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Abstract 

Microstructural imaging and connectomics are two research areas that hold great potential for 

investigating brain structure and function. Combining these two approaches can lead to a 

better and more complete characterization of the brain as a network. The aim of this work is 

characterizing the connectome from a novel perspective using the myelination measure given 

by the g-ratio. The g-ratio is the ratio of the inner to the outer diameters of a myelinated axon, 

whose aggregated value can now be estimated in vivo using MRI. In two different datasets of 

healthy subjects, we reconstructed the structural connectome and then used the g-ratio 

estimated from diffusion and magnetization transfer data to characterise the network 

structure. Significant characteristics of g-ratio weighted graphs emerged. First, the g-ratio 

distribution across the edges of the graph did not show the power-law distribution observed 

using the number of streamlines as a weight. Second, connections involving regions related to 

motor and sensory functions were the highest in myelin content. We also observed significant 

differences in terms of the hub structure and the rich-club organization suggesting that 

connections involving hub regions present higher myelination than peripheral connections. 

Taken together, these findings offer a characterization of g-ratio distribution across the 

connectome in healthy subjects and lay the foundations for further investigating plasticity and 

pathology using a similar approach. 

 

Keywords: g-ratio; connectome; myelin; graph theory; microstructure; structural 

connectivity; diffusion weighted imaging. 

Abbreviations: DWI: diffusion weighted imaging; NODDI: neurite orientation dispersion 

and density imaging; qMT: quantitative magnetization transfer; NOS: number of streamlines. 
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1. Introduction 

The characterization of the brain has been one of the biggest challenges of the last century 

and to this day developing a map of its complex structure is a central goal of contemporary 

neuroscience (Sporns, 2015). Among the in vivo techniques for neuroimaging based on 

magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI) has become an 

essential tool for the characterisation of white matter at both, the micro-scale by supporting 

the development of a number of microstructural imaging techniques, and the macro-scale, by 

enabling white matter pathways to be reconstructed thus mapping brain connections. 

In the area of microstructural imaging, DWI has enabled the development of mathematical 

models that characterize the complex tissue of the brain at a scale beyond the MRI native 

resolution (Duval et al., 2016). One popular example is neurite orientation dispersion and 

density imaging (NODDI), which estimates neurite morphological indices by means of multi-

shell diffusion imaging and compartmental modelling (Zhang et al., 2012). Combining the 

obtained microstructural information with other non-conventional MRI methods such as 

quantitative magnetization transfer (MT) imaging allows an even more detailed 

characterization of the underlying cellular structure, estimating the myelin distribution in 

terms of the g-ratio, which is the ratio between the inner and the outer diameter of the 

myelinated axon (Stikov et al., 2015). Notably, myelination is a key feature for the rapid 

signal propagation needed by motory, sensory and cognitive functions (Nave and Werner, 

2014), and measuring it in vivo allows further insights in the understanding of plasticity, 

aging and neuroinflammation. 

At the macro-scale, DWI has been paramount for connectomics: the estimation of the 

connectome, the map made of neural elements and their connections (Sporns et al., 2005; 

Hagmann, 2005), has become viable at the macroscale only by means of DWI and 
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tractography, i.e. the reconstruction of white matter streamlines (Basser et al., 2000). 

Inheriting its fundamentals from network science, this approach offers an elegant model to 

describe a complex system such as the brain by means of a mathematical graph, reducing the 

characterization of a map of the brain to the analysis of its topological features (Bullmore and 

Sporns, 2009). This approach has shed light not only on several aspects of the brain 

organization (Collin et al., 2014), but also on potential mechanisms of brain disorders 

(Fornito et al., 2015; van den Heuvel et al., 2013). In particular, the presence of hub regions 

highly interconnected with each other has been observed, forming the so-called rich-club 

(van den Heuvel and Sporns, 2011). It is important to keep in mind that these studies heavily 

rely on the streamlines reconstructed by means of tractography and typically use the total 

number of streamlines connecting a pair of nodes as a measure of their connectivity. Such an 

approach has some limitations related to false positives detection and inaccurate streamlines 

termination (Maier-Hein et al., 2016). The combination of tractographic reconstruction with 

microstructural imaging techniques has been proposed as a possible way to improve it 

(Daducci et al., 2016; van den Heuvel and Yeo, 2017). 

The advantages of this combination can work in two complementary directions. On the one 

hand, the integration of microstructural properties in a network model can lead to a more 

complete picture of the brain structure (Knösche1 and Tittgemeyer, 2011). Recent works 

have attempted this by fusing together structural connectivity with NODDI and qMT data in 

multiple sclerosis and epilepsy (Lemkaddem et al., 2014; Mancini et al., 2016; Pardini et al., 

2015), using microstructural measures to weight the estimated structural networks. On the 

other hand, tractography algorithms can be improved by taking into account microstructural 

information. An interesting example is given by microstructure informed tractography 

(Daducci et al., 2015), which combines tractography and tissue microstructure using a convex 

optimization approach. 
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In this paper, we focus on the former of these two perspectives. We propose to integrate 

myelination measures in the connectome by means of weighting the graph edges using the g-

ratio. The rationale for this is that the g-ratio is believed to be proportional to the axonal 

speed of conduction, and therefore it may be used to characterize the efficiency of any given 

connection. To achieve this goal, we first reconstructed the connectome using the number of 

streamlines as done in the current literature for two different datasets of healthy subjects. 

