPUTING ROBUSTLY DISJOINT PATHS

To common way of finding disjoint paths in a graph is to com-
pute the minimum cost flow between the sources and destinations
using unit edge capacities to ensure disjointness [1] or use Suur-
balle’s [37] specialization of that algorithm for pairs of paths. Both
algorithms are very efficient but fail to solve the RDP problem in
several ways. First, they cannot match sources with destinations,
they can only enforce that each source will be linked to some des-
tination. Second, they do not take into account ECMP so they as-
sume that the exact output path will be enforced on the network.
One way to overcome this with SR would be to compute a minimal
segmentation of those paths [3]. However, we have no control on
the number of segments that will be required and our experiments
show that this number can be up to 26 segments, way above most
hardware limitations. Third, these algorithms do not minimize the
maximum latency of the paths but their sum. Finally, they provide
no guarantees on robustness.

As the RDP problem is fixed-parameter tractable, one could won-
der whether it is not sufficient to rely on a brute force algorithm
that enumerates all possible pairs of sr-paths. Such an algorithm
would simply enumerate all pairs of sr-paths and then pick the one
with lowest worst-path delay (if any). The number of possible sr-
path pairs with K segments is n2(K=2) and the checks to perform
(to assess if sr-path pairs are robustly disjoint) are proportional to
the number of elements of the input failure set 7, each of which
requires a shortest path computation. Hence, the algorithm would
run in O(n2(K=2)K|F |mlog(n)), where we recall that n and m are
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the number of nodes and edges in G. This would not be very ef-
ficient nor scalable for large ISP networks and a high number of
input failures to protect from.

One of the difficulties of designing an algorithm for comput-
ing robustly disjoint paths is checking condition (2) of the robustly
disjoint path definition, that is, checking whether the forwarding
graphs are disjoint for every failure. Checking it either means that
it will have to perform O(|¥|) shortest path computations, which
is very time-consuming, or pre-compute forw(x,y, f) forall x,y €
V and f € ¥ which consumes a lot of memory, even on medium-
sized topologies. To overcome this problem, we define a weaker
version of robustly disjoint paths that assumes that each failure af-
fects at most one of the two paths. We then propose an efficient al-
gorithm for finding the best pair of robustly disjoint paths amongst
all pairs of sr-paths that satisfy this weaker condition.

4.1 Aggregated failure subgraphs

Let p1, P2, be two sr-paths. Saying that each failure does not af-
fect both p and po means that for each element f € F either
forw(p1, f) = forw(p1) of forw(pe, f) = forw(pz). This means
that, to check whether disjointness holds after a failure, we can sim-
ply compare forw(p1) with (Jseg forw(pz, f) and forw(pa) with
Urer forw(p1, f). This leads to the following definition.

To shorten the notation, we write fail(p) = Uges forw(p). Two
sr-paths p1 and ps are said to be weakly robustly disjoint if and
only if all the following conditions are met:

(1) p1 and po are disjoint sr-paths:
forw(p1) N forw(p2) = 0

(2) If a failure affecting p2 occurs, then the new links used by
po do not intersect p1: forw(p1) N fail(p2) = 0.
(3) If a failure affecting p1 occurs, then the new links used by
p1 do not intersect po: fail(p1) N forw(pz) = 0.
We will write w—robustly disjoint paths for short. We now give
a piecewise characterization of w-robustly disjoint paths that
we use in our algorithms.

PROPOSITION 4.1. Two sr-paths p1 = (x1 — ... — xj) and
p2 = {y1 — ... = y,) are w-robustly disjoint if and only if for all
i=1,....k=1landj=1,...,r=1, forw(x; = xit1) N forw(y; —
Yj+1) = forw(x; = xi1) N failly; — yj41) = fail(xi = xi41) N
Jorw(yj = yj+1) = 0.

ProoF. We first prove that forw(p1) N forw(pz) # 0 if and only
if 3i,j : forw(x; = xi41) Nforw(y; = yjr1) # 0.
forw(p1) N forw(pz) # 0 &
Je : e € forw(p1) Nforw(pz) &
Je: e € forw(p1) Ae € forw(p2) ©
Je,i,j: e €forw(x; = xit1) Ae € forw(y; = yj+1) ©
3i,j : forw(x; = xig1) Nforw(y; = yjr1) #0
It is easy to see that fail(p2) = [J/_] fail(yi > yi41). so the same

reasoning applies if we replace forw(py ) with fail(p}), or forw(ps2)
with fail(p2). This yields the statement. o
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The advantage of this definition is that pre-computing fail(x, y)
for all x, y € V does not consumme a lot of memory nor time as we
show in Section 4.4. This means that computing w-robustly disjoint
path of minimal latency is feasible in practice. The following the-
orem shows that under some conditions, w-robuslty disjoint path
are actualy robuslty disjoint.

PROPOSITION 4.2. If p1,po are w-robustly disjoint and for each
f € F either f N forw(p1) = 0 or f N forw(pa) = O then p1, po are
robustly disjoint.

