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Abstract
The complexity of software systems increases as the systems evolve. As the degradation of the
system’s structure accumulates, maintenance effort and defect-proneness tend to increase. In
addition, developers often opt to employ sub-optimal solutions in order to achieve short-time
goals, in a phenomenon that has been recently called technical debt. In this context, software
restructuring serves as a way to alleviate and/or prevent structural degradation.

Restructuring of software is usually performed in either higher or lower levels of granularity,
where the first indicates broader changes in the system’s structural architecture and the latter
indicates refactorings performed to fewer and localised code elements. Although tools to assist
architectural changes and refactoring are available, there is still no evidence these approaches
are widely adopted by practitioners. Hence, an understanding of how developers perform
architectural changes and refactoring in their daily basis and in the context of the software
development processes they adopt is necessary.

Current software development is iterative and incremental with short cycles of development
and release. Thus, tools and processes that enable this development model, such as contin-
uous integration and code review, are widespread among software engineering practitioners.
Hence, this thesis investigates how developers perform longitudinal and incremental architec-
tural changes and refactoring during code review through a wide range of empirical studies
that consider different moments of the development lifecycle, different approaches, different
automated tools and different analysis mechanisms. Finally, the observations and conclusions
drawn from these empirical investigations extend the existing knowledge on how developers
restructure software systems, in a way that future studies can leverage this knowledge to pro-
pose new tools and approaches that better fit developers’ working routines and development
processes.
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1 Introduction
The development of software systems requires constant change and evolution due to its naturally
iterative and incremental nature (Lehman, 1979; Lehman et al., 1997). The system’s architecture
establishes a foundation for its development and evolution, as it guides developers’ activities
such as the introduction of new features, the enhancement of existing features and refactoring.
However, a software system tends to grow in complexity as it evolves, which usually leads to
architectural deterioration and erosion (de Silva and Balasubramaniam, 2012). In this thesis,
we consider the software architecture to be the structural organisation of source code elements,
i.e., the high-level decomposition of source code into submodules and/or subcomponents and
the dependencies between these elements.
Technical debt is a concept first coined by Cunningham (1993) to describe ‘not quite right’

decisions during software development. Technical debt commonly refers to sub-optimal
engineering decisions made to achieve a short-time goal, such as a faster delivery time. As
technical debt can be manifested during the complete lifetime of a software project, researchers
tend to report studies that focus on a particular type of technical debt, which include, but is not
limited to, requirements debt, design debt, code debt and test debt (Li et al., 2015).
In the context of this thesis, we deal with architectural debt (Kruchten et al., 2012), which

can be understood as architectural decisions and modifications that deteriorate the structural
architecture of a software system. Such deterioration affects important architectural properties
such as maintainability and comprehensibility which, in some cases, might lead to a complete
re-development of software systems (van Gurp and Bosch, 2002; van Gurp et al., 2005). In
recent studies, not only architectural debt has been listed as the most dangerous type of technical
debt (Ernst et al., 2015), but also the accumulation of architectural debt has been observed to
cause increased maintenance effort (Xiao et al., 2016) and bug-proneness (Mo et al., 2015) of
files involved in such architectural decisions.

Software restructuring can be employed as a method for the reverting of structural degradation
and the prevention of architectural debt. Developers restructure software systems at different
levels of granularity, from the changes and improvements of high-level modules and subsystems
to localised refactorings of code elements and functions. Researchers have proposed a number
of approaches to automatically assist developers when performing software restructuring. For
example, search-based software modularisation (Mancoridis et al., 1998, 1999; Mitchell and
Mancoridis, 2006; Praditwong et al., 2011) has been evaluated as an automated technique
to improve the high-level structure of software systems. In addition, tools for automated
recommendation and application of refactorings (Tsantalis et al., 2008; Sales et al., 2013; Silva
and Valente, 2017; Tsantalis et al., 2018) have been developed to assist developers in low-level
restructuring operations.
However, to this date, there is no evidence to suggest that such automated approaches have

been widely adopted by software engineering practitioners. On the contrary, recent empirical
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studies have revealed that search-based modularisation approaches can be highly disruptive (Hall
et al., 2012), and that refactoring operations might actually lead to structural problems instead
of improvements (Cedrim et al., 2017; Tufano et al., 2017). Thus, more research is necessary
to better understand how software developers perceive and perform software restructuring.
Moreover, these studies need to take into account the current models and practices of software
development, so that the conclusions drawn from these studies can lead to actionable findings.

The process of code review is widespread in the software development industry, with evidence
of adoption by companies like Microsoft (Bacchelli and Bird, 2013), Google (Kennedy, 2006)
and Facebook (Tsotsis, 2011). During code review, software changes undergo a process of peer
review in which developers communicate and exchange feedback regarding the change until the
code is merged into the system. Empirical evidence has been reported that code review enables
the detection of bugs related to maintainability that would otherwise be merged to the system’s
code base without code review (Mantyla and Lassenius, 2009; Beller et al., 2014). Moreover,
code review has been shown to substantially improve code quality, knowledge transfer and
social communication (Bacchelli and Bird, 2013; Rigby and Bird, 2013).

1.1 Problem Statements
This thesis covers several interconnected topics surrounding software restructuring, ranging
from high-level architectural evolution to low-level refactorings. The research problems tackled
in this thesis are described next.

As previouslymentioned, the structural architecture of a system tends to becomemore complex
as the system evolves (Lehman, 1979; Lehman et al., 1997; de Silva and Balasubramaniam,
2012). In this context, tools and approaches that employ search-based software modularisation
have been proposed as a way of optimising the existing structure of a software system by
considering architectural quality metrics. However, very few of these studies have actually
validated the quality metrics they use to optimise the systems, and even fewer studies evaluated
the disruption caused by such approaches. Hence, in the context of the architectural evolution
of software systems, we answer the following questions:

Towhat extent do developers respect structural metrics of softwaremodularisation?

What is the disruption caused by state of the art approaches for search-based
software modularisation?

How search-based modularisation can be used to find trade-offs between architec-
tural improvement and structural disruption?

Any sort of approach for architectural debt amelioration and/or prevention, including search-
based software modularisation, as discussed above, suggests a set of architectural modifications
to be performed by the system’s developers. However, to the best of our knowledge, there are no
empirical studies that investigate how developers perform architectural changes on their daily
basis. Without knowing the developers’ workflow, perceptions and directions when performing

15



Software Restructuring: Understanding Architectural Changes and Refactoring M. Paixao

architectural modifications, approaches for the prevention and amelioration of architectural debt
will likely not be uptaken by practitioners. In this context, the code review process has recently
emerged as a major aspect of software development and quality control, being adopted by both
industrial and open source software development. Thus, by analysing the data generated during
the code review process, we answer the following questions:

How do developers perform architectural changes during code review?

Does the code review process assist developers in performing better architectural
changes?

Technical and architectural debt is tackled not only by high-level restructuring, such as the
architectural changes mentioned above but also through low-level restructuring at code and class
level, in a practice that became known as software refactoring. When first proposed, refactoring
was seen as code transformations with the sole purpose of improving the system’s structure
(Fowler et al., 1999). However, recent studies have shown that refactoring is sometimes used
with other goals and at different times during the software development lifecycle (Murphy-Hill
et al., 2012). Thus, this thesis makes again use of the data generated during the code review
process to investigate the circumstances and context in which developers employ refactoring
operations on their daily basis. We answer the following questions:

What are common intents when developers employ refactoring operations?

How do refactoring operations evolve during code review?

To answer all the questions presented above, this thesis presents a series of empirical
studies surrounding the practice of software restructuring. We investigate current practices of
restructuring at different granularity levels by analysing data from real-world software systems,
which generates actionable findings for both industrial and academic software engineering
practitioners, as discussed as follows.

1.2 Goal and objectives
The goal of this thesis is to study software restructuring at different granularity levels to better
understand how software developers perform restructuring on their daily basis. To achieve this
goal, we establish the following objectives:

1. To study official subsequent releases of software systems to understand the high-level
architectural evolution of software systems. By performing this empirical study, we can
validate whether real-world software developers design systems that respect existing
metrics of architectural quality. Moreover, we can study the disruption caused by state of
the art approaches for high-level restructuring to propose new approaches for automated
architectural improvement that takes the disruption caused by the tool into account during
the improvement process.
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2. To study data from the code review process to understand how developers perform
architectural modification on their daily basis. By performing this empirical study, we can
identify not only the most common situations in which developers perform architectural
changes but also whether such changes improve or degrade the systems’ structural quality.
Moreover, by studying code review data we can obtain insights on how developers perform
restructuring on their daily basis so that we use this knowledge to propose tools and
approaches that better fit currently used development models and processes.

3. To study data from the code review process to understand how developers perform
software refactoring on their daily basis. By performing this empirical study, we can
identify the context in which developers commonly employ refactoring operations. Since
any approach or tool to automate software restructuring will at the end suggest a series
of low-level refactorings, we need to understand how developers currently perform
refactoring on their daily basis. This way we will be able to propose tools that better fit
their habits, increasing the usability and acceptability of such approaches by developers.

1.3 Contributions
This thesis makes contributions to be exploited by both industrial and academic software
engineering practitioners. The most important contributions are listed next:

1. This thesis shows that real-world software systems respect metrics of structural archi-
tecture quality. Moreover, we show that state of the art tools for search-based software
modularisation exhibit high levels of disruption to the existing structure. These are
important findings both the research community and tool developers can use when
proposing or developing new tools for software architecture improvement and support.

2. Hence, this thesis proposes a new approach for automated software modularisation that
employs multiobjective optimisation to improve the structural architecture of a software
system while minimising the disruption to the existing architecture. Tool developers
can pick up the approach we proposed to develop and/or enhance existing tools for
search-based software modularisation.

3. This thesis shows that developersmostly perform architectural changeswhen implementing
new features in the system or while enhancing existing features. Moreover, we show
that developers are often not aware of the architectural changes they are suggesting
and/or reviewing during code review. These are relevant insights for both academic and
industrial practitioners. Academics tend to focus their studies and analysis on instances
of refactoring, but we show that most of the time developers perform architectural
modifications when working on features. Similarly, industrial practitioners need to be
made aware of changes that significantly modify the system’s architecture in order to
achieve a better reviewing process.

4. This thesis shows that refactoring operations are mostly employed when working on
features. Similarly to the previous contribution, we show that refactoring operations
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are mostly used when developers are implementing a new feature or enhancing existing
ones. This indicates a paradigm shift for the research on software refactoring, where the
community needs to acknowledge refactoring not only as a way to improve the system’s
quality but also as a tool for the preparation of new features and extensions.

5. This thesis provides the largest open dataset to date on search-based modularisation, where
other researchers can use to benchmark and compare future approaches for automated
modularisation.

6. This thesis provides a comprehensive code review dataset that links code review informa-
tion with complete copies of the system’s code base at the time of review. Such data can
be used for research in software engineering that spans beyond the topics covered in this
thesis.

1.4 Thesis Organisation
Chapter 2 presents the literature review and background for this thesis. It covers the early work
on software architecture and structure, followed by empirical studies and reports on software
evolution and architecture degradation. Next, we discuss different metrics proposed along the
years to measure architectural quality followed by a literature review on search-based software
modularisation. Finally, we discuss software refactoring and the code review process.
Chapter 3 presents an empirical study that investigates state of the art search-based modular-
isation approaches in the context of software evolution. In this chapter, we address the first
set of problem statements discussed in Section 1.1. Moreover, this is the chapter in which we
tackle objective number 1 in this thesis (see Section 1.2) and present contributions 1, 2 and 5
(see Section 1.3).
Chapter 4 presents the code review dataset we use in the rest of the thesis. It describes the
methodology used to select the systems and the mining process we employed to acquire the
data. This chapter discusses the contribution number 6, as discussed above.
Chapter 5 presents an empirical study on how developers perform architectural modification
on their daily basis. It covers the second set of problem statements described in this thesis. In
this chapter, we address our objective number 2 and present contribution number 3.
Chapter 6 presents an empirical study on how developers employ refactoring operations on
their daily basis. It covers the final set of problem statements described in this thesis. In this
chapter, we address our objective number 3 and present contribution number 4.
Chapter 7 concludes this thesis and presents directions for future work.
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2 Literature Review and Background
This chapter presents the literature review and background of this thesis. We start in Section 2.1
by discussing the early work and foundations of research and practice on software architecture.
In Section 2.2, we discuss the problem of architectural degradation during software evolution
followed by work which presented empirical evidence of architectural degradation in real-world
software systems. Additionally, we present and discuss problems caused by architectural debt,
which is a side effect of architectural degradation.

Next, in Section 2.3, we present software architecture and modularisation metrics that have
been proposed, evaluated, and used in the literature. We focus our discussion on metrics that
have been used to measure architectural quality, and consequently, employed as fitness functions
for search-based software modularisation. We also discuss metrics that have been proposed to
measure architectural change and similarity.

In section 2.4, we present the background and literature on search-based software modularisa-
tion as an approach for architectural restructuring. We present the foundations of search-based
modularisation and discuss the different scenarios in which search-based modularisation has
been evaluated, such as software evolution, multiobjective search-based modularisation and user
interactive search-based modularisation. We present related work that attempted to evaluate the
disruption caused by search-based modularisation approaches. Moreover, we discuss the work
that evaluated the developer’s perception of software modularisation.
In addition, in Section 2.5, we discuss the background of software refactoring, with an

emphasis on presenting the most commonly employed refactoring operations. Moreover,
we discuss the work that compared manual and automated refactoring, as well as work that
investigated the developers’ intentions behind software refactoring.
Finally, in Section 2.6, we discuss the foundations of modern code review and its adoption

in current software development. In addition, we discuss empirical studies that evaluated
the usefulness of code review in terms of bug identification, knowledge transfer, and social
communication.

2.1 Software Architecture and Modularisation
The concepts and ideas of organising different programs and procedures into independent
modules are as old as the field of software engineering itself. The work by Parnas (1972) defines
a modularisation as a set of modules, where a module “is considered to be a responsibility
assignment rather than a sub-program”. This was a paradigm change at the time since most
software engineers used to modularise their systems based on the necessary subroutines to
achieve the overall goal, where the modularisation was essentially a sequence of input/output
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steps. The idea of responsibility assignment might be considered the basis for nowaday’s
programming languages and software development approaches.
In the same work, Parnas (1972) describes a series of criteria to consider in order to proper

modularise programs in high-level modules according to the new responsibility assignment
paradigm. One of the criteria described in the paper, and perhaps the most relevant and
influential, was the concept of ‘information hiding’, which includes the design of modules’
interfaces that will reveal as little as possible from the modules’ inner workings. The benefits
of this software design model were advocated to include shortened development time, greater
flexibility and enhanced comprehensibility.
Parnas (1979) later extended these ideas to what he coined as ‘program families’. In this

context, a program is part of a family when it shares commonalities among other programs
in the same family, which might include subroutines and the usage of certain modules. At
that time, common program families were programs that run in different hardware, programs
that perform the same functionality but use different formats of input/output, and programs
that perform the same functionality but differ in algorithms and data structures. The author
claims that the interfaces and commonly used modules should be as generic as possible while
individual implementations of modules should be as specialised as possible.
In a highly influential paper, Parnas et al. (1984) identified that commercial software

development at that time was not following the software engineering principles defined and
advocated by academics, especially in terms of modularisation and separation of concerns.
Thus, the authors performed a study that attempted at recreating an in-flight aircraft system
by rigorously following the modularisation concepts designed in academia. As a result, even
though the academic practices had to be re-evaluated and adapted to cope with such a large-scale
system, the authors noticed a higher quality code base in the academic project in comparison to
its commercial counterpart. The software developed with academic consultancy was observed
to be more comprehensible by new developers and to have an easier traceability between
functionalities and bugs to specific modules’ implementations.

The initial concepts of software modularisation introduced in the early work described above
influenced the work by Garlan and Shaw (1993), which introduced software architecture as a
new and emerging area within software development. The work described architectural styles
commonly observed in software systems at the time, which include, but are not limited to, pipes
and filters, data abstraction and object-orientation, and layered systems. Each architectural style
was described in details, with possible applications and systems that would fit each different
style.

Software systems quickly evolved to the point where a system would make use of more than
one architectural style within its structure. In this context, practitioners and academics noticed
that the complete architecture of a system could not be completely and precisely described in a
single model. Moreover, the architecture has become a key artefact in the communication and
understanding of the system among different stakeholders (Rozanski and Woods, 2011).
Thus, Kruchten (1995) proposed the ‘4 + 1’ view model for software architecture. In this

model, the system’s architecture has more than one view, where each view is tailored to a
different subset of stakeholders. These concepts were later standardised in the IEEE Standard
1471 and the ISO Standard 42010.

The 5 original architectural views were extended to 7, which are now called architectural
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viewpoints (Rozanski and Woods, 2011). Each of these viewpoints is listed and described as
follows.

Development Viewpoint

This architectural viewpoint describes the architecture to support the system’s development.
This view is commonly described by the source code’s structure, such as the classes diagrams
and packages distribution. The development view is targeted at stakeholders involved in
developing, building and testing the system.

Context Viewpoint

This view describes the system’s relationships and interactions with its environment, such as
the people and external systems it interacts with.

Functional Viewpoint

The functional viewpoint describes the system’s main runtime elements. It defines their
responsibilities, interfaces and primary interactions.

Information Viewpoint

This architectural view depicts how the system stores, process and distributes information.
It consists of not only database layouts but also models of how the data is processed and
coordinated between modules.

Concurrency Viewpoint

This viewpoint describes the concurrency aspects of the system, including the units which run
in parallel, the data exchanged between modules, and mechanisms to avoid concurrency issues.

Deployment Viewpoint

The deployment view describes the environment in which the system is deployed. It includes
hardware specifications, processing nodes, networking connections and storage facilities.

Operational Viewpoint

This architectural view indicates how the system will be operated, administered, and supported
when it is running in its production environment.

For the rest of this thesis, for all systems we discuss and analyse, we focus on the development
view of the software’s architecture. This is the view that is mostly used by software developers
and is the one that drives software comprehensibility, maintainability and evolution. Hence,
from now on, we use software architecture and modularisation to describe the source code
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organisation of a software system, including its high-level decomposition in submodules and/or
subcomponents and the dependencies between these elements.

2.2 Software Evolution and Architectural Degradation
Apart from specific cases, software development largely revolves around the concept of evolution
and adaptation. Requirements constantly emerge during development and/or production, so
that changes need to be constantly made in order to cope with this everchanging scenario that
includes new features, improvements to existing features, and bug fixing. Lehman (1979)
pointed out this need for adaptation as one of the intrinsic elements of software development
and encouraged the software engineering community to embrace it. In fact, processes for
incremental software development were created largely to cope with this need for constant
adaptation and evolution.

In this seminal work, Lehman (1979) proposed five laws of software evolution that although
being revisited later (Lehman, 1996; Lehman et al., 1997), still remain as well accepted concepts
by the software engineering community. The laws describe the natural need for change in
software systems, alongside the consequent attempts to conserve the stability and familiarity.
However, for the context of this research, the 2nd Lehman’s law of software evolution is the
most relevant:

“As an evolving program is continuously changed, its complexity, reflecting
deteriorating structure, increases unless work is done to maintain it or reduce it”.
(Lehman, 1979)

In this quote, Lehman refers to the fact that the complexity of software systems will continu-
ously grow as the systems evolve. Although ‘complexity’ might have different interpretations for
different artefacts in a software system, Lehman mentions structural degradation as a proxy for
this increased complexity. Indeed, structural architecture degradation is sometimes attributed
to one of the biggest factors for the deterioration of a software system as a whole (de Silva and
Balasubramaniam, 2012).

The software architecture establishes a crucial foundation for the development and evolution
of a software system. It guides the development of new features and the enhancement of existing
features during software evolution. As such, the degradation of such important artefact affects
several quality properties of a software system under constant changes and evolution, such as
maintainability, comprehensibility, and extendability. In the next section, we present empirical
evidence of architectural degradation on real-world software systems, followed by problems
that arise from a degraded structural architecture.

2.2.1 Empirical Evidence of Software Architectural Degradation
A wide number of case studies indicate that architectural degradation is a constant problem
software practitioners have to deal in industry. Eick et al. (2001) present the study of a large
C/C++ system over 15 years of development. The authors propose a set of indices to indicate
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the increase in the structural complexity and the problems caused by such a phenomenon. The
data shows a clear relationship between increased degradation in the structural architectural and
increased number of bugs and maintenance effort.
Godfrey and Lee (2000) present an attempt to extract the structural architecture of the

Mozilla’s internet browser from its source code. During this exercise, the authors identified
a great number of undesirable dependencies between core modules of the system. Such
degradation of Mozilla’s structural architecture finally led to a full rewrite of some modules
from scratch (van Gurp and Bosch, 2002; van Gurp et al., 2005).
Evidence of structural degradation has also been found for Ant, one of the most popular

Java building tools (Barros and Farzat, 2013; Barros et al., 2015) . The authors performed an
extensive study based on reverse engineering and data analysis of all releases of Ant until the
moment of publication. A large suite of metrics was employed, and the results indicate a large
decrease in terms of modularity quality over the years. A visual comparison of the structural
architecture of Ant in its first and latest releases presents a clear increase in modular complexity.
Wermelinger et al. (2011) performed a study of the structural architecture of Eclipse’s

high-level plugins and modules. The authors found evidence of a large increase in modularity
complexity and dependencies. Such degradation in modularity was traced back to specific
releases of Eclipse. In a subsequent study, the authors contacted the Eclipse developers as a
way to get feedback on their analysis. The developers confirmed that the architectural problems
found by the authors are well-known issues by the development team and that such problems
were indeed introduced at the releases identified by the authors.

Case studies with similar findings have been reported for several other large software systems
such as Vim (Godfrey and Lee, 2000), FindBugs (Sutton, 2008) and Linux kernel (van Gurp
and Bosch, 2002).

Le et al. (2015) performed a large empirical study involving 14 open source projects, involving
popular systems such as Hadoop, Log4j, and Xerces. The authors employed a systematic
procedure to extract the structural architecture of each system throughout its development
history and measure the amount of change. The results show a large change in the structural
architecture during the systems’ development history, both at high-level system granularity and
low-level components granularity. Although this study does not link the amount of architectural
change with a decrease in quality properties, it shows how often architectural changes occur at
different level of granularities in software systems.
Evidence of structural architecture degradation has been presented in more papers than

we can discuss in this thesis. For the interested reader, we refer to surveys such as the ones
performed by de Silva and Balasubramaniam (2012) and Williams and Carver (2010).

2.2.2 Software Architectural Debt
Technical debt is a concept first coined by Cunningham (1993) to describe ‘not quite right’
decisions during software development. The analogy implies that making bad development
decisions have the same effect as taking a financial loan, in which it will benefit the development
team in the short term, but also complicate future developments and enhancements if not
paid. This analogy has been widely adopted in industry (Ernst et al., 2015) as a way to easily
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Figure 2.1: Technical debt quadrant (Fowler, 2009)

communicate maintenance costs and decisions to non-technical stakeholders (Brown et al.,
2010; Kruchten et al., 2012).

Figure 2.1 presents the technical debt quadrant proposed by Fowler (2009). As one can see,
Fowler differentiates decisions in deliberate and inadvertent. Previously, the degradation of a
software system was attributed to poor and erroneous decisions made by developers, where
such degradation is mostly caused by developers’ mistakes. The technical debt analogy brought
in the idea that developers might make ‘not quite right’ decisions deliberately, as an attempt
to reach a short-term goal such as delivery time. Thus, the technical debt literature focuses
not only on identifying degradation but also the decisions that led to that degradation and the
problems caused by such decisions in the long term.

Ernst et al. (2015) performed a large empirical study with software engineering practitioners
to investigate their perceptions of technical debt. As a result, developers pointed out architectural
decisions as the most expensive debt to pay, and the one with more damaging potential on the
evolution of the system. This kind of debt has become known as Architectural Debt.

Xiao et al. (2016) proposed a method to identify and quantify architectural debt in software
systems. The approach uses previously evaluated architectural smalls as indicators of architec-
tural anomalies. The authors extract the structural architecture of 7 systems throughout their
development history and automatically identify the architectural anomalies. The results show
that most of the architectural anomalies tend to aggregate more and more files as the systems
evolve. This is referred to as the accumulation of architectural debt. Moreover, the authors show
that files involved in the architectural anomalies tend to require more maintenance effort than
files that are not involved in architectural anomalies. Finally, the authors used linear regression
models to describe the increase in maintenance effort based on the growth of architectural debt,
as an analogy to how much interest the developers are paying because of the architectural debts.
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A similar study was performed by Mo et al. (2015), where the authors identified ‘hotspots
patterns’ in 10 software systems. These hotspots can be considered sources of architectural debt
and architectural smells. Results show that files involved in the hotspots are more bug-prone
than files not involved in the hotspots.

2.3 Software Architecture and Modularisation Metrics
This section discusses the most common and used metrics in software architecture and
modularisation research. They are divided into quality and similarity metrics.

To better explain each metric, we make use of a module dependency graph (MDG). An MDG
is a directed graph G(C,D) where the set of nodes C represents the code elements in the system
and D represents the dependencies between code elements. Clusters of nodes in the MDG
indicate the system’s high-level modules.

The MDG example presented in Figure 2.2 will be used to illustrate the following discussed
metrics.

M1

M2

M3

c1
c2 c3 c6

c4 c5 c8

c9

c7

Figure 2.2: Example of a Module Dependency Graph used to represent the modular structure of
a software system. Nodes represent code elements and edges represent dependencies
between elements. Clusters of nodes (grey regions) indicate high-level modules.

2.3.1 Software Architecture and Modularisation Quality Metrics
The concepts of cohesion and coupling are the among the most important quality criteria
in the software architecture and modularisation community. Researchers and practitioners
advocate that software entities should be highly cohesive and loosely coupled. However, many
different metrics for the computation of cohesion and coupling have been proposed, discussed
and evaluated in the literature, where the underlying measurements range from syntactical
dependencies between components to semantical relationships and historical co-changes.
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Needless to say, there is no standardised and accepted definition of cohesion and coupling.
Hence, in this section, we summarise some of the metrics for cohesion and coupling that have
been proposed in the software engineering literature. In this section, we do not try to advocate
in favour of some metric or another as we aim at simply depicting how wide the range of metrics
is. In Chapters 3 and 5, we do make use of a subset of these metrics, where the motivation for
the choice of metric is presented at the respective chapter.

We subdivide this section in metrics that attempt to measure cohesion and coupling separately,
followed by metrics that combine both concepts in a single measurement. Next, we describe
metrics that quantify quality properties in software architecture and modularisation other than
cohesion and coupling. Finally, we discuss the theoretical validation of such metrics.

Cohesion Measurements

The following metrics attempt at measuring the concept of cohesion in a given software system.

Raw Cohesion
The simplest way of measuring the cohesion of a modularisation is by the sum of all of the
intra-edges of the MDG, i.e., edges that are confined in the same high-level module. This metric
is often referred to as raw cohesion and is commonly used as the basis for the computation of
more refined cohesion measurements. The values of raw cohesion for the MDG in Figure 2.2,
for example, would be cohesion = 6.

Lack of Structural Cohesion
In the work by Candela et al. (2016), the authors propose and evaluate new metrics for the
computation of structural cohesion and coupling. The Lack of Structural Cohesion is inspired
by the original Lack of Cohesion of Methods (LCOM) (Chidamber and Kemerer, 1994). Given
a certain modularisation, this metric considers a file as a code element and computes the lack of
structural cohesion of the modularisation as:

LStrCoh =
∑n

j=1 LCOFMj

n
, (2.1)

where LCOFMj represents the Lack of Cohesion of Files for high-level module Mj . LCOFMj

is computed as the number of pairs of files in Mj without a structural dependency between
them. Modules with a high amount of unrelated files will be scored a high LCOF, and,
accordingly, modules with only a few unrelated files will be scored a low LCOF. Since this
metric measures the lack of cohesion in the modularisation, a low value LStrCoh indicates a
cohesive modularisation.
Consider the MDG in Figure 2.2, for example. The lack of cohesion of files would be

computed as LCOF(M1) = 6, LCOF(M2) = 0 and LCOF(M3) = 0. Therefore, the Lack of
Structural Cohesion of this modularisation is computed as LStrCoh = 6+0+0

3 = 2.
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Tight Class Cohesion (TCC)
The Tight Class Cohesion metric was originally proposed by Bieman and Kang (1995), where
the cohesion is measured at class level by leveraging the connections and dependencies between
methods. The TCC cohesion metric is computed as:

TCC(C) =
NDC(C)

N × N−1
2

(2.2)

where NDC(C) represents the number of direct connections, i.e., dependencies between
methods, in class C. N indicates the number of methods in class C. Hence, the TCC computes
cohesion as the relative number of dependencies between methods in a class given the total
number of methods in a class.
Consider each high-level module in Figure 2.2 to be a class in the system, and each

component to a method inside the class. The TCC of each class would be computed as
TCC(M1) = 4

5× 5−1
2
= 0.4, TCC(M2) = 2

3× 3−1
2
= 0.66 and TCC(M3) = 0

1× 1−1
2
= 0.

Attributes-based Cohesion Metrics
Not all cohesion metrics employ dependencies between components to measure cohesion.
Given an object-oriented system, the community has proposed a series of metrics that use the
shared attributes between methods as a way to measure how cohesive the methods, and the
classes, are.

The Class Cohesion (Bonja and Kidanmariam, 2006), Sensitive Class Cohesion (Fernández
and Peña, 2006) and Low-level Similarity Base Class Cohesion (Al Dallal and Briand, 2010)
are examples of metrics that employ shared attributes to compute the cohesion of a class. Since
the MDG representation does not allow for attributes modelling, we will not depict how these
metrics are computed. We point the interested reader to the original papers that propose and
describe each metric.

Coupling Measurements

In the following paragraphs, we present metrics that attempt at computing the coupling of a
software system.

Raw Coupling
Similarly to the raw cohesion, the raw coupling metric is the simplest way of measuring the
coupling of a software system. It is computed as the sum of all of the inter-edges of the MDG,
i.e., edges that cut across different high-level modules. The values of raw coupling for the MDG
in Figure 2.2, for example, would be cohesion = 3.

Coupling Between Objects
The CBO metric has been originally proposed by Chidamber and Kemerer (1994), where the
CBO of a certain high-level module is simply given by the number of other high-level modules
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that it interacts with. Hence, considering the MDG in Figure 2.2, this metric would be computed
as CBO(M1) = 2, CBO(M2) = 1 and CBO(M3) = 1.

Structural Coupling
Candela et al. (2016) used a coupling measurement that is similar to the ones previously
presented in this section. In their work, the structural coupling of a modularisation, StrCop, is
computed as

StrCop =
∑n

j=1 FanOutMj

n
, (2.3)

where FanOutMj indicates the number of files outside module Mj that present dependencies to
files inside Mj .

Given the MDG example in Figure 2.2, the FanOut would be computed as FanOut(M1) = 3,
FanOut(M2) = 2 and FanOut(M3) = 1. Thus, the Structural Coupling would computed as
StrCop = 3+2+1

3 = 2.

Conceptual Coupling Between Classes
Similarly to the cohesion metrics discussed above, there are coupling metrics that employ
information other than dependencies between components to measure the coupling of a software
system. The CCBC metrics was originally proposed by Poshyvanyk et al. (2009), and it
considers the lexical information extracted from comments and identifiers to measure the
coupling between two components.
Thus, the CCBC between two source code components is computed as the average textual

similarity between the components, where the textual similarity is computed using Latent
Semantic Indexing (LSI). The CCBC values are in the {0 . . . 1}, where 0 represents two
components having a totally different lexical similarity, while 1 represents two classes containing
exactly the same text.

Logical Coupling
Finally, it is worthy to mention what has been recently called logical coupling, an approach to
measure coupling between objects that rely on versioning and change history. Inspired by the
seminal paper of Zimmermann et al. (2005), this approach extracts information from version
control systems to identify groups of files that are constantly changed together. This approach
has been originally proposed to uncover connections and relationships between files that cannot
be found through static or dynamic analysis. Hence, the coupling between two objects is given
by how often these files are changed together in the same commit.

Combinations of Cohesion and Coupling

The following sections depict metrics that combine cohesion and coupling measurements into a
single quality metric.
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Modularisation Quality (MQ)
MQ is a metric originally proposed as the fitness function for search-based software modu-
larisation approaches (Mancoridis et al., 1998). It has evolved over the years so that only the
current (and most used) version will be presented here. The formulation of MQ is presented in
Equations 2.4 and 2.5.

MQ =
N∑

k=1
MF(Mk) (2.4)

where, MF(Mk) =


0, if ik = 0

ik

ik +
jk
2

, if ik > 0 (2.5)

The Modularisation Quality (MQ) of a certain modularisation is given by the sum of the
Modularisation Factor (MF) of each module Mk in the modularisation. MF(Mk) represents the
trade-off between cohesion and coupling for module k, where ik is the number of intra-edges
within module k (cohesion), and jk is the number of inter-edges leaving or arriving at module k
(coupling). Since inter-edges will be double counted in different modules, jk is divided by 2.

When considering the MDG example, the values of MF would be MF(M1) = 0.72,
MF(M2) = 0.66 and MF(M3) = 0. Consequently, MQ = 0.72 + 0.66 + 0 = 1.38. If a module
has only a single code element, its MF will be equal to 0 since ik = 0. Therefore, MQ considers
not only the trade-off between cohesion and coupling but also the distribution of code elements
between modules.

EVM
The EV M metric stands for Evaluation Metric Function, and it was originally proposed by
Tucker et al. (2001). Harman et al. (2005) later adapted EV M to be used in the context of
software modularisation. EV M’s formulation is presented in Equations 2.6, 2.7, and 2.8.

EV M =
N∑

k=1
CS(Mk) (2.6)

where, CS(Mk) =

|Mk |∑
i=1

|Mk |∑
j=i+1

USE(i, j) (2.7)

and, USE(i, j) =

{
+1, if uses(i, j) ∨ uses( j, i)
−1, otherwise

(2.8)

The EV M of a certain modularisation is given by the sum of the Cluster Score (CS) of each
high-level module Mk . CS(Mk) is computed by iterating over each pair of code elements in
module k and incrementing 1 in the score if there is a dependency between these elements;
otherwise, the score is decremented by 1.
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When considering the example, the values of CS would be CS(M1) = −2, CS(M2) = 1 and
CS(M3) = 0. Consequently, EV M = −2 + 1 + 0 = −1. Differently from MQ, EV M does not
take inter-edges into account.

Quality Metrics other than Cohesion and Coupling

When measuring the quality of an MDG, some authors also showed concerns about the
distribution of code elements in high-level modules. In fact, this was one of the criteria used
by Wu et al. (2005) to assess the quality of a software modularisation algorithm. In the ideal
scenario, one would have a balanced distribution of elements, avoiding both modules with few
elements and modules with too many elements.
In order to cope with this, the number of isolated modules can be used as a quality criteria.

A module is considered to be isolated when it is composed of a single code element. In the
example, module M3 is an isolated one. Other authors have also used the difference between
the number of elements of the biggest and smallest modules as a quality criteria. Considering
the MDG example, the biggest module is M1 with 5 modules, and the smallest one is M3 with 1
module. Thus, the module size difference would be 4.

Theoretical Validation of Cohesion and Coupling Metrics

Software measurement is a long-studied topic in software engineering, and as such, many
guidelines have been proposed to properly validate a certain metric. In one of the most influential
papers on the topic of software metrics, Kitchenham et al. (1995) presents a framework for
the proposal and validation of software metrics. The authors describe two methods for the
validation of a software metric, e.g., theoretical and empirical, where the first ensures that the
metric respects a series of basic properties and the latter serves as additional support for the
proposed measurement.

To the best of our ability, we performed an analysis of the papers that originally proposed the
cohesion and coupling metrics discussed above. We have not identified a paper in which the
proposed metric was both theoretically and empirically validated according to the guidelines
proposed by Kitchenham et al. (1995). In particular, the theoretical validation is the one lacking
the most in the studied papers. Very few authors describe the properties which the proposed
metrics hold. Even though most papers perform an empirical validation of the metrics, such
experiments do not employ the strategies proposed in the guidelines.

Nevertheless, the presented cohesion and coupling metrics figure among the most accepted
measurements of such aspects in state-of-the-art software engineering research. In addition, a
few of those have been extensively validated through studies with developers, which despite
not being sufficient for a thorough validation (Kitchenham et al., 1995), support their use in
empirical studies.
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2.3.2 Software Architecture and Modularisation Change and Similarity
Metrics

Similarity metrics, as the name suggests, are used to measure the similarity between two
different modularisations of the same system. The two modularisations presented in Figure 2.3
will be used to illustrate the similarity metrics discussed in the remainder of this section.

M1

M2

M3

c1
c2 c3 c6

c4 c5 c8

c9

c7

(a) Modularisation A

M1

M2

c1

c2

c3 c6

c4
c5

c8

c9

c7

(b) Modularisation B

Figure 2.3: Example of different modularisations of the same system

MoJo

MoJo was the first similarity metric proposed for software modularisation (Tzerpos and Holt,
1999). It measures the distance between two modularisations by counting the number of
operations necessary to transform one modularisation into the other. MoJo considers only two
operations: Move and Join, where the first consists in moving one code element to another
high-level module and the second consists in joining two high-level modules. For MoJo, both
operations have the same weight when computing the similarity. Considering mno(A, B) to be
the minimum number of operations to transform modularisation A in modularisation B, the
MoJo(A, B) metric is defined in Equation 2.9.