PRrROOF. Suppose that p1, po are not robustly disjoint. Then there
exists f such that forw(pi, f) N forw(pe, f) # 0. By definition,
either f N forw(p1) = 0 or f N forw(p2) = 0. Assume, wlog, that
f N forw(p1) = 0. Therefore, we have forw(p1) N forw(pa, ) =
forw(p1, f) N forw(pa, f) # 0. Since forw(po, f) C fail(p2) this
means that forw(p1) N fail(p2) # 0, contradicting the fact that
ﬁl, [52 are w-robustly disjoint. ]

Another interesting corollary is that for single link failures, the
concepts of w-robustly disjoint paths and robustly disjoint paths
coincide.

COROLLARY 4.3. IfF = &, a pair of sr-paths p1, pa is w-robustly
disjoint if and only if it is robustly disjoint.

ProOOF. Let 1, P2 be w-robustly disjoint sr-paths. Then, in par-
ticular, they are disjoint sr-paths. Hence, no f € # = & can inter-
sect both forwarding paths. Thus, by Proposition 4.2, p1, p2 are ro-
bustly disjoint. The fact that robustly disjoint paths are w-robustly
disjoint is obvious. O

We use these results to design an algorithm for computing the
pair of w-wearkly robuslty disjoint paths that is also robuslty dis-
joint. Of course, we do not assume that the failures only affect one
of the paths as the failures are given by the network operator and
the paths are computed afterwards. Instead, we will make sure that
the algorithm only considers pairs of paths that do not both inter-
sect any of the given failures. Proposition 4.2 will then ensure that
these paths are indeed robustly disjoint.

Even though checking the condition for w-robuslty disjoint paths
can be done efficiently, we still have a huge search space of size
O(nQ(K_Q)) to explore. Our algorithm reduces the search space to
at least O(nX~2) by using the fact that, given a sr-path p1, finding
a sr-path po of minimum latency that is w-robustly disjoint from
p1 can be done efficiently as we show in the next section. We use
this insight to efficiently build p7 while keeping the best compat-
ible path po. In our experiments (see Sec. 5), our algorithm runs
two orders of magnitude faster than the brute force one.

Our algorithm takes two inputs: the network topology, G =
(V, E, igp, lat) and the failure set, . In practice, the network topol-
ogy can be easily extracted from the Link State Database of com-
monly used IGPs like OSPF or IS-IS. The failure set contains the sets
of simultaneous edge failures (e.g. single-link failures, SRLGs, ...)
for which the operators want to be sure that the computed paths
remain disjoint.
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4.2 Finding low latency robustly disjoint
sr-paths

Given a sr-path § from s to t1, we propose a dynamic program-
ming algorithm to find the minimum latency sr-path from source
s2 to destination t2 using at most K segments amongst all the paths
that are w-robustly disjoint from .

We define minlat(i, x) as the minimum latency of a sr-path from
s2 to node x of with at most i segment that is robustly disjoint from
p. Our goal is to find minlat(K, t2) and the corresponding path.
Clearly minlat(1,s2) = 0 and minlat(1,x) = oo for x # s as the
only sr-path of length 1 from s2 is (s2). Given a node x, we define
N (x,p) to be the set of nodes y such that (y — x) is w-robustly
disjoint from p and does not share failures with p1. In other words,
y € N(x,p) if and only if

forw(y — x) N forw(p) = forw(y — x) N fail(p)
= fail(y = x) N forw(p) = 0

and
T(ﬁl) N T(ﬁz) =0.

where we use ¥ (p) to denote the indexes of the failures f; € ¥
that intersect forw(p).

The best way to reach x with a sr-path of length at most i is
either the same as with a sr-path of length at most i —1 or we reach
anode y € N(x,p) in an optimal way with a sr-path of length at
most i — 1 and append x to it, i.e.:

minlat(i — 1, x)
minlat(i,x) = miny minlat(i — 1, y) + lat(y, x)
YyeN (x.p)

This recurrence can easily be computed in O(n? - K + n? - m))
since it computes O(n? - K) minlat values and computing N (x, p)
for all x costs O(n? - m). Recovering the sr-path is straightforward
by keeping the minimizers of each state. The robustly disjointness
is ensured by Proposition 4.2 since, by construction of NV, no failure
intersects both paths.

4.3 Finding robustly disjoint sr-path pairs

We now develop an algorithm that builds a pair of robustly disjoint
sr-paths that minimize max(lat(p1), lat(p2)) amongst all pairs of
w-robustly disjoint paths. In order to prune the search, this algo-
rithm requires information on the path latencies. We represent this
latency information as £: a n X n matrix such that £(x, y) denotes
the minimum latency path from x to y in G (note that L refers
to paths, not sr-paths). This matrix can easily be pre-computed us-
ing any all-pairs shortest path algorithm on G using lat as edge
weights [10].

To find our pair of robustly disjoint sr-paths, we perform a depth-
first search. This search incrementally builds the sr-path $; while
using Algorithm 1 to maintain a complete sr-path po that is ro-
bustly disjoint from p;. Every time we try to extend p; with a new
node x, we check whether ps is still robustly disjoint from the con-
catenation of p1 and (x). If it is, we continue the search. Otherwise,
we compute a new sr-path po of minimum latency that is robustly
disjoint from p1. If no such sr-path exists then we know that x is
not a valid extension of p; and we stop the search.
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Algorithm 1 shortest-rdp (p, s, t,K)

Algorithm 2 robustly-disjoint-srpaths (s1, s2, t1, t2)

Input:

- p: the sr-path that needs to be robustly disjoint.

- s: the source node

- t: the destination node

- K: the maximum length of the returned sr-path
Output: A sr-path from s to ¢ that is robustly disjoint from p and has a
length of at most K and a minimum latency. If no such path exists it
returns L.

1: minlatli][x] « +ooforalli=1,...,K,x € V(G)

2: parent[i][x] « Lforalli=1,...,K,x € V(G)

3: minlat{1][s] < 0

4: for x € V(G) do

5: N‘(x, ﬁ) — 0

6: fory e V(G)do

7: if forw(y — x) Nforw(p) = forw(y — x) Nfail(p) = fail(y —
x) Nforw(p) = F(p) N F ({x, y)) = 0 then

8 N7 (x, p) « N™(x, p) U {y}

9: for i =2 to K do
10: forx € V(G) do

11: minlat[i][x] = minlat[i — 1][x]

12: fory € N~ (x, p) do

13: if minlat(i — 1][y] + lat(y, x) < minlat{i][x] then
14: minlat(i][x] = minlat[i — 1][y] + lat(y, x)

15: parentli][x] =y

16: if minlat[k][t] = co then
17: return L

18 g (), ci—K,cx 1t
19: while cx # 1 do

200 gecex+q

21:  cx <« parent|ci][cx]
222 cieci-1

23: return ¢

When we reach a node of the search tree with a partial sr-path
ﬁl = (x1 — ... — xj), before trying to expand it, we check
whether we can prune the search based on the latency of the best
solution so far (p],p;). We know that any extension of p will
have a latency of at least lat(p1) + L(x;,t1). This is so because
any extension of the sr-path §; to reach t; will have a latency of
at least £(x;, t1) since its latency will correspond to the latency of
a path in G. In other words, L(x,y) is always a lower bound for
lat(x — y). Therefore, we can safely stop the search if

max(lat(pr) + L(xi, 1), lat(p2)) > max(lat(py), lat(ps))

Algorithm 2 details the search initialization. Algorithm 3 shows
the actual search procedure. In line 1 we check if the search can
be cut-off. If it cannot, the input pair of paths is better than f7, 5.
Thus if p1 is complete, we update the current best solution. Other-
wise, we try all possible extensions of pj. Line 8 ensures that: (i)
we do not choose a node that has already been selected, and (ii) if
we are doing the last extension, we only consider ;. We then ex-
tend p1 and continue the search on line 11 if this ps is compatible
with this extension. Otherwise, we look for new path f2 on line 13
and if we find one, we continue the search (line 15).

We now prove that our depth-first search computes robustly dis-
joint sr-paths of minimal latency.

Input: The sources and destinations of the two paths s1, sg, #1, f2.
Output: A pair of robustly disjoint sr-paths from s to #; and from sg to
t2 minimizing max (cost(p; ), cost(py)). If not such pair exists we will
have p} = p5 = L.

L=

2: po = shortest-robustly-disjoit-srpath (ﬁl, S0, to, K)
3Py — L

4: 53 — L

5 dfs(G, p1, po, forw, fail, w, be, s1, s2, £1, t2, k, P}, Py)
6: return ﬁ”{,ﬁ;

Algorithm 3 dfs (ﬁl, p2. P _’;)

Input:
- p1: the sr-path that we are currently building
- po: the minimum latency sr-path that is robustly disjoint from p;
- ﬁ’{, ﬁ; the best pair of robustly disjoint sr-paths found so far

tif pr # L and max(lai(p1) + L(xi, 1), lat(p2)) =
max(lat(p} ), lat(py)) then

2: return

3: if p1.last = t1 then

4: ﬁ’{ «— ﬁl

5: ﬁ; «— ﬁg

6: return

7: for x € V(G) do

8: if x ¢ p1 and (|p1] # k — 1 or x = #1) then

9: p1.add(x)

10: if forw(p1) N wpa) = fail(p1) N forw(pz) = forw(pr) N

fail(p2) = F(p1) N F (p2) = 0 then

11: dfs(p1, p2. . P5)

12: else

13: P « shortest-rdp (ﬁl, s9, to, K)

14: if p, # L then

i s By B 73)

16: p1.remove-last()

PROPOSITION 4.4. Algorithm 2 finds the pair of robustly disjoint
paths of minimum latency amongst all pairs of w-robustly disjoint

paths.