MoJo(A, B) = min(mno(A, B),mno(B, A)) (2.9)

It is important to notice that mno(A, B) is not always equal to mno(B, A), so the minimum
value between the two is taken as the MoJo value. However, when the direction of the
comparison is relevant, one should use mno(A, B) as the MoJo value. Considering the example
in Figure 2.3, mno(A, B) = 2 since it is possible to transform A in B by joining modules M2 and
M3 and then moving c5 from M1 to M2. Since mno(B, A) is also equal to 2, the MoJo metric is
assigned as MoJo(A, B) = 2.

The MoJo metric will always have a known minimum and maximum value for a particular
system. When A and B are equal modularisations, MoJo(A, B) = 0. On the other hand, when
A and B modules are placed in completely different clusters, MoJo(A, B) = N , where N is the
number of modules in the system. Thus, the ‘quality’ metric Q indicates a normalised version
of MoJo:
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Q(A, B) = (1 −
MoJo(A, B)

N
) × 100% (2.10)

Finally, the computation of the MoJo metric is not straightforward; therefore, an optimal
algorithm to calculate MoJo is provided by Wen and Tzerpos (2003).

EdgeMoJo

As one can notice, the original MoJo does not consider the dependencies between code
elements in the similarity calculation. It does not matter how much cohesion and coupling is
changed between two different modularisations. Such flaw in MoJo was indicated by Mitchell
and Mancoridis (2001). Wen and Tzerpos (2004a) then proposed EdgeMoJo, a new version
of MoJo that considers dependencies between elements to compute the similarity of two
modularisations.

In the MoJo metric, allMove operations have the same weight in the similarity computation.
Differently, in EdgeMoJo, the Move operations that alter the cohesion and coupling of the
system have a bigger weight than the ones that do not. For each Move operation necessary
to transform A in B, the respective code element of the operation is classified as an equally-
connected or a highly-biased element. An equally-connected element is the one that its
change from one high-level module to another do not alter the cohesion and coupling of the
modularisation. On the other hand, the change of a highly-biased element from one module to
another alters the cohesion and coupling of the modularisation. In this context,Move operations
related to equally-connected element have a weight of 1, as in the original MoJo. ForMove
operations in highly-biased element, the weight w of the operation o is given by Equation 2.11
below:

w(o) = 1 +
|E(co, Mnew) − E(co, Mold)|

E(co, Mnew) + E(co, Mold)
(2.11)

where co is the code element related to operation o. Mold is the high-level module co used to
belong and Mnew is the module co was moved to. E(co, Mi) is the number of edges of co related
to module Mi.

Consider modularisations A and B in Figure 2.3, for example. Two operations are needed to
transform A in B, which are join modules M2 and M3 (o1) and then move c5 from M1 to M2
(o2). Join operations have a weight of 1, so w(o1) = 1. Since moving c5 to M2 alters cohesion
and coupling, c5 is classified as a highly-biased element, and this operation will have a weight
w(o2) = 1 + |2−1|

2+1 = 1.33. Then, EdgeMoJo(A, B) = w(o1) + w(o2) = 2.33.
Empirical experimentations presented by Wen and Tzerpos (2004a) show that MoJo and

EdgeMoJo have a positive linear correlation. Differently from MoJo, a normalisation strategy
for EdgeMoJo was not provided.
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MoJoFM

After using the ‘quality’ metric Q presented in Equation 2.10, the MoJo creators noticed the
metric was not suitable for some scenarios. Then, Wen and Tzerpos (2004b) proposed an
improved version of this metric called MoJoFM . This improved version introduced features to
overcome two major shortcomings of the previous metric. MoJoFM is presented in Equation
2.12 below:

MoJoFM(A, B) = (1 −
mno(A, B)

max(mno(∀A, B))
) × 100% (2.12)

The first issue is related to the usage of the MoJo distance in the numerator. The minimum
number of Move and Join operations necessary to transform a modularisation A in another
modularisation B, i.e. mno(A, B), is a non-symmetric measure. Thus, the MoJo value was
assigned as the minimum value between mno(A, B) and mno(B, A) (see Equation 2.9). In all
considered scenarios, the direction of the relationship is relevant, so mno(A, B) should be used
in the numerator instead of MoJo(A, B).

The Q metric used the number of elements in the system to normalise the value, claiming that
the maximal number of operations to transform a certain modularisation in another one would
always be the number of modules in the system. However, this premise was found not to be true
for all scenarios. Therefore, instead of simply using the number of modules for normalisation,
MoJoFM performs a new calculation to find the actual maximal number of move and join
operations necessary to transform A in B, i.e., max(mno(∀A, B)).
Considering the example in Figure 2.3, the maximal number of move and join opera-

tions to transform any modularisation in modularisation B is max(mno(∀A, B)) = 6. Thus,
MoJoFM(A, B) = (1 − 2

6 ) × 100% = 66.66%.

EdgeSim

After the publication of the original MoJo metric (Tzerpos and Holt, 1999), Mitchell and
Mancoridis (2001) argued that a similarity metric for software modularisation should consider
not only the assignments of code elements to high-level modules but also the dependencies
between elements. In addition, they proposed a new dependencies-based similarity metric for
software modularisation called EdgeSim, as presented next.

EdgeSim(A, B) =
weight(Υ)
weight(E)

× 100 (2.13)

where Υ denotes the set of edges that are inter- and intra-dependencies in both modularisations
A and B. In other words, Υ are the edges that agree in both modularisations. E represents the
set of all edges of the system. The weight() function returns the sum of the weights of a set of
edges.
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The rationale behind EdgeSim is simple: if two modularisations agree for all their edges
they are equal. For the given example, two inter-edges in A are intra-edges in B, yielding an
EdgeSim similarity value of EdgeSim = 7

9 × 100 = 77.77.
Despite being simple, EdgeSim may give the same similarity metric for different modulari-

sations. If high-level modules with no inter-edges between them are joined in a single cluster,
EdgeSim will not capture this modification. Considering modularisation A of the example, a
modularisation with c9 in M2 instead of M3, for example, would not generate any difference in
EdgeSim because the dependency between c5 and c9 would still be considered an inter-edge.

MeCl

Besides EdgeSim, Mitchell and Mancoridis (2001) also proposed another similarity metric
based on dependencies between elements. This one is called MeCl, which stands for Merge
Clusters. Its formulation is showed in Equation 2.14 below:

MeCl(A, B) = (1 −
weight(ΥB)

weight(E)
) × 100 (2.14)

where ΥB denotes the set of edges that were turned from intra-edges in modularisation A to
inter-edges in modularisation B. E and weight() have the same meaning as in EdgeSim.

MeCl shares the same rationale of EdgeSim, measuring the similarity between modular-
isations based on the difference between edges. However, MeCl is slightly different from
EdgeSim in the sense that only edges that were turned from intra-edges to inter-edges are taken
into account. The idea is that modularisations that transform inter-edges into intra-edges, hence
increasing the cohesion of the modularisation, are not supposed to be different. There should
only be differences between modularisations when the cohesion is decreased, and consequently,
the coupling is increased.
For the considered example, the dependency between c4 and c5 was an intra-edge in

modularisation A, and it was turned to an inter-edge in modularisation B. Thus, MeCl(A, B) =
(1 − 1

9 ) × 100 = 88.88. One should notice that as modularisation B presents a better cohesion
than A, MeCl similarity is smaller than EdgeSim similarity, which considers any kind of edge
modifications and yielded a similarity value of EdgeSim(A, B) = 77.77.

Unfortunately, MeCl has the same shortcoming as EdgeSim. It cannot differentiate between
two different modularisations that have the same edges distribution but some code elements
assigned to different high-level modules.

2.4 search-based Software Modularisation for Architectural
Restructuring

search-based software modularisation was initially proposed as an automated technique to
improve the structural architecture of a software system. The work in this area has started in
1998, and the community has already investigated these techniques in more ways than we can
thoroughly cover and discuss. A comprehensive summary of 34 related work on the area is
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presented in Table 2.1. For the rest of this section, we discuss the details of the work that most
relevantly influenced the research presented in this thesis.

Table 2.1 Related work in search-based Software Modularisation sorted by year of publication

Paper Year Optimisation
Approach Fitness Function Search Algorithm

Number of
Different
Systems
Used

Number of
Releases
Studied

Mancoridis et al. (1998) 1998 SO MQ HC 5 5
Doval et al. (1999) 1999 SO MQ GA 1 1
Mancoridis et al. (1999) 1999 SO MQ HC 1 2
Mitchell et al. (2001) 2001 SO MQ HC 7 7
Harman et al. (2002) 2002 SO Coh, Cop HC, GA 7 7
Mitchell et al. (2002) 2002 SO MQ HC 5 5
Mahdavi et al. (2003) 2003 SO MQ HC 19 19
Mitchell et al. (2003) 2003 SO MQ HC 13 13
Harman et al. (2005) 2005 SO MQ, EVM HC 6 6
Seng et al. (2005) 2005 SO Coh, Cop, Complexity, Cycles, Bottlenecks GGA 1 1
Shokoufandeh et al. (2005) 2005 SO MQ HC and Spectral Algorithm 13 13
Mitchell et al. (2006) 2006 SO MQ HC 2 2
Mitchell et al. (2007) 2008 SO MQ HC 5 5
Abdeen et al. (2009) 2009 SO Coh, Cop, Cycles SA 4 4
Mamaghani et al. (2009) 2009 SO MQ Hybrid GA 5 5
Praditwong (2011) 2011 SO MQ GGA 17 17
Praditwong et al. (2011) 2011 MO MCA, ECA Two-Archive GA 17 17
Barros (2012) 2012 MO MCA, ECA NSGA-II 13 13
Bavota et al. (2012) 2012 SO and MO MQ, MCA, ECA GA, NSGA-II 2 2
Hall et al. (2012) 2012 SO MQ HC 5 5
Abdeen et al. (2013) 2013 MO Coh, Cop, Modifications NSGA-II 4 4
Kumari et al. (2013) 2013 MO MCA, ECA Hyper-heuristics 6 6
Ouni et al. (2013) 2013 MO Fixed Bugs, Effort NSGA-II 6 6
Hall et al. (2014) 2014 MO MQ HC 4 4
Barros et al. (2015) 2015 SO MQ, EVM HC 1 24
Jeet et al. (2015) 2015 SO MQ BHGA 6 6
Mkaouer et al. (2015) 2015 MO Coh, Cop, MO, NCP, NP, SP, NCH, CHC NSGA-III,IBEA, MOEA/D 5 5
Saeidi et al. (2015) 2015 SO and MO MQ, CQ HC, Two-Archive GA 10 10
Candela et al. (2016) 2016 MO Structural and Contextual Coh/Cop NSGA-II 100 100
Huang et al. (2016) 2016 SO and MO MQ, MCA, ECA MAEA-SMCPs, GGA, GNE 17 17
Huang et al. (2016) 2016 SO MQ, MS HC, GAs and MAEA 17 17
Jeet et al. (2016) 2016 SO MQ HC, five GA variations 7 7
Kumari et al. (2016) 2016 MO MCA, ECA Hyper-heuristics 12 12
Ouni et al. (2016) 2016 MO Bugs, Coherence, Effort, Change History NSGA-II 6 12

First, we present the foundations of search-based software modularisation as an approach
that uses search algorithms to restructure a software system. Second, we explore the work that
evaluated these techniques in the context of software evolution. Third, we discuss the work that
adapted multiobjective optimisation approaches for search-based modularisation. Finally, we
present empirical studies that assessed the effort necessary to apply the changes proposed by
search-based modularisation approaches.

2.4.1 Foundations of search-based Modularisation
search-based software modularisation was first proposed in the seminal paper by Mancoridis
et al. (1998), where it was proposed as an approach to improve system comprehension. The
motivation behind their approach lies in the scenario where a software engineer must perform
maintenance or improvement activities on a system with outdated or even absent documentation.
With no artefacts to gain insight into the system, the developer has to make modifications
without a full understanding of the system structure. As the times passes, the source code
organisation may degrade to a point where the system will need to be completely restructured
or abandoned.
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Figure 2.4: Generic framework for search-based software modularisation

In search-based modularisation, the structural architecture of a software system is commonly
represented as a Module Dependency Graph (MDG) (Mancoridis et al., 1998). As previously
discussed, an MDG is a directed graph G(C,D) where the set of nodes C represents the code
elements of the system and D represents the dependencies between code elements. Usually,
software systems are organised in higher-modules, which are indicated as clusters of nodes in
the MDG. An example of an MDG is presented in Figure 2.2.

An MDG can be either weighted or unweighted. In a weighted MDG, the edges have weights
that represent the strength of the dependencies between the code elements. MDGs with no
weights on the edges are considered unweighted.

A generic framework for search-based modularisation is depicted in Figure 2.4. The first step
consists in extracting the system’s MDG. This is usually accomplished through static analysis
of either source or compiled code. A search algorithm is then applied in the system’s MDG,
generating an improved version of the system, in terms of its modular structure. As a result,
an improved modularisation provides a better overall picture of the system, which might help
developers to perform future maintenance and modifications tasks.

The search algorithm is guided by a fitness function that differentiates solutions in terms of
how well the code elements are organised in high-level modules. The most common metrics
employed as fitness functions in the search-based modularisation literature were described in
more details in Section 2.3.

The search-based modularisation tool developed by Mancoridis et al. (1998) is called Bunch.
It uses the Modularisation Quality (MQ) metric as fitness function for the search algorithms.
Bunch implements three different search algorithms that can be selected by the user: optimal
clustering, hill climbing (HC) and genetic algorithm (GA). The optimal clustering algorithm
performs an exhaustive search, selecting the solution with very best MQ value. Since software
modularisation is an NP-hard problem (Mitchell, 2002), the optimal clustering algorithm only
scales for systems with a small number of modules.
For systems with a large number of modules, non-optimal heuristics are employed. The

traditional hill climbing algorithm starts from a random modularisation and searches for
neighbour solutions with better MQ until no neighbour solution is better than the current one.
The Genetic Algorithm uses Darwin’s concepts of natural selection to evolve a population of
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modularisations towards individuals with better MQ. At the end of the evolutionary process,
the modularisation with better MQ is selected as the result.

Bunchwas originally applied to a File System service developed inC/C++. Themodularisation
results were validated by the original developers of the system, where they acknowledged the
generated high-level modules as a good description of the system’s structural architecture.
Bunch was also used to modularise other four systems of various size, where three are open
source and one is proprietary. The HC algorithm outperformed the GA for all considered
systems.
The Bunch tool was made available for download, and a series of papers related to Bunch

have been published, where new evaluations and enhancements were presented. A subset of
these papers is discussed next.
Doval et al. (1999) proposed a new GA approach for search-based module modularisation.

Although it does not explicitly state it was developed for Bunch, the paper shares the same
authors as Bunch, and the proposed GA was later officially included in Bunch. The fitness
function used to guide the new GA was the MQ metric, as it also was in Mancoridis et al.
(1998). The approach was applied to a single system.

The improved version of the system was compared to the original modularisation presented in
the system’s documentation. The search-based approach guided by MQ generated a design that
was similar to the original one. An interesting observation about this work is that the parameters
used for the GA (crossover and mutation rates, population size and number of generations) are
still the ones used for state-of-the-art GA approaches for search-based modularisation. However,
such parameter setting was not well discussed and evaluated in this particular paper.
After Bunch’s original publication, Mancoridis et al. (1999) reported improvements and

new features added to Bunch. Based on user feedback, they introduced two new scenarios
that might occur in the search-based modularisation environment. They noticed that some
systems have certain code elements that present way more dependencies than the average. Such
elements are called omnipresent because they do not seem to belong to any particular high-level
module, but rather to the whole system. When an omnipresent element depends on many
other elements, it is called client. On the other hand, when many code elements depend on a
single omnipresent element, the latter is called supplier. Omnipresent elements are identified
based on thresholds, where a threshold ot = 3, for example, would identify every element with
3 times more dependencies than the average as omnipresent. Bunch also allows the user to
explicitly indicate which elements should be considered omnipresent. After the identification
of omnipresent elements, they are isolated from the MDG, and the search algorithm will not
consider them during the optimisation process.
Bunch users also reported issues when using Bunch for incremental software maintenance.

After the application of the clustering tool, they would like to continue the development of the
system in a way the modularisation would be preserved as much as possible. Thus, Mancoridis
et al. (1999) introduced the orphan element concept to Bunch. An orphan element is either a
new element being added to the system or an existing element with modified dependencies.
Since the developers wanted to minimise the number of changes, the previous modularisation
of the system was used as input, and the orphan elements were added to the high-level modules
that would produce the highest MQ value.

The improved Bunch tool was applied to two subsequent versions of an open source system.
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The first version was used to perform the modularisation considering omnipresent elements,
while the subsequent version was used to validate the orphan elements adoption strategy.
As a result, when the omnipresent elements were isolated, Bunch could find a much better
modularisation of the system. Regarding the orphan elements, they were assigned to the correct
hight level modules, according to the authors of the paper. This was the first work to apply a
search-based modularisation approach to more than one version of the same system.
Software modularisation is an NP-hard problem, and depending on the size of the MDG

being optimised, the search algorithms may take several minutes to yield a result. Aiming at
boosting the speed of Bunch, Mitchell et al. (2001) proposed an architecture for distributing
the computation of the search-based algorithms. In the case of Bunch, the HC algorithm was
adapted to be executed in parallel. The approach employed several processors in parallel, each
of which searching for the best neighbours of a particular node. The best neighbour, in terms of
MQ, found by all processors is selected as the current solution. Such a procedure is repeated
until no better solution is found. The new Bunch HC algorithm was applied to both open source
and proprietary systems.
The parallel HC was compared to its previous non-parallel version, achieving the same

quality in the solutions and speedups up to 6 fold. In addition, the parallel architecture was
able to use, on average, 90% of the available processing power. The MQ metric used as fitness
function in this paper was slightly different than the original MQ used in previous papers. The
authors argued this new MQ is simpler than the previous one and yields better results.

Although the HC algorithm presented better results when compared to the GA, a well-known
problem of HC algorithms is that certain initial points may lead to local optimal solutions.
Thus, Mitchell and Mancoridis (2002) proposed a Simulated Annealing (SA) enhancement for
the HC algorithm in Bunch. The SA improvement allows the HC algorithm to accept a worse
solution in terms of MQ, so that the algorithm may escape from a local optima. The probability
of accepting a worse solution depends on the ‘temperature’ of the process, where the higher the
temperature (beginning of the algorithm) the higher the probability to accept a solution with
worse MQ. The temperature is slightly decreased with each iteration of the algorithm. The new
SA-improved algorithm was compared to the original Bunch’s HC for 5 software systems.

Since the SA algorithm has parameters, i.e., initial temperature and cooling rate, one of the
evaluations was the impact of the parameter setting on the final result. In general, none of the
SA versions (different parameters) presented better results than HC, which was a surprising
result. However, some parameters configurations have speeded up the convergence process of
the algorithm for some systems, but not for all of them. In summary, the results did not present
enough evidence to support that the SA-enhanced algorithm is better than the original HC. The
MQ proposed in this work is the one being used by state-of-the-art research in search-based
modularisation to date.
Mahdavi et al. (2003) proposed a multi-stage HC algorithm to partition the system into

meaningful subsystems. In the first stage of the algorithm, a set of HCs is performed in order to
identify ‘building blocks’ of code elements, which are sets of elements clustered together in
most of the HCs runs. In the second and final stage, the building blocks are then considered
one single element, and an HC similar to Bunch is executed to cluster the remaining elements.

When compared to the HC algorithmwithout the building blocks stage, the proposed approach
performed better in terms of both runtime and quality. By searching for building blocks at
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first, the search space is considerably reduced for the final stage, which allows the algorithm to
run faster and also find solutions with higher quality. The MQ used in this work was the one
proposed by Mitchell and Mancoridis (2002).
Harman et al. (2005) performed an empirical study of the robustness of search-based

modularisation approaches in the presence of noisy data. The study used an HC approach being
guided by MQ, i.e., the fitness function used in Bunch papers, and EVM, a new quality metric
and fitness function proposed in this paper. The authors considered misplaced dependencies
between code elements as noise in the data. The authors argue this is a common scenario when
developers have to perform maintenance and improvements tasks on systems they do not fully
understand. As case studies, they considered real, random and perfect MDGs. The real systems
were the ones regularly used to validate Bunch’s work. RandomMDGs were created completely
at random, and perfect MDGs were created in a way the optimal modularisation exists and
it is known. Noise in the data was modelled by mutating the MDGs according to a specific
parameter that controlled the amount of noise introduced to the graph.
Results indicated the EVM-guided search was able to find the optimal modularisation for

the perfect MDGs, while the MQ-guided search was not. Regarding the robustness of the two
fitness functions when noisy data was considered, the EVM-guided search was considered the
more robust for all MDGs evaluated.

2.4.2 Software Evolution and search-based Modularisation
As previously described in the previous section, much the of the work on search-based
modularisation considers only a single version of the system. However, software systems are
often developed incrementally, where each new version of the system released to the client
includes new functionalities and/or improves previous ones. In the rest of the section, we
discuss the work that evaluated search-based modularisation techniques in the context of the
incremental evolution of software systems.

Wu et al. (2005) performed a comparison study of different modularisation algorithms when
applied to subsequent versions of a system. They considered not only search-based algorithms
(Bunch) but also algorithms based on distance coefficients to perform hierarchical clustering
(Anquetil and Lethbridge, 1999) and comprehension-driven clustering techniques (Tzerpos and
Holt, 2000). Six different algorithms were compared in terms of three quality criteria: stability,
authoritativeness and extremity of cluster distribution.

Stability is related to the ability of the modularisation algorithm to produce similar modulari-
sations for similar versions of the system. Authoritativeness assesses whether the modularisation
algorithm can produce a solution similar to a ‘gold modularisation’ of the system. Finally,
extremity of modules distribution evaluates the algorithm behaviour in terms of creating modules
with too many code elements or modules with too few code elements. The study was performed
in 5 open source systems. Subsequent versions of each system were directly extracted from the
systems repositories, where one MDG was created for each month of development, creating
several monthly versions of each system.

In terms of stability, Bunch was ranked as the less stable algorithm, where the other 5 were
considered stable algorithms. For authoritativeness, they considered the gold standard as the
original modularisation of the system, so the modularisation algorithms had to generate a
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solution that was similar to the original one. None of the algorithms performed well for this
criteria. Bunch was the algorithm that produced the most balanced solutions, with modules
of roughly the same size, where the other algorithms tended to create too big or too small
high-level modules.
Barros et al. (2015) performed a structural architecture evolution study of the open source

system Ant, and then applied search-based modularisation to the latest release of the system
to check whether it was possible to bring the structural architecture of the system back to the
simplicity of its previous releases. The data was extracted from 24 official releases of Ant,
comprising a development time of roughly 14 years. The architecture evolution was assessed
through several metrics, including the number of packages, the number of dependencies, MQ
and EVM. While the first two are metrics related to the size of the system, the former two are
modularisation quality metrics usually employed in search-based modularisation approaches
(see Section 2.3).

The architecture evolution study showed, as expected, that the system’s architecture tends
to become more complex as the system evolves. For almost all new releases, more packages,
classes, and dependencies are added. As a result, quality metrics such as MQ and EVM tend to
get worse, causing the modularisation of the final releases to be much more complex than the
modularisation of the first releases of the system.
With this scenario as background, they applied search-based modularisation to the latest

release of Ant in order to assess if a search-based approach could optimise the system in
a way it would become as simple as it was in the first release. They applied an HC based
algorithm similar to Bunch, using both MQ and EVM as fitness functions, creating an MQ-
optimised and an EVM-optimised version of Ant. Although the optimised versions showed
better values for search-based modularisation metrics, they achieved quite poor results in terms
of general architectural metrics, such as code and architecture smells, for example. In fact, the
plotted modularisation of the optimised versions seemed much more complex than the original
modularisation. The conclusion was that search-based approaches were not able to optimise the
current modularisation of Ant so it would become as simple as it was in the first releases of the
system.
Although the conclusions drawn from the study are valid based on what was assessed, we

believe the final outcome was likely to happen. Ant evolved from a system with 4 packages
and 102 classes in its first release, to a system with 60 packages and 1116 classes in its latest
one. The system has been developed for almost 14 years, and in our point of view, it is virtually
impossible to optimise the modularisation of the latest release to make it as simple as it was in
the first release. The system is already too different, with different developers, different users,
and different features. Therefore, we believe search-based modularisation should be applied to
subsequent releases of a system because such a scenario would be much more similar to a real
incremental software design process than the one considered by Barros et al. (2015).

2.4.3 Multi-objective search-based Modularisation
All of the work discussed in previous sections employs a single objective optimisation approach,
where the user provides the system as an input, and the approach returns a single optimised
modularisation of the system as an output. Most of the fitness functions used to guide the search
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are based on a combination of cohesion and coupling between modules, where the two metrics
are combined into one equation so that a trade-off is achieved. Although these are arguably the
most important drivers for software modularisation, other metrics may arise depending on the
user needs, such as the number of high-level modules, the size of the modules and so on. A
combination of all these metrics in a single function would generate the ‘apples and oranges’
problem, where it is not possible to normalise the metrics in a meaningful way so that they
cannot be compared or combined.

Multiobjective search (Deb, 2014) is an optimisation paradigm to solve problems with more
than one fitness function, where the objectives are usually conflicting and/or non-comparable.
It uses the Pareto optimality concept to search not for one single optimal solution, but for a
set of optimal solutions. In multiobjective search, a certain solution dominates (is better than)
another one if it is better or equal for all objectives and better for at least one of the objectives.
A solution that is not dominated by any other solution is called non-dominated, and the set of
non-dominated solutions is called Pareto front. A multiobjective search algorithm returns a set
of solutions that present the optimal or near-optimal trade-offs between objectives so that the
user can select the solution that better fits one needs.
The first adaptation of search-based modularisation for the multiobjective optimisation

paradigm was proposed by Praditwong et al. (2011). Two different multiobjective approaches
with different modularisation purposes were evaluated. The Maximizing Cluster Approach
(MCA) tries to modularise the system by creating as many high-level modules as possible
while optimising the quality metrics. The fitness functions are: cohesion (max), coupling
(min), number of modules (max), number of isolated modules (min) and MQ (max). In this
work, cohesion was considered to be the intra-dependencies within modules, and coupling
to be the inter-dependencies between modules. Since one of the objectives to maximise is
the number of modules, one of the optimal solutions would be the assignment of each code
element to a different module. Hence, the approach also tries to minimise the number of isolated
modules, i.e., modules with a single code element. The MQ metric was also included as an
objective because it was extensively used in the single objective approaches to search-based
modularisation.
The other multiobjective approach evaluated was the Equal-size Cluster Approach (ECA),

where the aim is to modularize the system by creating high-level modules of roughly the same
size. The fitness functions are: cohesion (max), coupling (min), number of modules (max),
difference of max and min module size (min) and MQ (max). This approach also tries to
maximise the number of modules, but in a way that the number of code elements in each module
is similar. In order to do this, one of the objectives is the minimisation of the difference between
the number of elements of the biggest module and the number of elements of the smallest
module in the modularisation. Both MCA and ECA were implemented in the Two-Archive
Genetic Algorithm (Praditwong and Yao, 2006) and evaluated against well-known search-based
modularisation datasets.
The multiobjective approaches were compared between themselves and also to the Bunch

tool. Regarding MCA and Bunch, the first performed better for weighted MDGs while the
latter had the best performance for unweighted MDGs. For ECA and Bunch, ECA was able
to outperform Bunch for both weighted and unweighted MDGs. When MCA and ECA were
compared, ECA also outperformed MCA for most of the MDGs. All results were validated
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through statistical analyses. Although the ECA approach had shown the best results in terms of
quality metrics, when the Pareto fronts found by both MCA and ECA were plotted together,
there was a clear division on the search space between MCA and ECA solutions. Thus, the
results suggest these two different approaches tend to explore different areas of the search
space, indicating a possible need to use both approaches in order to maximize the search space
coverage. Even though the multiobjective approaches presented better results than Bunch in
most of the MDGs, the amount of time they take to run is much longer than Bunch, which may
undermine their usage.

Abdeen et al. (2013) applied multiobjective modularisation to package structure restructuring.
The main idea is to improve the modularisation’s quality metrics between packages while
preserving the current system structure. In this work, system packages are mapped to high-level
modules, classes to code elements and method calls to dependencies. The fitness functions
used were cohesion (max), coupling (min) and similarity to current design (max). The search
algorithm employed was the NSGA-II (Deb et al., 2002), and the approach was applied to four
open source systems.
Results show that it is possible to improve the cohesion and coupling quality metrics while

performing few modifications to the current design. However, the proposed metrics of cohesion
and coupling diverge from the standard metrics previously proposed and evaluated in the
literature. In this work, cohesion is actually a combined function of ‘packages cohesion’ and
‘classes cohesion’, which are not comparable metrics. The measurement is similar for coupling:
a combination of ‘package’ and ‘class’ coupling. Furthermore, the similarity to the original
structure was not measured using standard software modularisation similarity metrics proposed
in the literature (see Section 2.3). They proposed their own similarity metric that was not well
discussed in the paper.
Barros (2012) performed an analysis of the effects of using composite objectives in multi-

objective search-based modularisation. By composite objectives, the author considers fitness
functions that are actually compositions of more than one metric. The ECA approach (Pra-
ditwong et al., 2011), for example, uses MQ as one of its fitness functions, where MQ is a
combination of cohesion and coupling, which are also considered as objectives in ECA. The
main objective of this paper is the assessment of the effects of such ‘objectives redundancy’.
Three versions of the ECA approach were evaluated: the original one (cohesion, coupling,
number of modules, difference modules size, MQ), a version that replaces MQ by EVM
(cohesion, coupling, number of modules, difference modules size, EVM) and a version without
any composite objective (cohesion, coupling, number of modules, difference modules size). The
different ECA versions were applied to both open source and proprietary systems.
Interestingly, results show that the EVM-ECA version performs better than the MQ-ECA

version as it can find solutions with better quality in less time. When composite objectives are
not considered, the algorithm can find statistically equivalent solutions as the EVM-ECA version
in even less time. Such results suggest that composite objectives are indeed a redundancy in
the search process, taking runtime to be computed and not leading to different areas of the
search space. In fact, even when MQ is suppressed from the objectives, solutions found by the
multiobjective approach are better in terms of MQ than solutions found by Bunch.
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2.4.4 User Interactive search-based Modularisation
For all of the search-based modularisation work discussed so far (both single and multiobjective),
the search process is fully and automatically guided by the fitness function(s). Although such
metrics are proved to be relevant in representing good quality modularisations, developers have
subjective knowledge or intuition about the system they are developing. In order to incorporate
the software engineer knowledge during the search process, interactive optimisation can be
employed. This optimisation paradigm integrates the user into the search process during the
algorithm evolution, usually by incorporating user feedback into the fitness evaluation.
Bavota et al. (2012) proposed an interactive approach for software modularisation. In this

approach, the user is asked for feedback during the algorithm evolution. Based on a certain
solution presented to the software engineer during the optimisation process, the user may
indicate constraints such as which code elements must be kept together, which elements must be
placed in different high-level modules or to which module a certain element must be assigned.
The algorithm repairs the solution to meet the user constraints. In addition, the constraints
indicated by the user are used to penalise solutions in future generations of the algorithm. The
number of times the algorithm will ask for user feedback is one of the approach’s parameters.
The user interaction procedure described above was incorporated in both single (Doval et al.,
1999) and multiobjective (Praditwong et al., 2011) GAs for software modularisation. Finally,
the approach was validated in two different systems.
Since the developers of the systems under study were not available for validation, a user

simulator was proposed. The simulator used the current system modularisation as a ‘gold
standard’ of the system, so it replicates a user that does not want the system to change too
much after the optimisation process. Results show that the interactive versions of the GAs were
able to present a better approximation of the original modularisation than their non-interactive
counterparts. This suggests that the interactive GA is able to incorporate user knowledge in the
search process. From our knowledge, this was the first paper to propose an user-in-the-loop
interactive approach to search-based modularisation.

2.4.5 Disruption Caused by search-based Modularisation Approaches
The search-based modularisation approaches discussed in the previous section, both single and
multiobjective, take a whole software system as input and perform a complete restructuring of
the code base as an attempt to improve structural architecture quality. Although a large scale
re-modularisation is sometimes necessary due to extensive architectural degradation (van Gurp
and Bosch, 2002; van Gurp et al., 2005), small increments and fixes are more desirable for the
retention of familiarity (Lehman, 1979; Lehman et al., 1997). Moreover, developers tend to
avoid performing changes to code that is already architecturally stable. This is a re-occurring
phenomenon in software development, where developers rarely touch code that is not related to
their current task, regardless of the (lack of) quality of this previous code (Kapser and Godfrey,
2006). Finally, restructuring activities are difficult to convey as an important development
activity because most of the stakeholders will rather prioritise the development of new features
and the enhancement of existing features. In this context, the disruption caused by search-based
modularisation approaches to the existing modular structure of the software system under
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optimisation is an important factor to be considered.
The disruption caused by a search-based modularisation technique can be measured as the

number of change developers need to perform in order to adopt the solution proposed by the
search algorithm, where such disruption may be assessed at both source code and modular
structure levels. A previous study by Hall et al. (2014) measured how many lines of code
ought to be added/changed in order to apply solutions found by search-based modularisation
approaches. Apart from showing that developers would have to change up to 10% of their code
base to adopt a solution proposed by automated approaches, they also showed that the LOC to
be changed strongly correlates with the modular structure disruption metric MoJoFM (Wen and
Tzerpos, 2004b).

Mkaouer et al. (2015) used the number of refactoring operations as a measurement of system
disruption to be minimised in a search-based many-objective approach for re-modularisation.
However, operations at different granularity levels, such as move method and move class, have
the same weight in the disruption computation, even though coarse-grained and fine-grained
refactoring operations have a different impact in the system’s modularity.
In the work by Ouni et al. (2013) and Ouni et al. (2016), the authors proposed a disruption

assessment of refactoring operations based on the number of operations to be performed, where
each operation is weighted by a complexity factor. In this formulation, the possible refactoring
operations also include different granularity levels, e.g. pull up method and extract class, where
the different weights are based on the authors’ expertise.

2.4.6 Practitioners’ Perception of Software Modularisation
All the work presented so far has been developed inside the academic community, and although
some of the papers we discussed have performed a validation with software developers, the
community needs to first and foremost understand the practitioners’ perception of software
modularisation in order to propose approaches that will be seen as beneficial by developers.
Thus, a few qualitative studies have been carried out in the literature as an attempt to capture
developers needs and perceptions regarding software modularisation and architectural quality.
Bavota et al. (2013) performed an empirical study that compares developers’ perception of

software coupling, and different automated measurements of software coupling. The authors
considered 4 different types of coupling measurements, namely structural, semantical, dynamic,
and logical. These coupling measurements were used to measure the coupling between pairs
of files of 3 different systems. A subset of pairs of files was selected based on how strongly
coupled they were evaluated by each automated coupling metric. The pair of files with strong
and weak coupling, regarding each metric, were evaluated by developers who were asked to
assess the coupling strength of each pair according to their subjective judgement. The results
indicate that structural and semantical coupling are the automated metrics that better capture
the developers’ perception of coupling.
In a related study by Candela et al. (2016), the authors applied multiobjective search-based

modularisation to improve the structural and conceptual cohesion and coupling of 100 software
systems. After the optimisation process, the improved modularisations were compared to the
original modularisations implemented by developers. The MoJoFM metric (Wen and Tzerpos,
2004b) was employed for the comparison. As a result, the original developers’ modularisation
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is more similar to the cohesion-optimised modularisations than to the coupling-optimised
modularisations for most of the systems under study. The authors claim this is an indication
that developers tend to give higher priority to cohesion over coupling when modularising their
software systems.

Simons et al. (2015) performed a study focused on assessing how software developers evaluate
the quality of a certain design in comparison to the standard QMOOD suite of metrics for
design quality (Bansiya and Davis, 2002). The authors created a set of toy classes’ designs and
asked a group of experienced developers to evaluate the designs regarding one of QMOOD’s
quality criteria using their own subjective judgement. Later, the same quality criteria were
measured using the QMOOD metrics, and the results between the automated measurements
and the developers’ subjective assessments were compared. Results show negative to none
correlation between the developers’ assessment and the metrics measurement. This indicates
that the metrics do not capture the subjective perception of the developers in regard to the
quality criteria being assessed.

2.5 Software Refactoring
Software refactoring is “the process of changing a software system in such a way that it
does not alter the external behaviour of the code yet improves its internal structure” (Fowler
et al., 1999). Refactoring activities are widely employed by software practitioners during the
software development lifecycle, and researchers have already linked software refactoring to
improvements in adaptability, maintainability, understandability (Ammerlaan et al., 2015),
reusability, testability (Alshayeb, 2009), and productivity (Moser et al., 2008).
The research on software refactoring is vast, and spans multiple areas that include, but are

not limited to, refactoring detection (Tsantalis et al., 2018; Silva and Valente, 2017), software
evolution (Bavota et al., 2015; Kim et al., 2011), library adaptation (Henkel and Diwan, 2005),
software merging (Dig et al., 2008) and code completion (Foster et al., 2012). Thus, this section
focuses on the work related to the refactoring investigations performed in this thesis. First, we
describe the most commonly used refactoring operations by developers. Second, we discuss
studies that investigate the difference between manual and automated refactorings. Finally, we
present the existing work on the developers’ intentions behind software refactoring.