Proor. Let (p}*, p5") be a pair of w-robustly disjoint paths of
minimum latency £* = max(lat(p}"), lat(ps*)). Write p** = (s; =
X1,...,Xx = t1). We prove that the depth-first search algorithm,
Algorithm 3, either reaches a node where 1 = f;* or finds a so-
lution with cost £*. Suppose that the search is cut at line 2 with
p1 being some prefix (s1 = x1,...,x;) of §;*. By definition of our
cutting rule, one line 1, we have that,

i-1
lat(ﬁl) + L(xi, tl) = Z lat(Xj,Xj+1) + .C(xi, tl)
j=0
Thus, by definition of lat it must hold that

n-1
L(xi, tl) < Z lat(Xj,Xj+1)
Jj=i
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so that
i-1 n-1
lat(f1) + L(xi,t1) < Y lat(xj,xj41) + . lat(xj, xj11)
Jj=0 j=i

S
|
[

= lat(xj, xj4+1) = lat(py™)
J

Il
=}

By Proposition 4.1, since p}* is w-robustly disjoint with §* it must
also be w-robustly disjoint with f1 as f1 is a prefix of 5;*. Algo-
rithm 1 outputs the minimum cost path that is w-robustly disjoint
with p1. Hence lat(f2) < lat(p5*). Since the search is cut, it holds
that max(lat(p1)+L(x;, t1), lat(pz)) > max(lat(p}), lat(ps)). There-

fore
max(lat(py™), lat(p5")) > max(lat(p1) + L(xi, t1), lat(p2))

> max(lat(py ), lat(p5))

showing that the algorithm found a w-robustly disjoint pair of
paths. Since in line 10 we ensure that they do not share failures,
Proposition 4.2 shows that they are robustly disjoint.

On the other hand, if the search is never cut, it will reach a node
with §1 = f}* and {3 equal to the minimum-cost robustly disjoint
path from g7, which is also an optimal solution. O

4.4 Precomputing forw and fail

Since the subgraphs forw and fail are key in the above procedures,
we also develop efficient algorithms to pre-compute these subgraphs
for all pairs of nodes in a given network G and for an input failure
set 7.

Computing any subgraph forw(x — y) maps to computing the
shortest path directed acyclic graph (DAG) from x to y. We do this
by first computing the shortest path DAG rooted at each node x,
SP(x). This is achieved by running the Dijkstra algorithm [10] at
each node x € G. Then, for a fixed x we need to extract for each y
the subgraph of SP(x) that contains all the shortest paths ending in
y. To do this efficiently, we observe that SP(x) is a DAG, and thus it
admits a topological order. If we compute such an order x1, .. ., x5,
the shortest paths to a node x; depend only on the shortest paths
to nodes x; for j < i. More concretely, SP(x,x1) = 0 for x1 = x,
and for any other node x;, one shortest path from x to x; must also
be a shortest path from x to an in-neighbor y of x; to which we add
edge (y, x;). Formally, for any i > 1 we have that

SPeoxi) = () (SPoy) Ul x)).

yeN~(SP(x),x;)

This formulation has the advantage of using set operations which
can be performed quite efficiently by using a bitset representation
of subgraphs. In our implementation, we index every edge of the
input graph from 0 to m — 1. Whenever a subgraph is computed
we preserve the indexes on the edges. Therefore, a subgraph can
be represented by a simple bitset of size m where bits are set to 1
only on the edges that belong to the subgraph. This implementa-
tion makes all the set operations roughly 64 times faster.

To compute the failure subgraphs we use the same ideas. For
each node x and set f € F we compute SP(x, f), which is also
a DAG, and use the same process as above to compute SP(x,y, f)
for all y. We add each of those subgraphs to fail(G, x,y). This is
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Real Nodes Edges
ISP 1 ~ 150 =~ 700 Largest in Nodes Edges
ISP 2 ~220 800 Topology Zoo
ISP 3 ~ 170 =~ 440 ITZ Cogentco 197 490
ITZ Colt 153 382
ITZ Deltacom 113 366
Rocketfuel Nodes Edges ITZ Dia 138 302
RF 1221 108 306 ITZ GtsCe 149 386
RF 1239 315 1944 ITZ Interoute 110 312
RF 1755 87 322 ITZ Ion 125 300
RF 3257 161 656 ITZ Tata 145 388
RF 3967 79 294 ITZ UsCarrier 158 378
RF 6461 141 748

Table 1: Topologies used in our experiments.

also where we check if fail is well-defined by verifying that each
SP(x,y, f) is not empty.

5 EVALUATION

We implement our algorithms in ~ 6,000 lines of Java code. We use
our implementation to experiment with three private ISP topolo-
gies, all Rocketfuel ones [35] and the largest networks in the Inter-
net Topology Zoo [24]. Table 1 summarizes our dataset.

Our experiments span three types of failure sets:

o All single-link failures: ¥ = & = {{e} | e € E(G)};

e Random 3-link failures: ¥ contains m sets 3 element sets,
{e1,e2, e3}, where e1, e2, e3 are randomly selected edges and
m is the number of links in the topology;

o All 2-link failures: ¥ = {{e1,e2} | e1,e2 € E(G)}.