2.5.1 Refactoring Operations
In their seminal book, Fowler et al. (1999) present a catalogue of 72 refactoring operations
for Java systems that include the motivation for each refactoring and the steps in which each
refactoring should be performed. Although relevant, recent empirical studies (Murphy-Hill
et al., 2012) have shown that not all of these refactoring operations are employed by developers.
Based on these observations, tools for automated refactoring (Fokaefs et al., 2011) and tools for
refactoring detection (Tsantalis et al., 2018; Silva and Valente, 2017) only support a subset of
these refactoring operations. Hence, we limit this section to discuss the refactoring operations
that are more often used by developers and supported by automated tools as presented in recent
empirical studies and discussed in the state-of-the-art literature (Murphy-Hill et al., 2012;
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Negara et al., 2013; Silva et al., 2016; Palomba et al., 2018; Fokaefs et al., 2011; Tsantalis et al.,
2018; Silva and Valente, 2017; Kim et al., 2011).

Move Class

This refactoring is often performed when a certain class does not belong to the package it is
currently allocated to. In this scenario, a developer moves the entire class from one package to
a more appropriate one.

Rename Class

More often than not, the name of a class does not properly denote its responsibility. Hence,
this refactoring operation changes the name of the class to a name that better describes its
functionality.

Extract Class/Interface

Classes tend to grow as the system evolves, which may cause a class to be performing more than
one functionality or be representing more than one concern. A developer extracts a class when
she takes part of the code (methods and attributes) from a certain class that represents a certain
functionality and creates a new class to better encapsulate this behaviour. An extract interface
refactoring occurs when the existing code is moved to a new interface instead of a new class.

Extract Method

Similarly to the extract class refactoring described above, an extract method refactoring should
be employed when a method is performing more than a single function. In this case, the
developer takes part of an existing method and creates a new method that performs the extracted
function. Note that the method might be extracted to the same class or to a different one.

Inline Method

An inline method refactoring should be applied when a method is so simple that it doesn’t
need to be encapsulated in a different method. This commonly happens for methods that have
a single return statement in its body. In this scenario, a developer simply deletes the short
method and moves its code to an existing method.

Pull Up Method

The pull up method refactoring is a mechanism to remove code duplication. Consider an
inheritance tree. If two or more subclasses implement the same or very similar method, this
method should be moved to the superclass. Hence, all subclasses will exhibit the desired
behaviour but the method will only be declared once in the superclass.
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Push Down Method

This refactoring is the opposite of the pull up method operation described above. A developer
should push down a method when a behaviour described in a superclass is only relevant for one
of its subclasses. Thus, the method should be moved from the superclass to the subclass.

Rename Method

Similarly to rename class, sometimes methods evolve and their name does not accurately express
their functionality. In this case, developers change the name of the method to a more descriptive
one.

Move Method

A move method refactoring should be employed when a certain method does not belong to the
class it is currently allocated to. Hence, a developer will move the method to a different class.

Pull Up Attribute

Also called pull up field. Similarly to the pull up method, if all subclasses in an inheritance tree
define the same attribute, this attribute should be moved to the superclass to avoid duplication.

Push Down Attribute

This refactoring should be performed when an attribute defined in a superclass is only used by
one of its subclasses. Hence, the attribute will be moved from the superclass to the subclass.

Move Attribute

The move attribute refactoring, also known as move field refactoring, should be performed
when an attribute does not belong to the class it is currently defined. In this case, the attribute
will be moved to a more appropriate class.

2.5.2 Manual Refactoring vs Automated Refactoring
The refactoring operations discussed above were originally described as a series of manual
steps and transformations a developer would perform in the system (Fowler et al., 1999). As
the practice of refactoring became popular between software developers, researchers and tool
builders started providing tools and approaches to assist developers in automated refactoring.
While JDeodorant (Tsantalis et al., 2008) and JMove (Sales et al., 2013) are examples of
academic tools for automated refactoring, currently adopted Java IDEs, such as Eclipse and
IntelliJ, provide built-in routines that automate refactoring operations. However, although some
refactoring operations are conceptually simple, i.e. renaming, and can be easily automated,
other operations, such as extract method, are more complex to automate, which might undermine
the adoption of such tools by practitioners.
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In this context, some researchers performed empirical studies to investigate the current
practices of refactoring with a particular focus on the differences between manual and automated
refactoring. Murphy-Hill et al. (2012) collected 7 different refactoring-related datasets to
investigate how developers perform refactorings on their daily basis. The datasets include
different groups of users of the Eclipse IDE, and spans from regular users who use Eclipse
to develop their own projects to developers who specifically maintain Eclipse’s refactoring
functionalities. By monitoring these developers activities, they observe that close to 90%
of refactoring operations are performed manually in spite of the existing automated support
available within their IDE. Moreover, when considering the refactorings that were performed
with the aid of a tool, 40% of those occurred in batches, i.e., more than one refactoring operation
was performed in order to achieve the desired restructuring. In addition, the authors also
observed that 90% of developers that use automated refactoring tools never alter the tools’
default parameters. Finally, the developers who maintain Eclipse’s refactoring functionalities
employ less automated refactoring than regular Eclipse users.

In this seminal paper, Murphy-Hill et al. (2012) proposed the concept of root canal and floss
refactoring, where the first indicates software changes that are performed with the sole purpose
of refactoring the system and the latter indicates refactoring operations that are performed
alongside other changes, such as feature improvement or bug fixing. Based on the collected
data, they observed that floss refactorings are more often performed than their root counterpart.
The concepts of root and floss refactoring heavily influenced the software refactoring research
community (Candela et al., 2016; Cedrim et al., 2017; Tufano et al., 2017; Palomba et al., 2018)
and this thesis in particular (see Chapter 6).
In a similar study, Negara et al. (2013) collected data from Eclipse users during their

development sessions to investigate the differences between manual and automated refactoring.
For this paper, the authors divided the participants into groups of professionals/experienced
developers and students/novice developers. They observed that, on average, developers perform
11% more manual than automated refactorings, and that some refactoring operations, such as
renaming, are predominantly performed manually. In addition, they noticed that experienced
developers tend to perform manual refactorings more often than novice developers.
In an interesting observation, some developers claimed they perform manual refactorings

because they were unaware of tool support within Eclipse. However, on average, most of the
developers are aware of the tool support but still chooses to perform the refactoring operations
manually. Moreover, similarly to the investigation by Murphy-Hill et al. (2012), the authors
observed that automated refactorings tend to be larger and grouped in batches. Finally, the data
indicate that about 30% of refactoring operations do not make to the version control system
because they are shadowed by other refactorings, e.g., a method is renamed twice.

2.5.3 Developers’ Intentions When Refactoring
When Fowler et al. (1999) first proposed their catalogue of refactoring operations, each
refactoring had a motivation behind it, where the common goal was to fix/remove a design flaw
or code smell. Extract method, for example, was proposed to deal with code duplication, and
move methods were associated with the Feature Envy and Shotgun Surgery code smells. Thus,
much of the early research in refactoring automation and recommendation were driven by code
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smells, code duplication, and design flaws (Tsantalis et al., 2008; Tsantalis and Chatzigeorgiou,
2011; Silva et al., 2014; Tairas and Gray, 2012).
In this context, the empirical studies discussed in the previous section have shown that

developers tend to prefer floss refactorings, where the refactoring operations are mixed with
other changes, such as feature implementation and bug fixing. Given this change in how
researchers perceive the developers’ needs and motivations towards refactoring, empirical
studies were conducted to better understand the circumstances in which developers perform
refactoring operations.
Silva et al. (2016) monitored a total of 124 Java projects from Github to investigate the

developers’ motivations behind refactoring operations. During the course of 61 days, the authors
monitored the repository of each of these 124 projects by running the RefactoringMiner tool
(Tsantalis et al., 2018) in every new commit to detect the presence of a refactoring operation.
Given a new commit in which the tool detected a refactoring operation, one of the authors
would manually validate the refactoring, and then send an email to the developer responsible
for the commit asking for the motivation behind the refactoring and whether the refactoring
was performed with the aid of an automated tool. After collecting all responses (41% response
rate), the authors performed a thematic analysis to group the motivations expressed by each
developer.
The extract method operation was the most common refactoring performed by developers,

where the extraction of a method to make it reusable for a feature change or bug fixing was the
most common motivation. Other popular motivations to extract a method were the introduction
of an alternative signature, facilitation of future extension and decomposition to improve
readability. Note that, when considering the most popular refactoring operation, only one out
of the top four motivations involve pure structural improvement.
In addition, the developers claimed that 55% of the refactorings were performed manually

instead of automatically. Finally, the most common reasons for performing a manual refactoring
were the distrust in automated tools and the belief that the refactoring was simple enough so
that automated support was not necessary.
In a related study, Palomba et al. (2017) investigated the relationship between refactoring

operations and software changes performed under different intents. Based on a corpus of 12,992
software changes, the authors used an automated approach to classify each change under three
possible intents: fault repairing, feature introduction, and general maintenance. Hence, after
identifying the refactoring operations performed in each change, the authors performed an odds
ratio analysis to understand the likelihood of a certain refactoring operation to be used in a
software change under a certain intent.
As a result, they observed that ‘Add Parameter’, ‘Move Field’ and ‘Replace Magic Number

With Constant’ refactorings are highly likely to be used (statistically significant) when developer
fix a fault. When considering feature-related changes, developers are likely to perform
‘Extract Method’, ‘Inline Method’ and ‘Rename Method’ refactoring operations. Finally, when
developers are performing maintenance activities, the most likely refactorings to be used are
‘Consolidate Duplicated Code’, ‘Introduce Explaining Variable’ and ‘Rename Method’.

These studies are the first strides toward better understanding how, and most importantly,
why developers perform refactoring in their software systems. These will serve as the ground
rules for future researchers and tool builders when designing new approaches for automated

49



Software Restructuring: Understanding Architectural Changes and Refactoring M. Paixao

refactoring assistance and recommendation.

2.6 Software Code Review
Software code review is the process of manual inspection and review of code performed by a
developer that is not the author of the code being reviewed. Code review has been first proposed
as Code Inspection by Fagan (1976). It consisted of a synchronous process, based on face
to face review meetings between the author of the code and its reviewers. Based on more
than 10 years of evaluation of code inspection techniques in real-world software development,
Fagan (1976) concluded that code inspection is able to detect between 60% and 90% of bugs.
Ackerman et al. (1989) also presented empirical evidence on the ability of the code review
process to prevent the introduction of bugs. Moreover, Siy and Votta (2001) found out that
code inspection improves code comprehensibility and facilitates changes.
In spite of the benefits of code inspection, Votta (1993) argued that code inspection is an

unnecessary overhead for software development. Based on observations from code inspection
meetings in industry, the author claims the need for meetings for every single inspection is too
cumbersome, and that most of the time the goals and expectations of the meetings are not met.
In fact, with the gain in popularity of agile methods for software development, the synchronous
and rigid process of code inspection has been left out of practice.

Recently, code review has been brought to the software development lifecycle again due to its
new lightweight and asynchronous format. In the seminal paper by Bacchelli and Bird (2013),
the modern code review is described as a review that is informal, tool-based and that occurs
regularly in the developers’ workload. Modern code review is mostly characterised by its heavy
use of automated tools to provide an asynchronous environment for review, with minimum
overhead on the developers’ workload. The general process of modern code review is depicted
in Figure 2.5
As one can see, the process of modern code review is linked with a version control system.

After a developer submits a code change, this change is not automatically merged into the
repository, but it rather undertakes a reviewing process. The changed source code is first
assessed by a continuous integration (CI) pipeline that might involve testing, building and
other forms of quality control. After being approved by CI, the code is reviewed by one or
more developers. The reviewer might point out problems in the change, request adjustments
and provide other types of feedback. The author of the change will take the feedback into
consideration and submit a new revision that will undergo the same process. This loop is
repeated until the revision is finally merged into the repository or discarded.

This modern process of code review is widely adopted in the software development industry,
with examples from Microsoft (Bacchelli and Bird, 2013), Google (Kennedy, 2006) and
Facebook (Tsotsis, 2011). Open source tools for code review are also available, where the
interested reader is referred to Gerrit (Pearce, 2006) and ReviewBoard (ReviewBoard, 2017).
Modern code review has been shown effective by recent empirical studies. Mantyla and

Lassenius (2009) performed a study to investigate what kind of bugs are found during code
review. The authors confirmed that code review is useful to find bugs that do not affect the
functionality of the system. They pointed out that 75% of the bugs found by code review
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Figure 2.5: General process of modern code review

are related to maintainability, which would not be caught by testing, and therefore would be
introduced in the codebase. In a similar study, Beller et al. (2014) confirmed that most bugs
found during code review are related to maintenance issues and not functionality.
In the study performed by Bacchelli and Bird (2013) at Microsoft Research, the authors

compared the developers’ expectations and outcomes of the code review process. Although
developers tend to believe the main goal of code review is to find problems, bug identification
was ranked 4th in the most common outcomes of a review. The authors showed that code
improvement and knowledge transfer are the most common results when a code change is
reviewed. Rigby and Bird (2013) performed a similar study, where the authors also pointed out
that improved knowledge transfer and social communications are the most common outcomes
of modern code review.
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3 An Empirical Study of Cohesion and
Coupling: Balancing Optimisation and
Disruption

In this thesis, we study how developers organise software systems in the context of the code
level structure and modularisation, alongside the understanding of how the modularisation can
be improved and how developers deal with restructurings. To do this, we first consider a popular
approach for architectural restructuring, e.g, search-based software modularisation. After a
careful analysis of the literature, we noticed that few papers evaluate the metrics they employ to
guide the architectural improvement. Moreover, the incremental and iterative nature of software
development is constantly overlooked by these approaches. Thus, most papers fail to consider
the impact the proposed changes would accrue to the system’s original structure.

Thus, this chapter tackles our thesis’ objective number 1 (see Section 1.2), and reports a large-
scale empirical study with real-world open source systems that validates commonly used metrics
in search-based modularisation by investigating whether the modularisation proposed by the
system’s developers respect such metrics. Moreover, we take the state-of-the-art techniques in
search-based software modularisation and evaluate how disruptive the suggested modifications
would be to the system’s structure, i.e., how much of the original system’s structure would
have to change to accommodate the proposed modularisation. In a side contribution, we
propose a new search-based modularisation approach that finds compromises between structural
improvement and disruption.
This study was originally published in the journal IEEE Transactions on Evolutionary

Computation (TEVC), and this chapter presents an adaptation of the original paper. Section 3.1
presents the introduction of the original paper, while Section 3.2 contextualises the background
and related work to this chapter in specific. Section 3.3 presents the software systems and
dataset used in this chapter. While Section 3.4 presents our study’s methodology and discusses
the quantitative results, Section 3.8 depicts a qualitative analysis of some of our findings. In
addition, Section 3.6 discusses the threats to the validity of the empirical study presented in this
chapter. Finally, Section 3.7 presents the conclusions drawn from the empirical study as it was
written in the original journal publication.

At the end of the chapter, Section 3.8 concludes this chapter by showing how the empirical
study presented in this chapter contributes to the overall goal of this thesis.
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3.1 Introduction
Software modularisation is almost as old as the concept of software engineering itself. The
notions of cohesion and coupling were introduced in the 1970s (Yourdon and Constantine,
1979). Cohesion is the degree of relatedness enjoyed by code elements residing in the same
abstract module, while coupling is the relatedness between modules. There is long-established
evidence that software structure tends to degrade as the system evolves (Lehman, 1979; Lehman
et al., 1997; Wermelinger et al., 2011). Therefore, one goal of software modularisation research
is to find ways to improve modular structure, by increasing cohesion and reducing coupling.
search-based Software Engineering (SBSE) techniques have been widely studied and

developed as one way to automate this structural modular improvement process, guided by
fitness functions that capture structural cohesion, coupling, and combinations thereof. Structural
cohesion/coupling is typically measured in terms of dependencies between elements. It is
structural, rather than semantic, because it takes no account of the degree of semantic relations
between elements, other than that which is captured through dependence measurements (Bieman
and Ott, 1994).
Many different search techniques have been proposed and developed that automate the

search for an improved modular structure. However, despite more than 30 publications on
search-based modularisation, few studies (Hall et al., 2014; Candela et al., 2016) have performed
an evaluation of the disruptive effects that automated modular improvement may cause on the
original modular structure of the software systems under study. In the context of this chapter, we
consider disruption to indicate the amount of change imposed in the system’s original structure
in order to adopt the solution proposed by an automated modularisation approach. A thorough
study of the disruption caused by modular restructuring is needed because there is evidence
that software engineers tend to resist structural and architectural improvement in favour of
similarity and familiarity (Wermelinger et al., 2011). Therefore, high levels of disruption might
undermine the industrial uptake of these techniques in the context of software restructuring.

Moreover, most of the surveyed publications on search-based modularisation consider only a
single version of the systems under study, ignoring the systems’ history of previous releases.
A study involving a series of consecutive releases would be required in order to understand
software engineers’ decisions with respect to cohesion/coupling and the disruption that would
have been caused by automated attempts to improve cohesion/coupling.

In this chapter, we provide the first study of search-based modularisation that considers both
the opportunities for improving software structure and the consequent disruption that accrues as
a result, over a series of subsequent releases of software systems. This is also the largest study
in search-based modularisation: we study 233 releases of 10 different open source software
systems, from which we extracted the modular structure data.

We start by investigating the validity of the quality metrics that previous work on search-based
modularisation has used to improve software modularity. Our survey reveals that out of more
than 30 papers that have previously studied this problem, many have used the Modularisation
Quality (MQ) metric (Mancoridis et al., 1998; Mitchell and Mancoridis, 2006) to assess
modularity quality. Therefore, we validate the use of this metric, investigating whether the
existing modular structure implemented by developers respects MQ.
We complement our study of MQ by measuring the raw cohesion of each system. The raw

53



Software Restructuring: Understanding Architectural Changes and Refactoring M. Paixao

cohesion is simply the number of dependencies that reside within a single module, and therefore
do not cross any module boundary. The raw coupling is the obverse; the number of dependencies
that cut across module boundaries. Given the proposed modular structure of a system, we can
thus measure raw cohesion/coupling, simply by counting intra- and inter-dependencies between
elements. Since raw coupling is the obverse of raw cohesion, we need only measure one of the
two properties.
Traditional search-based modularisation does not use raw cohesion/coupling as a fitness

function, because it would result in the algorithm moving all elements into one single module
(with maximal cohesion and zero coupling). Such a ‘god class’ structure is undesirable (Brown
et al., 1998), and various previous authors developed techniques to avoid this (Mitchell and Man-
coridis, 2006; Harman et al., 2005; Praditwong et al., 2011). Although raw cohesion/coupling
cannot be used to optimise the modular structure, it is a software engineering good practice that
is easy to understand, and is accepted by developers (Bavota et al., 2013). As initially discussed
by Simons and Smith (2016), humans tend to have a cognitive bias that makes it easier for
developers to identify bad modularisations instead of good ones, making structural metrics of
cohesion/coupling a valid proxy for the identification of not so good solutions. Hence, even
though a modularisation with optimal levels of raw cohesion/coupling might not be generalised
as the best possible from the developers’ point of view, solutions with high levels of coupling
and low levels of cohesion are widely accepted as poor modularisations. Hereinafter, when we
refer to ‘cohesion’, we mean this simple ‘raw cohesion’ metric.
In order to provide an evidence-based assessment of the degree to which developers’

implementations are cohesion-respecting and MQ-respecting, we introduce an approach to
validation that is grounded in frequentist inferential statistics, widely used elsewhere in software
engineering, and particularly recommended for SBSE (Arcuri and Briand, 2014; Harman et al.,
2012). Using this statistical approach, we provide evidence that developers choose modular
structures that are highly cohesion- and MQ-respecting. Furthermore, we show that although
developers choose solutions in the local neighbourhood that have better cohesion and MQ
values than at least 97.3% of the possible alternatives, in every release of every system, the
developers’ implementations are, nevertheless, suboptimal regarding both cohesion and MQ.

This motivates the study of the degree to which search-based modularisation could automati-
cally ‘improve’ on the developer-implemented modular structure, according to cohesion and
MQ. In order to answer this question, we empirically studied the widely-proposed hill climbing
technique (Bunch) for finding improved modular structures (Mitchell and Mancoridis, 2006).
The hill climbing approach is simple and fast, and has publicly available implementations,
making it an obvious first choice for any developer seeking to use search-based techniques for
modular improvement. After modifications to the original approach to cope with the large-scale
real-world systems being studied, we found that, in most releases, automated modularisation
does find modular structures with statistically significantly better cohesion and MQ values, and
with large effect size.

Of course, restructuring may not be so straightforward in practice: if there was a dramatically
improved modular structure available to the developers, then it seems reasonable to ask why
software engineers have not adopted it. There are two potential explanations for this:

1. The developers are unaware of any better solutions; the search space is simply too large
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and it defeats human-based search.

2. The developers are aware of at least one better solution, but choose not to implement any
of the better solutions.

In all cases, we found that, even within the nearest neighbourhood to the developers’ given
implementation, there were always alternatives with improved cohesion/coupling. That is,
improvement could be achieved simply by moving a single element from one module to another,
in all of the 233 releases studied. This provides evidence that it is unlikely that developers were
unaware of any better solution, so we turn our attention to the second possible explanation
above.
If developers could easily find a better solution, even with a simple nearest neighbourhood

search, why did they choose not to implement it? One possible explanation we chose to
investigate, relates to the recent observation that developers are prepared to build up technical
debt (Kruchten et al., 2012; Martini et al., 2015); resisting the temptation to restructure systems,
and tolerating degradation in structure, in order to obtain fast delivery, retain familiarity of
the existing structure and/or to preserve some other property of interest. Specifically, we
investigate the degree of disruption that would be caused by moving to an improved modular
structure that increases cohesion and reduces coupling. We measure disruption as the number of
elements and modules that would need to be moved or merged, according to the MoJoFMmetric
(Wen and Tzerpos, 2004b). The results were striking: while a variation of the well-known
Bunch automated modularisation approach can improve cohesion by 25% on average, these
improvements result in 57% disruption.

This provides empirical evidence that developers are reluctant to disrupt the modular structure,
even when this might lead to improved cohesion/coupling. Unfortunately, most of the previous
work on search-based modularisation has ignored this disruptive effect, leaving open many
questions that we seek to answer in the present chapter, such as how large the effect is and how
often it occurs, whether it is correlated with the improvements achievable, and the degree to
which it could be avoided while maintaining structural improvement.

We found that, although any modular improvement inherently inflicts some degree of
disruption, in general, the disruption caused by the best improvement found by standard
SBSE approaches, for every release of every system, is smaller than the average disruption.
Furthermore, we found no evidence that cohesion improvement is correlated with disruption
increase. This is a particularly attractive finding because it points to the possibility that a
multiobjective search-based approach may be able to find balances and trade-offs between
modular disruption and improvement. This more positive finding, thereby motivated our final
set of experiments, in which we introduced, implemented and evaluated a novel multiobjective
search-based modularisation technique.
Our new approach to automated modularisation seeks Pareto-optimal balances between

disruption, as measured by MoJoFM, and improvement. On average, within the developer-
determined ‘acceptable’ level of disruption for each system, which was calculated through
longitudinal analysis between developers-implemented releases, our multiobjective approach
was able to find solutions with an average of 22.52% and 55.75% improvements for cohesion
and MQ, respectively.
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The primary contributions of this chapter are the findings concerning the behaviour of both
developers and existing SBSE techniques for automated modularisation (on 233 releases of
10 different software systems), the identification of disruption as an important problem for
automated modularisation, and the novel multiobjective approach we introduce and evaluate to
tackle this problem. Our empirical study and evaluation is the largest study of search-based
modularisation hitherto reported in the literature, and its scientific findings have an actionable
conclusion for researchers and practitioners; any and all approaches to modularisation (search-
based or otherwise) need to take account of (and balance) the disruption they cause, against the
improvement they offer.

3.2 Related Work and Background
We collected publications that use search-based techniques to improve the modular structure,
where cohesion/coupling and combinations thereof are used to assess the quality of the
modularisations. We cannot guarantee that we covered every paper, but we believe this survey
presents a reasonable sample of the work performed by the search-based software modularisation
community.
Table 3.1 summarises the 35 papers we collected and presents them sorted by year of

publication. For each paper, we report whether it employs a Single Objective (SO) or
MultiObjective (MO) optimisation approach, and what fitness functions are used to guide the
search. We also report which search algorithms are used to perform the modularisation, and
how many systems and releases were considered in each evaluation.

As one can see, the work on search-based software modularisation dates back to late 1990s
(Mancoridis et al., 1998, 1999; Doval et al., 1999), with the proposal and first evaluations of the
Bunch tool. The MQ metric was first proposed as Bunch’s fitness function, and it is still the
most used metric in search-based modularisation to date. In fact, suites of quality metrics more
recently used for multiobjective modularisation (Praditwong et al., 2011; Bavota et al., 2012;
Barros, 2012) include MQ as one of the metrics to be optimised.

3.2.1 Modular Structure Representation
In this chapter, the modular structure of each release under study is represented as a Module
Dependency Graph (MDG), as defined in Section 2.3.

Since all the systems under study are implemented in Java (see Section 3.3), we are going to
use the Java terminology to refer to the code elements and high-level modules; the elements are
thus the classes and interfaces, while the modules are the packages. In this chapter, both classes
and interfaces will be referred to simply as ‘classes’. Dependencies occur by method call, field
access, inheritance and interface implementation.
For each release of each system, the set of classes C is represented by C = {c1, c2, . . . , cN },

where N is the number of classes in the release. A dependency d(cx, cy) indicates that class
cx depends on class cy to correctly deliver its functionality. The set of all dependencies is
represented by D = {d(cx, cy) | cx, cy ∈ C}. The set of packages P in a release is depicted by
P = {p1, p2, . . . , pM}, where M is the number of packages in the release.
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Table 3.1 Related work in search-based Software Modularisation sorted by year of publication

Paper Year Optimisation
Approach Fitness Function Search Algorithm

Number of
Different
Systems
Used

Number of
Releases
Studied

Mancoridis et al. (1998) 1998 SO MQ HC 5 5
Doval et al. (1999) 1999 SO MQ GA 1 1
Mancoridis et al. (1999) 1999 SO MQ HC 1 2
Mitchell et al. (2001) 2001 SO MQ HC 7 7
Harman et al. (2002) 2002 SO Coh, Cop HC, GA 7 7
Mitchell et al. (2002) 2002 SO MQ HC 5 5
Mahdavi et al. (2003) 2003 SO MQ HC 19 19
Mitchell et al. (2003) 2003 SO MQ HC 13 13
Harman et al. (2005) 2005 SO MQ, EVM HC 6 6
Seng et al. (2005) 2005 SO Coh, Cop, Complexity, Cycles, Bottlenecks GGA 1 1
Shokoufandeh et al. (2005) 2005 SO MQ HC and Spectral Algorithm 13 13
Mitchell et al. (2006) 2006 SO MQ HC 2 2
Mitchell et al. (2007) 2008 SO MQ HC 5 5
Abdeen et al. (2009) 2009 SO Coh, Cop, Cycles SA 4 4
Mamaghani et al. (2009) 2009 SO MQ Hybrid GA 5 5
Praditwong (2011) 2011 SO MQ GGA 17 17
Praditwong et al. (2011) 2011 MO MCA, ECA Two-Archive GA 17 17
Barros (2012) 2012 MO MCA, ECA NSGA-II 13 13
Bavota et al. (2012) 2012 SO and MO MQ, MCA, ECA GA, NSGA-II 2 2
Hall et al. (2012) 2012 SO MQ HC 5 5
Abdeen et al. (2013) 2013 MO Coh, Cop, Modifications NSGA-II 4 4
Kumari et al. (2013) 2013 MO MCA, ECA Hyper-heuristics 6 6
Ouni et al. (2013) 2013 MO Fixed Bugs, Effort NSGA-II 6 6
Hall et al. (2014) 2014 MO MQ HC 4 4
Barros et al. (2015) 2015 SO MQ, EVM HC 1 24
Jeet et al. (2015) 2015 SO MQ BHGA 6 6
Mkaouer et al. (2015) 2015 MO Coh, Cop, MO, NCP, NP, SP, NCH, CHC NSGA-III,IBEA, MOEA/D 5 5
Saeidi et al. (2015) 2015 SO and MO MQ, CQ HC, Two-Archive GA 10 10
Candela et al. (2016) 2016 MO Structural and Contextual Coh/Cop NSGA-II 100 100
Huang et al. (2016) 2016 SO and MO MQ, MCA, ECA MAEA-SMCPs, GGA, GNE 17 17
Huang et al. (2016) 2016 SO MQ, MS HC, GAs and MAEA 17 17
Jeet et al. (2016) 2016 SO MQ HC, five GA variations 7 7
Kumari et al. (2016) 2016 MO MCA, ECA Hyper-heuristics 12 12
Ouni et al. (2016) 2016 MO Bugs, Coherence, Effort, Change History NSGA-II 6 12

Paixao et al. This
Chapter SO and MO MQ, Disruption HC, Two-Archive GA 10 233

3.2.2 Modular Structure Quality Metrics
The Modularisation Quality (MQ) metric was proposed by Mancoridis et al. (1998) to guide
optimisation algorithms in the allocation of classes to highly cohesive and loosely coupled
packages. In order to improve MQ’s performance and quality assessment, the metric was
re-formulated over the years (Mitchell et al., 2001; Mitchell and Mancoridis, 2002), and its
most recent incarnation (Mitchell and Mancoridis, 2006) is adopted.
MQ consists of assigning scores to each package in the system, measuring the packages’

individual trade-off between cohesion and coupling. The cohesion of a package pi is represented
by coh(pi), and it is computed as the number of dependencies between classes within package
pi. Accordingly, the coupling cop(pi) of package pi is computed as the number of dependencies
from classes within pi to classes in other packages in the system. The MQ value of the overall
system is computed as presented in Equations 3.1 and 3.2:
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MQ =
P∑

i=1
MF(pi) (3.1)

and, MF(pi) =


0, if coh(pi) = 0

coh(pi)

coh(pi) +
cop(pi)

2

, if coh(pi) > 0 (3.2)

The MQ is thus given by the sum of the Modularisation Factors (MF) of each package pi
in the system. MF(pi) represents the trade-off between cohesion and coupling for package pi.
Since the dependencies involved in the measurement of the packages’ coupling will be double
counted during MQ computation, cop(pi) is divided by 2.
MQ is a function of the allocation of classes to packages; therefore, the MQ search space

is composed of all possible allocations of classes to packages in the system. In this context,
we define the k–neighbourhood as the subset of the MQ search space that can be achieved
by performing k modifications to the original allocation of classes to packages that was
implemented by the developers.

The raw cohesion/coupling of a system are measured by summing the cohesion/coupling of
its packages. These are straightforward assessments of how many of the system’s dependencies
are contained in the same package and how many are cutting across the packages boundaries.
Since raw cohesion/coupling are the obverses of each other, we need to measure only one of
these properties, and for the rest of this chapter the raw cohesion, or simply ‘cohesion’ of the
system is considered. Hence, the system’s cohesion is computed as presented in Equation 3.3.

COH =
P∑

i=1
coh(pi) (3.3)

Apart from the selected metrics presented above, other measurements of structural cohesion
and coupling have also been proposed (Ó Cinnéide et al., 2012) to account for different types
of dependencies and different granularity levels. Recent studies reported quantitative and
qualitative assessments of these metrics by investigating open source systems and interviewing
developers (Candela et al., 2016; Simons et al., 2015). As previously mentioned, MQ is the most
used quality metric in search-based modularisation (see Table 3.1), yet evidence that software
systems respect this metric is scarce. Our empirical study performs an incremental assessment
of the level of respect open source systems have to MQ; therefore, complementing previous
literature and providing insights to the search-based modularisation community regarding its
most used fitness function.

3.2.3 Modular Structure Disruption
The disruption caused by an automated modularisation technique can be measured as the
number of changes developers need to perform in order to adopt the solution proposed by the
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search algorithm, where such disruption may be assessed at both source code and modular
structure levels. A previous study by Hall et al. (2014) measured how many lines of code
ought to be added/changed in order to apply solutions found by search-based modularisation
approaches. Apart from showing that developers would have to change up to 10% of their code
base to adopt a solution proposed by automated approaches, they also showed that the LOC to
be changed strongly correlates with the modular structure disruption metric MoJoFM (Wen and
Tzerpos, 2004b).

Mkaouer et al. (2015) used the number of refactoring operations as a measurement of system
disruption to be minimised in a search-based many-objective approach for modularisation.
However, operations at different granularity levels, such as move method and move class, have
the same weight in the disruption computation, even though coarse-grained and fine-grained
refactoring operations have a different impact in the system’s modularity.
In the work by Ouni et al. (2013, 2016), the authors proposed a disruption assessment of

refactoring operations based on the number of operations to be performed, where each operation
is weighted by a complexity factor. In this formulation, the possible refactoring operations also
include different granularity levels, e.g., pull up method and extract class, and the different
weights are based on the authors’ expertise.

As argued in a recent work by Candela et al. (2016), a modular level disruption metric, such
as MoJoFM, better describes the ‘mental model’ developers have of their systems. Therefore,
we draw inspiration from the study performed by Candela et al., and adopt a disruption
measurement that is based on the widely used (Candela et al., 2016; Bavota et al., 2012; Mitchell
and Mancoridis, 2001; Le et al., 2015) MoJoFM metric.
Given two different modularisations A and B of the same system, MoJoFM(A, B) accounts

for the proportional number ofMove and Join operations that are necessary to transform A in
B, such as presented in Equation 3.4.

MoJoFM(A, B) = (1 −
mno(A, B)

max(mno(∀A, B))
) × 100% (3.4)

In this chapter, a Move operation represents moving a class from its original package to
another package in the system, while the Join operation represents the merge of two packages.
The distance between A and B is the minimal number of operations that transform A in B,
computed by mno(A, B), and this value is normalised by the maximum distance between any
possible modularisation partitioning of the system (denoted by ∀A) and B. MoJoFM is a
non-trivial metric to compute, and for more technical details the reader is referred to the work
by Wen and Tzerpos (2004b).
Finally, given the original developers’ implementation A and a solution B suggested by an

automated modularisation technique, we propose DisMoJo in Equation 3.5, a disruption metric
based on MoJoFM that measures how much of the original implementation developers would
need to change to adopt the modular optimised solution.

DisMoJo(A, B) = 100% −MoJoFM(A, B) (3.5)
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Table 3.2 Open source systems used in the empirical evaluation of cohesion/coupling behaviour
and optimisation. For each system, we report the number of releases and the median number of
packages, classes and dependencies over releases. Finally, we report the median number of
releases, packages, classes and dependencies for all systems.
Systems Description Releases Packages Classes Dependencies
Ant Tool to perform the ‘build’ of Java applications 30 25 576 2567

AssertJ Library of assertions for Java 12 15 467 2095
Flume Java logging API 10 17 255 849
Gson Google’s converter of Java objects to JSON 15 6 153 724
JUnit Java unit testing framework 20 23 196 734
Nutch Java web crawler 13 18 272 1007

PDFBox Java PDF manipulation library 31 48 496 3049
Pivot Platform for building Installable Web Applications 12 13 150 568

Procyon Java decompiler 47 36 895 6690
Proguard Java code obfuscator 43 18 329 3513

All - 17 18 300 1551

3.3 Software Systems Under Study
In this section we describe the systems we study in our empirical investigation of cohesion/cou-
pling behaviour and optimisation, including the selection criteria we employed, the process for
extracting the modular structure data, and a short description of each system.
The primary criteria for selecting software systems to study in our empirical investigation

was the availability of at least 10 subsequent releases, so that we could evaluate more than
one version of the systems and not only the latest one, like in most of the related work. We
conjectured that 10 releases would be sufficient for our analysis. In particular, we did not require
the system to have all of its releases available, as it is common for open source systems to avoid
providing old versions of the system to users. Thus, for some systems, we have collected all the
releases since the first one (e.g. Ant), and for others, we have collected all the releases available
until the latest one available (e.g. JUnit).

As a result, we selected 10 open source Java systems, which are briefly described in Table 3.3.
The number of releases of the systems under study varies from 10 to 47, with a median of 17
releases per system. Moreover, the median number of classes varies from 150 to 895 and the
median number of dependencies between classes varies from 568 to 6690, indicating that these
are non-trivial medium to large real-world software systems.

We employed a reverse engineering approach based on static analysis to obtain the modular
structure of each release of each system. In order to do so, we used the pf-cda (Duchrow, 2018)
tool to instrument the jar files of each release and subsequently extract the packages, classes
and dependencies.

In order to facilitate replications of this study, we make available all 233 modularity datasets
in our supporting web page (Paixao et al., 2017b). In addition, the web page also contains all
results from this investigation, including further details elided for brevity in this chapter.
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3.4 Empirical Study
This section describes and presents the results of the empirical study we carried out in this
chapter to investigate cohesion/coupling behaviour and optimisation. Each of our research
questions will be presented and answered, followed by a discussion of the findings.

3.4.1 RQ1: Is there any evidence that open source software systems
respect structural measurements of cohesion and coupling?

By answering RQ1, we seek to investigate whether there is any evidence that the modular
structure of existing software respects both raw cohesion and the MQ metric. We chose raw
cohesion because it is a simple and intuitive measurement, and MQ because it is the most used
metric in the automated software modularisation literature. Intuition suggests that developers
do care about cohesion/coupling, and so we expect existing systems to exhibit some degree of
‘respect’ for these metrics.

We could survey developers with a questionnaire in order to discover a subjective self-
assessment of the degree to which they care about these metrics, but such a study would
be vulnerable to bias; developers may believe that they ought to care about these metrics,
since cohesion/coupling have been recommended for many years (Yourdon and Constantine,
1979; Pressman, 2005; Sommerville, 2011). Such feelings may lead to an implicit or explicit
bias that may influence the developers’ self-assessment of the importance that they attach to
measurements of cohesion/coupling. Moreover, any such assessment would be inherently
subjective.
Therefore, although such results would undoubtedly be interesting, we choose to focus on

a quantitative assessment of the degree to which the existing modular structure chosen by
developers respects both the raw cohesion and the MQ metric.
In order to provide such a quantitative assessment of the degree of agreement with these

metrics, we propose three different techniques, each of which produces a probabilistic assessment
that can be used as the basis for an inferential statistical argument, concerning the likelihood of
rejecting the Null Hypothesis (that the modular structure takes no account of the modularity
quality metrics).

RQ1.1: How does the solution implemented by developers compare to a purely random
allocation of classes to packages?

As a simple baseline, we start by considering a purely random allocation of classes to packages.
Therefore, we are assuming the following Null Hypothesis H0: The modularity measurements
of the releases of the studied open source software systems follow a purely random distribution.
That is, we assume, as a Null Hypothesis, that developers simply allocate classes to packages
without any regard for the cohesion/coupling as captured by the chosen metrics. If this Null
Hypothesis holds, then there is simply no evidence to suggest that developers care about
cohesion or coupling. In such a situation, any attempt to optimise either raw cohesion or
MQ, using search-based or other techniques, would be unlikely to be viewed as beneficial by
developers.
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Table 3.3 Likelihood of finding a modular structure with superior measurements of structural
cohesion/coupling than that produced by the systems’ developers, according to 3 search
strategies. PRD simply searches for random allocations of classes to packages, while the
other two techniques search the neighbourhood of the solution implemented by the systems’
developers. kRNS randomly searches for solutions in the k–neighbourhood of the developers’
solution, by moving k classes to randomly selected packages, while SNS systematically searches
the k–neighbourhood for k = 1, by moving each class to one of each of the other packages.
Results indicate the percentage of solutions found that improve the modular structure, as
assessed using raw cohesion and MQ.

Systems
Purely Random

Distribution (PRD)
k–Random Neighbourhood

Search (kRNS)
Systematic Neighbourhood

Search (SNS)
Cohesion MQ Cohesion MQ Cohesion MQ

Ant 0.000000 0.000000 0.000590 0.000283 0.023026 0.052496
AssertJ 0.000000 0.000000 0.000344 0.000699 0.025063 0.067731
Flume 0.000000 0.000000 0.000413 0.001359 0.025661 0.072067
Gson 0.000000 0.000000 0.002233 0.013831 0.060578 0.142030
JUnit 0.000000 0.000000 0.000560 0.001616 0.029550 0.097797
Nutch 0.000000 0.000000 0.000125 0.000695 0.019316 0.047951

PDFBox 0.000000 0.000000 0.000587 0.001112 0.028475 0.086138
Pivot 0.000000 0.000000 0.000330 0.001147 0.023383 0.065127

Procyon 0.000000 0.000000 0.000042 0.000164 0.009813 0.049230
Proguard 0.000000 0.000000 0.004786 0.001588 0.083427 0.140490

All 0.000000 0.000000 0.001001 0.000866 0.032829 0.082105

In order to test H0, a random distribution of class allocations was performed for each release
of each system. A random allocation for a given release is performed by randomly allocating its
set of classes to packages. The probability of a class to be allocated to a certain package is
uniform. One million random class allocations were performed for each release of each system,
thereby forming a sample of the space of all possible allocations of classes to packages.
Since we have 233 different releases of the 10 systems under investigation, this means that

the experiment conducted to answer research question RQ1.1 involves the computation of 233
million randomly constructed modularisations. One (very obvious) advantage of our approach,
from an inferential statistical point of view, is the ability to work with such a large sample. This
large sample size enables us to produce precise assessments of the corresponding p-values.

The first two columns of Table 3.3 present the results of this analysis for each system under
consideration, for raw cohesion and MQ, respectively. Raw coupling is simply the obverse of
raw cohesion so, for brevity, we report only the values for raw cohesion. The entries in these
columns indicate the percentage of random modularisations (over all releases) that achieve
cohesion (or MQ) values that are equal to or greater than those achieved by the developers’
implementation. As can be seen from these columns, not one of the 233 million randomly
constructed modularisations produce a cohesion or MQ value equal to or greater than that
achieved by the developers.

We can safely reject the Null Hypothesis H0, and claim that raw cohesion and MQ values of
open source software systems do not follow a random distribution. This result does not provide
evidence that developers actually care about these metrics (it could simply be that they care
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about some other property that happens to correlate to significantly higher cohesion and MQ
values). Nevertheless, these findings do strongly reject the claim that their allocation of classes
to packages fails to respect modularity measurements; an obvious, yet important ‘sanity check’
result that has not hitherto been reported upon in the literature on search-based modularisation,
despite the large body of previous work that use these metrics to guide modular optimisation.
Our Null Hypothesis was based on a purely random allocation of classes to packages, so

the rejection of such a ‘weak’ Null Hypothesis can provide only a ‘weak sanity check’ on the
intuition that the developers’ modularisation structure respects modularity measurements. This
last observation motivates the next two research questions, which seek to set a stronger baseline
comparison, against which the developers’ modularisation structure is compared.

RQ1.2: How does the developers’ modularisation structure compare to randomly
identified k–neighbour modularisations?

The k–RandomNeighbourhood Search (kRNS) searches a randomly selected sample of solutions
in the ‘k–neighbourhood’ of the solution implemented by the developers, as defined in Section
3.2.2. For this investigation, we use a value k equal to the number of classes in the systems.
Therefore, kRNS proceeds by randomly selecting a subset of the classes in the system and
randomly moving each of these classes to another package, to produce a single element of the
sample. This process is repeated, using a freshly selected subset of classes on each occasion, to
produce a sample of solutions from the k–neighbourhood. In our case, as with the previous
experiment, we repeat this process 1 million times, for each release.
The third and fourth columns of Table 3.3 present the percentage of kRNS results that

produce equal or higher cohesion and MQ values than those for the developers’ modularisation.
Consider Flume, for example. For all its releases, 0.000413% of k–neighbours found by kRNS
had higher cohesion than the original solution, while 0.001359% of the k–neighbours had
higher MQ. As can be seen from Table 3.3, over all the 10 systems, 0.004786% and 0.013831%
are the highest number of cohesion-improved and MQ-improved modularisations found by the
kRNS approach, respectively. Indeed, at the 0.01 α level, we would still reject the (strengthened)
Null Hypothesis that Developers simply pick an arbitrary re-allocation of classes to packages
within the neighbourhood of the current solution, when producing a new version of the system.
However, it can also be observed that, for every system, there does exist a member of the

k–neighbourhood that enjoys a higher cohesion and/or higher MQ than that pertaining to the
modularisation implemented by the system’s developers. These results for RQ1.2, therefore,
provide a deeper insight than it was possible from the purely random search used to answer
RQ1.1. They show that, while modular structure tends to respect structural cohesion and
coupling, developers, nevertheless, do not produce an optimal solution; a random search within
the wider neighbourhood of the developers’ solutions can improve the modularity in each and
all the releases. Furthermore, one can observe that in the k–neighbourhood of all systems under
study, the number of cohesion-improved solutions is different from the number of MQ-improved
solutions. We will return to a deeper investigation of these observed differences later.

We now turn to a more systematic investigation of the neighbourhood. Clearly, for a systematic
investigation of all k–neighbours, the computational cost rises exponentially (in k), and, in the
limit, as k tends to the number of classes in the system, the systematic investigation tends to
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an exhaustive enumeration of all possible modularisations of the systems under investigation.
This is clearly infeasible (Mitchell, 2002). Indeed, avoiding such an exponential explosion
was our motivation for sampling from the overall k–neighbourhood for RQ1.2. However, it is
computationally feasible to consider the nearest of all neighbourhoods; the k–neighbourhood
for k = 1, and this allows us to answer an interesting research question:

RQ1.3: What portion of modularisation allocations within the nearest possible
neighbourhood (k = 1) would yield an improvement in modularity?

The systematic enumeration of the 1–neighbourhood is interesting because this is the set of
neighbouring modularisations that can be achieved by moving only a single class to another
package in the system. As such, it is the single simplest (and least disruptive) possible
modification to the modularisation structure chosen by the developers. In order to answer this
research question, we took each class and moved it to each of the other packages which the class
was not originally assigned by the developers. This yields (M −1)×N 1–neighbours (or ‘nearest
neighbours’), for a system consisting of M packages and N classes, thereby systematically
covering the entire 1-neighbourhood. The results of this analysis are presented in the final
columns of Table 3.3.
As can be seen, for each system investigated, there are a nontrivial number of such single

moves that can improve both the cohesion and the MQ score. Nevertheless, the solutions chosen
by the developers are better than at least 96.7% and 91.7% of the whole 1–neighbourhood, for
cohesion and MQ, respectively. This provides evidence for a strong developer preference for
structures that respect modularity metrics. Moreover, as observed in RQ1.2, the number of
cohesion-improved solutions is different from the number of MQ-improved solutions. In fact,
all systems presented more MQ-improved solutions than cohesion-improved solutions in the
1–neighbourhood.

Overall, as an answer to RQ1, we conclude that there is strong evidence to suggest that
the developers’ allocation of classes to packages does respect structural cohesion/coupling,
as assessed by the metrics of raw cohesion and MQ. Furthermore, there is equally strong
evidence that the developers’ allocation of classes could be improved, possibly with relatively
little disruption to the system’s modular structure, since there do always exist near neighbour
modularisations that enjoy better modular structure. This is interesting and important for work
on automated software modularisation since these metrics (MQ in particular) are widely used
fitness functions to guide such work on automated modularisation.
As observed in RQ1.2 and RQ1.3, when searching both the k–neighbourhood and the

1–neighbourhood of the systems under study, raw cohesion and MQ sometimes do not agree
in assessing the modular structure of different solutions. We define ‘agreeing solutions’ to
be those modularisations that improve on the developers’ implementation according to both
cohesion and MQ, while ‘disagreeing solutions’ are those that have either higher cohesion or
higher MQ, but not both.
Interestingly, and importantly for search-based modularisation research, we observe that,

on average, 83.04% of the neighbourhood solutions that present an improvement on the
original implementation in either cohesion or MQ are ‘disagreeing’ and only 16.96% are
‘agreeing’. Moreover, for the disagreeing solutions, 67.61% present higher MQ than the original
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implementation but lower cohesion, and 32.39% present higher cohesion than the original
implementation but lower MQ. These findings replicate previous observations (Ó Cinnéide
et al., 2012). In addition, we have presented evidence that developers’ solutions more closely
respect raw cohesion than MQ. Since MQ is a popular metric for search-based modularisation,
it is interesting and important for the community to understand how this metric is related to raw
cohesion, which is a more basic and intuitive assessment of modular structure. This observation
motivates our next research question.

3.4.2 RQ2: What is the relationship between raw cohesion and the MQ
metric?

We performed three different analyses to investigate the relationship between MQ and raw cohe-
sion. Each of these analyses employ a different technique to search for better modularisations.

RQ2.1: What is the relationship between raw cohesion and MQ for the solutions
identified in RQ1?

RQ1 performed neighbourhood search in the developers’ implemented solutions to find better
allocations of classes to packages. For RQ2.1, all neighbour solutions that improved on the
original developers’ implementation in at least one of the metrics (raw cohesion/coupling and/or
MQ) were considered for analysis, which, on average, represents 0.35% of the solutions found
by the kRNS and SNS in RQ1.

The first three columns of Table 3.4 present the average differences and standard deviation in
cohesion, coupling, and MQ for the neighbourhood search solutions, respectively. Consider the
Gson system, for example. The neighbourhood solutions offer an average difference in cohesion,
coupling, and MQ of -5.269%, 5.269% and 2.934%, respectively. These values indicate that
within the set of Gson neighbourhood solutions that improve on the original implementation in
at least one of the metrics, the average differences in cohesion, coupling and MQ are -5.269%,
5.269% and 2.934%, respectively.
One should notice that, as mentioned before, cohesion and coupling differences are the

obverses of each other. Since we are considering cohesion to be the number of dependencies
within packages and coupling to be the number of dependencies between packages, in the case
of a certain dependency being moved from between packages to inside a package, cohesion
will increase and coupling will decrease. Similarly, a dependency that is moved from inside a
package to between packages is going to decrease cohesion and increase coupling. Therefore,
for brevity purposes, only cohesion values will be reported and discussed in the rest of the
chapter.

We use correlation analysis to investigate more precisely the relationship between cohesion
and MQ. For each release of each system, the non-parametric Kendall-τ correlation test was
applied for the cohesion and MQ values of the neighbourhood solutions. After a preliminary
analysis of the results, we noticed that many runs of the neighbourhood algorithms (Bunch
and package-constrained) resulted in solutions with the same values of cohesion and MQ,
which generated many ties within the data points for analysis. Hence, we chose the Kendall-τ
correlation as it is specifically tailored for this scenario (Cohen, 1988).
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Table 3.4 Cohesion, Coupling and MQ results with standard deviation for Neighbourhood,
Bunch and Package-constrained searches for improvedmodularisations. Cohesion, Coupling and
MQ entries denote the average difference between the optimised modularisation in comparison
to the original developers’ implementation. In addition, we report the Kendall-τ correlation
coefficients between Cohesion and MQ results for each system.
Systems Neighbourhood Search Bunch Package-constrained HC

Cohesion Coupling MQ K-τ Cohesion Coupling MQ K-τ Cohesion Coupling MQ K-τ

Ant 0.423% -0.423% -1.907% -0.18* -45.919% 45.919% 376.611% 0.56* 30.063% -30.063% 40.598% 0.44*
± 1.116% ± 1.116% ± 3.644% ± 2.279% ± 2.279% ± 0.378% ± 5.348% ± 5.348% ± 1.078%

AssertJ -0.174% 0.174% 0.102% -0.27 -62.888% 62.888% 522.197% 0.41* 0.714% -0.714% 61.167% 0.46*
± 1.066% ± 1.066% ± 1.130% ± 1.772% ± 1.772% ± 0.293% ± 4.217% ± 4.217% ± 1.816%

Flume -1.092% 1.092% 0.857% -0.22 -35.977% 35.977% 336.829 0.57* 19.379% -19.379% 51.026% 0.55
± 2.273% ± 2.273% ± 0.594% ± 2.100% ± 2.100% ± 0.594% ± 4.030% ± 4.030% ± 1.232%

Gson -5.269% 5.269% 2.934% 0.08* -55.559% 55.559% 584.924% 0.45* 19.832% -19.832% 97.978% 0.64
± 7.090% ± 7.090% ± 0.569% ± 3.133% ± 3.133% ± 0.940% ± 5.988% ± 5.988% ± 4.089%

JUnit -0.449% 0.449% 0.292% -0.14* -28.240% 28.240% 226.341% -0.37* 30.157% -30.157% 66.530% 0.48*
± 1.797% ± 1.797% ± 1.446% ± 2.900% ± 2.900% ± 0.998% ± 4.850% ± 4.850% ± 1.608%

Nutch -1.252% 1.252% 1.018% -0.27 -42.993% 42.993% 321.843% 0.50* 17.564% -17.564% 56.962% 0.44*
± 1.977% ± 1.977% ± 0.414% ± 2.015% ± 2.015% ± 0.420% ± 5.603% ± 5.603% ± 0.746%

PDFBox -0.377% 0.377% 0.119% -0.18 -33.100% 33.100% 180.531% 0.43* 31.387% -31.387% 79.773% 0.43*
± 1.398% ± 1.398% ± 1.537% ± 3.595% ± 3.595% ± 0.350% ± 5.532% ± 5.532% ± 0.979%

Pivot -1.258% 1.258% 0.519% -0.20 -43.776% 43.776% 266.257% 0.63 3.927% -3.927% 44.875% 0.51*
± 2.273% ± 2.273% ± 0.549% ± 1.680% ± 1.680% ± 0.508% ± 4.102% ± 4.102% ± 1.155%

Procyon -0.064% 0.064% 0.102% -0.20 -71.726% 71.726% 408.408% 0.57 -4.799% 4.799% 56.538% 0.44*
± 0.289% ± 0.289% ± 0.054% ± 1.194% ± 1.194% ± 0.145% ± 4.312% ± 4.312% ± 0.634%

Proguard 1.035% -1.035% -2.494% -0.10* -42.355% 42.355% 295.561% 0.48* 102.282% -102.282% 86.169% 0.46*
± 1.435% ± 1.435% ± 3.805% ± 5.383% ± 5.383% ± 0.357% ± 10.911% ± 10.911% ± 2.606%

All -0.750% 0.750% 0.154% -0.19* -46.253% 46.253% 351.950% 0.49* 25.050% -25.050% 64.161% 0.46*
± 2.071% ± 2.071% ± 1.374% ± 2.625 ± 2.625 ± 0.498% ± 5.489% ± 5.489% ± 1.594%

The fourth column of Table 3.4 presents the correlation coefficient of each system, which is
computed as the median coefficient of all releases of each system. An asterisk (*) decorates the
coefficient entry when not all releases exhibit a significant coefficient at the 0.01 α level. Most
coefficients range from -0.2 to 0.2, which suggests little or no correlation between cohesion and
MQ for the neighbourhood solutions.
However, we must be careful to not over-generalize this observation, because only simple

local search procedures were employed to find the solutions that were considered in the analysis,
and the search space covered by the neighbourhood solutions is small. This motivated our next
research question, in which we apply more sophisticated search-based approaches for software
modularisation.

RQ2.2: What is the relationship between raw cohesion and MQ for solutions found by
widely used search-based cohesion/coupling optimisation approaches?

For this analysis, we use the Bunch tool (Mitchell and Mancoridis, 2006). Bunch is a tool
for search-based modularisation that implements a simple hill climbing approach. There are
other more sophisticated techniques for search-based modularisation, that may produce superior
results (Praditwong et al., 2011) in terms of cohesion, coupling, and the MQ metric, but at
far greater computational cost. We wish to investigate whether developers can use simple
and fast search-based modularisation techniques to quickly produce alternative solutions that
significantly improve on the developers’ given modularisations, according to MQ.

We applied the Bunch optimisation tool to all releases. Since Bunch’s hill climbing algorithm
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is a randomized search algorithm, we performed 30 executions of Bunch for each release. The
30 resulting cohesion, coupling and MQ values found by Bunch for each release were compared
with the developer’s implementation, and the results are presented in the fifth, sixth and seventh
columns of Table 3.4, alongside the respective standard deviation.
As one can see, the Bunch tool is able to find modularisations with remarkable MQ

improvement (of more than 500% for some systems). However, all these MQ-optimised
solutions have lower cohesion values than the developer’s original implementation. Such a
surprising result can be explained by the design of the MQ metric. As one can see in the MQ
definition in Section 3.2.2, the MQ score is composed of the sum of the scores of each package
in the modularisation; so, solutions with more packages tend to have higher MQ values. In fact,
the solutions found by Bunch have, on average, 493.11% more packages than the developers’
implementation. As a result, fewer classes are allocated to each package, thereby creating
several dependencies that cut across package boundaries. We will refer to this phenomena as
the MQ’s ‘inflation effect’.
The Kendall-τ correlation test was also applied to measure the correlation between raw

cohesion and MQ of the Bunch solutions. Apart from JUnit, all systems have a moderate
positive correlation between cohesion and MQ, which is a surprising result given that all Bunch
solutions had worse cohesion than the original implementation. First of all, one needs to keep
in mind that this correlation was computed using the 30 Bunch solutions of each release of each
system. A positive correlation, in this case, indicates that in spite of the fact that all cohesion
values of Bunch solutions are worse than the developers’ implementation, the solutions with
higher MQ tend to have a higher cohesion too.
As an example, the scatter plot in Figure 3.1 presents the cohesion and MQ differences of

the 30 solutions found by Bunch for Pivot 2.0.2 in comparison to the original implementation.
As one can see, all the 30 solutions have higher MQ than the developers’ implementation, yet
lower cohesion. However, the solutions with higher MQ tend to have a higher cohesion too,
which elucidates the positive correlations between cohesion and MQ reported in Table 3.4.

After an analysis of the 30 Bunch solutions, we noticed that these solutions have a similar
number of packages, where 16 (out of 30) solutions have 58 packages, 10 solutions have 57
packages and 4 solutions have 59 packages. This suggests that for modularisations with similar
numbers of packages, higher MQ values usually denote higher cohesion. These observations
motivate our next research question, where we introduce and evaluate a package-constrained
approach for search-based software modularisation as an attempt to improve the modular
structure of software systems as assessed by both cohesion and MQ.

RQ2.3: What is the relationship between raw cohesion and MQ for solutions found by a
package-constrained search for improved cohesion/coupling?

The MQ metric was originally designed to optimise the cohesion/coupling of software systems
from scratch, without any previous information on the modular structure other than the
dependencies between elements. However, when Bunch is applied to large-scale real-world
software systems, the ‘inflation effect’ induced by MQ may be undesirable. Because of this
effect, new packages are created and existing classes are moved to these new packages, causing
a (large) decrease in the system’s cohesion.
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Figure 3.1: Cohesion and MQ differences for 30 modularisations found by Bunch for Pivot 2.0.2
when compared to the original developers’ implementation

We performed a longitudinal analysis of the allocation of classes to packages throughout
releases as implemented by the developers themselves. We found no release (out of 233)
where a new package was created and only existing classes were moved to the new package.
Therefore, apart from decreasing the cohesion of the system, a Bunch modularisation might also
be unrealistic because developers rarely create new packages to accommodate existing classes.
This observation adds evidence to recent claims (Hall et al., 2014; Candela et al., 2016) against
‘big bang’ modularisation approaches (i.e., a complete re-allocation of the system’s classes
into packages), where recent studies have used the original modular structure implemented by
developers as a guide to find more suitable packages for certain classes (Abdeen et al., 2009;
Bavota et al., 2014).

Thus, in this research question, we introduce a package-constrained version of search-based
modularisation that maximises MQ and constrains the search algorithm to search only for
modularisations with the same number of packages of the original developers’ implementation.
This way we avoid the creation of new packages, so that classes are only moved to packages that
developers are already familiar with. Moreover, as suggested in RQ2.2, higher MQ values may
lead to higher cohesion values for the same number of packages. Therefore, by maintaining the
same number of packages as the original implementation, we might be able to optimise MQ
and improve the overall cohesion of the system.
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Hence, we re-implemented the hill climbing search approach of the Bunch tool including
the number of packages as a constraint to the search. We executed the approach 30 times for
each release of each system, and the average cohesion, coupling, MQ and standard deviations
achieved by the package-constrained search are reported in the ninth, tenth and eleventh columns
of Table 3.4, respectively.
Apart from the Procyon system, all package-constrained solutions yield improvements in

both cohesion and MQ. On average, the cohesion of the systems under study was improved
by 25.05%, and the biggest cohesion improvement was in Proguard with 102.28%. However,
similar results were not achieved in some of the systems, such as AssertJ and Pivot that had
small cohesion improvements, and Procyon that had a worse average cohesion than the original
implementation. The results for these three systems indicate that in some cases, even in a
package-constrained setting, MQ optimisation does not lead to better modularity, as assessed
by raw cohesion. It might be possible that these systems already have a good cohesion, and
cannot be further optimised.

The Kendall-τ correlation coefficients between cohesion and MQ for the package-constrained
search are reported in the last column of Table 3.4. The moderate positive coefficients that can
be seen for the package-constrained search resemble the coefficients computed for the Bunch
solutions. These results reinforce the observation that MQ can indeed guide the search towards
solutions with better cohesion when the search is package-constrained. This is an important
finding for the search-based modularisation community.
As an answer to RQ2, we showed that raw cohesion and MQ do not commonly agree in

assessing the modularity of software systems. We noticed that this is mainly due to the ‘inflation
effect’ of MQ, where Bunch creates an average of 493.11% new packages in the system, which
decreases the cohesion when compared to the original developers’ implementation. However,
we observed that in solutions with a similar number of packages, MQ and cohesion have a
moderate positive correlation, which mainly led us to introduce a new package-constrained
search as an attempt to mitigate MQ’s ‘inflation effect’. In general, package-constrained
automated modularisation was able to improve the cohesion of the systems under study by
25.05% without creating new packages.
Considering the results presented in RQ1 and RQ2, we showed that developers have some

degree of respect for structural measurements of cohesion and coupling as the original solutions
are better than the ones found by random and neighbourhood search. However, optimal values
of cohesion and coupling might not be pursued since developers’ solutions are worse than the
ones found by the hill climbing search. This observation endorses a recent study (Candela et al.,
2016) that compared developers’ modularisations of open source systems with alternatives
found by multiobjective search for cohesion/coupling improvement. Even though the empirical
studies presented in this and in the related work by Candela et al. (2016) use different quality
metrics, different search procedures and different software systems, they complement each
other by presenting evidence that developers do respect structural measurements of cohesion
and coupling, but optimisation of these properties is not sought.
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3.4.3 RQ3: What is the disruption caused by search-based approaches
for optimising software modularisation?

The previous section showed that search-based algorithms can be used to optimise the trade-off
between cohesion and coupling in open source software systems. In fact, candidate solutions in
the package-constrained search usually present improved modular structure, as measured by
both cohesion and MQ metrics. This raises the obvious question: if systems can be optimised
for modularity, and there is evidence that systems respect structural measurements, then why do
developers implement solutions with a sub-optimal modular structure?
One answer to this question lies in the potential size and complexity of the search space.

Humans have been shown, repeatedly, to be sub-optimal, in their ability to find solutions to
SBSE problems such as this (Petke et al., 2014; de Souza et al., 2010). However, it is also
important to explore another possibility: perhaps the improvement in modular structure achieved
using SBSE comes with a price of significant disruption to the existing modularity. There is
evidence in the literature (Wermelinger et al., 2011) that developers are reluctant to change the
structure of systems, choosing instead, to retain the familiar structure rather than move to an
improved version. Therefore, we turn our attention to assessing the degree of disruption that
would result from an improvement performed by the SBSE approaches to automated software
modularisation presented in RQ2. For this analysis, we use the DisMoJo metric, which is
formally defined in Section 3.5.

RQ3.1: What is the disruption caused by widely used search-based tools for automated
software modularisation?

In this research question, we want to assess how much disruption developers would have to
endure when using a widely used tool for modularity optimisation. For this analysis, the
solutions found by the Bunch tool in RQ2.2 will be considered. Each of the 30 solutions found
by Bunch for each release of each system is compared to the original developers’ implementation.
The average disruption caused by Bunch, as assessed by DisMoJo, for each system under study
is presented in the first column of Table 3.5.
Considering all systems, the average disruption that developers would need to endure in

order to optimise the modular structure using Bunch is 80.39%. This observation provides
evidence that even though existing SBSE techniques can improve modular structure, the high
disruption caused to the original system might inhibit wider industrial uptake of search-based
modularisation.
After an inspection of all 30 Bunch solutions of each release of each system, we collected

the solutions with higher cohesion and MQ, and reported the average disruption caused by
these best solutions over all releases. The disruption caused by the best cohesion and best
MQ solutions found by Bunch are presented on the second and third columns of Table 3.5,
respectively.
As one can see, the disruption caused by the best cohesion and MQ solutions is slightly

smaller than the average disruption, where the biggest difference in disruption ranges around
2%. This indicates that solutions with similar values of cohesion and MQ do present different
values of disruption, which encourages the investigation of the possible trade-off between
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Table 3.5 Disruption to the modular structure caused by Bunch and Package-constrained
search-based approaches for modularisation improvement. We report the mean disruption
caused by the 30 executions of each search approach. In addition, we report the disruption
caused by the best solutions (out of the 30), as assessed by Cohesion and MQ. Each entry in the
table is an average over all releases of the system.

Systems Bunch Package-constrained
Mean Best - Cohesion Best - MQ Mean Best - Cohesion Best - MQ

Ant 82.70% 80.63% 81.70% 57.86% 53.50% 55.73%
AssertJ 90.11% 89.66% 90.11% 59.02% 55.51% 56.54%
Flume 79.90% 79.09% 79.19% 62.20% 57.57% 58.16%
Gson 88.49% 85.22% 87.78% 56.04% 48.72% 51.16%
JUnit 69.87% 68.24% 69.23% 52.11% 49.53% 50.12%
Nutch 77.22% 75.92% 76.45% 61.91% 60.30% 60.15%
PDFBox 66.78% 64.18% 65.96% 53.12% 51.49% 51.74%
Pivot 79.26% 78.39% 78.32% 60.47% 56.36% 56.36%

Procyon 85.98% 84.39% 85.23% 56.94% 53.94% 54.88%
Proguard 83.66% 82.02% 82.74% 58.59% 56.44% 58.24%

All 80.39% 78.77% 79.67% 57.82% 54.33% 55.30%

quality improvement and disruption to the original structure.

RQ3.2: What is the disruption caused by the package-constrained search-based
approach for automated software modularisation?

The package-constrained search approach for software modularisation was introduced in RQ2.3
as an alternative to mitigate the ‘inflation effect’ of the Bunch tool. The average disruption
caused by the package-constrained search is presented in the fourth column of Table 3.5.
As expected, the disruption caused by the package-constrained search is smaller (57.82%),

but it still denotes a high number of modifications to the original system in order to optimise
the modular structure.
The average disruption caused by the best cohesion and MQ solutions for the package-

constrained search are presented in the last two columns of Table 3.5, respectively. Similarly to
the Bunch results, the disruption of the solutions with best modular structure is only slightly
smaller than the average disruption caused by the 30 executions for each release.

In general, the disruption caused by the package-constrained optimisation approach is smaller
than the disruption caused by the Bunch tool. An interesting observation from these analyses
was that solutions with the best modular structure, as assessed by both cohesion and MQ,
presented different disruption than the average, which encourages the study of such trade-off.
As an answer to RQ3, the disruption caused by search-based approaches to automated

modularisation is high. The results found in this chapter complement a recent disruption
analysis performed by Candela et al. (2016), where despite using different optimisation
algorithms, different cohesion/coupling metrics and different software systems, both studies
showed that search-basedmodularisation is highly disruptive. We conjecture that such disruption
inhibits industrial uptake of these techniques.
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3.4.4 RQ4: Can multiobjective search find allocations of classes to
packages with a good trade-off between modularity improvement
and disruption of the original modular structure?

Summarising the findings of RQ1-3: open source software systems respect structural measure-
ments of cohesion and coupling (RQ1), but although search-based techniques can substantially
improve the systems’ modular structure (RQ2), these techniques tend to dramatically disrupt
the original developers’ implementations (RQ3).
Motivated by these findings, we introduce a multiobjective evolutionary search-based

approach to find candidate modularisations with a good trade-off between modular improvement
and disruption. Our intuition is that since the systems under study exhibit considerable respect
for structural measurements of cohesion and coupling, developers might be willing to improve
their systems’ modular structure when the changes required for improvement lie within an
acceptable range.
In order to carry out this analysis, we propose two different multiobjective experiments,

each of which uses different search strategies; therefore, providing different insights on how
multiobjective search can be used to improve software modularity while taking disruption into
account.

For all multiobjective experiments, we use the Two-Archive Genetic Algorithm (Praditwong
and Yao, 2006), which was demonstrated to perform well in a previous multiobjective investiga-
tion of automated software modularisation (Praditwong et al., 2011). The Two-Archive GA
settings are mostly based on the work by Praditwong et al. (2011), and are the same for all
experiments. The population size is set to N , where N is the number of classes in the system.
Single point crossover is employed with a 0.8 probability when N < 100, and 1.0 probability
otherwise. Swap mutation is performed with a probability of 0.004 logN

2 . Parents are selected
by tournament, with a tournament size of 2. In addition, the probability of selecting parents
from the convergence archive is 0.5, and the size of the archives is limited to 100 individuals.
Finally, the number of generations is set to 50N .

RQ4.1: What is the trade-off between modularity improvement and disruption for the
package-free search?

The first multiobjective experiment is concerned with the widely used (Mitchell and Mancoridis,
2006; Praditwong et al., 2011) optimisation approach to improve software modularity where the
search algorithm has no constraints on the number of packages it can create. We call this search
strategy ‘package-free’. In order to identify the trade-off between modularity improvement and
disruption, the search algorithm attempts to maximise MQ and minimise DisMoJo. In addition,
we measure the raw cohesion of the solutions found by the multiobjective search.

In RQ2.2 we used the Bunch tool to find MQ-optimised solutions for each release of each
system under study; therefore, the solutions found by Bunch can be used as starting points
(seeds) for the multiobjective algorithm in its search for solutions with high MQ value. Similarly,
the original developers’ implementation of each release is also used to seed the Two-Archive
GA.
Figure 3.2 presents some of the Pareto fronts found for the package-free multiobjective

72



Software Restructuring: Understanding Architectural Changes and Refactoring M. Paixao

execution. We selected one release as a representative of each system to be discussed in
this chapter. However, we make all results available on the original paper’s complementary
web page (Paixao et al., 2017b). As one can see, the results for the different systems are
considerably similar, where all releases present a clear and almost constant trade-off between
MQ improvement and DisMoJo, which is an expected behaviour because MQ improvement is
achieved by adding new packages; therefore, leading to large-scale disruption.
RQ2 showed that an improvement in MQ does not necessarily indicate an improvement in

the raw cohesion of the system; therefore, we also measured the raw cohesion of all different
modularisations found by the multiobjective search that targets MQ improvement. When
considering all the package-free MQ-optimised modularisations in the Pareto fronts, most of
them have a cohesion value that is worse than the original developers’ implementation. These
results add evidence to the observation in RQ2, that MQ-optimised solutions may decrease
the cohesion of the original system. In fact, when considering the Pareto fronts computed for
Nutch, PDFBox and Proguard, for example, all the modularisations are worse than the original
system in terms of raw cohesion.

RQ4.2: What is the trade-off between modularity improvement and disruption for the
package-constrained search?

This second multiobjective experiment is concerned with the automated software modularisation
approach proposed in RQ2.3, where the search algorithm is package-constrained. Similarly
to RQ4.1, the multiobjective search tries to maximise MQ and minimise DisMoJo. However,
the search algorithm is constrained to the same number of packages as those in the original
developers’ implementation.
For this research question, the Two-Archive GA is seeded with the original system (as in

RQ4.1) and the MQ-optimised solutions found by our package-constrained implementation of
the hill climbing algorithm used by the Bunch tool (see RQ2.3). Figure 3.3 presents the Pareto
fronts found by the package-constrained multiobjective search.
Similarly to RQ4.1, there is a clear trade-off between MQ and DisMoJo; however, the

Pareto front structure is different: we observe a larger number of gaps and ‘knee points’ in the
package-constrained Pareto fronts than in the package-free ones.
The cohesion improvements achieved by all modularisations in the package-constrained

Pareto fronts were also measured. In most of the systems, the number of MQ-optimised
modularisations with better cohesion than the original implementation is noticeably bigger than
in RQ4.1. Moreover, for almost all the systems, it is possible to find modularisations with a
considerable improvement in cohesion and yet a relatively small disruption. This is a positive
outcome. Although modularisation approaches may be too disruptive, multiobjective search is
able to find solutions with useful compromises between modular improvement and disruption.
As one can notice in the package-constrained Pareto fronts in Figure 3.3, sometimes the

modularisation found by the hill climbing package-constrained search is not part of the Pareto
front. Considering Ant, Flume and JUnit, for example, the hill climbing modularisation has
higher disruption and lower MQ than other solutions in the Pareto front. Differently, in the
package-free Pareto fronts in Figure 3.2, the Bunch solution is always the one with highest MQ
on all Pareto fronts.
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Figure 3.2: Pareto fronts reporting the trade-off between MQ and DisMoJo for the package-free
multiobjective search
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Figure 3.3: Pareto fronts reporting the trade-off between MQ and DisMoJo for the package-
constrained multiobjective search
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This might be possible because even though we followed what was described in the PhD
thesis (Mitchell, 2002) of one of Bunch’s creators, the Bunch tool has continued to be improved
over the years (Mitchell and Mancoridis, 2006, 2007), so that our implementation might only be
able to find local optima modularisations. According to Table 3.4, the standard deviation of our
implementation of the hill climbing search is higher than Bunch’s, which may be an indicator
of the conjecture above. However, it might also be the case that the MQ search space of the
package-constrained environment is different than the package-free one, where solutions with
bigger MQ improvement can be found on the neighbourhood of solutions with small disruption.
The main goal of RQ4 (and Figures 3.2 and 3.3) is to illustrate the trade-off between

improvement in modular structure and disruption to the original implementation that can be
achieved with multiobjective search. The state of the art techniques for automated software
modularisation, both single (Mitchell and Mancoridis, 2006) and multi (Praditwong et al.,
2011) objective, are mostly concerned with modularity improvement, which we know usually
causes a large disruption to the original implementation (see RQ3). Previously, developers who
would like to optimise the modular structure of their systems using search-based approaches
would have two choices: (i) improve the system as much as possible and thereby considerably
change the original structure, or (ii) keep the original implementation and do not perform
any improvement. With the multiobjective approach proposed to answer RQ4.1 and RQ4.2,
developers would have a wider range of options.

The analyses performed in RQ4 took into consideration all solutions in the computed Pareto
fronts, providing general insights into the shape of the fronts and on the quality of the solutions
within the fronts. In RQ5 we show how developers can pick a particular modularisation from
the Pareto fronts according to their needs and constraints.