We focus on reasonably well-connected source-destination tu-
ples. For each topology, we randomly select 100 tuples (s1, s2, t1, t2)
of two sources s1, s2 and two destinations t1, t2, such that s; and so
have a path to ¢; and t2 even when any edge is removed. Since we
try to compute robustly disjoint paths from s; to ¢; and from s2 to
to, it would indeed make little sense to consider source-destination
pairs that are disconnected by a single failure - it is obvious that
the provider cannot offer a robust connectivity service between
routers that are poorly connected. We repeat each experiment al-
lowing between 1 and 3 detours. We stop at 3, because trends are
already evident and real routers support a limited stack of SR la-
bels [38].

We run all these experiments on a Dell Latitude E5450 with 8GB
of Ram.

5.1 All single-link failures

We first compute paths that are robustly disjoint for all single-link
failures. We envision that this may be a common use case for our
approach, as several studies [28, 45] report that single-link failures
are the most common failure cases in real networks.

Table 2 summarizes our experimental results. It also compares
the performance of our algorithms against a baseline: the Suur-
balle’s algorithm [37], designed to quickly compute disjoint paths
that are not robustly disjoint. We remind that algorithms like Suur-
balle’s one can only be used within a reactive approach. In contrast,
our solution is proactive, and upon failures (at least, those specified
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LEGEND: RDPs stands for Robustly Disjoint Paths, and det for detour(s). Src-dst tuples are two source-destination pairs, selected as described at the
beginning of Sec. 5. Latency ratio is the average ratio between the max latency of the robustly disjoint paths computed by our algorithm and the
max latency of the IGP shortest paths between the same source-destination tuples. The reported times are averages across all the src-dst tuples.
Suurballe’s algorithm refers to the algorithm in [37], that computes simply disjoint paths.

Our algorithms Suurballe’s algorithm

topology src-dst tuples with RDPs latency ratio wrt IGP | RDPs computation time pre- avg  max latency

Odet 1det 2det 3det | 1det 2det 3det | 1det 2det 3det | computation || #det #det ratio
Real ISP 1 83% 100% 100% 100% | 0.97 0.97 0.97 0.8s 11.3s 6.98m 4s 2 5 0.90
Real ISP 2 89% 100% 100% 100% | 0.98 0.98 0.98 25s 1.6m 70.5m 9s 1.58 4 0.88
Real ISP 3 73%  100% 100% 100% | 0.97 0.96 0.96 0.2s 35s 29m 4s 49 10 0.84
RF 1221 82% 98%  100% 100% | 0.99 0.99 099 | 29ms 04s 9.2s 1s 1.04 4 0.89
RF 1239 90% 100% 100% 100% | 0.97 0.97 0.97 58s 439s 42m 44 s 2.12 4 0.87
RF 1755 52% 98%  100% 100% | 0.90 0.89 088 | 40ms 0.36s 18s 1s 2.34 5 0.80
RF 3257 76%  100% 100% 100% | 0.91 0.89 0.88 03s 34s 37s 4s 3.06 8 0.72
RF 3967 71% 99%  100% 100% | 0.97 0.97 097 | 36ms 05s 14.8 s 1s 1.91 5 0.79
RF 6461 75%  100% 100% 100% | 0.97 0.97 0.97 03s 37s 359m 3s 2.65 6 0.82
ITZ Cogentco 78% 97%  100% 100% | 0.85 0.84 0.84 45s 57s 18 s 4s 2.01 6 0.70
ITZ Colt 58% 71% 73% 73% 0.88 0.87 0.86 3.7s 49s 20s 2s 2.31 6 0.73
ITZ Deltacom 74% 99% 99%  100% | 0.91 0.90 0.90 4s 4.7 s 4.58 s 1s 4.08 9 0.81
ITZ Dia 54% 77% 79% 79% 0.96 0.98 0.98 459s 44s 10s 2s 0.85 3 0.85
ITZ GtsCe 78% 98%  100% 100% | 0.78 0.77 0.75 7.24s 5s 454s 1s 2.8 8 0.60
ITZ Interoute 81% 99%  100% 100% | 0.93 0.91 0.90 54s 579s 3.46s 1s 4.01 10 0.81
ITZ Ion 64%  100% 100% 100% | 0.95 0.94 0.94 329s 3.68s 2.56s 1s 1.43 5 0.86
ITZ Tata 86% 100% 100% 100% | 0.90  0.89 0.89 4s 6s 432s 2s 3.19 11 0.75
ITZ UsCarrier 72% 83% 85% 85% 0.92 0.92 0.92 4.6s 4.6s 11s 2s 1.11 4 0.86

Table 2: Summary of the results for paths that are robustly disjoint for any single-link failure. Our algorithms are very effective
to find robustly disjoint paths using few SR segments, for all source-destination tuples that theoretically admit such paths.

in input), it relies on the automated IGP convergence only, without
any reaction to failures from operators or centralized controller.