3.4.5 RQ5: What is the modularity improvement provided by the
multiobjective search for acceptable disruption levels?

In RQ4 we showed that the proposed multiobjective search can find solutions that improve
the modularity of the original developers’ implementation, as assessed by MQ and cohesion,
especially for package-constrained search. However, we did not discuss how developers can
use the proposed multiobjective approach. We believe that the multiobjective optimisation of
modularity and disruption can be used by developers at different moments during the software
lifecycle, depending on how much disruption they are willing to endure in order to achieve
modularity improvement.
As an example, consider the scenario where developers are planning a major release of the

software system. Since it is a major release, the system will possibly undergo large changes
to accommodate the new features. In this case, developers can take advantage of the fact the
system is going to undergo substantial change, and perform large restructurings to improve the
modular structure. On the other hand, in minor or bug-fixing releases, developers may be less
willing to change the modular structure, therefore, favouring smaller changes. However, this
‘acceptable disruption’ level is not obvious.

Therefore, in this research question, we introduce three different methods to estimate the
‘acceptable’ level of modularity disruption that can be sustained by developers in order to obtain
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modularity improvement. All methods are based on a longitudinal analysis of the developers’
implementations of each release of each system under study. Later, we show how these different
‘acceptable’ levels of disruption can be used to select solutions from the Pareto fronts found by
the multiobjective search approach.

RQ5.1: What is the longitudinal modular disruption introduced by developers?

As a software system evolves, new features are added, changed or removed. Hence, the modular
structure of the system needs to change in order to cope with the new requirements and demands.
Therefore, the modular structure of a software system is constantly disrupted by its developers
during the system’s lifetime, which we call the ‘natural disruption’ of the system. Although the
‘acceptable disruption’ level that developers are willing to endure to improve the modularity
is difficult to measure, we argue that the ‘natural disruption’ level that developers introduced
during the system evolution is a good proxy. Thus, we introduce three different methods to
assess the ‘natural disruption’ of the systems under study, each of which is used as an estimation
of the ‘acceptable’ level of disruption.

The first two methods use the DisMoJo metric in a different way than used in RQ3 and RQ4.
DisMoJo(A, B), as defined in Section 3.5, is used to measure the disruption between A and B
when both modularisations are composed by the same set of classes. Therefore, since classes
can be added or removed between two different releases of the same system, DisMoJo cannot be
used to measure the disruption between releases of the same system. In order to provide a lower
and an upper bound of the disruption between releases, we introduce Intersection DisMoJo and
Union DisMoJo, respectively.
Consider two subsequent releases A and B of the same system. Intersection DisMoJo is

computed by considering only the subset of classes that belong to both A and B. We say this is
a lower bound disruption between releases because it considers the minimum number of classes
that can be moved between releases. Accordingly, Union DisMoJo is computed by aggregating
all classes that belong to both A and B, where classes that belong to A but do not belong to B,
and vice-versa, are allocated to a separate package. This is a disruption upper bound because all
possible classes that can be moved, added or deleted between A and B are taken into account.
Finally, our third method to assess the ‘natural disruption’ of a software system is based on

the analysis of the proportional increase in the number of classes over releases. As the system
evolves, the number of classes added in each release is a simple and straightforward way to
asses how much of the modular structure changes during the system evolution.
Each of the three methods to assess the ‘natural disruption’ described above was computed

for each pair of subsequent releases of the systems under study, and the results are presented in
Table 3.6. For each system, we report the minimum, maximum, median and mean values for
each method. This way we can assess what is the biggest and smallest disruption levels each
system has undergone during its lifecycle, and also what is the average disruption developers
are used to introduce during the systems’ evolution.
As one can see, the minimum ‘natural disruption’ for all systems, according to all three

estimation methods, is 0.00%. This means that for all systems, there is at least one pair of
subsequent releases that have the same modular structure. The Itersection DisMoJo values are
the smallest for all systems (as expected), and for Flume and Procyon, Intersection DisMoJo is
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Table 3.6 ‘Natural disruption’ levels caused by developers during the systems’ evolution, as
assessed by three different methods. Intersection DisMoJo computes the DisMoJo metric
considering the intersection of classes between two subsequent releases, while Union DisMoJo
computes the DisMoJo metric considering all classes of two subsequent releases. The
proportional addition of classes accounts for the proportional increase in the number of classes
between two subsequent releases of the same system. Each method was used to compute the
‘natural disruption’ of each release of each system, and we report the minimum, maximum,
median and mean results for each system.
Systems Intersection DisMoJo Union DisMoJo Proportional Addition of Classes

Min Max Median Mean Min Max Median Mean Min Max Median Mean
Ant 0.00% 2.12 % 0.00% 0.07% 0.00% 36.92% 0.59% 6.48% 0.00% 72.54% 0.05% 11.05%

AssertJ 0.00% 0.79 % 0.00% 0.12% 0.00% 19.34% 3.53% 4.68% 0.00% 47.89% 3.78% 8.50%
Flume 0.00% 0.00 % 0.00% 0.00% 0.00% 36.55% 1.98% 8.60% 0.00% 59.59% 2.37% 14.52%
Gson 0.00% 16.45% 0.00% 1.23% 0.00% 38.71% 6.76% 10.60% 0.00% 64.70% 8.31% 14.09%
JUnit 0.00% 9.09 % 0.00% 0.79% 0.00% 41.89% 2.92% 9.34% 0.00% 196.93% 4.34% 23.30%
Nutch 0.00% 0.43 % 0.00% 0.03% 0.00% 35.15% 1.82% 5.67% 0.00% 51.77% 2.41% 7.09%
PDFBox 0.00% 2.06 % 0.00% 0.10% 0.00% 26.72% 1.57% 5.41% 0.00% 35.00% 2.54% 8.24%
Pivot 0.00% 0.79 % 0.00% 0.07% 0.00% 14.53% 1.14% 5.77% 0.00% 32.03% 1.08% 9.47%

Procyon 0.00% 0.00 % 0.00% 0.00% 0.00% 3.78 % 0.02% 0.54% 0.00% 3.03% 0.38% 0.63%
Proguard 0.00% 11.48% 0.00% 0.58% 0.00% 56.36% 1.28% 5.32% 0.00% 75.37% 1.55% 6.56%

always 0.00%. These results add evidence to the observation in RQ2.3 that existing classes
rarely move between packages. Furthermore, all disruption values reported by both Intersection
and Union DisMoJo lie within the range of the proportional addition of classes, which is a
straightforward way for developers to understand the ‘natural disruption’.

RQ5.2: How much modularity improvement can be achieved within lower and upper
bounds of ‘acceptable’ disruption?

In this analysis, the ‘natural disruption’ levels computed in RQ5.1 are used as proxies for the
‘acceptable’ level of disruption that developers would be willing to endure in order improve
the modular structure of their systems. As previously mentioned, developers have different
‘acceptance’ levels at different moments of the software lifetime. Thus, we report the modularity
improvement that can be achieved at the lower and upper bounds of the ‘acceptable disruption’.

The lower bound denotes the smallest greater than zero disruption level we could ascribe from
the average disruption caused by developers over the period of evolution of the systems studied.
This is a reasonable lower bound because it is chosen to be the lowest possible value (median or
mean, using either intersected or unioned DisMoJo) over all releases, for each system. If the
developers are prepared to tolerate this amount of disruption during the system’s development,
on average, then it is not unreasonable that they might allow this amount of disruption when it
can occasionally improve the modular structure.
The upper bound denotes the largest possible disruption value we can ascribe from the

disruption caused by developers in any release of the system studied (using either intersected or
unioned DisMoJo). This is a reasonable upper bound because we know that there does exist a
release of the software that causes this level of disruption, and therefore we know that it was, at
least on one occasion, tolerated by the developers.

Therefore, for each system, we identified the lower and upper bounds of ‘acceptable disruption’
as described above. Next, we selected modularisations from the Pareto fronts computed in RQ4
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Table 3.7 Modularity improvement, as assessed by cohesion and MQ, that can be achieved
within the lower and upper bounds of the ‘acceptable disruption’ level.

Systems
Package-Free Package-Constrained

Lower Bound Upper Bound Lower Bound Upper Bound
Coh MQ Coh MQ Coh MQ Coh MQ

Ant 0.00% 0.00% 1.24% 148.00% 0.00% 0.00% 7.66% 35.21%
AssertJ 0.00% 0.00% 0.52% 157.01% 0.00% 0.00% 4.73% 41.02%
Flume 0.00% 7.82% 0.54% 168.65% 1.25% 15.21% 21.35% 59.73%
Gson 1.28% 8.57% 8.97% 365.62% 4.70% 17.09% 40.98% 121.53%
JUnit 0.10% 0.00% 3.16% 148.37% 0.76% 2.22% 22.21% 49.09%
Nutch 0.00% 0.00% 0.00% 159.76% 0.00% 0.00% 1.89% 70.03%
PDFBox 0.00% 0.00% 2.73% 66.65% 0.00% 0.00% 6.61% 45.47%
Pivot 0.00% 0.00% 0.46% 83.23% 0.00% 0.00% 9.80% 45.44%

Procyon 0.00% 0.00% 0.00% 8.32% 0.00% 0.00% 0.00% 0.00%
Proguard 0.00% 0.00% 6.19% 200.29% 0.21% 0.00% 110.00% 94.05%

All 0.13% 1.63% 2.38% 150.28% 0.69% 3.45% 22.52% 55.75%

according to these lower and upper bounds. Consider the Ant system, for example. The lower
and upper bounds for ‘acceptable disruption’ were identified as 0.07% and 36.92%, respectively.
For each release of Ant we selected the solutions with the best cohesion and MQ improvements
found by both package-free and package-constrained search approaches that have a DisMoJo
value equal or smaller the lower and upper bounds of ‘acceptable disruption’. Results for all
systems under study are reported in Table 3.7.

As can be seen from the table, the modularity improvements achieved within the lower bound
disruption, for both package-free and package-constrained are small. In fact, for most of the
systems, neither package-free nor package-constrained has found any improvement in neither
cohesion nor MQ within the lower bound disruption. However, for some software systems, it is
possible to have modularity improvements even considering a lower bound disruption, such
as Gson, where package-constrained search found a 4.70% cohesion improvement within the
minimum ‘acceptable disruption’ level.
The small modularity improvement achieved within the lower bound disruption is due to

the fact that the changes performed to the classes that remain between releases (Intersection
DisMoJo) are usually small, as presented in Table 3.6. Nevertheless, small modularity
improvements can still be relevant. Cohesion improvements that are focused on a core package
or sub-module of the system might be small, but still represent a great impact on the overall
maintainability and understandability, for example. Correspondingly, the qualitative analysis in
Section 3.8 reports relevant restructurings suggested within the lower bound disruption for one
of the systems under study.

As expected, modular improvements within the upper bound disruption levels are the biggest
for all systems. When considering the biggest disruption level the systems have already
undergone, package-constrained search was able to find modularisations with considerable
cohesion improvements, such as 40.98% and 110.00% for Gson and Proguard, respectively.

As an answer to RQ5, multiobjective search can find modularisations with improved modular
structure, as assessed by both cohesion and MQ, even within lower and upper bounds of
disruption introduced by developers between releases.

79



Software Restructuring: Understanding Architectural Changes and Refactoring M. Paixao

3.5 Qualitative Analysis
In this section, we select one of the systems we studied in our empirical study and describe
with more details some of the results we achieved throughout our research questions. Table 3.8
reports detailed results for each release of JUnit, including the cohesion and MQ values of the
original developers’ implementations and the results achieved by Bunch, package-constrained
and multiobjective search. Finally, we also report the natural disruption between all releases of
the system. We have chosen JUnit because it presented a wide range of modularity variation
during its releases, enabling us to illustrate different aspects of the studies we performed.

Table 3.8 Detailed results for all releases of JUnit. For each release, we report the raw cohesion
and MQ values for the original developers’ implementation and the results achieved by both
Bunch and Package-constrained search. In addition, we report the lower and upper bounds of the
natural disruption between releases, computed by Intersection and Union DismoJo, respectively.
Finally we report the cohesion and MQ results achieved by the proposed multiobjective
approach to maximise modularity improvement and minimise disruption, where we use the
natural disruption of each release to pick a solution from the Pareto front.

Release Original Implementation Bunch Package-constrained HC Multiobjective Package-constrained Natural DisruptionLower Bound Upper Bound
Cohesion MQ Cohesion MQ Cohesion MQ Cohesion MQ Cohesion MQ Lower Bound Upper Bound

3.7 175 2.92 118 ± 3 10.69 ± 0.15 186 ± 9 4.78 ± 0.17 175 2.92 175 2.92 0.00% 0.00%
3.8 175 3.02 116 ± 2 11.00 ± 0.07 198 ± 7 4.28 ± 0.15 175 3.02 183 3.55 0.00% 7.50%
3.8.1 176 3.03 115 ± 2 11.06 ± 0.04 194 ± 7 4.21 ± 0.13 176 3.03 177 3.13 0.00% 1.27%
3.8.2 183 3.10 126 ± 2 11.60 ± 0.06 201 ± 8 4.33 ± 0.17 183 3.10 183 3.24 0.00% 2.50%
4.0 147 3.83 97 ± 6 11.02 ± 0.07 193 ± 9 6.31 ± 0.29 167 5.27 185 6.07 9.09% 39.86%
4.1 164 4.01 105 ± 6 11.72 ± 0.06 215 ± 11 6.62 ± 0.30 164 4.01 174 4.72 0.00% 3.66%
4.2 164 3.98 107 ± 7 11.95 ± 0.06 214 ± 9 7.14 ± 0.31 164 3.98 169 4.34 0.00% 1.20%
4.3 541 3.82 365 ± 15 28.90 ± 0.06 711 ± 23 9.15 ± 0.27 541 3.82 668 5.14 0.00% 2.92%
4.3.1 168 4.03 114 ± 6 12.01 ± 0.06 213 ± 9 6.93 ± 0.33 168 4.03 168 4.03 0.00% 1.10%
4.4 232 6.85 173 ± 5 17.40 ± 0.05 323 ± 13 10.67 ± 0.30 256 7.58 298 9.83 2.60% 41.89%
4.5 265 7.39 220 ± 14 20.89 ± 0.05 373 ± 16 13.20 ± 0.37 282 8.48 345 11.15 2.40% 32.42%
4.6 297 8.53 223 ± 10 22.99 ± 0.06 412 ± 13 14.31 ± 0.35 297 8.53 339 10.54 0.00% 5.43%
4.7 320 9.06 236 ± 8 25.78 ± 0.10 447 ± 17 14.90 ± 0.39 320 9.06 365 11.18 0.00% 5.34%
4.8 327 9.70 243 ± 8 26.62 ± 0.07 452 ± 12 15.48 ± 0.37 327 9.70 327 9.70 0.00% 0.00%
4.8.1 327 9.70 246 ± 16 26.58 ± 0.08 455 ± 17 15.51 ± 0.33 327 9.70 327 9.70 0.00% 0.00%
4.8.2 327 9.70 236 ± 9 26.59 ± 0.09 455 ± 18 15.49 ± 0.37 327 9.70 327 9.70 0.00% 0.00%
4.9 334 9.49 248 ± 9 27.70 ± 0.09 469 ± 12 16.08 ± 0.29 334 9.49 352 10.75 0.00% 2.33%
4.10 336 9.48 278 ± 14 27.72 ± 0.09 469 ± 15 15.99 ± 0.40 336 9.48 340 10.39 0.00% 1.83%
4.11 311 8.71 249 ± 9 27.34 ± 0.06 404 ± 16 15.45 ± 0.49 312 9.34 339 11.80 0.49% 6.19%
4.12 471 11.00 334 ± 11 33.94 ± 0.08 603 ± 14 18.04 ± 0.42 472 11.61 509 14.72 0.50% 22.05%

The second and third columns of Table 3.8 report the cohesion and MQ values of the original
modularisation implemented by JUnit developers for the 20 subsequent releases we collected.
Both cohesion and MQ metrics are affected by the size of the system, where a higher number
of classes and dependencies usually leads to a higher cohesion and MQ. Therefore, different
releases of JUnit cannot be compared by either MQ or cohesion. However, the techniques
described in this chapter aim at optimising the modular structure of each release in particular,
so that comparisons within a certain release are valid.

The average and standard deviation values of cohesion and MQ for Bunch search are reported
in the fourth and fifth columns of the table, while the results for package-constrained search are
reported in the sixth and seventh columns. As discussed in RQ2, the cohesion of the Bunch
optimised modularisations is always lower than their original counterparts, even though the
MQ is considerably higher. Differently, all package-constrained solutions are able to improve
upon the original implementation in both cohesion and MQ.
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In release 4.2, for example, the average Bunch solution has a cohesion value of 107 while the
developers’ implementation has a cohesion value of 164, which corresponds to a difference of
-34.94%. On the other hand, the average package-constrained modularisation for release 4.2
has a cohesion value of 214, which represents an improvement of 30.16% over the original
modularisation. This particular case elucidates the MQ ‘inflation effect’ discussed in RQ2,
showing how package-constrained search can be used to avoid this undesirable behaviour and
improve the structural cohesion of software systems.
In the last columns of Table 3.8, we report the natural disruption caused by each release of

JUnit, in comparison to the previous immediate release. For each release, we computed lower
and upper bound levels of disruption according to Intersection and Union DisMoJo (described in
RQ5), where the first is a disruption measurement that considers only the classes that remained
between releases and the latter considers not only classes that remained but also classes that
were added or removed between releases.

As one can see, the most disruptive release of JUnit was release 4.4 with an upper bound
disruption of 41.89%, yet still smaller than the average disruption caused by Bunch and
package-constrained search (see Table 3.5). This observation adds evidence to the claim that
even though cohesion and coupling optimisation is achievable, complete restructurings are
unrealistic in real-world software development, so that approaches that seek for a compromise
between modularity improvement and familiarity to previously established structure are more
likely to be adopted by software developers.
Therefore, we report on columns 8-11 of Table 3.8 the results achieved by the proposed

multiobjective approach for modularity improvement and disruption minimisation. For each
release of JUnit, we used the lower and upper bounds of natural disruption to pick solutions
from the Pareto front. Consider release 4.5, for example. For the lower bound cohesion value,
we picked the modularisation from the Pareto front with highest cohesion and disruption smaller
than 2.40%. Similarly, for the upper bound cohesion improvement, we picked the solution
with highest cohesion and disruption smaller than 32.42%. This way we are able to suggest
modularity improvements that are bounded by the same range of disruption that is already
familiar to the system’s developers.
As an example, we report part of the Pareto front found by the proposed multiobjective

approach for release 4.0 of JUnit in Table 3.9, where duplicate and similar solutions were
omitted. For each solution in the table, we present the cohesion value, disruption given by
DisMoJo and the number of classes developers would need to move to a different package
in comparison to the original implementation. As one can see, the multiobjective approach
proposed in this chapter is able to suggest modularisations with different levels of improvement
and disruption, in a way that developers can choose the one the better suits the project needs in
a specific scenario.
Release 4.0 of JUnit has a lower bound disruption of 9.09%; therefore, modularisation

number 4 is the one that presents the most similar level of disruption, as depicted in Table 3.9.
This solution moves only 4 classes from the original implementation, affecting only 3 out of
the 11 packages in the system. More specifically, class Description is moved from package
org.junit.runner to package org.junit.internal.runners, which is a reasonable refactoring since this
class is used to describe different test runners in package org.junit.internal.runners. Moreover,
class Request is moved from package org.junit.runner to package org.junit.internal.requests,
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Table 3.9 Modularisations suggested by the package-constrained multiobjective search for
JUnit 4.0. For each solution, we report the raw cohesion, the disruption given by DisMoJo and
the number of moved classes in comparison to the original developers’ implementation. We
also highlight the solutions that best match the lower and upper bounds disruption levels of
release 4.0.

Modularisation Cohesion Disruption Number Of Moved Classes
(Original) 1 147 0.00% 0

2 150 3.70% 2
3 155 4.94% 3

(Lower Bound) 4 162 6.10% 4
5 167 9.76% 7
6 168 10.98% 8
7 169 14.81% 11
8 172 17.28% 13
9 175 18.52% 14
10 177 22.22% 17
11 183 23.46% 18

(Upper Bound) 12 185 28.40% 22

which contains all classes related to requests in the system.
On the other hand, developers can select the solution that is more similar to the upper

bound disruption caused by release 4.0, which is modularisation 12 in Table 3.9. Interestingly,
this solution performs the same modifications discussed above plus some ‘follow-ups’ to
improve the cohesion even more, such as moving other classes related to Request to the
org.junit.internal.requests package. In total, this solution moved 22 classes and affected 8 out of
11 packages of the system, achieving a cohesion improvement of 25.85%.

This case study illustrates how multiobjective search can be used in conjunction with
longitudinal analysis of disruption to propose a set of modularisation solutions that present a
compromise between modularity improvement and familiarity to existing structure, yet still
bounded by the level of disruption inflicted by the developers of the system.

3.6 Threats to the Validity
This section describes the threats that might affect the validity of the empirical study reported
in this chapter and discusses our attempts to mitigate these threats.

Conclusion Threats are related to the analyses we performed and the conclusions we drew
from these analyses. Random and k-neighbourhood searches were executed one million times
for each release, while the systematic search covered the whole nearest neighbourhood of the
releases under study. Furthermore, both Bunch and Package-constrained search were executed
30 times for each release. In total, our analyses of RQ1-3 were based in more than 466
million different modularisations of the 10 systems and 233 releases under study, which we
believe thoroughly accounts for the random nature of the algorithms we applied. In RQ4, the
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multiobjective approaches were only executed once for each release due to the large computation
effort required to run the multiobjective GA for 233 releases of medium to large real-world
software systems. However, we applied the Two-Archive GA, which was demonstrated to be
stable and perform well in previous work (Praditwong et al., 2011).

Internal Threats consider the design of the experiments we carried out and the effects our
design choices might have in our analyses. All the algorithms, fitness functions and parameters
were based on previous and widely used literature on automated software modularisation
(Mancoridis et al., 1998; Mitchell and Mancoridis, 2006; Praditwong et al., 2011; Wen and
Tzerpos, 2004b). Moreover, our data collection was performed based on a clear selection
criteria and involved manual validation of all systems, releases and modularity data that were
extracted.

External Threats are related to the generalisation of the findings reported by the empirical
study. We performed the largest empirical study on automated software modularisation to date,
involving subsequent releases of medium to large real-world software systems. Furthermore,
we make available in our supporting web page all the modularity data we used in our empirical
study to facilitate replications and extensions (Paixao et al., 2017b).

3.7 Conclusion
The notions of software modularisation and cohesion/coupling have been proposed as good
practices for software development since the 1970s, and many SBSE techniques have been
proposed and evaluated since late 1990s to automate the decomposition of software systems
in highly cohesive and loosely coupled modules. However, after surveying more than 30
related papers, we could not identify any study that has investigated the trade-off between the
modularity improvement these automated techniques offer and the inherent disruption they
cause to the original modular structure of software systems. Moreover, most of the surveyed
papers only consider a single version of the systems under study, ignoring the previous releases.
Therefore, we performed the largest empirical study on search-based software modularisation
so far, involving 233 subsequent releases of 10 medium to large real-world software systems.
This study revealed that the modular structure of existing systems respect the raw cohesion

and the MQ quality metrics, where the developers’ implementation have better cohesion and/or
MQ of more than 96% of the alternative modularisations created by random and neighbourhood
search. However, we noticed that raw cohesion and MQ do not commonly agree when
assessing the modularity of software systems due to the ‘inflation effect’ of the MQ metric
that we exposed by applying the Bunch tool to the systems under study. Modularisations with
more packages favour the MQ metric; therefore, Bunch creates an average of 493.11% new
packages and decreases the cohesion of the systems in -46.25%, on average. As an attempt
to mitigate the MQ’s ‘inflation effect’, we introduced the package-constrained approach for
automated modularisation, in which the search algorithm is constrained by the number of
packages implemented by the developers. The package-constrained search was able to find
modularisations with an average cohesion improvement of 25%.
Even though search-based approaches can be used to improve the modular structure of

software systems as assessed by both cohesion and MQ, we showed that the disruption caused
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by these approaches is high. On average, developers would have to change 80.39% and 57.82%
of the structure to adopt modularisations suggested by Bunch and package-constrained search,
respectively. Surprisingly, the disruption caused by Bunch and package-constrained solutions
with very best modularity, as assessed by both cohesion and MQ, caused less disruption than the
average. Motivated by this opportunity, we employed a multiobjective optimisation approach
for automated software modularisation that attempts to maximise the modularity improvement
and minimise disruption.

We showed that modularity improvement and disruption have a clear and constant trade-off
over the Pareto fronts of all systems under study. Moreover, based on a longitudinal analysis of
developers implementations over releases, we estimated lower and upper bounds of ‘acceptable’
levels of disruption that developers have introduced. We found that our new multiobjective
approach was able to improve, on average, 3.45% and 22.59% of the cohesion of the systems
within this range of ‘acceptable’ disruption.

Finally, we performed a more detailed and qualitative analysis of some of the results we
achieved for the JUnit system, where we presented in a series of case studies how the experiments
and analyses carried out in this chapter can be used together to provide a full picture of cohesion
and coupling optimisation for a certain system. Among other analyses, we showed the evolution
of cohesion throughout JUnit’s releases, providing insights on how package-constrained search
is able to avoid MQ’s ‘inflation effect’, and howmultiobjective search can be used in conjunction
with longitudinal analysis of disruption to suggest modularisation solutions.

3.8 Conclusions From the Chapter
As previously mentioned, this thesis aims at understanding how developers organise code
elements and modules, and how improvements in the structure can be performed. Hence,
this chapter considered a popular approach for software restructuring, e.g., search-based
modularisation, and presented the largest empirical study to date on important aspects of such
approaches for their adoption by developers.
We showed that the structural architecture implemented by developers exhibit a degree

of respect to common structural metrics of cohesion and coupling used in the literature.
This validates these metrics as acceptable proxies for the developers’ perception of structural
architecture quality, so that manual and/or automated techniques for software restructuring may
rely on such measurements to guide their suggestions for improvements and changes.
Moreover, we presented evidence that developers often perform small restructurings of

the system instead of complete ‘big bang’ restructurings. This is particularly alarming for
state-of-the-art approaches for search-based modularisation since we found such techniques to
induce a high-level of disruption to the existing structure of software systems.
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4 CROP: Linking Code Reviews to Source
Code Changes

In the last chapter, we studied longitudinal architectural modifications between official releases
of software systems. We noticed that most of the architectural changes between versions
were due to newly introduced code elements and high-level modules. In addition, the newly
introduced modules and existing ones tend to remain architecturally stable in the subsequent
releases. This indicates that (i) developers do not often restructure code that is architecturally
stable, and (ii) new code is commonly released when it already presents a desired level of
architectural stability. Hence, a study of fine-grained software changes might reveal different
insights on how developers perform software restructuring.
Software changes that restructure the code are performed under a certain context, with

a certain intent to achieve a desired goal. Thus, in order to obtain a deeper understanding
on how developers perform and deal with software restructuring, one needs to consider not
only fine-grained source code modifications but also the context and motivation in which
these modifications were implemented. We believe the data generated during the code review
process enables these analyses since it provides natural language descriptions and feedback
regarding each particular fine-grained software change. Hence, this chapter describes the
mining, processing and, collection of the code review data that is the basis for the investigations
later discussed in this thesis.

This dataset report was originally published in the proceedings of the International Working
Conference on Mining Software Repositories in 2018, and this chapter presents an adaptation
of the original paper. Section 4.1 presents the introduction of the dataset as it was written in the
original conference paper. Section 4.2 depicts the mining framework we employed to collect the
code review data while Section 4.3 shows how we stored the data to facilitate analysis. Section
4.4 presents details and ideas for research that can be carried out using the dataset. Section 4.5
shows the conclusion of this dataset report as it was published in the original paper.
Finally, Section 4.6 concludes this chapter and discusses how the dataset collected and

presented in the chapter can be used to achieve the goals set out by this thesis.

4.1 Introduction
In software development, code review is an asynchronous process in which changes proposed
by developers are peer-reviewed by other developers before being incorporated into the
system (Bacchelli and Bird, 2013). The modern code review process has been empirically
observed to successfully assist developers in finding bugs (Mantyla and Lassenius, 2009; Beller
et al., 2014), transferring knowledge (Bacchelli and Bird, 2013; Rigby and Bird, 2013) and
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improving the general quality of a software system. Given its benefits, code review has been
widely adopted by both industrial and open source software development communities. For
example, large organisations such as Google and Facebook use code review systems on a daily
basis (Kennedy, 2006; Tsotsis, 2011).

In addition to its increasing popularity among practitioners, code review has also drawn the
attention of software engineering researchers. There have been empirical studies on the effect
of code review on many aspects of software engineering, including software quality (McIntosh
et al., 2014; Morales et al., 2015), review automation (Balachandran, 2013), and automated
reviewer recommendation (Zanjani et al., 2016). Recently, other research areas in software
engineering have leveraged the data generated during code review to expand previously limited
datasets and to perform empirical studies. As an example, Chapter 5 reports the usage of code
review data to analyse whether developers are aware of the architectural impact of their changes.
Code review research relies heavily on data mining. In this context, some researchers

have attempted to mine code review data and have made their datasets available for the
community (Mukadam et al., 2013; Hamasaki et al., 2013; Gousios and Zaidman, 2014; Yang
et al., 2016). However, code review data is not straightforward to mine (see Section 4.2.2),
mostly due to difficulties in linking the reviews to their respective source code changes in the
repository. This limits the potential research that can be carried out using existing code review
datasets. In fact, to the best of our knowledge, there is no curated code review dataset that
identifies and provides the complete state of the system’s source code associated with a set of
code reviews.

Based on this observation, we introduce CROP, the Code Review Open Platform: a curated
open source repository of code review data1 that provides, not only the review’s metadata like
existing datasets, but also links, to each code review, a complete state of the system’s source
code at the time of review. For each code review in CROP, one will be able to access the source
code that represents the complete state of the system when the review was carried out. Thus,
researchers will now have the opportunity to analyse code review data in combination with, for
example, source code analysis performed by static and dynamic techniques such as profiling,
testing, and building. The combination of code review data and source code analysis will
facilitate research in areas that previously required a significant amount of human participation,
as outlined in Section 4.4.

Gerrit (Pearce, 2006) is a popular open source code review tool that has been widely used in
research (Bosu et al., 2014; Yang et al., 2016; McIntosh et al., 2014). In addition, notable open
source organisations adopted Gerrit as their code review tool, including Eclipse, OpenStack,
and Couchbase. Thus, since CROP focuses on curating code review data from open source
software systems, we chose to mine data from projects that adopted Gerrit as their code review
tool.
At the time of writing, we have mined the Gerrit code review data for 8 software systems,

accounting for a total of 48,975 reviews and 112,617 revisions (see Gerrit’s structure in
Section 4.2.1). In addition, we have mined and linked 225,234 complete source code versions
to each of the 112,617 revisions.

The rest of this chapter is organised as follows: Section 4.2 describes the Gerrit code review

1https://crop-repo.github.io/
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Figure 4.1: Code review process in Gerrit.

structure, the challenges in mining such a dataset and the approach we employed to mine
the data. Section 4.3 describes how the data is organised in CROP and Section 4.4 indicates
potential research that can be carried out using CROP’s data. Finally, Section ?? concludes the
CROP discussion.

4.2 Harvesting the CROP
In this section, we first describe the code review process employed by Gerrit followed by a
discussion of the challenges of mining this data. Finally, we detail the approach we used to first
mine the code review data and later link it to the system’s source code.

4.2.1 Code Review in Gerrit
The Gerrit system is built on top of git, and its code review process is outlined in Figure 4.1. A
developer starts a review by modifying the original code base in the repository and submitting
a new revision in the form of a commit, where the commit message is used as the revision’s
description. For each new review, Gerrit creates a Change-Id to be used as an identifier for
that review during its reviewing cycle. Other developers of the system will serve as reviewers
by inspecting the submitted source code and providing feedback in the form of comments.
Revisions that improve upon the current revision according to the received feedback are
submitted as new revisions of the same commit. Finally, the latest revision is either merged or
abandoned, where the first indicates the review was incorporated into the system and the latter
indicates the commit was rejected.
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4.2.2 Challenges in Mining Gerrit Review Data
Gerrit provides RESTful APIs that one can use to access the review’s metadata for a project,
such as author, description, comments etc. However, linking the reviews to changes in the
system’s source code is far from straightforward.

As previously mentioned, Gerrit is built on top of git. Thus, the git repository of the system
would be the obvious first choice to access the versions of the source code that correspond to
the code reviews. However, the system’s git repository is an unreliable record because Gerrit
constantly rewrites and deletes history information.
When a new review is submitted by a developer, Gerrit creates a temporary branch in the

git repository to be used for review. Every improved revision submitted by a developer is
committed to this branch and replaces the previous revision through a commit amend operation.
Therefore, given a merged review, the review’s revision history is lost and only the source code
of the latest accepted revision can be accessed. Moreover, when developers opt to abandon a
review, the current revision is simply deleted from the repository.
In addition to the issues of lost history described above, the system’s git repository might

also contain inconsistencies if we fail to fully account for the overall review process: code
review is a laborious task, and it is common for some reviews to take a few days to complete
one iteration of the core cycle (Weißgerber et al., 2008; Jiang et al., 2013; Xia et al., 2015).
Between the time a comment is initially submitted and the time the revision is finally merged to
the system’s repository, other developers might have merged and/or committed other changes to
the repository. In this case, each new revision submitted during the review needs to be rebased
to be up-to-date. Thus, when one reverts the system back to the merged review, the source code
will reflect not only the changes due to the revision but also all the other changes that were
merged to the repository while the revision was open. These difficulties in isolating the source
code changes associated with a specific review pose serious threats to the validity of empirical
studies that use code review data.

4.2.3 Mining Code Review Data From Gerrit
We performed a preliminary analysis of the different open source communities that adopted
Gerrit and selected the data source we would use for CROP’s development. As a result, we
identified the Eclipse and Couchbase communities as those that provided all the data we needed
to build CROP. The data mining process we employed is outlined in Figure 4.2.
As one can see from the figure, our mining framework consists of 4 sequential phases. The

framework is written in Python, and we made it available online2. Given a certain Eclipse or
Couchbase project, the review harvester explores Gerrit’s RESTful API to download the code
reviews’ metadata for the project. The API returns the data in JSON files that are kept to be
used later.
In Phase 2, the snapshot harvester downloads the complete source code of the project for

each code review. Both the Eclipse and Couchbase communities have a server that is separated
from their git repositories and the Gerrit system where they keep complete snapshots of their

2https://github.com/crop-repo/crop
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Figure 4.2: The framework employed to mine code review data from Gerrit and link it to
complete versions of the code base.

projects for every commit ever performed in the project. These snapshots include the complete
code base, i.e., source code, testing code, build files and so on. Thus, for each review, we iterate
over all revisions and download the project’s snapshots that correspond to the code base both
before and after each revision.
As a result of this process, we were able to access versions of the project’s code base

that would otherwise have been lost in the official git repository, such as reviews that were
abandoned and intermediate revisions that were submitted during the review process. Moreover,
by downloading the before and after versions of the code base for each revision, we guarantee
that the observed changes in the code were specifically attributable to the revision.

After downloading all the code reviews’ metadata and the project’s snapshots (Phases 1 and
2), Phases 3 and 4 handle the data. The discussion grinder processes the code review data
stored in the JSON files and creates discussion files for each revision. Discussion files are text
files that present, among other information, the review’s author, description, and comments in a
format that is easy to read and analyse (see Section 4.3 for more details).

In Phase 4, all downloaded snapshots are extracted to a new git repository in order to reduce
the disk space occupied by CROP. The repository grinder creates a new git repository and then
iterates over each snapshot, automatically extracting and committing the snapshot to the new
repository. In the end, every snapshot will be accessible through the new git repository. If
CROP would have included the snapshots’ raw data from the 8 projects we have mined, the
repository would have a size of 4.2TB. Instead, this approach reduced the size of CROP to
7.8GB, which accounts for a 99.8% reduction rate.

4.3 Storing the CROP
The CROP repository is organised as three major directories. A CROP user starts at the
metadata directory, where he or she will find a CSV file for each project in CROP. The CSV files
contain metadata information about the project’s code review and the necessary information to
access the project’s code base. Since we mined the projects’ snapshots revision by revision,
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each line in the CSV corresponds to a project’s revision.
For each revision, we create an id to serve as a unique identifier to the revision. The

review_number column indicates the review to which the revision belongs. The revi-
sion_number denotes the number of the revision within the review. Author and Status
indicate the revision’s author and status, respectively. The change-id is the unique identifier
that Gerrit creates, as explained previously. We provide a URL that can be used to access
the revision’s data in Gerrit’s web view. In the previous section, we showed how we created
a new git repository to store the project’s code base for each revision. Accordingly, the
before_commit_id indicates the commit id in the new git repository that should be used to
access the project’s code base as it was before the revision was submitted. Similarly, one
should refer to after_commit_id in order to access the code base as it was after the revision
was submitted.

The git repositories we created to re-build the projects’ reviewing history are contained in
the git_repos directory. Each repository has a single master branch, where the before and after
versions of the source code for each revision were committed sequentially, based on the review
and revision numbers. Such versions are accessible through the commit ids provided in the
projects’ CSV file, as discussed above.
We store the discussion files for each revision in the discussion directory. This directory

follows a tree structure, organised by review number, in which the discussion files for each
revision are contained in the directory of its respective review. A discussion file presents
reviewing data in the following order: first, the description of the revision is presented, which
denotes the commit message of the revision. Such a message includes the revision’s change-id
andAuthor. The comments that were made during the review by other developers are presented
next. In the discussion file, we include the author of the comment and the respective message.