Real networks admit robustly disjoint paths. The leftmost part
of Table 2 reports the percentage of source-destination tuples (among
those we selected as described before) for which our algorithms
can compute robustly disjoint paths for any single-link failure. Some-
times, only selecting the right IGP paths is sufficient for a given
tuple. However, since IGP costs are shared across all paths, they
rarely can be used for more than one source-destination tuple, pre-
venting operators to configure robustly disjoint paths for multiple
customers or between different sites of the same customer. Adding
one detour by specifying an intermediate node with SR allows
paths for different tuples to be independent from each other, solv-
ing the above issue. It also drastically increases the percentage of
tuples with at least one pair of robustly disjoint paths to 71%-100%
across all the topologies, and to 97% or more for all topologies but
two. Allowing more detours provides only slightly more flexibility
in our experiments.

As a comparison, Suurballe’s algorithm can compute paths for
all source-destination tuples we experiment with — which is ex-
pected as disjoint paths must exist for those tuples, by their def-
inition. The algorithm runs in few milliseconds. These paths also
provide better average latency ratio. However, implementing Su-
urballe’s paths would require an average number of segments com-
parable and often higher than the one needed for robustly disjoint

paths. Also, in the worst case, Suurballe’s paths require up to 9-
11 segments for several topologies, which would create a large
per-packet overhead and goes beyond the capabilities of existing
routers [38].

The computed robustly disjoint paths decrease worst-path
latency. Our algorithms are designed to find sr-paths that are both
robustly disjoint and have minimal worst-path delay. As the cen-
tral part of Table 2 shows, the robustly disjoint paths computed
by our algorithms have a worst-path delay which is always better
than the worst latency across the original IGP shortest paths. We
are up to 15% more efficient, on average. Once again, more detours
enable to decrease the latency of the computed paths across all the
topologies, but just negligibly in most cases.

Robustly disjoint paths can sustain more failures than the
input ones. Robustly disjoint paths are computed with respect
to the failures in ¥ specified as input by the operator. However,
unexpected failures can and will eventually occur.

We check how paths robustly disjoint for any single-link fail-
ure react to multiple-link failures. For s = 1,...,6, we generate
100 sets of s simultaneous link failures. We simulate the effect of
each failure set on the two paths computed by our algorithm. Af-
ter each failure, we record if the paths remain disjoint, if they are
both working but not disjoint anymore, if one source-destination
pair is disconnected, or if both source-destination pairs have no
path anymore.
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Figure 5: Paths robustly disjoint for single link failures
likely sustain multiple link failures. Worst-case failures re-
fer to our experiments where all the simulated failures af-
fected links used in the computed robustly disjoint paths.

We perform two types of experiments using the above method-
ology. In the random failures experiment, we generate the sets of
failures by successively extracting edges randomly, with uniform
probability, among all network edges. In the worst-case failures ex-
periment, all the failed edges are extracted randomly from the used
paths (i.e., the N-th failed edge is extracted from the paths resulting
from the previous N-1 failures).

Fig. 5 shows the results of our experiments on ISP 1 and ITZ Dia:
they are the topologies in our dataset for which we respectively get
the best and worst results in terms of robustness to additional fail-
ures (all the other topologies are included between those extremes).
For ISP 1, paths remain disjoint with no configuration change in
almost all the simulations, including those with 6 simultaneous
link failures, and source-destination tuples are disconnected very
rarely (0.01% of the time for 6 link failures). For ITZ Dia, results
remain very good for random failures, but are significantly worse
for the worst-case failures. Still, connectivity is often kept between
source-destination tuples, e.g., for more than 80% (about 70%, re-
spectively) of the experiments in the presence of 5 (6, respectively)
successive on-path failures.

Our algorithms are fast with respect to the envisioned use
cases. We now evaluate how fast our algorithms are, and if they
can enable ISPs to quickly setup disjoint path services for new cus-
tomers, and to re-compute paths for expected (e.g., maintenance
operations) and possibly unexpected failures.

Table 2 reports the average computation times taken by our al-
gorithms, when run on the topologies in our dataset. We break
down the computation time in two components.

The first component is the time to output robustly disjoint paths
with pre-computed fail and forw subgraphs. This is, for example,
the time that would be needed for an ISP to set up the disjoint-path
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service for a new customer. Our algorithms compute robustly dis-
joint paths in less than 10 seconds on average in most of our ex-
periments. Only for Real ISP 2 with 3 detours the average time is
considerably larger. Overall, we consider these times reasonable
for realistic use cases. As comparison, setting up a new connectiv-
ity service typically takes days for current ISPs.

The second component is the time needed to compute the forw
and fail subgraphs. This computation only depends on the topology
and the failure set; it takes only a few seconds on all our topologies
for the all single-link failure scenario. This time has to be added to
the first time component discussed above whenever robustly dis-
joint paths have to be recomputed after a topology change. We
argue that the sum of the two time components shown in Table 2
is still reasonably low for planned addition or removal of links, e.g.,
during a maintenance operations. With respect to unexpected fail-
ures, times to compute robustly disjoint paths with 1 detour seem
still reasonable, especially considering that many robustly disjoint
paths tend to remain disjoint or at least preserve connectivity after
more than the expected link failures provided in input (see Fig. 5).

We note that time efficiency is a property of our algorithms. As
discussed in Sec. 3, the RDP problem is can be solved in polynomial
time for any fixed number of detours, but the space of its solutions
is very large. In fact, a brute force algorithm scanning all the sr-
path pairs without pruning the search space takes two orders of
magnitude more time than our algorithms, across all topologies.

We also remark that the computation time does not necessarily
increase with the number of segments. This is because allowing
more segments increases the number of robustly disjoint paths,
which is a favorable condition for our approach. Indeed, our algo-
rithms are fast to find robustly disjoint paths when they exist, and
effective in using the computed paths to prune the search space.

5.2 Multiple link failures

We repeat our experiments on multiple-link failure sets.

Our algorithms are still efficient to compute the (more rare)
paths which are robustly disjoint for random 3-link failures.
As already discussed, multiple links may fail at the same time in
practice (e.g. SRLGs). We have no information of possible SRLGs
in our topologies. As a rough approximation, we experiment with
failure sets of 3 random links.

Our algorithms are still very efficient to compute robustly dis-
joint paths on the random 3-link failure cases: their average com-
putation time is always below 20 seconds across all our topologies.

Despite being efficient, they could not compute robustly dis-
joint paths for as many source-destination tuples as for the single-
failure experiments. This is mainly because the paths to be com-
puted must be robust to a higher number of failures. For example,
the percentage of source-destination tuples with a robustly disjoint
path becomes 41%-43% (depending on the number of detours) for
ISP 1, 36%-45% for ISP 2, and only 9% for ISP 3. Overall, the best
topologies are RF 1239 (90% of source-destination tuples), RF 6461
(89%-100%) and RF 3257 (66%-80%), while it is very rare to find any
source-destination tuple supporting robustly disjoint paths in In-
ternet Topology Zoo’s networks.
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These results mainly depend on the density of the individual
topologies. In fact, it is well known that Internet Topology Zoo’s
topologies are generally not extremely well connected (see, e.g., [19]).

Further analyzing our topologies, we find a direct correlation
between the presence of robustly disjoint paths for 3-link failures
and the minimum cut for pairs of nodes in the corresponding net-
work. The minimum cut for two nodes is defined as the minimum
number of edges that we would need to remove for disconnecting
the two nodes; its size is therefore equal to the maximum number
of disjoint paths between the two nodes. Node pairs have a mini-
mum cut higher than 2 for a very low number of Internet Topology
Zoo’s networks. In contrast, in the topologies, the minimum cut
for more node pairs is higher than 2; and the ones with many node
pairs with higher minimum cut values are also the ones on which
robustly disjoint paths for random 3-link failures can be computed
for most tuples. For example, the minimum cut is higher than 2 for
about 50% of node pairs, and even higher than 30 for some pairs,
in RF 1239. The discrepancy between the Internet Topology Zoo
and the other (router-level) topologies in our dataset is perhaps
due to the fact that many networks in [24] are PoP-level (i.e. each
node represents a Point-of-Presence) and inferred from public Web
sites.

Our algorithms show limitations for all possible 2-link fail-
ures. Obviously, our solution do not scale indefinitely. We start
to observe limitations when trying to compute paths robustly dis-
joint for all 2-link failures, a requirement that is ambitious even
for simpler failure-tolerant approaches (e.g. only preserving con-
nectivity).

In addition to exacerbate the reduction of source-destination tu-
ples admitting robustly disjoint paths, this failure set also signifi-
cantly slows down our algorithms. The biggest challenge for our
algorithm in this case is to pre-compute forw and fail since the
failure set # is huge in this case. For instance, on RF 1239 # has
almost four million elements and it takes about 15 hours just to
pre-compute these graphs. Intuitively, the efficiency reduction of
our algorithms for finding robustly disjoint path is likely due to
the presence of less robustly disjoint paths. In fact, our algorithms
tend to quickly find solutions when they exist, but they take much
more time to prove that no solution exists. This is expected since
our algorithms are not able to prune the search space when there
is no solution.

5.3 Simulations on a real failure trace

To assess the benefits of robustly disjoint paths in a real-life sce-
nario, we also analyse a 1-week trace of all the link-state IGP pack-
ets exchanged by a router in Real ISP2. Based on this trace, we
identified that a total of 5% of the links failed during this period.
Some links experienced flapping, confirming observations of pre-
vious studies [28, 45]. For example, one of the links failed more
than 30 times during the analysed week. We select 100 source-
destination pairs in this network, and compute the corresponding
robustly disjoint paths for ¥ = & (all single-link failures). We
then replay all the failures that happened during the entire week.
The source-destination pairs always have disjoint paths in our simu-
lation, at any moment during the week, even when multiple edges
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failed simultaneously. This experiment provides a strong indica-
tion that the paths computed by our algorithms are robust to real
failures, for a long time, in an operational network, without the
need for any configuration adjustment.