4.4 Grinding the CROP
For the first iteration of CROP, we mined data from the four projects with most reviews at
the time of mining 3 in the Eclipse and Couchbase communities. Table 4.1 reports statistics
concerning the data collected for each of these 8 systems, where the Eclipse projects are
presented in the upper section of the table and the Couchbase projects in the lower section. As
one can see from the table, all projects have more than 3.5 years of reviewing history, where the
data for egit spans more than 8 years. In addition, each project has more than 3,000 reviews and
more than 8,000 revisions. In total, CROP provides comprehensive code review data linked to
versions of the code base for 48,975 reviews and 112,617 revisions. Finally, these 8 projects
are developed in a wide range of programming languages that include Java, C++, JavaScript,
Python, Go and others.
CROP is an ongoing research project, where we will periodically update the code review

data to reflect the evolution of the systems in the dataset. In addition, we will be constantly
mining and including reviewing data for other open source systems. Finally, CROP’s code base

3At the time of writing, papyrus is the project with most code reviews in Eclipse. However, this was not the case
when we started mining.
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Table 4.1 Statistics about each project currently in CROP

Systems Time Span #Reviews #Revisions kLOC Language

jgit Oct-09 to Nov-17 5382 14027 200 Java
egit Sep-09 to Nov-17 5336 13211 157 Java
linuxtools Jun-12 to Nov-17 5105 15336 270 Java
platform-ui Feb-13 to Nov-17 4756 14115 637 Java

ns_server Apr-10 to Nov-17 11346 34317 253 JavaScript
testrunner Oct-10 to Apr-16 7335 17330 117 Python
ep-engine Feb-11 to Nov-17 6475 22885 68 C++
indexing Mar-14 to Nov-17 3240 8316 107 Go

is open4 for contributions.

4.5 Conclusion
Code review has been widely adopted in the industrial and open source communities due to a
number of benefits, such as knowledge transfer, bug detection, and code improvement. Although
research in code review is highly dependent on datasets, there is currently no curated dataset
that provides code review data that is linked to complete versions of the code at the time of
reviewing. To address this limitation, we introduced CROP in this chapter: the Code Review
Open Platform, an open source repository of code review data that provides links between
code reviews and changes in the system’s code base. We mined data of 8 software systems,
accounting for 48,975 reviews and 112,617 revisions, where we provide not only code review
information but also links to versions of the source code that we archived and which would
otherwise no longer be available in the systems’ original repositories.

4.6 Conclusions From the Chapter
As previously discussed, to obtain a deeper understanding of how and why developers restructure
software systems, one needs to study not only the changes in the source code but also the context
and motivation in which these changes are performed. Hence, we believe that code review data
enables these analyses.

The source code changes within code review are often small and localised, which allows for
fine-grained investigations. Moreover, in the code review process, each change is accompanied
by a natural language description given by the author of the change and feedback from other
developers in the system.
Thus, one can use source code analysis to identify software changes that restructured a

software system, in which the context and motivations behind the changes can be inferred
4https://github.com/crop-repo/crop
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through a follow-up analysis of the changes’ description and feedback. The code review data
described in this chapter will be used in the investigations that follow in this thesis.
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5 Are Developers Aware of the
Architectural Impact of Their Changes?

In Chapter 3, we performed an empirical study of architectural changes between official releases
of software systems. This chapter complements the latter as it investigates architectural changes
at a much finer-grained level by considering individual commits and modifications that had a
significant impact on the system’s structure. In particular, we are interested in understanding
the context and conditions in which architectural changes normally occur. Moreover, since
architectural changes usually have a large number of ramifications to the rest of the system,
we study whether the developers were aware of the architectural impact at the time they were
working in the change. To do this we make use of the CROP code review data described in
Chapter 4.
This study has span out two papers. The first paper was published in the proceedings of

the IEEE/ACM International Conference on Automated Software Engineering in 2017. We
have extended the original conference paper to a work-in-progress journal submission for the
IEEE Transactions on Software Engineering. This chapter presents an adaptation of the journal
version of the study.

Section 5.1 presents the introduction of the journal submission paper as it was originally
written. Section 5.2 discusses the background necessary for this particular chapter while Section
5.3 depicts the experimental design of the empirical study reported in this chapter. Section
presents the preliminary studies we carried out to validate our methodological approach. While
Section 5.5 shows the quantitative results obtained in the empirical study, Section 5.6 discusses
qualitative aspects of some of our findings. Moreover, Section 5.7 discusses how the findings
reported in this chapter impact both academic and industrial software engineering practitioners.
Section 5.8 discusses the threats to the validity of the study reported in the chapter, and Section
5.9 presents some related work to this chapter in specific. Section 5.10 presents the conclusion
of this empirical study as submitted in the original paper.

Finally, Section 5.11 concludes this chapter by contextualising the reported empirical study
with the overall goals of this thesis.

5.1 Introduction
Architectural decisions are among the most important decisions to be taken by practition-
ers (Rozanski and Woods, 2011), due to the high risks and costs accrued by poor architectural
design (Williams and Carver, 2010). Recent studies have empirically shown that bug-prone files
are more architecturally connected than clean files (Schwanke et al., 2013), and that architectural
flaws can lead to increased maintenance effort (Xiao et al., 2016).
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The notions of cohesion and coupling as guides for software architecture design have been
extensively associated with different aspects of software quality, including, but not limited
to, maintainability (Li and Henry, 1993; Zhou and Leung, 2007), comprehensibility (Zhifeng
Yu and Rajlich, 2001; Counsell et al., 2005) and code smells (Fowler et al., 1999; Lanza and
Marinescu, 2007). Structural dependencies between code components were the most used
assets for cohesion and coupling measurement for many years (Hitz and Montazeri, 1995;
Briand et al., 1998, 1999; Mancoridis et al., 1998), where other sources of information have
been taken into account more recently, such as semantics (Poshyvanyk et al., 2009) and revision
history (Beck and Diehl, 2013; Ajienka et al., 2017). Nevertheless, recent studies (Bavota et al.,
2013; Candela et al., 2016) have revealed structural dependencies to be one of the best proxies
for developers’ perception of cohesion and coupling.
Despite the large body of work aimed at aiding developers in the structural organisation

of systems (Mitchell and Mancoridis, 2006; Paixao et al., 2017a; Mo et al., 2016), we still
see evidence of architectural degradation as systems evolve (Le et al., 2015; de Silva and
Balasubramaniam, 2012). Developers sometimes choose to accept suboptimal solutions in
order to achieve a desired goal, such as short-term delivery (Ernst et al., 2015); thereby accruing
technical debt (Kruchten et al., 2012).
Nevertheless, the reasons for a developer to accept a solution that will damage the software

architecture or to neglect the refactoring of an eroded architecture are still open for investigation.
As pointed out by recent studies with developers (Bavota et al., 2013; Candela et al., 2016),
different systems and different developers work under different conditions and have different
perspectives regarding architectural quality. This diversity indicates the need for studies aimed
at better understanding of how developers deal with architectural changes.
In this chapter, we extend the body of empirical knowledge regarding architectural changes

in software systems by studying these changes on a day-to-day basis. We investigate the intent
of developers when performing changes that will impact the system’s architecture. Moreover,
we also assess whether developers are aware of the architectural impact of their changes at the
time these changes are being made. Finally, we study how architectural changes evolve between
the first proposed version of the change until the last version of the change that is merged into
the system’s repository.
Quantitative studies evaluating metrics and techniques for structural optimisation (Mitchell

andMancoridis, 2006; Paixao et al., 2017a; ÓCinnéide et al., 2012) show howmuch architectural
improvement can be achieved in software systems, but the feedback from developers is usually
insufficient. Qualitative studies interview developers regarding architectural quality by either
using toy systems (Simons et al., 2015) or selected past changes (Bavota et al., 2013; Candela
et al., 2016). Since surveys are subjective to bias (Runeson andHöst, 2009) and the questionnaires
usually target the software system as a whole, such studies fail to capture details and nuances of
each particular architectural change.
In order to investigate the developers’ intent and awareness when performing architectural

changes alongside the evolution of these architectural changes on a day-to-day basis, we used
code review data. During the process of code review, a change is only incorporated into the
system after an inspection of the code change being submitted. The author of the change
submits the code and a natural language description of the change, where other developers will
have the opportunity to review the code and provide feedback. Depending on the feedback from
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the reviewers, the author of the change may need to improve the code change. In these cases,
the author submits new revisions until the change is incorporated into the system or discarded.

The code review process provides detailed information about each change and each revision,
which enables us to perform the empirical study on which we report here. In this chapter,
we adopt CROP (as presented in Chapter 4), a recently published open source code review
dataset that links code review data to complete versions of software systems at the time of
review. In CROP, we provide data for all code reviews and all revisions of a certain software
system. Thus, for each change and each revision, we have the source code from which cohesion
and coupling metrics can be computed, and a natural language description that was submitted
alongside the change from which the intent can be inferred. Based on the change’s description
and the feedback provided by other developers, we can seek evidence of developers’ awareness,
at the time the change was being made, of the architectural impact of each specific change.
Moreover, by studying the different revisions of architectural changes during code review, we
can investigate how changes that impact the system’s architecture evolve from when they are
first proposed to when they are finally merged. It is important to note that we anonymised and
protected the developers’ names and identities in CROP to the best of our ability. Moreover, all
code included in CROP retains its original license and distribution policies.

After analysing a total of 18,400 code reviews and 51,889 revisions from 7 software systems,
we used a metric-based approach to identify reviews that changed the structural architecture
of the systems. For 731 reviews that significantly changed the architecture, we performed a
manual analysis and classification of the reviews according to the intent of the review and the
architectural awareness of the developers involved in the review. The inference of each review’s
intent and architectural awareness is based on the reviews’ description and feedback provided
by developers (no interviews have been performed).

The main contributions of the chapter are listed as follows:

1. We found that developers discuss the architectural impact of their changes in only 31% of
the reviews with a noticeable impact on the system’s architecture. In addition, reviews in
which the architecture is discussed tend to have higher architectural improvement than
reviews in which the system’s structure is not discussed.

2. We noticed that the architectural feedback provided by developers during code review is
often not adequate for improving architectural changes.

3. A framework for the identification of significant architectural changes.

4. A dataset of 1,139 manually classified code reviews that include the intent of each review
and the architectural awareness of developers involved in each review.

5. A dataset of 103,778 structural architectures extracted from the source code of 7 open
source software systems.

As this work in an extended version of our conference paper (Paixao et al., 2017c), we present
the primary novel contributions of this extension as follows.
Expansion of evaluation corpus: In our previous work, only the last merged revision was
considered in the empirical study, while for this chapter we included in the analysis versions of
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the system for all revisions submitted during the reviewing process. We now consider 7 open
source systems in our study instead of 4. In total, we studied 9,500 more code reviews and
42,989 more revisions than our previous paper.
Sensitivity analysis for threshold selection: Our method for identification of reviews that
caused significant changes to the architecture is based on an outlier detection procedure. Instead
of selecting the default threshold as we have done in the previous submission, we now performed
a sensitivity analysis in order to select the best-suited threshold for the study.
The evolution of architectural changes: As previously mentioned, we have now collected
data for all revisions submitted during code review instead of only the last merged revision as
in our previous work. This allowed us to ask a new research question: How do architectural
changes evolve during code review?.
Qualitative analysis of negative refactorings: During the empirical study, we observed cases
in which refactorings caused a degradation to the system’s architecture. In this chapter, we
describe a qualitative analysis in which we investigated in details the causes for such phenomena.

5.2 Background
In an object-oriented context, structural metrics of cohesion and coupling assess how the code
is organised in terms of its structural dependencies between classes and packages. These
dependencies capture compile time dependencies, such as method calls, data access and
inheritance. In this chapter, the architectural structure of a system is represented as a Module
Dependency Graph (MDG), as defined in Section 2.3..
Once the MDG of a system is computed, structural cohesion and coupling measurements

can be used to assess the system’s structure. In this chapter, we employ structural metrics for
cohesion and coupling measurement that have been quantitatively and qualitatively evaluated in
a recent study (Candela et al., 2016).
The structural cohesion of the MDG M of a certain system, consisting of m packages

P1, ..., Pm, is assessed by measuring the lack of structural cohesion, which is computed as

LStrCoh(M) =
∑m

j=1 LCOFPj

m
, (5.1)

where LCOFPj represents the Lack of Cohesion of Files for package Pj . LCOFPj is computed
as the number of pairs of files in Pj without a structural dependency between them. Packages
with a high amount of unrelated files will be scored a high LCOF, and, accordingly, packages
with only a few unrelated files will be scored a low LCOF.

Consider a review that changed the system’s structural architecture. LStrCoh is used to
measure the cohesion of the system both before (Mi) and after (Mi+1) the review. In this case,
LStrCoh is an inverse metric, where a positive difference in LStrCoh(Mi+1) − LStrCoh(Mi)

indicates higher lack of cohesion, and therefore, a degradation in structural cohesion as a result
of the review. Similarly, a negative difference in LStrCoh indicates an improvement in structural
cohesion.
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The structural coupling of M , StrCop, is computed as

StrCop(M) =
∑m

j=1 FanOutPj

m
, (5.2)

where FanOutPj indicates the number of files outside package Pj that have dependencies to
files inside Pj . Similarly to LStrCoh, a positive difference in StrCop(Mi+1) − StrCop(Mi) after
a review indicates a degradation in structural coupling, and a negative difference after a review
indicates an improvement in structural coupling.

5.3 Experimental Design
The goal of this chapter is to study the intent and the architectural awareness of developers
when performing architectural changes on a day-to-day basis. To this end, we ask the following
research questions:
RQ1: What are common intents when developers perform significant changes to the architecture?
This research question investigates architectural changes and identifies common intents behind
these changes. Thus, we classify architectural changes regarding their intent at the time the
change was reviewed, such as New Feature, Refactoring and so on. Using this approach we can
perform our analysis on the most recurrent intents, thereby achieving a better understanding of
the conditions under which architectural changes are performed.
RQ2: How often are developers aware of the architectural impact of their changes on a
day-to-day basis? Given the large number of ramifications of an architectural change, this
research question investigates how often developers are aware of the impact of their changes on
the system’s structure. To answer it, we inspect changes that had an impact on the architectural
structure to identify whether developers discuss the system’s architecture during the review of
that change.
RQ3: How do awareness and intent influence architectural changes on a day-to-day basis?
Considering the changes with the most common intents, we assess how the architectural
awareness of developers influences the improvement or degradation of cohesion and coupling
for each change.
RQ4: How do architectural changes evolve during code review? By comparing the last merged
revision to all the other previous revisions of a certain architectural change, we study how the
code review process influences the evolution of changes that cause a significant impact on the
system’s architecture.

The rest of this section reports the experimental methodology we used to answer the research
questions presented above.

5.3.1 Code Review Data
Code review in modern software development is a lightweight process in which changes
proposed by developers are first reviewed by other developers before incorporation in the
system. In this chapter, we focus on Gerrit (Pearce, 2006), one of the most popular code review
systems currently in use by large open source communities, such as Eclipse (Eclipse, 2018) and
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Couchbase (Couchbase, 2018). Although we focus on Gerrit in this chapter, the methodology
presented here is adaptable and extensible for other code review systems.
In Gerrit, a developer submits a new code change for review in the form of a git commit,

where the commit message is used as the review’s description and the commit id is stored
for future reference. For each new submission, Gerrit creates a Change-Id to be used as a
unique identifier of that review throughout its reviewing cycle. Other developers of the systems
will then inspect the code, and provide feedback in the form of comments. Improved code
changes are submitted in the form of revisions according to the feedback until the review is
merged or abandoned, where the first indicates the code change was incorporated to the system
and the latter indicates the code change was rejected. For the rest of this chapter, we use
review and (code) change interchangeably to indicate a code submission that was manually
inspected by developers and later merged or abandoned. In addition, we use revisions to indicate
intermediate code changes submitted during the reviewing process of a single review according
to the feedback from other developers.

In this chapter, we make use of CROP, an open source dataset that links code review data with
their respective software changes. We designed CROP as an extended and more comprehensive
version of the dataset we employed in our previous paper (Paixao et al., 2017c). Given a
certain software system, CROP provides a complete reviewing history that includes not only
the code review data such as descriptions and comments from developers, but also versions of
the code base that represent the software system at the time of review. In CROP, we collected
the Gerrit code review data from both Eclipse and Couchbase communities. For each of
these communities, CROP provides data for the software systems with most reviewed changes.
We made CROP publicly available to support other researchers, where we carefully handled
developers anonymisation and software license compliance to ensure the CROP dataset meets
data protection and licensing policies. For the interested reader, we recommend CROP’s
website1 for additional information on the dataset.

For this particular chapter, we adopt all the Java systems included in the CROP dataset.
For the Eclipse community, we study egit, jgit, linuxtools and platform.ui. For the Couchbase
community, we adopt couchbase-java-client, couchbase-jvm-core and spymemcached. For
brevity, the Couchbase systems will be abbreviated as java-client and jvm-core, respectively.
The consideration of these 7 systems yielded a manual inspection and classification of 731

code reviews, highlighting the high level of manual analysis involved in this study. This high
level of painstaking manual analysis is required to form a ground truth, which will assist other
researchers in subsequent studies. Table 5.1 reports the number of merged reviews for each
system and the time span of the system’s history we are investigating. Moreover, we also report
the proportion of Java code for each system and size metrics. Since the proportion of Java
code and the size of the systems have changed throughout their history, we additionally report
median, maximum and minimum values for these statistics.
Both egit and jgit are aimed at providing git support in Eclipse. While jgit is a full Java

implementation of the git version control system, egit integrates jgit into the Eclipse IDE.
Linuxtools provides a C/C++ IDE for linux developers, and platform.ui provides the basic
building blocks for user interfaces built with Eclipse.

1https://crop-repo.github.io
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Table 5.1 Descriptive statistics for the systems under study. We report the number of merged
reviews and revisions in each system followed by the time span of our investigation. In addition,
we report the median, maximum and minimum values of size metrics.

Systems No. of
Reviews

No. of
Revisions Time Span

Proportion of Java
Code (%) kLOC Number of

Packages Number of Files Number of
Dependencies

Med Max Min Med Max Min Med Max Min Med Max Min Med Max Min

egit 4,502 11,430 9/09 to 11/17 91.55 98.66 84.33 70.59 107.661 16.07 59 81 19 641 839 137 2,720 4,017 356
jgit 4,463 11,891 10/09 to 11/17 99.49 99.86 98.56 84.25 114.36 34.00 47 71 19 776 990 338 5,650 7,304 1,965
platform.ui 3,802 12,005 2/13 to 11/17 98.93 99.31 98.88 460.76 472.396 453.295 393 404 380 4,386 4,520 4,265 31,237 32,375 30,593
linuxtools 3,695 10,892 6/12 to 11/17 90.11 93.57 85.38 170.28 205.89 89.99 346 434 214 1,776 2,197 1,082 6,473 8,773 3,310
java-client 798 2,394 11/11 to 11/17 100.00 100.00 97.21 9.3 29.16 0.55 16 45 3 184 467 10 704 1,898 14
jvm-core 785 2,184 4/14 to 11/17 100.00 100.00 100.00 13.68 24.59 1.78 43 55 17 328 457 70 1,317 2,093 204
spymemcached 383 1,098 5/10 to 7/17 98.76 99.05 98.45 10.78 13.68 7.19 14 17 11 192 235 133 917 1,113 606
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Figure 5.1: Framework for the identification of code reviews with significant changes to the
system’s architecture. Given a set of code reviews, our automated framework
identifies significant reviews in terms of the impact to system’s architectural
structure.

Couchbase as a whole is a NoSQL database solution for both server-side and mobile, where
java-client is the official driver to access the Couchbase database using Java, and jvm-core is a
low-level API mostly used by java-client. Spymemcached is a lightweight Java implementation
of a memory caching system that later became the groundwork for the development of java-client.

5.3.2 Computing the Difference in Structural Cohesion and Coupling for
Reviewed Changes

For each system selected to participate in our empirical study, we computed the difference in
structural cohesion and coupling for each review and revision that have undergone a process of
code review as described in Section 5.3.1, where the formal definitions of the metrics being
computed are presented in Section 5.2.
The computation of the difference in structural cohesion and coupling for all code reviews

and revisions we collected is depicted in the first steps of the framework presented in Figure 5.1.
For each submitted revision, we use CROP to access the versions of the system before and after
the revision took place, guaranteeing that the observed difference between them was solely
induced by the code change in the revision.
We subsequently filter all the test code in the system’s code base. Although part of the

project, test code is not included in the end product, and so we chose not to include it as part
of the structural architecture. In this chapter, we employ a two-stage procedure for test code
filtering. In the first stage, every file under a test/ folder is filtered. Next, all remaining files
with Test or test in the file name are manually analysed, where a decision is reached to either
include or filter the file from the structural architecture analysis.
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After filtering test code, we extract the MDG representing the structural architecture of
the system for the versions before and after the revision. Previous studies that performed
architectural analyses in Java systems relied on bytecode analysis for structural architecture
extraction (Candela et al., 2016; Paixao et al., 2017a; Hall et al., 2014; Beck and Diehl, 2011;
Hall et al., 2012; Garcia et al., 2013; Barros et al., 2015). However, building and compiling
the systems for each revision is a time consuming and error prone activity. Hence, for this
investigation, we extract the architectural structure of a system directly from its source code
by using Understand (Scitools, 2018), a commercial tool for static code analysis whose set of
features include dependencies extraction and visualisation.
Given the system’s MDG before and after the revision, we compute the structural cohesion

and coupling as defined in Equations 5.1 and 5.2 and compare the cohesion and coupling of the
system before and after the revision. The measurements of structural cohesion and coupling
are separately computed for each package in the structural architecture, and then aggregated
in an overall score. Hence, when comparing the cohesion and coupling for before and after
the revision, we store not only the overall difference, but also the biggest difference in a single
package. We thus expand our analysis to consider not only changes to the overall structural
architecture, but also changes that highly affect a single package.
At the end of this process, four different values are stored for each revision, each of

which indicating the difference in overall cohesion/coupling and the biggest difference in
cohesion/coupling for a single package, respectively. In this chapter, we computed the
differences in cohesion and coupling for 18,400 code reviews and 51,889 revisions, which
generated a dataset of 103,778 structural architectures automatically extracted from source code.
The dataset of all extracted structural architectures and the respective cohesion and coupling
values computed for each revision will be made available at our supporting webpage.

5.3.3 Identification of Reviews with Significant Architectural Changes
A code review is formed by a collection of revisions that were sequentially submitted for review
until the code change was merged or abandoned. In this context, the intermediate revisions
of a certain code review can be seen as iterations of a code change that is not yet ready to be
introduced in the code base. Hence, the final merged revision is the version of the code change
that incorporates all the feedback from the reviewing process and represents the code review as
a whole. Therefore, when identifying the code reviews that performed significant changes to the
structural architecture of the system, we rely on the last merged revision of each code review.

In order to identify the reviews that performed significant changes to the system’s architecture,
we employed an outlier-based approach. At first, we grouped the set of code reviews according
to the following criteria. We identified all reviews that showed an improvement in overall
cohesion, followed by all reviews with an improvement in overall coupling. We then identified
all reviews that showed a cohesion improvement for a certain package, followed by all reviews
with a coupling improvement for a certain package. Similarly, we identified all reviews that
showed a degradation in the cohesion and coupling measurements presented above. In total, we
grouped the reviews on 8 different subsets, which stand for the reviews that improve or degrade
the cohesion and coupling of either the overall structural architecture or a single package.

Next, for each of the 8 subsets, we identified the outliers using Tukey’s method (Tukey, 1977),
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and defined the outlier ‘fence’ as 1.5× IQR (interquartile range) from the third quartile (Q3) over
the distribution of measurements in the specific subset. The outliers indicate the reviews with
‘significant’ differences in cohesion and coupling relative to the overall distribution. Table 5.2
presents the number of reviews identified as outliers for each subset discussed above, and for
each system under study. Additionally, since reviews can be identified as outliers in more than
one subset, we also report the number of unique reviews identified as outliers when considering
all subsets.

Table 5.2 Number of reviews identified as outliers according to different architectural aspects.
We report the number of outliers for the reviews with an overall improvement (⊕) or degradation
(	) in cohesion and/or coupling. We also report the number of outliers for a single package.
The number of unique outliers considers all aspects discussed above.

System
Coupling Cohesion Unique

Out-
liers

Overall Single P. Overall Single P.
⊕ 	 ⊕ 	 ⊕ 	 ⊕ 	

egit 5 65 13 78 7 36 18 35 148
jgit 16 93 15 92 14 38 32 33 192
platform.ui 40 57 26 57 12 11 25 17 147
linuxtools 25 49 28 50 20 47 22 48 160
java-client 3 14 2 14 5 12 2 11 32
jvm-core 1 20 2 18 1 6 1 10 34
spymemcached 0 6 1 14 2 2 3 5 18

All 90 304 87 323 61 152 103 159 731

As one can see from the table, 731 reviews were automatically identified as the ones presenting
the biggest changes in structural cohesion and coupling, indicating that these reviews are the
ones that performed significant changes to the systems’ architecture. The subset of 731 unique
reviews identified as outliers stands for 17.5% of all reviews that caused an architectural change.
We discuss and validate this methodology for identification of reviews with significant

architectural change in a study described in Section 5.4.

5.3.4 Manual Inspection and Classification of Reviews
Following the automated process described in the previous section, we considered all 731 outlier
reviews, and performed a manual inspection and classification inspired by the work of Tufano
et al. (2017). The manual classification process consisted of two researchers analysing each
review and providing values for a set of tags. Each tag can assume true or false, and aim at
describing a review in two dimensions: intent of change and architectural awareness.

In order to identify the reviews’ intent, we performed an open coding classification process.
As a starting point, we considered the set of tags originally proposed by Tufano et al. (2017).
During the open coding classification, we augmented the set of tags with different intents that
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emerged from the reviews’ data in a bottom-up fashion. The final set of tags used in the reviews’
classification is presented in Table 5.3, alongside a short description of each tag.

Table 5.3 Tags being used in the manual classification of code reviews.

Intent of Change

New Feature Developer is adding a new feature to the system
Enhancement Developer is enhancing an existing feature or code
Feature Removal Developer is removing an obsolete feature
Platform Update Developer is updating the code for a new platform/API
Refactoring Developer is refactoring the system
Bug Fixing Developer is fixing a bug
Merge Commit Developer is merging two branches
Not Clear There’s no evidence to suggest any of the previous

Architectural Awareness

In Description Architectural impact is discussed in the description
In Comments Architectural impact is discussed in the comments
Never Architectural impact is never discussed

This manual process of inspection and classification of code reviews is paramount to our
work. Thus, to make the classification process as transparent as possible, and to allow for better
reproducibility, we present in Table 5.4 examples of code reviews that were found during our
coding process to have different intents. We present the system and review number of each
code review. Moreover, we include the excerpt of the review’s description and/or comments
that made us classify the review under the specific intent.

Table 5.4 Examples of code reviews classified under different intents.

System Review
Number Excerpt Intent

egit 310 “Add option to replace selected files with version in
the git index.” New Feature

jgit 17122 “DfsReftableDatabase is a new alternative for
DfsRefDatabase that handles more operations (...)” Enhancement

platform.ui 18057 “Retire org.eclipse.ui.examples.presentation
plug-in”

Feature
Removal

linuxtools 16258 “Bump to BREE 1.6 to be consistent” Platform
Update

java-client 42324 “Refactor View mapping into distinct class (...). The
view query handling is moved into a separate class” Refactoring

java-core 41436 “Fix failing unit tests introduced by (...)” Bug Fixing
egit 795 “Merge branch stable-0.8” Merge Commit

To assess architectural awareness, we rely on the review’s description and/or comments to
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ascertain the developers’ awareness of the architectural impact of the change. When developers
discuss the structural architecture in the review’s description or comments, we can be certain
of the developers’ awareness. However, when the architecture is not discussed, two scenarios
are possible. In the first scenario, developers do not discuss the architecture because they are
not aware of the impact of their changes. In the second scenario, developers are aware of the
architectural impact, but choose not to discuss it during code review. We are therefore careful
to couch over scientific conclusions in the conduct of our analysis which is a conservative, safe,
under-approximation of developers’ awareness.
In this chapter, our analysis is focused on reviews that performed significant changes to the

system’s structural architecture. In this case, when the author does not discuss the architecture
in the review’s description, reviewers who are not familiar with the change might not be able to
understand its impact on the architecture. Similarly, if a reviewer does not raise the architecture
discussion during the reviewing process, the author of the change might not perceive the
ramifications of the change being performed. In both cases, the lack of discussion in regard to
the system’s architecture during code review will lead to a lack of awareness of the developers
involved in the review, which will ultimately lead to a poor reviewing process. Therefore, the
(lack of) discussion of structural architecture during code review can be used as a proxy for the
developers’ awareness regarding the impact of their changes.
Similarly to the classification of code reviews into different intents, we present in Table 5.5

examples of code reviews identified as the developers having different types of architectural
awareness. We indicate the system the review belongs to, the review number and an excerpt of
the description and/or comment that made us identify the architectural awareness.

Table 5.5 Examples of code reviews identified with different types of architectural awareness.

System Review
Number Excerpt Awareness

egit 7992
“Puts the code from IgnoreActionHandler into a
new IgnoreOperationUI and reuses it in the Staging
view.”

In Description

jgit 7631
“Make this public and make it available to any
command type class. Actually I might just say put it
in the main JAR under the io.util package.”

In Comments

In order to mitigate threats to internal validity during the classification process, we employed
a two stages classification. In the first stage, two researchers solely inspected and classified the
reviews according to a guideline that was discussed, reviewed and agreed by all researchers
involved in the classification process. In the second stage, the researchers discussed all the
reviews for which there was a disagreement in the classification. For this chapter, there was
no disagreement in any reviews after the second stage of classification. The set of manually
classified code reviews is available at our supporting webpage.
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5.4 Validation of Experimental Design
In this section, we discuss and validate the experimental design we propose to study code
reviews that performed significant changes to the structural architecture of software systems.
We first evaluate whether the metrics we propose to measure the architectural change caused by
a code review are appropriate. Next, we perform a sensitivity analysis on the effect of different
thresholds when identifying the code reviews with significant architectural change.

5.4.1 Measurement of Architectural Change
In this chapter, we compare measurements of cohesion and coupling between versions of a
software system to detect code reviews that caused a significant change to the system’s structural
architecture. Even though we employ metrics that have been recently proposed and validated
by developers as good proxies for their perception of architectural quality (Candela et al., 2016;
Bavota et al., 2013), measurements in object-oriented systems may be subjective to a size
bias (El Emam et al., 2001).
To alleviate and comprehend the size bias we might have in our evaluation corpus, we

performed a correlation analysis between the cohesion and coupling metrics we employ and
commonly used size and churn metrics. In particular, for each merged revision, we took the
before and after versions of the system and measured the difference in the following size metrics:
LOC, number of packages, number of files and number of dependencies. Regarding churn
metrics, we collected the number of changed files, number of changed lines and number of
hunks for each merged revision. We employed the Kendall-τ correlation test (Kendall, 1948),
and the correlation coefficients were interpreted as proposed by Cohen (1988).
For all systems under study, most of the structural metrics presented either no or small

correlation to both size and churn metrics, where most of the correlation coefficients lie
below 0.4. An exception was observed when considering structural coupling and number of
dependencies, where the correlation coefficients for these metrics varied from 0.65 to 0.75
between the systems under study. This correlation was expected as structural coupling is directly
computed from dependencies. Nevertheless, structural coupling performs a qualified assessment
of the system’s structural coupling as it evaluates not only the number of dependencies as it is
but also how dependencies affect each other in an overall fashion. In a similar case, the number
of files added and/or removed by a review tend do have a medium to high correlation with the
cohesion of the system. Again, this correlation was also expected because the number of files
in a package directly affects the computation of the system’s cohesion. Likewise, the cohesion
measurement we employ performs a qualified assessment of the relationship between files and
dependencies in a package.

5.4.2 Threshold Sensitivity Analysis
In this chapter, we focus our analysis on the reviews with significant changes to the system’s
architecture as identified by the outliers over the distribution of the reviews’ cohesion and
coupling measurements (see Section 5.3.3). The outliers identification is based on Tukey’s
method (Tukey, 1977), and relies on creating a ‘fence’ that functions as a threshold to identify
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outliers on the distribution. The fence is computed as α × IQR, where IQR stands for the
interquartile range. In this scenario, the value attributed to α plays an important role in our
experimental design, as it is the parameter that will define whether a review had a significant
impact on the architecture or not.

The default configuration for Tukey’s outliers identification is α = 1.5 (Tukey, 1977), which
is the value we have adopted in our previous work (Paixao et al., 2017c). However, different
values of α will alter the threshold for the identification of significant architectural changes,
which might change the results of our research questions. Thus, for this chapter, we performed
a study to evaluate how sensitive our results might be when considering values of α that are
different from the default.

The first step for this validation study is a manual inspection of architectural discussion in all
code reviews that resulted in changes to the cohesion and coupling of a certain system. Given
the total number of reviews that would be necessary to evaluate in a full manual inspection (see
Table 5.1), we restricted this analysis to include only the systems from the Couchbase community.
Thus, for each review in the Couchbase systems, we performed a manual classification regarding
the intent of the review and the developers’ architectural awareness, as described in Section
5.3.4. For this particular study, we inspected and classified 492 code reviews.
After the classification, we configured our outlier identification method to employ different

values of α, ranging from α = 2.0 to α = 0.0, with small decrements of 0.5. Next, we
computed the ratio of code reviews in which the architecture is discussed for each subset of
reviews identified as outliers for the different values of α. When considering the default setting
(α = 1.5), 84 code reviews were identified as performing significant architectural changes, out
of which developers discuss the architecture in 21 of them, accounting for a 25% architectural
discussion ratio. For α = 2.0, we identified 73 outliers with a 26% discussion ratio. Similarly,
for the other values of α (1.0, 0.5, 0.0), the discussion ratio is 24%, 23% and 24%, respectively.
As one can see, our data suggests that the ratio of architectural discussion for the different

subsets of outliers is consistent regardless of the value one may attribute to α. In fact, a
two-tailed pooled test did not detect any statistical difference (at the 0.01 significance level) in
the discussion ratio between reviews identified by different α values. Given the observations
we drew from this study, it is safe to assume that the results of our research questions are not
likely to be affected by the threshold we select to identify significant architectural changes.
Therefore, we choose to use the default configuration of Tukey’s method (α = 1.5) for the rest
of this chapter.

5.5 Experimental Results
This section describes the results we found for each of our research questions.

5.5.1 RQ1: What are common intents when developers perform
significant changes to the architecture?

Table 5.6 reports the number of reviews identified under different intents for the 731 outliers.
Most of the reviews that caused a significant change to the system’s structural architecture were
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introducing a new feature to the system, followed by refactoring, enhancement, bug fixing,
feature removal, merge commit and platform update, respectively. An interesting observation
is that most architecturally significant changes introduce a new feature, even though we have
found a weak correlation between the metrics we used for architectural change and metrics of
size and churn (see Section 5.4). This is expected because new code usually has dependencies
to existing code, which affects the structural architecture of the system, where changes that
add/modify several lines of code, but that do not affect the dependencies will have no effect in
the architecture.

Table 5.6 Number of reviews that performed architecturally significant changes grouped by
different intents.

Systems New
Feature

Feature
Enhancement

Feature
Removal

Platform
Update Refactoring Bug

Fixing
Merge
Commit

Not
Clear

egit 92 (62%) 43 (29%) 5 (3%) 4 (2%) 33 (22%) 19 (12%) 14 (9%) 0 (0%)
jgit 111 (57%) 31 (16%) 2 (1%) 1 (1%) 49 (25%) 5 (2%) 20 (10%) 0 (0%)
platform.ui 54 (36%) 24 (16%) 25 (17%) 1 (0%) 35 (23%) 32 (21%) 0 (0%) 0 (0%)
linuxtools 83 (51%) 44 (27%) 8 (5%) 3 (1%) 64 (40%) 11 (6%) 1 (1%) 6 (3%)
java-client 25 (78%) 10 (31%) 2 (6%) 1 (3%) 5 (15%) 2 (6%) 1 (3%) 0 (0%)
jvm-core 20 (58%) 7 (20%) 1 (2%) 1 (2%) 7 (20%) 2 (5%) 0 (0%) 3 (8%)
spymemcached 12 (66%) 4 (22%) 2 (11%) 0 (0%) 2 (11%) 2 (11%) 0 (0%) 1 (5%)

All Systems 397 (54%) 163 (22%) 45 (6%) 11 (1%) 195 (26%) 73 (9%) 36 (4%) 10 (1%)

A surprising result is that 9% of architecturally significant reviews are classified as bug fixing,
as one would expect that bug fixing would not alter the system’s architectural structure. After
an in-depth analysis, we noticed that the majority of bugs being fixed in these reviews are bugs
that affect the behaviour of the system, instead of bugs that simply cause an error or throw an
exception. For this kind of bugs, developers had to rework the code so that the system would
exhibit the correct behaviour, which in turn would result in significant architectural changes.

We found few reviews that performed a feature removal or a platform update in comparison
to the other intents. In fact, only 6% and 1% of architecturally significant changes removed a
feature or updated the platform, respectively. As one can see, platform.ui has a considerably
higher number of reviews that perform a feature removal when compared to the other systems
under study. We noticed that the developers of platform.ui tend to often move part of their
modules to Github instead of having the source code in their own repository.

When considering the most common intents behind the architectural changes, i.e. new feature,
enhancement, refactoring and bug fixing, we noticed that 22.5% of the reviews have more than
one intent. This is also an expected finding since architectural changes are usually large and
touch several files at once. Figure 5.2 presents the number of reviews for each of the most
common intents, including the number of reviews that share more than one intent.

The biggest intersection occurs between new feature and enhancement. This happens due to
the incremental nature of software development, where a system is developed in an iterative
fashion, and existing features are improved by small increments of new functionality. According
to our manual inspection, 67% of the reviews that enhance an existing feature are doing so by
introducing new features, and 27% of reviews introducing a new feature also have the intent of
enhancing an existing feature.
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New Feature
(397)

Enhancement
(163)

Refactoring
(195)

Bug Fixing
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17
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(20.6%)
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9
(1.4%)
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2
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4
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Figure 5.2: Classification of reviews with significant architecture changes for each of the most
common intents.

As an answer to RQ1, we found that new feature, refactoring, enhancement and bug fixing are
the most common intents behind architectural changes, accounting for 87% of the significant
architectural changes we collected and inspected. Moreover, 22.5% of these changes have
more than one intent, and 67% of changes enhancing an existing feature do so by adding a new
feature.

5.5.2 RQ2: How often are developers aware of the architectural impact
of their changes on a day-to-day basis?

Considering the intents behind architectural changes described in RQ1, Table 5.7 reports the
number of reviews with different levels of architectural awareness according to our inspection
and classification. Reviews for which the intent is not clear were left out of the analysis. In total,
the number of reviews where the architecture is never discussed is higher than the number of
reviews where the architecture is discussed in the description, comments or both. This indicates
a substantial lack of architectural awareness from developers when performing changes with
significant impact on the system’s architecture.

For reviews where developers are adding a new feature, only in 8%, 12% and 4% of the time
the architecture was discussed in the description, comments or both, respectively. Considering
enhancements of existing feature, the architecture was discussed 12% of the time in the
description, 10% of the time in comments and 6% of the time in both. Given that these are
among the most common intents when developers are performing architectural changes (see
RQ1), these results point to an alarming lack of architectural awareness from developers during
the changes where the architectural impact is the greatest. Finally, for all 731 architecturally

107



Software Restructuring: Understanding Architectural Changes and Refactoring M. Paixao

Table 5.7 Number of reviews, for each intent, where the architecture is not discussed, is
discussed only in the review’s description, only in its comments, or in both.

Intent Discussion (Awareness)
Never Description Comments Both

New Feature 297 (74%) 34 (8%) 48 (12%) 18 (4%)
Enhancement 116 (71%) 20 (12%) 17 (10%) 10 (6%)
Feature Removal 36 (80%) 8 (17%) 1 (2%) 0 (0%)
Updating Platform 4 (36%) 4 (36%) 3 (27%) 0 (0%)
Refactoring 92 (47%) 69 (35%) 11 (5%) 23 (11%)
Bug Fixing 60 (82%) 8 (10%) 4 (5%) 1 (1%)
Merge Commit 36 (100%) 0 (0%) 0 (0%) 0 (0%)

Total 641 (69%) 143 (15%) 84 (9%) 52 (5%)

significant reviews, we could find evidence of architectural awareness in the reviews’ description,
comments and both in only 15%, 9% and 5% of the reviews, respectively.
For the reviews which performed a refactoring to the system, the total number of reviews

where the architecture is discussed either in the description, comments or both is higher
than the number of reviews where the architecture is not discussed. Developers were aware
of the architectural impact of their refactorings in 51% of the cases. We noticed that most
of the reviews with a refactoring intent but no architectural awareness were removing dead
code. Dead code removal is indicated as an architecturally significant change because of the
amount of apparent static dependencies usually removed by such operations. However, this is a
straightforward operation in which its impact on the system as a whole is minimum and only
apparent dependencies are removed, by definition.
As an answer to RQ2, by inspecting and classifying 731 reviews that performed significant

architectural changes, we found that developers were aware of the impact of their change in
only 29% of the time. Although being one of the most common intents when performing
architectural changes, reviews that add a new feature or enhance an existing feature present a
poor level of architectural awareness. Finally, developers present a higher level of awareness
when refactoring the systems, where the architecture is discussed in the reviews’ description,
comments or both in 51% of the cases.

5.5.3 RQ3: How do awareness and intent influence architectural
changes on a day-to-day basis?

Table 5.8 reports the number of reviews that either improved or degraded the cohesion and
coupling of each system under study for different intents. In RQ1 we showed that there is
a considerable overlap of reviews introducing a new feature and reviews enhancing existing
features. Therefore, since both these intents are concerned with augmenting and improving
the system’s features, we combined these two intents under Feature in Table 5.8. Finally, we
consider under Awareness all reviews in which the structural architecture was discussed in the
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review’s description or comments (as absolute numbers and as percentage of the total number
of reviews).

Table 5.8 Number of reviews that either improved or degraded the systems’ cohesion and
coupling for different intents and the subset of reviews with evidence of developers’ awareness.

System Intent
Coupling Cohesion

Improvement Degradation Improvement Degradation
Total Awareness Total Awareness Total Awareness Total Awareness

egit
Feature 8 4 50% 78 10 12% 8 5 62% 32 4 12%

Refactoring 7 5 71% 17 10 58% 8 3 37% 7 5 71%
Bug Fixing 2 1 50% 10 3 30% 4 0 — 4 1 25%

jgit
Feature 16 5 31% 88 18 20% 11 5 45% 24 9 37%

Refactoring 9 5 55% 16 13 81% 24 10 41% 13 11 84%
Bug Fixing 1 0 — 1 0 — 1 0 — 3 1 33%

platform.ui
Feature 21 7 33% 35 2 5% 5 2 40% 10 3 30%

Refactoring 21 6 28% 9 3 33% 12 4 33% 1 0 0%
Bug Fixing 3 1 33% 24 1 4% 1 0 0% 8 0 0%

linuxtools
Feature 25 12 48% 46 24 52% 15 7 46% 46 16 34%

Refactoring 16 8 50% 28 16 57% 17 9 52% 21 12 57%
Bug Fixing 5 3 60% 2 0 — 4 3 75% 3 0 —

java-client
Feature 3 2 66% 16 8 50% 4 3 75% 14 4 28%

Refactoring 1 1 100% 3 3 100% 2 2 100% 0 0 —
Bug Fixing 0 0 — 1 1 100% 1 0 — 0 0 —

jvm-core
Feature 0 0 — 20 2 10% 0 0 — 9 2 22%

Refactoring 2 1 50% 4 3 75% 1 1 100% 2 2 100%
Bug Fixing 1 0 — 1 1 100% 0 0 — 0 0 —

spymemcached
Feature 0 0 — 14 1 7% 2 0 — 4 1 25%

Refactoring 0 0 — 2 0 — 0 0 — 0 0 —
Bug Fixing 0 0 — 1 0 — 1 0 — 0 0 —

Consider the coupling degradation of egit, for example. When the intent was to add a new
feature and/or enhance a feature, we found 78 reviews where the change led to a degradation of
either the overall coupling of the system or the coupling of a single package. For 10 reviews,
corresponding to 12%, the architecture was discussed during the review. Similarly, we identified
a total of 24 reviews that improved the cohesion of jgit through refactoring. However, in only
10 (41%) of these reviews we found evidence of architectural discussion.

As one can see from the table, most of the reviews identified as performing significant
architectural changes caused a degradation in the systems’ structural cohesion and coupling.
This is arguably the moment which developers should be most aware of the architectural impact
of their changes since poor architectural decisions might lead to bug proneness (Schwanke
et al., 2013) and increased maintenance effort (Xiao et al., 2016).

For feature-related reviews, changes that improve the architecture tend to discuss the structure
of the system more often than reviews in which the architecture is degraded. In fact, the ratio of
architecture discussion in feature-related reviews that improve the structure of the system is
considerably higher than the overall discussion ratio for all reviews (see RQ2). This indicates
that architecture discussion during code review might lead towards code that improves the
structure of the system even when developers are incorporating new features into the system.
Considering only the reviews in which a Refactoring was performed, this behaviour is not
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so pronounced. Based on our inspection, developers tend to have a similar level of awareness
when the cohesion/coupling of the system is both improved and degraded. As an example,
we found that developers of linuxtools are aware of the architectural impact in 52% and 57%
of the refactorings that improved and degraded the system’s cohesion, respectively. This is a
counterintuitive finding as one expects that refactorings should lead to improvements instead
of degradations. In Section 5.6 we present a qualitative analysis that sheds light on these
unexpected phenomena.
In order to assess the effect that architectural awareness has on the improvement and

degradation of structural cohesion and coupling, we report in Figure 5.3 the distribution of
cohesion and coupling for reviews we found evidence of architectural awareness and for reviews
where we did not. Since the Couchbase systems have a small number of significant architectural
changes, we include only the Eclipse systems in Figure 5.3. For each system, we computed
8 box-plots. First, we report the distribution of cohesion and coupling for the reviews that
improved or degraded the overall cohesion and coupling of the system. Next, we report cohesion
and coupling for the reviews that improved or degraded the cohesion and coupling of a single
package in the system. In all box-plots, smaller values of cohesion and coupling are more
desirable for the system’s structural architecture.
Consider the box-plots that depict the distribution of cohesion and coupling for the reviews

that improved either the system’s overall cohesion and coupling or the cohesion and coupling of
a single package. As one can see, the reviews in which the architecture was discussed presented
larger improvements in structural cohesion and coupling. When looking at jgit in particular,
reviews with evidence of architectural discussion presented considerably larger improvements
to the coupling and cohesion of single packages in the system, as can be seen in boxplots (xiii)
and (xiv), respectively.
When considering the reviews that degraded the system’s cohesion and coupling, we found

few cases in which the reviews with evidence of architectural discussion caused less degradation
than reviews in which the architecture was not discussed. In (xii) for example, reviews with
architectural discussion caused less degradation to the overall cohesion of jgit than their
counterparts with no architectural discussion. However, this did not replicate to most of the
other cases, where both reviews with and reviews without architectural discussion had a similar
degradation in cohesion and coupling.
The observations from the box-plots provide evidence that architectural awareness has a

positive effect on the cohesion and coupling of the systems for the reviews in which the structural
architecture was improved. However, for reviews that degrade the system’s architecture, apart
from specific cases, architectural awareness does not have a noticeable effect on the actual
degradation caused by the review.

In summary, we found that the architecture is more often discussed in the reviews that improve
the cohesion and coupling of the system when compared to reviews that degrade cohesion
and coupling. Differently, the architecture is similarly discussed in reviews that perform a
refactoring. Finally, by assessing the distribution of cohesion and coupling of the reviews we
studied, we noticed that reviews in which we found evidence of architectural awareness tend to
present larger improvements in cohesion and coupling when compared to reviews where the
architecture was not discussed.
As an answer to RQ3, architectural awareness is mostly found in reviews that improve the
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Figure 5.3: Distribution of cohesion and coupling for reviews where we found evidence of
architectural awareness and for reviews where we did not. We report box-plots for
the reviews that improve and degrade the overall cohesion/coupling of the system
and also for the reviews that improve and degrade the cohesion/coupling of a single
package in the system.
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system’s architecture, where the architecture discussion often leads to larger improvements in
cohesion and coupling in these reviews.

5.5.4 RQ4: How do architectural changes evolve during code review?
In RQ1–3, we focused our analysis on the final merged revision of each code review as a
representative of the architectural change being introduced to the system. However, as discussed
in Section 5.3.1, the reviewing process is iterative, and a single code review goes through a
series of revisions based on the reviewers’ feedback before it is incorporated into the system.
Thus, in this research question, we investigate how architectural changes evolve during the code
review process.

To answer this question, we consider the architectural changes identified as outliers that have
more than one revision, and compare the cohesion and coupling values between the last merged
revision and all the previously submitted revisions. In this chapter, we collect 8 different values
of cohesion and coupling for each code review, where a review might be identified as an outlier
for more than one of these 8 different metrics. As an example, a review may be identified as
architecturally significant for considerably improving the coupling of a single package even
though the impact on the overall coupling is small. For this particular review, we only compare
the values for improving the coupling of a single package since this was the metric in which the
review was identified as an outlier. This procedure avoids accounting for variation in metrics in
which the reviews did not cause a significant impact on the structural architecture.

In the context of this chapter, a code review may evolve in four different ways. First, the
architectural impact remains the same throughout the reviewing process, i.e., the cohesion and
coupling values are the same for all revisions submitted during the code review. Next, in the
case where the last merged revision presents better cohesion and coupling values than all the
previous revisions, we consider this code review to have had a positive evolution. Similarly,
we consider a review to have a negative evolution when the cohesion and coupling values of
the last revision are worse than the previous revisions. Finally, the reviews in which there are
revisions exhibiting both better and worse cohesion or coupling values than the last revision are
considered as having a mixed evolution.

Consider code review 83313 from egit, for example. This review was identified as an outlier
due to its significant improvement in the cohesion of a single package in the system. The
cohesion value itself has not changed during four revisions, which characterises this review as
having the same architectural impact throughout the reviewing process. Differently, we now
look at review 22194 from jgit, which has been identified as an outlier because of the significant
degradation it caused to the system’s overall cohesion. For this code review, the degradation
caused by the last merged revision is smaller than the degradation caused by the first revision
submitted for review. In fact, during its 8 revisions cycle, twice the developers changed the
code change in a way that ameliorated the degradation in the system’s overall cohesion. Thus,
this review is considered to have had a positive evolution during code review. Alternatively,
we now consider code review 7633 from linuxtools. The improvement in the system’s overall
coupling caused by the last revision is smaller than the coupling improvement of its previous 3
revisions. In this case, the structural improvement that was finally merged into the system was
not as good as it was on previous revisions of the code change. Hence, this review is identified
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Table 5.9 The evolution of architectural changes during code review. For the reviews that
improve or degrade the system’s architecture, we present the ratio of reviews in which the
architectural impact remains the same. In addition, we provide the ratio of reviews in which the
architectural impact only improved during the reviewing process (positive evolution) as well
as the ratio of reviews in which the architectural impact only got worse during the reviewing
process (negative evolution). Finally, we present the ratio of reviews that the final merged
revision exhibit both better and worse architectural impact than previous revisions (mixed
evolution). All the reviews are grouped by the developers’ intent and level of architectural
discussion during review.

Intent Discussion
Coupling Cohesion

Improvement Degradation Improvement Degradation
Same Pos Neg Mix Same Pos Neg Mix Same Pos Neg Mix Same Pos Neg Mix

Feature

Never 25% 35% 15% 23% 37% 13% 36% 12% 45% 40% 5% 10% 56% 11% 22% 9%
Description 35% 23% 11% 29% 37% 11% 40% 11% 46% 30% 15% 7% 40% 3% 43% 13%
Comments 13% 34% 26% 26% 14% 10% 41% 33% 15% 30% 46% 7% 15% 5% 50% 30%
Overall 25% 30% 19% 23% 34% 12% 36% 15% 40% 30% 19% 9% 48% 9% 30% 12%

Refactoring

Never 68% 6% 20% 3% 56% 17% 21% 4% 69% 19% 11% 0% 81% 9% 9% 0%
Description 60% 12% 20% 8% 52% 8% 28% 10% 70% 16% 8% 4% 37% 8% 37% 16%
Comments 36% 18% 27% 18% 40% 5% 40% 15% 71% 14% 14% 0% 18% 0% 54% 27%
Overall 61% 10% 21% 7% 52% 10% 26% 10% 70% 17% 9% 1% 46% 7% 34% 12%

Bug Fixing

Never 75% 25% 0% 0% 40% 16% 30% 13% 85% 14% 0% 0% 63% 18% 18% 0%
Description 40% 20% 20% 20% 40% 0% 40% 20% 50% 0% 0% 50% 50% 0% 50% 0%
Comments 0% 100% 0% 0% 0% 0% 100% 0% 100% 0% 0% 0% — — — —
Overall 50% 30% 10% 10% 37% 13% 35% 13% 80% 10% 0% 10% 61% 15% 23% 0%

as having a negative evolution. Finally, we look at review 13688 from java-client, which caused
a significant degradation to the coupling of a single package in the system. This review had a
total of 13 revisions, and the coupling value of the final revision is, at the same time, better
than the coupling of revision 1, and worse than the coupling of revision 6. In this scenario, this
review is considered as having a mixed evolution.

Table 5.9 presents the evolution of architectural changes during code review according to the
scenarios discussed above and the impact they caused to the system’s structure. In addition, we
group the reviews by different intents and different levels of architectural discussion.

As one can see from the table, when considering feature-related reviews, the ratio of reviews
in which the architectural impact remained the same during the reviewing process is often
below 50%. In fact, for all feature-related reviews, cohesion and coupling values are the same
in only 31% of the cases, which indicates that reviews that implement new features or enhance
existing features tend to change during code review in a rate of 69%. On the other hand, for
reviews where developers had the intent of refactoring or fixing a bug, the number of reviews
in which the metrics of cohesion and coupling remained the same is considerably higher. For
reviews in which developers refactored the system, the architectural impact remained the same
in 55% of the cases, for example. In feature-related reviews, we observed that the code review
process is often used to discuss the behaviour of the system for the new feature, which explains
the higher amount of architectural variation during the reviewing process of these types of
reviews. Differently, during our manual inspection, we noticed that reviews that refactor the
system or fix a bug tend to be accepted as they are, without much feedback on how the revision
can be improved.
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In addition, one should note that reviews tend to present changes in their architectural impact
when developers provide feedback regarding the system’s architecture as comments during the
reviewing process. For feature, refactoring and bug fixing reviews, the architectural impact of
the latest revision was different than the initial revision in 85%, 59% and 75% of the cases,
respectively.
We noticed that reviews that improve the system’s structure tend to have a higher ratio of

positive evolution when compared to reviews that degrade the structural architecture. Similarly,
the ratio of reviews with a negative evolution is higher in reviews that degrade the architecture
than in reviews that improve the architecture. For reviews that improve the system’s cohesion
and/or coupling, we observe a positive and negative evolution of 24% and 13%, respectively. In
contrast, we observe a positive and negative ratio of 7% and 37% for reviews that degraded the
system’s cohesion and/or coupling. These observations indicate that architectural changes tend
to follow their initial trend, i.e., improvement or degradation, during the code review process. As
an example, the architectural impact of reviews that degrade the system’s structural architecture
is only ameliorated (positive evolution) in 8% of the cases for feature-related reviews.
As previously mentioned, reviews in which the architecture is discussed in the comments

tend to exhibit changes during the code review process. However, we noticed that such reviews
most often result in worst values of cohesion and coupling, where the ratio of negative evolution
for reviews with architectural discussion in the comments is 33%, compared to only 18% in its
positive counterpart. This is a counterintuitive finding as we expect that architectural feedback
during code review will lead to architectural improvements, i.e., a positive evolution. Hence,
for the systems we studied, the architectural feedback provided by developers is not resulting in
better architectural changes.

Finally, the number of reviews with a mixed evolution is the smallest when compared to the
reviews with positive and negative evolution. In total, only 11% of reviews exhibit a mixed
evolution, while 15% and 25% of reviews present a positive and negative evolution, respectively.
As an answer to RQ4, we noticed that apart from feature-related reviews, the impact that

architectural changes cause tend to remain the same during the code review process. Moreover,
when the architectural impact does change, it tends to follow the trend of the initial revision,
where degradations to the system’s architecture tend to become worse as the review progresses
and improvements tend to become better. In addition, we noticed that architectural feedback
during code review leads to adjustments in the code change. However, these adjustments tend
to be negative, indicating that the current architectural feedback provided by developers during
code review is not assisting their peers in improving reviews that cause significant architectural
changes.

5.6 Qualitative Analysis of Refactorings that Degrade the
Architecture

In RQ3 and RQ4 we observed architectural changes in which the developers had the intent
of refactoring the system but the merged revision resulted in a degradation of the system’s
structural architecture. This is a counterintuitive finding as one expects that refactorings should
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have a positive effect on the system’s structure. In order to shed light in this issue, we performed
a qualitative analysis of all code reviews in which developers performed a negative refactoring,
i.e., reviews in which the merged revision caused a worsening in the system’s cohesion and/or
coupling metrics.
For this analysis, we identified 81 code reviews that performed a negative refactoring. This

accounts for 40% of the reviews in which developers performed a refactoring, and 11% of all
significant architectural reviews. We qualitatively analysed these 81 code reviews, where we
carefully read the reviews’ description, comments and source code to better understand the
details of the change.
In 31 (38%) of these reviews, the refactoring was performed as a side operation due to a

bigger change. For all these cases, in order to implement a new feature or enhance an existing
feature, developers extracted existing code to be reused by the new feature. In this scenario,
since we cannot isolate the refactoring itself for source code analysis, we are unable to know
for certain whether the refactoring was positive or negative. Consider review 724 from egit,
for example. The developer describes the review as “this change adds commit functionality to
the staging view. The commit message part of the commit dialog was extracted to a reusable
component and is now both used by commit dialog and staging view”. As one can see, part of
the existing code was extracted to a reusable component to enable the implementation of a new
feature.

The overload of the ‘refactoring’ term is also a common reason for negative refactorings to be
observed. We noticed that in 16 (19%) reviews the developers claimed a refactoring was being
made when the change actually consisted of a feature improvement. When looking at review
7801 from spymemcached, the developer describes the review as “Refactored Operations to
improve correctness of vbucket aware ops”. In this case, the developer is clearly improving a
functional property of the system but is using the term ‘refactoring’ to describe it.

Among the 81 reviews that performed a negative refactoring, we identified 13 reviews (16%)
where the developers attempted an improvement to the structural architecture but failed to
achieve so. Review 9818 from linuxtools is described as “Decouple the double click listener
from the editor internals”. In this review, the developer extracted part of the logic from the
CEditor class into an internal package actions.hidden. However, classes from the package that
CEditor belongs were now depending on a class from another package, which considerably
degraded the coupling of the ui.ide.editors package. This is an indication that even with the
intent of improving the system’s architecture, developers sometimes are not able to see all the
ramifications of their architectural changes.

In 13 (16%) reviews that caused a degradation to the system’s cohesion and/or coupling, we
identified an attempt of improvement to the code base where the developer exhibits a semantical
reasoning instead of a structural one. Consider review 970 from jgit, for example. In this
review, the developer “isolates all of the local file specific implementation code into a single
package”. By moving a large portion of the code base that was related to a particular feature to
a separate package, there was a steep increase in the number of dependencies between packages,
which significantly deteriorated the system’s overall coupling. With this example, we provide
evidence that developers consider not only structural cohesion and coupling, but also other
aspects when carrying out architectural changes. Such observation is aligned with findings
reported in previous empirical studies (Bavota et al., 2013; Candela et al., 2016).
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The remaining set of refactoring reviews that caused a degradation to the system’s structure
consists of isolated scenarios that are not related to the cases discussed above. The reasoning
behind such reviews include, but are not limited to, removal of dead code, removal of code
duplication and refactoring claims that were not actually implemented in the source code.

5.7 Discussion
In this section, we discuss the main contributions of this chapter and reason about their
implication in future software engineering research and practice.

5.7.1 Architectural Awareness Expectations and Observations
The first expectation one would have regarding architectural awareness is that developers would
often discuss the system’s architecture for the changes with most significant impact. However,
the data we collected shows that developers do not discuss the system’s structure in 69% of the
cases. Moreover, only 15%, 9% and 5% of the reviews discuss the architecture in the discussion,
comments and both, respectively. These observations indicate a large lack of architectural
awareness during the changes that most impacted the system’s structure, which goes against
general expectations.
Next, we would expect that reviews in which the developers were aware of the system’s

structure would exhibit better architectural changes. When considering the reviews that caused
an improvement to the system’s structure, we noticed considerably larger improvements for the
reviews in which developers discussed the architecture in either the description or comments.
Hence, the observations drew from the chapter support the expectations that architecture
discussion and awareness during code review leads to better architectural changes.

Finally, we expected that the code review process would lead to improvements in architectural
changes. That is, for a change that initially degrades the system’s architecture, we would expect
that architectural discussion would lead to a final revision that presents a smaller degradation
than the originally submitted revision. Similarly, for revisions that initially improve the system’s
structure, we expected that architectural discussion would boost the improvement in a way
that the final merged revision would be better than the first submitted one. However, our data
suggests the opposite, where 33% of reviews with architectural discussion in the comments
exhibited a negative evolution. This indicates that more often than not, architectural feedback
during code review made architectural degradations worse and architectural improvements
smaller.

5.7.2 Tool Support for Architectural Changes During Code Review
In the course of this empirical study, we observed that the implementation of a new feature
and/or the enhancement of an existing feature account for 54% of the changes that cause a
significant impact on the system’s structure, followed by refactoring (26%) and bug fixing (10%),
respectively. Moreover, for the code reviews we investigated, we noticed that the architecture is
discussed in 31% of the cases. In addition, when considering feature-related reviews, developers
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discuss the system’s structure in only 26% of the cases. Hence, developers are least discussing
the system’s architecture during the changes that most often affect it. The lack of architectural
discussion and the amount of code that is usually introduced in feature-related reviews add up
to make these changes the most likely to introduce problems to the architecture of the system
and the code base as a whole, such as architectural debt and code smells. This indicates that we
should design approaches and build tools that assist developers not only when they refactor the
system, but mostly when they are working on features.
By measuring and comparing cohesion and coupling quality metrics for before and after

versions of the code base in reviews that performed significant architectural changes, we
were able to assess the impact of architectural discussion in the quality of the architectural
change being made. For reviews that improve the cohesion and/or coupling of the system,
we observed that reviews in which the architecture is discussed tend to exhibit considerably
bigger improvements in the system’s structure when compared to reviews that do not discuss the
architecture. We consider this as evidence that architectural awareness and discussion during
code review leads to better architectural changes. This points out to the need of tool support
for architectural changes during code review, where developers would automatically be made
aware of the architectural impact of their changes, possibly fostering discussion and leading to
changes with bigger improvements and less degradation to the system’s structural architecture.
Code review is an iterative process, in which a certain code change undertake a series

of revisions until the final version of the change is merged into the system. By studying
the evolution of architectural changes during code review, we noticed that reviews in which
developers perform a refactoring or bug fix tend to largely remain the same during the reviewing
process, i.e., the values of cohesion and coupling are not altered during all revisions.
Differently, for feature-related reviews, the architectural impact changed more often than

not during the reviewing process. In addition, when developers gave architectural feedback in
the form of comments during code review, we observed a 73% ratio of architectural change
throughout the reviewing process. This indicates that developers are willing to consider
architectural feedback during code review and adjust their changes accordingly. However, we
observed that most of the architectural changes had a negative evolution during code review, i.e.,
the values of cohesion and coupling of the last merged revision are worse than the first revision
submitted for review. This illustrates that the current architectural feedback being provided by
developers is not assisting their peers in improving architectural changes that undergo code
review.

The results from RQ1–4 strongly indicate that developers need tool support for architectural
changes during code review, in special for when they are introducing new features or enhancing
existing features in the system. We have observed that architectural awareness and discussion
not only leads to better architectural changes, but also that developers take architectural feedback
in consideration during the evolution of their changes. Thus, having a tool integrated into code
review that would make developers aware of the architectural impact of their changes can be
beneficial in assisting developers to deal with architectural debt and code smells. Moreover,
given an initial architectural change submitted for review, such a tool could provide suggestions
that would lead the change in a better direction in terms of ameliorating architectural degradation
and boosting architectural improvement.
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5.7.3 Leveraging Code Review Data for Empirical Studies
During our empirical study, we observed a non-negligible number of reviews in which the
developers performed a refactoring that degraded the structural architecture of the system. In
hindsight, one could conclude that these were all cases in which developers have attempted
to improve the system but failed. However, after a careful analysis of the code review data
for each of these changes, we noticed that in 38% of the cases, the refactoring was mixed
with feature-related changes, which caused the review to have a negative effect in the system’s
structure. Moreover, we observed that 19% of the negative refactorings were due to developers
overloading the phrase ‘refactoring’ by performing feature-related changes instead. In parallel,
out of the 81 refactorings that degraded the system’s structure, 13 were improvements to the
code base in which the developers were trying to improve semantical aspects of the code rather
than structural. Finally, in only 16% of the reviews we could identify a failed attempt at pure
structural improvement.

The empirical study performed in this chapter, and the above qualitative analysis in specific,
could only be achieved by leveraging code review data. During code review, developers provide
reasoning and rationale for the changes they make in the system, both when they submit and
review code from their peers. Thus, code review data is a valuable source of knowledge
regarding motivation for and explanation of software changes, from which properties such as
intent and awareness can be inferred. In this context, code review datasets, such as CROP,
provide data that can be leveraged by empirical studies in software engineering to answer
questions that previously required interactions with developers, such as interviews and surveys.

5.8 Threats to the Validity
Internal validity: We use a metric-based approach to automatically identify reviews that
performed significant changes to the system’s structural architecture. Using this approach, one
cannot guarantee all architecturally significant reviews were inspected. To alleviate this threat,
we performed a sensitivity analysis of the parameters thresholds involved in the identification
of significant reviews. By inspecting all reviews of the Couchbase system that exhibited any
change in structural cohesion and/or coupling, we showed that the ratio of reviews that exhibit
architectural discussion is statistically the same at the 0.01 confidence level. This indicates that
the results of our research questions are not likely to be affected by the threshold choice we
employed.

The metrics of structural cohesion and coupling we used are based on structural dependencies
between files, in which differences in size might affect the cohesion and coupling measurement.
Thus, we collected size and churn metrics of all systems and performed a correlation analysis
with the cohesion and coupling metrics we employed. Most of the correlation coefficients were
identified as low or medium, which is aligned with what is usually expected from object-oriented
metrics computed from source code (El Emam et al., 2001). The low and medium correlation
indicates that the cohesion and coupling metrics we employed are indeed capturing changes in
the structural architecture of the system and not only size fluctuations.

Manual classifications are naturally subjective to bias. To mitigate this threat, we employed
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a two-stage manual classification procedure. In the first stage, all reviews were separately
classified by two researchers following a strict guideline previously discussed and agreed by all
researchers involved in the classification process. In the second stage, for all reviews in which a
disagreement was found, both researchers discussed the review until a unified classification was
reached.
External validity: Our study focuses on seven Java projects that were selected from a recently
published open dataset of code review data. Even though the metrics we use and the analysis
framework we employ are language agnostic, the results may not be generalisable to software
systems written in other languages.
The analysis of the systems’ architecture is based on structural metrics of cohesion and

coupling. One might expect different results using different metrics. However, we rely on
structural cohesion and coupling since they are widely-adopted for architecture analysis and
have been thoroughly evaluated in previous studies (Candela et al., 2016; Paixao et al., 2017a;
Ó Cinnéide et al., 2012).

5.9 Related Work
Tufano et al. (2017) performed an empirical study to understand the lifecycle of code smells
in software projects. They manually inspected and classified commits in regard to commit
goal, project status, and developer status. While their classification is mostly based on commit
messages and code, the code review process adopted in our analysis provides a richer set of
artefacts for each software change. Besides having access to each commit and code change, a
review also includes feedback provided by other developers and often links to tickets in the issue
tracking system and links to related reviews performed in the past. As such, during our manual
inspection, we extended Tufano et al. (2017)’s classification of the commit goal to include a
wider set of intents we found during our open coding analysis.

In a more recent work, Palomba et al. (2018) extended the investigation on the lifecycle of
code smells by considering code smells co-occurrences. By analysing open source systems, the
authors identified the most common pairs of smells that appear together in a code entity as well
as the patterns in which the co-occurrences are commonly introduced and removed from the
system. Different from their previous work, they have not manually inspected the changes that
introduce and remove code smells, and mostly relied on source code analysis to investigate the
lifecycle of code smells co-occurrences.
In a similar work, Cedrim et al. (2017) performed an empirical study to investigate how

effective refactoring operations are as a way of removing code smells from a software system.
They found that refactoring operations rarely remove code smells from the system, where
they even observed cases in which refactorings create new code smells in the code base. This
finding is similar to our observation of reviews in which developers performed a refactoring by
negatively impacted the system’s structural architecture. However, their study only considered
the source code and commit message to identify the presence of refactoring operations, which
might include a bias for when refactoring operations are used as a complement to a larger
change, as we have observed in this study.
Several studies have been performed to qualitatively evaluate the developer’s perception
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of cohesion and coupling metrics. Simons et al. (2015) prepared a set of toy examples and
surveyed developers to assess whether metrics represent the developer’s perception of quality.
Bavota et al. (2013) and Candela et al. (2016) also surveyed developers with the same purpose,
where in this case the questionnaire was focused on selected past changes. By inspecting code
reviews, we are able to assess developers intent and awareness on a day-to-day basis, focusing on
how developers perceive the architectural changes at the time these changes are being reviewed.
As a result, we can study the developers’ behaviour for each different architectural change in
particular, without the bias of interviews that involve toy systems or past changes.
The measurement of architectural difference between two versions of the same system has

been extensively discussed in the literature (Tzerpos and Holt, 1999; Mitchell et al., 2001;
Zhihua Wen and Tzerpos, 2004). However, the early metrics were mostly focused on measuring
the distance between two different modularisations of the same system, lacking the capacity to
consider the addition and/or removal of components between two versions. Hence, Le et al.
(2015) proposed a2a, a new metric for architectural change that is inspired by the original
suite of MoJo metrics but now addresses the issue of added and removed components between
versions. After the publication of our original conference paper, Shahbazian et al. (2018)
extended our analysis framework to use a2a as a metric to infer the architectural impact of
changes. After identifying the architecturally significant changes, the authors propose a machine
learning method to predict the impact of architectural changes based on textual information
extracted from the change request in the issue tracking system. Although being a promising
metric for architectural change, a2a cannot be used to directly measure structural difference at
source code level, where an approach for architectural recovery such as ACDC (Tzerpos and
Holt, 2000) or ARC (Garcia et al., 2011) needs to be first applied.

Recent studies have evaluated different metrics of structural cohesion and coupling as suitable
measurements for architectural quality. In a context of search-based software modularisation,
the study reported in Chapter 3 compared the modularisation developers implemented in their
systems against baselines generated by different search procedures. The solutions implemented
by developers outperformed most of the solutions generated by naive search procedures,
indicating developers have some degree of respect by structural measurements of cohesion and
coupling. In a similar setting, Ó Cinnéide et al. (2012) evaluated a set of structural cohesion
metrics for automated refactoring. In this case, different cohesion metrics led to different
refactorings, which indicates these metrics do not capture the same property, even though they
have been all suggested as structural cohesion measurements. Although providing quantitative
evidence on how structural cohesion measurement can be used to improve software systems,
these work lack a qualitative analysis to better understand how developers perform architectural
changes on a day-to-day basis.
Other empirical studies have been performed to study the effectiveness of code review in

other aspects of software quality. McIntosh et al. (2014) investigated the relationship between
software bugs to code coverage and participation during code review. In a similar study, Morales
et al. (2015) extends the investigation of code coverage and participation during code review,
but now with a focus on the design patterns and anti-patterns.
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5.10 Conclusion
Architectural decisions have large implications on the development and evolution of software
systems. In spite of the large body of research dedicated to aid developers in such decisions,
architectural degradation is still a problem faced by software developers. In this context, a
better understanding of how developers perform architectural changes on a day-to-day basis is
required.
Thus, we performed an empirical study that involved the inspection and classification of

731 architectural changes mined from 7 software systems. We focused our investigation on
changes that undergone a process of code review, and we assessed what are the common intents
behind these architectural changes. Moreover, we investigated whether developers were aware
of the architectural impact of their changes when performing and/or reviewing such changes.
In addition, we evaluated the effect that intent and awareness have in the structural quality of
the software architecture as measured by structural metrics of cohesion and coupling. Finally,
we looked at how changes with significant architectural impact evolve during the reviewing
process.
After analysing 731 reviews that performed significant changes to the system’s structural

architecture, we noticed that the intent behind 54% of the architectural changes is to either
introduce a new feature or enhance an existing feature. In addition, we found that refactorings
and bug fixing account for 26% and 10% of the reviews with significant architectural changes,
respectively.

Surprisingly, we found that the architecture is only discussed in 31% of the reviews we studied,
which indicates a lack of architectural awareness when performing significant architectural
changes. Moreover, developers tend to be more often aware of the architecture when the change
is improving the system in terms of cohesion and coupling. We noticed that changes in which
developers are aware of the architectural impact tend to present larger improvements in cohesion
and coupling that changes where the architecture is not discussed.
In regards to the evolution of architectural changes during code review, we observed that

reviews inwhich developers performed a refactoring or fixed a bug tend to remain the same during
the reviewing process. However, feature-related changes tend to undergo adjustments during
code review, especially when fellow developers provide feedback regarding the architecture as
comments during code review.

5.11 Conclusions From the Chapter
In this chapter, we investigated significant architectural changes performed in the context of
code review. We observed that most of the architecturally significant restructurings occurred
when developers were introducing a new feature or enhancing an existing feature. Moreover,
although we noticed a lack or architectural discussion between developers, we also observed that
changes in which developers discuss the system’s structure tend to exhibit higher architectural
improvements. Finally, our data indicates that currently provided architectural feedback during
code review is not assisting developers in performing better architectural restructurings.
All of these findings have considerably broadened our understanding of how developers
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perform architectural restructuring. From now on, researchers and tool builders will have
to consider these observations when proposing methods and tools to assist developers in
architectural restructuring and/or improvement.
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6 Are Developers Refactoring When
Refactoring?