6 RELATED WORK

We consider tighter requirements than connectivity. Prior
contributions have focused on how to quickly restore connectiv-
ity upon failures. Basic (deployed) techniques [2] quickly restore
connectivity after single link failures. More advanced ones [9, 12,
27,39] can address multiple link failures, even providing strong ro-
bustness guarantees like the ability to deliver packets after failure
of any k — 1 links, with k < 5, in k connected networks — which is
more than what our solution can ensure. Some of those techniques
can also be implemented with SR [15]. However, none of the above
contributions maintains paths disjoint after failures (in a set speci-
fied by operators), which is the goal of our work.

We explore a new class of disjoint paths. Many research ef-
forts considered problems related to path disjointness in the past
[8, 18, 23, 25]. They study the computational complexity and pro-
pose efficient algorithms to calculate specific disjoint paths (e.g.
minimizing the maximum delay or including one shortest path).
Other works focus on how to install disjoint paths in MPLS net-
works [34, 42] or with Segment Routing [3]. However, none of them
provides guarantees about disjointness after failures.

We provided the background to reason about paths that remain
disjoint for any failure in an input set (§3), and use it to design
efficient algorithms to compute such paths (§4).

We complement recent work on Segment Routing and con-
figuration synthesis. Efficiently encoding robustly disjoint paths
represents a new application scenario for a protocol that is classi-
cally associated to traffic engineering [7, 21, 33] or monitoring [4].
Also, our work confirms the effectiveness of configuration synthe-
sis to (pro-actively) deal with failures, i.e., to keep paths disjoint in
addition to maintaining compliance with routing policies [6] and
achieving congestion-free failure recovery [20].

7 CONCLUSIONS

We started this paper from a conversation with a specific ISP, will-
ing to configure disjoint paths with Segment Routing in order to of-
fer a robust connectivity service to its customers. We investigated
theory and algorithms to provide such a service in an automated
and reliable way. We focused on SR by explicit request of our ref-
erence ISP, who wanted to avoid the high costs of physically repli-
cating the network as well as the operational issues of MPLS.

The obvious follow-up question is whether SR is a good routing
technology to implement the disjoint-path service, and what are
the pros and cons of relying on it.

We analyzed the main alternative approaches, dividing them
into classes that cover existing mechanisms, prior work, and non-
SR implementations of robustly disjoint paths (e.g. through pre-
provisioned MPLS tunnels selectively activated upon specific fail-
ures). We compared these classes with our approach over four di-
mensions: ability to guarantee disjoint paths, additional network
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Approach Path Disjointness Network State Expressiveness Failure Reaction
shortest path routing (e.g., IGP) not always possible minimal connectivity IGP convergence
connectivity-targeted fast rerouting not considered additional state connectivity data-plane update

(e.g., LFA [2] or with OpenFlow [9])

failure-tolerant configurations not considered

(e.g., FFC [26] or synthesized [6, 20])

if no failure, or
via reconfiguration

centrally configured disjoint paths
(e.g., with RSVP-TE [42] or SR [3])

robustly disjoint paths
with RSVP-TE or OpenFlow

for any failure
in an input set

robustly disjoint paths with SR
(this paper)

for any failure
in an input set

on routers

light routers’ state,

protocol-specific overhead

heavy routers’ state
(stores backup paths)

heavy routers’ state
(stores backup paths)

minimal on routers,

longer packet headers

forwarding policies
(e.g., no congestion)

all possible
disjoint paths

all possible
disjoint paths

SR-implementable
disjoint paths

data-plane update
configuration changes
(possibly many)

data-plane update

IGP convergence

Table 3: Our approach trades some expressiveness (not all paths are implementable in SR) and data-plane overhead (longer
packet headers) for the ability to keep paths disjoint for an input set of failures, without requiring state on the routers and

any configuration change upon failures.

state required (on routers and packets), expressiveness, and failure-
triggered reaction.

Table 3 summarizes the results of our analysis. It highlights two
main observations. On one hand, SR enables to configure paths that
remain disjoint after an input set of failure cases, without overload-
ing routers with an exponential number of backup paths or requir-
ing any configuration change upon failures — and ours is the first
work studying and exploiting this opportunity, to the best of our
knowledge. On the other hand, the price to pay for such an ap-
proach is to rely on IGP convergence for failure recovery, restrict
to paths implementable with SR, and encode information in the
packet header. These limitations do not seem to be very constrain-
ing in realistic deployments. The IGP convergence has been shown
to be fast [16], even if slower than data-plane updates. Also, our
evaluation suggests that adding 1 or 2 conveniently computed SR
segments to packets enables to implement robustly disjoint paths
for many reasonably well-connected source-destination pairs in
ISP networks and frequent failures (e.g., all the single-link ones).

One additional point is worth noting. It is thanks to SR that
we have been able to design an efficient algorithm for an other-
wise computationally intractable problem. In fact, finding delay-
minimizing robustly disjoint paths is fixed parameter tractable in
SR (see Sec. 3), while computationally hard in general [44]. This is a
core element for the practicality of the SR configuration synthesis
we studied.

SOFTWARE ARTIFACTS

A Java implementation of our algorithms, the public topologies
used for the experiments and the experimental results are pub-
licly available on the following repository https://bitbucket.org/
franaubry/robustlydisjointpathscode/.
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