In the previous chapter, we studied architectural changes in the context of code review.
Architectural changes might be considered large-scale software restructuring since these
changes commonly deal with sets of classes, entire modules, and subsystems. However, not all
restructuring operations occur at such large-scale. Developers often restructure minor parts of a
software system, such as single classes and methods, in a practice that has become known as
software refactoring.

Thus, this chapter presents an empirical study that attempts to better understand the context
and conditions in which developers perform low-level refactorings. By automatically identifying
refactoring operations performed during code review, we sought to investigate the most common
intents developers have when employing refactoring operations. Moreover, we study the types
of refactoring operations most commonly employed by developers when performing changes
with different intents.

The report presented in this chapter represents a work-in-progress paper to be submitted to
the International Conference on Software Engineering (ICSE’19). Thus, Section 6.1 presents
the introduction to the paper as it will be submitted. Section 6.2 depicts the design of the
empirical study presented in this chapter while Section 6.3 presents our findings. Section 6.4
discusses the threats to the validity of this study. In addition, Section 6.5 presents the work
related to the empirical study reported in this chapter.
Finally, Section 6.7 discusses how this chapter fits within this thesis and concludes the

chapter.

6.1 Introduction
Software refactoring is the process of changing a software system without altering its behaviour,
with the goal of improving the software’s internal structure. Refactoring is widely adopted
by software engineering practitioners, and it has been linked to improvements in adaptability,
maintainability, understandability (Ammerlaan et al., 2015), reusability, testability (Alshayeb,
2009), and productivity (Moser et al., 2008). Refactoring operations were originally proposed
as a series of manual steps with the common goal of fixing a design problem and/or code smell
(Fowler et al., 1999). Hence, most of the research dedicated at assisting developers through
refactoring recommendations and automated refactoring focused on the improvement of quality
properties, removal of code smells and code duplication (Tsantalis et al., 2008; Tsantalis and
Chatzigeorgiou, 2011; Silva et al., 2014; Tairas and Gray, 2012).
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In spite of the plethora of tools and approaches to assist software refactoring, recent
studies have shown that developers largely prefer to perform refactorings manually rather than
automatically (Murphy-Hill et al., 2012; Negara et al., 2013). Motivations for this include
distrust in automated tools and lack of support for the refactoring operations they often need. In
addition, these studies observed that refactoring operations are most commonly performed in
batches, usually mixed with other activities, such as feature implementation and bug fixing.
This phenomenon has become known as floss refactoring. In this context, the need to better
understand the context, conditions, and motivations behind refactoring operations becomes
increasingly important.

Recent work has been done as an attempt to shed light in this direction. Palomba et al. (2018)
investigated the likelihood of different refactoring operations to be used in software changes that
involve feature development, bug fixing, and pure maintenance activities. The authors observed
that some refactoring operations, such as extract method, are statistically more likely to be
employed in feature development changes than maintenance tasks. However, only 3 possible
intents were considered for each software change, while recent empirical studies that manually
categorised developers’ intentions have considered from 4 to 7 unique intents, as presented both
in Chapter 5 and in the work by Tufano et al. (2017). Furthermore, the classification of each
software change into a certain intent was performed automatically through a keyword based
technique that originally reported an approximate precision of 61% (Mockus and Votta, 2000),
which introduce a considerable threat to the study’s validity.

Silva et al. (2016) investigated developers’ intentions behind refactorings by monitoring
Github projects. During the course of 61 days, the authors detected refactoring operations
performed in commits of 124 systems. For each commit in which refactoring operations were
detected, an email was sent to the developer responsible for the commit in which she was
asked for the motivation behind the performed refactoring. This ‘firehouse interview’ approach
encourages fast and accurate responses since the developers are asked about activities they
performed a few days prior. However, interviews and surveys often suffer from a confirmation
bias (Runeson and Höst, 2009) since the questions being asked only concern the phenomena of
interest.
Hence, we propose an investigation that moves forward the empirical knowledge on the

developers’ intentions when performing refactoring operations. Our methodology performs
a manual analysis on the developer’s intent at the time the change was performed, in a way
that avoids any confirmation and/or memory biases that are intrinsic to studies that involve
developers. To achieve this, we make use of code review data.

In the code review process, a code change is only incorporated into the system after inspection.
The change’s author submits the code and a natural language description of the change, where
other developers will review the code and provide feedback. Depending on the feedback from
the reviewers, the author of the change might need to improve the code. Hence, the author
submits new revisions to the code until the change is incorporated into the system.
Apart from playing a crucial role in currently adopted software development models, the

code review process generates a rich body of data that can be leveraged for empirical studies in
software engineering, as discussed in Chapters 4 and 5. The combination of natural language
descriptions and feedback provides a reliable source of information for each particular change,
in which the developers’ intents and motivations can be inferred. In this context, all the data we
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study was provided by the change’s original developers and reviewers at the time the change was
developed and reviewed, which alleviates the memory and confirmations biases from previous
studies, as discussed above.
Hence, in this chapter, we analyse the code review data of software changes that perform

refactoring operations to complement existing work on understanding the most common intents
and motivations developers have when performing refactoring. Moreover, we perform a new
study that investigates software changes in which the developers have the intention of refactoring
but no refactoring operation is employed. Finally, we provide new insights on how refactoring
operations evolve during code review.

6.2 Experimental Design
The goal of this investigation is to study the intent developers have when they employ refactor-
ing operations in the context of code review. To this end, we ask the following research questions:

RQ1: What are common intents when developers perform refactoring operations? This research
question investigates changes that employ refactoring operations and identifies common intents
behind these changes. Thus, we classify changes with refactoring operations regarding their
intent at the time the change was reviewed, such as Feature, Bug Fixing, Refactoring and so
on. Using this approach we can perform our analysis on the most recurrent intents, thereby
achieving a better understanding of the conditions under which refactoring operations are
employed.
RQ2: What are common refactoring operations employed under different intents? The number
of possible refactoring operations is large, where each refactoring serve a specific purpose. This
research question investigates the most common refactoring operations used when developers
have different intents behind a software change.
RQ3: How often do developers have the intent of refactoring but do not employ any refactoring
operation? The concepts and definitions of refactoring are broad and can be achieved through
different means. Thus, this research question investigates how often we can observe software
changes in which the developers have a refactoring intent but do not employ any of the refactoring
operations we consider.
RQ4: How do changes that employ refactoring operations evolve during code review? By
comparing the last merged revision to all the other previous revisions of a change that employ
refactoring operations, we study how the code review process influences the evolution of these
changes.

The rest of this section describes the methodology we used to answer the research questions
presented above.

6.2.1 Code Review Data
Code review in modern software development is a lightweight process in which changes
proposed by developers are first reviewed by other developers before incorporation in the system.
For this investigation, we focus on Gerrit (Pearce, 2006), the most popular open source code
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review system currently in use by large software communities, such as Eclipse (Eclipse, 2018)
and Couchbase (Couchbase, 2018).

In Gerrit, a developer submits a new code change for review in the form of a git commit, where
the commit message is used as the review’s description. Other developers of the system will
then inspect the change and provide feedback in the form of comments. Improved code changes
are submitted in the form of revisions according to the feedback until the review is merged
or abandoned. For the rest of this chapter, we use review and (code) change interchangeably
to indicate a code submission that was manually inspected by developers and later merged
or abandoned. In addition, we use revisions to indicate intermediate code changes submitted
during the reviewing process of a single review according to the feedback from other developers.
In this chapter, we make use of CROP, an open source dataset that links code review data

with their respective software changes. Given a certain software system, CROP provides a
complete reviewing history that includes not only the code review data such as descriptions and
comments from developers but also versions of the code base that represent the software system
at the time of review.

For this particular investigation, we adopt all the Java systems included in the CROP dataset
for which we could successfully run the refactoring detection tool we chose for the study1 (see
Section 6.2.2). For the Eclipse community, we study egit, jgit, and linuxtools. For the Couchbase
community, we adopt couchbase-java-client, couchbase-jvm-core, and spymemcached. For
brevity, the Couchbase systems will be abbreviated as java-client and jvm-core, respectively.
Table 6.1 reports the number of merged reviews for each system, the time span of the system’s
history we are investigating, and the system’s kLOC.

Table 6.1 Descriptive statistics for the systems under study. We report the number of merged
reviews and revisions in each system followed by the time span of our investigation. In addition,
we report the median, maximum and minimum values of kLOC.

Systems No. of Reviews No. of Revisions Time Span kLOC
Med Max Min

egit 4,502 11,430 9/09 to 11/17 70.59 107.661 16.07
jgit 4,463 11,891 10/09 to 11/17 84.25 114.36 34.00
linuxtools 3,695 10,892 6/12 to 11/17 170.28 205.89 89.99
java-client 798 2,394 11/11 to 11/17 9.3 29.16 0.55
jvm-core 785 2,184 4/14 to 11/17 13.68 24.59 1.78
spymemcached 383 1,098 5/10 to 7/17 10.78 13.68 7.19

6.2.2 Identification of Refactoring Operations
We employ RefMiner (Tsantalis et al., 2018) to identify the refactoring operations performed
in a certain code review. RefMiner is a tool that automatically detects refactoring operations
performed in the code base of two different versions of the same system. RefMiner implements

1RefMiner constantly entered infinite loops when executed on the data from eclipse.platform.ui
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a rule-based statement matching at AST level to identify refactoring operations performed in a
set of elements.
Table 6.2 indicates the refactoring operations detected by RefMiner and the code elements

affected by each operation. In its original study, RefMiner achieved 97.96% of precision and
87.20% of recall in a curated refactorings benchmark, which makes RefMiner the current
state-of-the-art tool for automated refactoring detection.

Table 6.2 Refactoring operations detected by RefMiner and the code elements affected by each
operation

Code Element Refactoring Operations

package Move Package, Split Package, Rename Package

type Move Class, Rename Class, Extract Superclass, Extract Interface

method Extract Method, Inline Method, Pull Up Method, Push Down Method,
Rename Method, Move Method

attribute Pull Up Attribute, Push Down Attribute

Hence, we used RefMiner to detect the refactoring operations performed in each merged
revision of each of the selected systems contained in CROP. When considering all 6 systems,
we identified 1,780 code reviews that performed refactoring operations for a total of 7,259
unique refactorings performed. Table 6.3 provides details on the number of reviews and unique
refactorings performed for each system. In egit, for example, we identified 531 code reviews in
which refactoring operations were employed, which accounts for 11.79% of all code reviews
we studied in egit. In addition, we identified 1,734 unique refactorings distributed over the
531 reviews, where the median number of refactorings per review is 1, and the maximum and
minimum number of refactorings identified in a single review is 49 and 1, respectively.

Table 6.3Number of reviews that performed refactoring operations for each system. In addition,
we provide statistics on the number of unique refactoring operations performed for each system.

Systems No. of Reviews With
Refactoring Operations

No. of
Refactorings

All Med Max Min

egit 531 (11.79%) 1,734 1 49 1
jgit 568 (12.72%) 2,375 1 148 1
linuxtools 427 (11.55%) 2,069 2 197 1
java-client 116 (14.53%) 430 2 26 1
jvm-core 91 (11.59%) 468 2 96 1
spymemcached 47 (12.27%) 183 2 21 1

As one can see from the table, the percentage of reviews that perform refactoring operations
is consistent throughout all systems we analyse, where we observe from 11% to 14% of reviews
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Table 6.4 Intents considered when classifying reviews that performed refactoring operations.

Feature Developer is adding a new feature or enhancing an existing feature
Refactoring Developer is refactoring the system
Bug Fixing Developer is fixing a bug
Feature Removal Developer is removing an obsolete feature
Platform Update Developer is updating the code for a new platform/API
Merge Commit Developer is merging two branches
Not Clear There’s no evidence to suggest any of the previous

that do so. Moreover, the number of refactorings performed per code review tend to be small,
as the median number of unique refactorings is either 1 or 2 for all systems we consider.

6.2.3 Manual Inspection and Classification of Reviews
Following the refactoring identification procedure described in the previous section, we
considered all 1,780 reviews that employed refactoring operations and performed a manual
inspection and classification inspired by the work described in Chapter 5. The manual
classification process consisted of two researchers analysing each review and identifying the
developers’ intent behind the review.

Table 6.5 presents the intents considered during the reviews’ classification. In the course of
our previous investigation reported in Chapter 5, we noticed a considerable overlap between the
‘New Feature’ and ‘Enhancement’ intents. This is due to the incremental and iterative nature of
software development, where new features are constantly developed through the enhancement
of existing features, and vice versa. Hence, for this investigation, we merged these both intents
under a single ‘Feature’ intent.

In order to mitigate threats to internal validity during the classification process, we employed
a two stages classification. In the first stage, two researchers solely inspected and classified the
reviews. In the second stage, the researchers discussed all the reviews for which there was a
disagreement in the classification. For this investigation, there was no disagreement on any
review after the second stage of classification. The set of manually classified code reviews that
performed refactoring operations will be made available at our supporting webpage.

6.3 Experimental Results
This section presents and discusses the results we found for each research question.

6.3.1 RQ1: What are common intents when developers perform
refactoring operations?

Table 6.5 presents the number of reviews that performed refactoring operations grouped by
intent. Note that one review might have more than one intent. Consider egit, for example. A
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total of 413 reviews that employed refactoring operations were found to have a Feature intent,
which accounts for 77.78% of all reviews that employed refactoring operations in egit. In
addition, in only 17.14% and 15.25% of the egit’s reviews the developers had the intention of
Refactoring or Bug Fixing, respectively.
These findings hold when one considers all systems under study. As one can see, most of

the software changes that employ refactoring operations are either introducing a new feature
or enhancing an existing feature in the system, accounting for 63.09% of all reviews. The
second and third most common intents behind code reviews that employ refactoring operations
are Refactoring (31.12%) and Bug Fixing (13.76%), respectively. For this investigation, the
number of reviews identified as having an intent of Feature Removal, Platform Update and
Merge Commit are negligible in comparison to the most popular intents previously discussed.

Table 6.5 Number of reviews that performed refactoring operations grouped by different intents.

Systems Feature Refactoring Bug
Fixing

Feature
Removal

Platform
Update

Merge
Commit

Not
Clear

egit 413 (77.78%) 91 (17.14%) 81 (15.25%) 7 (1.32%) 4 (0.75%) 19 (3.58%) 7 (1.32%)
jgit 326 (57.39%) 161 (28.35%) 78 (13.73%) 1 (0.18%) 1 (0.18%) 42 (7.39%) 12 (2.11%)
linuxtools 230 (53.86%) 200 (46.84%) 59 (13.82%) 4 (0.94%) 3 (0.70%) 1 (0.23%) 18 (4.22%)
java-client 74 (63.79%) 48 (41.38%) 13 (11.21%) 1 (0.86%) 1 (0.86%) 0 (0.00%) 2 (1.72%)
jvm-core 59 (64.84%) 37 (40.66%) 12 (13.19%) 1 (1.10%) 1 (1.10%) 0 (0.00%) 3 (3.30%)
spymemcached 21 (44.68%) 25 (53.19%) 3 (6.38%) 0 (0.00%) 0 (0.00%) 1 (2.13%) 0 (0.00%)

All Systems 1123 (63.09%) 562 (31.57%) 246 (13.82%) 14 (0.79%) 10 (0.56%) 63 (3.54%) 42 (2.36%)

These results indicate that developers most commonly employ refactoring operations when
performing floss refactoring, i.e., the refactoring is mixed with other changes, normally as
preparation for the implementation of the new feature or for the fixing of a bug. These
observations are aligned with previous empirical investigations regarding the phenomenon
of floss refactoring and motivations behind refactoring operations (Murphy-Hill et al., 2012;
Palomba et al., 2018; Silva et al., 2016).
As an answer to RQ1, we observed that refactoring operations are mostly employed in

feature-related changes, accounting for 63.09% of all reviews. Only in 31.57% of the time
developers have the intention of refactoring when they perform refactoring operations. Finally,
bug fixing appears as the third most common intent, where developers refactored the system to
fix a bug 13.82% of the time.

6.3.2 RQ2: What are common refactoring operations employed under
different intents?

In this investigation, we classified each code review under 7 different intents. Moreover, each
review may employ from 1 to 15 different refactoring operations. Hence, Figure 6.1 presents
the number of code reviews that employ each different refactoring operation grouped by the
developers’ intent behind the review. We present the results for the most popular intents as
discussed in the previous research questions, i.e., Feature, Refactoring, and Bug Fixing. For
this analysis, we do not take into account the amount of refactoring operations of the same type
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used in a review. Instead, we simply consider whether a review performs a certain refactoring
operation or not.
Consider the feature-related reviews for example. As one can see, around 38% of these

reviews performed an extract method refactoring. This is more than double the number of
reviews that rename a method, which accounts for the second most common refactoring when
implementing a feature with 16% of the reviews. This is an expected result since feature-related
changes are the most common when developers perform refactoring (see RQ1), and method
extraction is a common preparation for feature implementations and enhancements. Move
method and move attribute refactorings follow as the third and fourth most common operations
in feature-related changes, appearing in 10% and 8% of the reviews.
When considering reviews in which the developers had the intent of refactoring, these

observations vary. Extract method is still the most common operation, but it accounts for only
21% of reviews, where rename method and move method account for 16% and 15% of the
reviews, respectively. Hence, developers tend to use a more even distribution of refactoring
operations when they have the intent of refactoring the system. Although the ranking of most
common operations between changes with Feature and Refactoring intents are similar, an
outlier can be observed for the move class refactoring operation. For feature-related reviews,
developers only move classes in 4% of the time, where classes are moved in 10% of the reviews
with a refactoring intent.

The refactoring operations employed in reviews that fix bugs are similar to the ones where
developers implement features. Extract method is employed 42% of the time, followed by
rename method and move method, both employed at 21% and 10% of the times.

As an answer to RQ2, extract method is the most common refactoring operation for all intents.
However, when considering reviews in which we observe refactoring intentions, the number of
refactoring operations is more evenly distributed. Furthermore, some refactoring operations,
such as move class, are considerably more employed in reviews with a refactoring intention
than otherwise.

6.3.3 RQ3: How often do developers have the intent of refactoring but do
not employ any refactoring operation?

In both RQ1 and RQ2, we studied code reviews that performed refactoring operations as
identified by RefMiner. However, RefMiner only supports the identification of 15 refactoring
operations, while some refactoring catalogues provide details for more than 70 refactoring
operations (Fowler et al., 1999). Moreover, Chapter 5 has shown that developers discuss and
use the ‘refactoring’ term in a broader and more relaxed manner than defined in textbooks and
research papers (Fowler et al., 1999; Tsantalis et al., 2018; Silva and Valente, 2017). Thus, this
research question investigates the code reviews in which the developers have the intention of
refactoring but do not employ refactoring operations.
To do this, we would need a complete ground truth of all code reviews with a refactoring

intent for all systems under study. This is infeasible given the number of code reviews provided
by CROP for each system (see Table 6.1). However, in Chapter 5, we classified the developers’
intent behind code reviews following a similar procedure to the one employed in this investigation.
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Figure 6.1: Number of reviews that employ different refactoring operations grouped by intent.
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Table 6.6 Number of reviews with a refactoring intent that did not employ any refactoring
operation grouped by system.

Systems No. Reviews
Refactoring Intent

No. Reviews
Refactoring Operations Recall

egit 83 48 57%
jgit 49 29 59%
linuxtools 122 69 56%
java-client 29 19 65%
jvm-core 35 22 62%
spymemcached 14 9 64%

All Systems 332 196 59%

Hence, in order to answer this question, we make use of the reviews’ classification performed in
Chapter 5 as a partial ground truth for code reviews with a refactoring intent.

For each review identified by in Chapter 5 as having a refactoring intent, we used RefMiner
to identify the refactoring operations that might have been employed. Table 6.6 presents the
number of code reviews with a refactoring intent alongside the number of those reviews which
employ refactoring operations. Consider egit, for example, the study performed in Chapter 5
identified 83 code reviews as having a refactoring intent, where in 48 of them we observed
a refactoring operation being employed, which accounts for 57% of the reviews. Thus, for
egit, 43% of the reviews with a refactoring intent did not employ any refactoring operation as
identified by RefMiner.

As one can see from the table, when considering all systems under study, 41% of the reviews
with a refactoring intent did not perform any refactoring operation. This is a surprising finding
as one would expect developers to employ refactoring operations when they have the intent of
refactoring the system.
Hence, to shed light on this observation, we separately inspected each refactoring-related

review that did not employ a refactoring operation. After an open coding analysis of all these
reviews, Table 6.7 presents the most common reasons for reviews with a refactoring intent not
to make use of refactoring operations.
As can be seen from the table, 64% of reviews that have a refactoring intent but do not

employ refactoring operations are removing dead code. Dead code removal is a refactoring
activity as it improves the code base while not affecting the system’s behaviour. However, this
is not a refactoring operation supported by RefMiner.
Next, 16% of the reviews are performing a floss refactoring in which the refactoring is too

tangled with the other changes so that RefMiner cannot identify any refactoring operation.
Moreover, we observed a non-negligible (9%) number of false negatives, i.e., reviews in which
refactoring operations were employed but RefMiner failed to detect. After a closer analysis, all
of the false negative reviews performed an extract method refactoring. Hence, both the floss
refactorings and the extract method false negatives serve as examples of room for improvements
in automated approaches for refactoring identification.
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Table 6.7 Reasonings behind reviews with a refactoring intent but no refactoring operations.

Dead code removal 87 (64%)
Floss refactoring 21 (16%)
RefMiner’s false negative 12 (9%)
Constant Extraction 4 (3%)
Code replacement 4 (3%)
Remove unused imports 3 (2%)
Adapt code to previous refactoring 3 (2%)
Others 2 (1%)

All reviews 136

6.3.4 RQ4: How do changes that employ refactoring operations evolve
during code review?

RQ1–3 consider code reviews as single data points when investigating refactoring operations,
i.e., a certain code review either performs a certain refactoring operation during its reviewing
cycle or not. However, a code review is composed of a set of different revisions that evolve and
change according to the feedback provided by other developers. It is possible that developers
introduce a refactoring operation in the second iteration of the code change, for example.
Similarly, refactoring operations originally proposed in the first iteration of the code review
might be reverted and/or disconsidered before the review is integrated into the system. Hence,
this research question expands the study of refactoring operations by considering each revision
within a review individually. We investigate how refactoring operations evolve during the
process of code review.

To do so, we perform a sequential comparison of all revisions in a code review in the context
of the refactoring operations performed by each revision. Consider a code review with three
revisions, for example. We sequentially compare the refactoring operations performed in
the second revision to the operations performed in the first revision. Next, we compare the
refactoring operations performed in the third revision to the ones performed in the second one.

At the end of this procedure, we can observe one of the following five refactoring evolution
patterns for each review. First, when we observe a code review in which all revisions present the
exact same set of refactoring operations, we consider this review to have the ‘same’ refactoring
evolution pattern. Second, when a subsequent revision performs at least one refactoring
operation that was not performed by the previous revision, this code review is considered to
have a ‘new’ refactoring evolution pattern. Similarly, code reviews are considered to have a
‘delete’ refactoring evolution pattern when a subsequent revision do not perform a refactoring
operation that was performed by the previous revision. In the case where we observe both
introduction and removal of refactoring operations in subsequent revisions, we consider this
code review to have a ‘both’ refactoring evolution pattern. Finally, some reviews are composed
by a single revision, in which we consider this review to have a ‘single’ refactoring evolution
pattern.
Figure 6.2 presents the distribution of the different refactoring evolution patterns described
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Figure 6.2: Distribution of refactoring evolution patterns grouped by system.

above for each system under study. As one can see, for all systems considered in this investigation,
around 75% of the reviews present either a same or single refactoring evolution pattern. This
indicates that only one out of four code reviews exhibit any change in its refactoring operations
during the reviewing process. For the 25% of reviews in which we observe a refactoring
evolution, new refactorings appear to be the most common pattern. Differently, sole deletions
of refactorings during code review is the least observable evolution pattern, where most of the
deletions are associated with additions as seen by the number of reviews in which we observe
the both pattern.
Figure 6.3 combines the refactoring evolution observations for all systems and presents

them grouped by different intents. As previously observed, most code reviews do not exhibit
changes in the refactoring operations performed during the reviewing process. However, slight
differences can be observed between different intents. Feature-related reviews, for example,
tend to present the highest rate in refactoring change during code review, where around 30% of
reviews present a new, deleted or both patterns. Differently, reviews with an intent of refactoring
tend to largely remain the same throughout reviewing, with only 23% of the reviews presenting
any change in the refactoring operations.

This adds evidence to an observation we made in Chapter 5 in which we noticed that reviews
with a refactoring intent tend to follow a ‘one and done’ behaviour, where most of them are
integrated as they are proposed. Reviews that add or enhance features, on the other hand, tend
to be iterative, where changes and adaptations of the code change are commonly observed. Bug
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Figure 6.3: Distribution of refactoring evolution patterns grouped by intent.

fixing reviews tend to behave similarly to feature-related ones but with a small difference in the
single pattern. Reviews with a single revision appear to be more frequent on bug fixing reviews
in comparison to feature reviews.
Finally, we investigate which refactoring operations are more likely to change and evolve

during code review. To do this, we perform an analysis of subsequent revisions similar to the
one described previously. However, for each pair of revisions, we extract the number and type
of refactoring operations that were either added or removed between revisions.
Hence, for the five more popular refactoring operations as identified in RQ2, Figure 6.4

presents the number of refactorings that were added and removed during code review for all
systems and all intents considered in this investigation. As one can see in the figure, extract and
rename method refactorings tend to be more often added during code review than removed.
This observation was expected since these refactorings are mostly used in the implementation
and enhancement of features, which represent the most iterative code reviews, as previously
discussed.
Differently, extract superclass, inline method, and move class tend to be equally added and

removed during code review. In an interesting observation, the number of times move class
refactorings are added and removed during code review is considerably greater than extract
superclass and inline method, even though the overall number of move class operations is smaller
than the two others. This indicates that move class operations are more volatile, and developers
tend to be more careful when integrating reviews that perform this type of refactoring.
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Figure 6.4: Distribution of added and removed refactoring operations during code review.

As an answer to RQ4, around 75% of refactoring operations are not altered during code
review. This observation holds for all systems and intents considered in this investigation.
For the reviews that do change refactoring operations during code review, developers tend to
more often add refactorings than remove them. Finally, different refactoring operations tend
to be equally added and removed during code review. However, extract and move method,
in particular, tend to be more added than removed, which indicates the iterative nature of
feature-related changes.

6.4 Threats to the Validity
Internal validity: We employ RefMiner (Tsantalis et al., 2018) to detect the refactoring
operations performed during code review. The current version of the tool is only able to
identify 15 refactoring operations even though some refactoring catalogues report more than 70
refactoring types. Thus, it is possible that some of the reviews we considered not to perform any
refactoring actually employed operations that are not supported by RefMiner. However, the 15
refactoring operations detected by RefMiner represent the most popular refactoring operations
as evaluated by a series of empirical studies (Murphy-Hill et al., 2012; Negara et al., 2013;
Silva et al., 2016). Hence, we expect the number of non-identified refactoring operations to be
minimal.
Automated refactoring detection is not an easy task, especially in the presence of floss
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refactorings. Hence, RefMiner might report false negatives and fail to report true positives.
In its original publication (Tsantalis et al., 2018), RefMiner was found to achieve an overall
precision and recall of 97.96% and 87.20%, respectively. Thus, we consider RefMiner to be
acceptable for the empirical investigation we performed.

Manual classifications are naturally subjective to bias. To mitigate this threat, we employed
a two-stage manual classification procedure. In the first stage, all reviews were separately
classified by two researchers. In the second stage, for all reviews in which a disagreement was
found, both researchers discussed the review until a unified classification was reached.
External validity: Our study focuses on seven Java projects that were selected from a recently
published open dataset of code review data. Refactoring operations are heavily attached to
the programming language and paradigm in which these are performed. Thus, the results and
observations reported in this work may not be generalisable for systems developed in other
languages.

The identification of refactoring operations was performed by RefMiner. One might expect
different results when employing different tools for automated refactoring detection, such as
RefDiff (Silva and Valente, 2017) or RefFinder (Kim et al., 2010). However, RefMiner was
evaluated as the tool with the highest precision and recall when compared to previous refactoring
detectors.

6.5 Related Work
The first grasps on the developers’ intentions and motivations when performing refactoring
emerged in the studies by Murphy-Hill et al. (2012) and Negara et al. (2013), in which the
authors investigated the differences between manual and automated refactoring. These papers
observed that refactorings are commonly performed in conjunction with other types of changes,
mostly as preparation for the introduction and/or enhancement of features and bug fixing. This
phenomenon has become known as floss refactoring. These findings indicated that we need
to better understand how developers approach refactoring so that we can better support such
activity.
Silva et al. (2016) monitored Github projects to detect refactorings performed in 124

software systems. In the following of these changes being incorporated into the systems, the
authors performed email interviews and surveys with the authors of the changes to assess
their motivations behind the refactorings. Extracting a method was mentioned as the most
common refactoring operation, where the main motivation is the preparation for new feature
developments. Our study investigated the developers’ intentions behind refactoring operations
in the context of code review, thereby avoiding any biases that may be incurred by interviews
and surveys.
In a different study, Palomba et al. (2018) collected a large dataset of software changes that

employed refactoring operations and identified the developers’ intents behind each change. An
odds ratio analysis was then performed to assess the likelihood of certain refactoring operations
to be used in feature-related, bug fixing or maintenance tasks. The classification of a software
change into one of the three intents was performed automatically by employing a text-based
analysis that originally scored an approximate precision of 61%. Our classification of the
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developers’ intents behind each code review was performed manually, where two researchers
assessed each review separately and resolved any conflicts at a later stage.

In Chapter 5, we also performed an investigation on the developers’ intents behind software
changes during code review. The authors automatically identified significant architectural
changes and investigated the context in which such changes were performed. A similar
investigation was carried on the context of code smells. Tufano et al. (2017) identified the
developers’ intents behind commits that introduced and removed code smells in order to better
understand how smells are created and fixed in software systems.

6.6 Conclusion
Software refactoring is the activity of modifying software with the goal of improving structure
while maintaining its behaviour and functionality. Refactoring has been associated with improve-
ments in software quality that include, but are not limited to, maintainability, understandability,
and reusability. However, recent empirical investigations have shown that developers commonly
face and perform refactoring operations differently than what it was previously believed in
research. Thus, this investigation has performed a study aimed at better understanding the
context and motivations in which developers perform software refactoring.
To do this, we used code review data and automatically identified occasions in which

developers performed refactoring operations during code review. We followed this automated
procedure with a manual analysis of all code reviews that performed refactoring operations.
The manual analysis and classification consisted of two researchers identifying the developers’
intents behind each change, such as the development of new features, bug fixing, and refactoring.

Our data shows that refactoring operations are most often used in code reviews that implement
new features or enhance existing features, accounting for 63% of the code changes we studied.
Only in 31% of the code reviews that employed refactoring operations the developers had
the actual intent of refactoring the system. Such observations indicate that developers often
prefer to mix the refactorings with other changes instead of submitting a code review that only
performs refactoring.
We noticed that extract method is the most common refactoring operation employed for

software changes when considering all different intents. However, for reviews in which the
developers had the intention of refactoring, the usage of different refactoring operations is more
evenly distributed. Moreover, we observed that some refactoring operations, such as move class,
are more often employed when developers have the intent of refactoring the system.
Interestingly, we noticed a non-negligible number of code reviews in which the developers

have the intention of refactoring but do not employ refactoring operations. After a careful
analysis of each particular case, we observed that this phenomenon mostly occurs in reviews
that clean up dead code, which is an operation that is not currently supported by the tool we
used to detect refactorings. For some other reviews, the refactorings were deeply tangled with
other changes, so that the tool could not identify the refactoring operations.
Finally, we investigated how refactoring operations evolve during code review. We noticed

that around 75% of refactoring operations remain unchanged during the entire review process
for all systems under study. We observed a similar result when grouping the code reviews by
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different intents. However, feature-related changes tend to present a higher rate of refactoring
evolution while refactoring-related changes presented a lower rate of refactoring evolution.

6.7 Conclusions From the Chapter
In this chapter, we investigated low-level software restructuring through the analysis of refactoring
operations during code review. We observed that developers most often perform refactoring
operations when implementing new features or enhancing existing features. Surprisingly, we
noticed cases in which developers had the intention of refactoring but did not employ any
refactoring operation detected by automated tools. Finally, our data suggests that extract method
is the refactoring operation that is mostly performed in the course of code review.

The findings have extended the empirical knowledge on how developers perform and perceive
refactorings. By using a new methodology of code review analysis, we complemented previous
observations on the concepts of floss refactorings and the intents behind refactoring operations.
Moreover, we provided new insights on occasions in which developers have the intent of
refactoring the system but do not employ any refactoring operation. Finally, we performed the
first investigation on the evolution of refactoring operations during code review.
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7 Conclusion and Future Work
The complexity of software systems increases as the systems evolve. As architectural debt is
built into the system, maintenance effort and bug-proneness tend to increase. The accumulation
of architectural debt leads to architectural degradation, which in turn might require complete
re-implementations of software systems. Although automated approaches to assist developers
in restructuring a software system have been proposed, there is no evidence of widespread
adoption by practitioners. Moreover, these approaches are not integrated and evaluated within
the current models and practices adopted by software engineering practitioners.
Software code review is a widespread practice in today’s software development industry.

The lightweight and asynchronous process of modern code review allows developers to peer
review changes performed by other developers in the system and provide feedback. Code review
has been shown to facilitate software comprehension and code quality. In addition, there is
empirical evidence to suggest that the process of code review is able to identify bugs related to
maintainability and evolution.
In this context, this thesis set out with the goal to study software restructuring at different

granularity levels to better understand how software developers perform restructuring on their
daily basis. Hence, this thesis presented a series of empirical study, where each of which
tackled a different objective to reach this goal.

7.1 Summary of Contributions
Chapter 3 aimed at investigating automated approaches for architectural improvement in the
context of software evolution. By studying official longitudinal releases of software systems,
we observed that developers hardly perform large-scale restructurings. Hence, although the
architectural structure implemented by the systems’ developers tend to largely respect common
metrics used by automated restructuring techniques, our data suggests that such techniques
would cause a large disruption to the systems’ original structure; thereby undermining their
applicability. Thus, as one of the contributions in this chapter, we proposed a new state-of-the-art
technique for search-based modularisation that searches for compromises between structural
improvement and disruption.

As previously mentioned, the code review process is widely adopted by practitioners. Thus,
Chapter 5 carried on a study in which we investigated how developers perform architectural
changes on their daily basis. We observed that most of the software changes that significantly
impact the systems’ structure have the intent of implementing a new feature and/or enhancing an
existing feature. Moreover, our data suggests that developers do not often discuss the systems’
architecture during code review for changes that impact the structure. However, for the code
reviews in which we found evidence of architectural discussion, we noticed the architectural
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improvements tend to be more pronounced than in reviews where developers do not discuss
the architecture. These observations broadened the empirical knowledge of how developers
perceive and perform architectural changes during code review, suggesting that developers
will greatly benefit from tools and approaches that automatically made them aware of the
architectural impact of their changes.
Finally, Chapter 6 tackled the last objective for this thesis, which was the study of how

developers employ refactoring operations on their daily basis. By using a new methodology for
the study of the developers’ intents behind refactoring, we complemented existing studies in
showing that most refactoring operations are performed in conjunction with other changes, i.e.,
floss refactoring. Moreover, we provided new insights on software changes in which developers
have the intention of refactoring the system but do not employ any refactoring operation. Finally,
we observed how refactoring operations tend to evolve during code review. These findings
enhanced the empirical knowledge on the context and conditions in which developers perform
refactoring operations. Such new insights should be taken into account by both academic
and industrial practitioners in the development and/or enhancement of tools for automated
refactoring support.
Thus, through the study of software restructuring at different levels of granularity, we

extended the state-of-the-art on the understanding of how developers perform restructuring
activities in real-world software systems. The observations and findings reported in this thesis
will serve as a groundwork for the development and improvements of automated tools to assist
developers when performing software restructuring in both large-scale architectural changes
and low-level refactorings.

7.2 Summary of Future Work
Many aspects of the research conducted in this thesis point to new research directions and
extensions. Some of these are discussed next.

Automatic classification of a review’s intent
In chapters 5 and 6 we manually analysed data from code review to identify the developers
intent behind software changes. Although our methodology follows the best principles of such
analysis, this method does not scale for a study of larger proportions. Hence, the automatic
classification of the intent of a software change would greatly enhance empirical studies such as
the ones presented in this thesis.

Integration of search-based software modularisation into code review
In chapter 3 we proposed an approach based on search-based modularisation to suggest solutions
that improve the structural architecture of the system while preserving its original structure. In
the following chapters we presented several insights on the needs and behaviours of developers
when performing architectural changes and refactoring. All this knowledge could be used to
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integrate the proposed approach in a tool to be used by practitioners during the code review
process.

Usage of different metrics of cohesion and coupling
In chapters 3 and 5 we employed structural measurements of cohesion and coupling. However,
other metrics have been proposed in the literature, such as semantical and historical cohesion/-
coupling. Hence, future studies may build upon the methodology and data we make available in
this thesis to extend such studies by incorporating different metrics of cohesion and coupling.
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