Then, we integrated the g-ratio after the reconstruction process and we compared the 

resulting properties with more conventional measures of structural connectivity, with the aim 

of characterizing the connectome taking into account myelination. Our hypothesis was that 

the g-ratio would show complementary aspects when looking at the global picture while 

highlighting specific levels of organization in more details. 

 

2. Materials and Methods 

2.1 Data acquisition 

Two datasets were analysed for the purpose of validating the results by comparison. The 

principal dataset included 16 subjects and was collected at the Clinical Imaging Sciences 

Centre, Brighton and Sussex Medical School, Brighton (site A), using a 1.5T Siemens 

Magnetom Avanto. The replication dataset included 15 subjects and was collected at the 

Neuroimaging Laboratory, Santa Lucia Foundation, Rome (site B), using a 3T Philips 

Achieva. The data were acquired as part of two studies approved, respectively, by the 

Herefordshire and the Santa Lucia Foundation Research Ethics Committee. Details about the 

two populations are available in the supplementary materials. 

2.1.1 Principal dataset 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

At site A, 16 healthy subjects (M/F: 6/10; mean age (SD): 25 (6.2)) were scanned using the 

32-channel head coil for signal reception and the body coil for transmission. The protocol 

included: a magnetisation prepared rapid gradient echo (MPRAGE) sequence (TR=2730 ms, 

TE=3.57 ms, TI=1000 ms, flip angle=7°, matrix=256x240x192, slice thickness=1 mm, 

FoV=256x240 mm2); 3-shell DWI sequence for NODDI (TE=99 ms, TR=8400 ms, 

matrix=96x96, FoV=240x240 mm2, slice thickness = 2.5 mm, 10 b0 volumes; 9 directions 

with b=300 smm-2; 30 directions with b=800 smm-2; 60 diffusion directions with b=2400 

smm-2); quantitative MT imaging based on balanced steady-state free precession (bSSFP) 

using a 3D True Fast Imaging with Steady-state precession (TrueFisp) sequence and 3D fast 

low-angle shot (FLASH) volumes for T1-mapping (field of view (FOV)=240x180 mm2; 

matrix=256x96; slices=32; slice thickness=5 mm). 

2.1.2 Replication dataset 

At site B, images from 15 healthy subjects (M/F: 7/8; mean age (SD): 28.9 (4.8)) were 

acquired using a 32-channel head coil. The procedure involved: a 3D T1 fast field echo (FFE) 

sequence (TR=11 ms, TE=5.3 ms, flip angle=8°, matrix=256x228x190, slice thickness=0.9 

mm, FOV=230x192x167 mm3); a multi-shell high angular resolution diffusion imaging 

(HARDI) scheme, optimized for NODDI protocol (TR= 12.5 s, TE= 91 ms, isotropic 

resolution= 2.3 mm3, 9 b0 volumes; first shell: 30 gradient directions, b=711 smm-2; second 

shell: 60 directions, b=2855 smm-2); a series of 12 MT-weighted FLASH sequences (TE=7.4 

ms, TR=35 ms, flip angle=7°, matrix=128x96x28, FOV=230x172.5x140 mm3) with variable 

flip angle and offset frequency of the Gaussian MT pulses (Giulietti et al., 2012); three 3D 

FLASH sequences collected for mapping the observed T1 of the system (TE=4.8 ms, TR=15 

ms, flip angles=5°, 7°, 15°, same matrix and FOV as the MT sequence); three 3D FLASH 

sequences collected for B1 mapping (TE=4.8 ms, TR=28 ms, flip angles=155°, 180°, 205°, 

matrix=64x64x40, FOV=220x220x160 mm3). 
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2.2 Anatomical and diffusion data pre-processing 

The processing pipeline used to obtain the connectivity matrices from the data is briefly 

illustrated in figure 1. T1 images were pre-processed using FreeSurfer for grey/white matter 

tissue classification and parcellation by means of the Desikan-Killiany atlas, obtaining 14 

subcortical and 68 cortical regions (Desikan et al., 2006). Diffusion data were first co-

registered to the respective average of b0 volumes in order to minimize artifacts (Cercignani 

et al., 2012). Then, streamlines were deterministically reconstructed using tensor fitting and 

the fiber assignment by continuous tracking (FACT) algorithm (Mori et al., 1999) by means 

of Diffusion Toolkit (Wang et al., 2007). In particular, for every voxel within the grey matter 

tissue mask, streamlines within the white matter tissue mask were started from eight seeds 

and terminated when the trajectory either entered in a voxel with a fractional anisotropy (FA) 

less than 0.1 or made a turn sharper than 45º. The number of seeds, randomly distributed 

within the voxel, was chosen as a trade-off between reducing network variance and avoiding 

spurious results (Cheng et al., 2012). Streamlines with origins in grey matter tissue mask that 

exceeded the white matter tissue mask were discarded. An additional set of streamlines was 

obtained using more conservative thresholds (FA threshold=0.2; degree threshold=30º). The 

reconstructed streamlines were then co-registered to the anatomical space using an inverse 

linear transformation estimated using FSL FLIRT. 

 

Please insert Figure 1 about here 

 

2.3 Parametric maps and g-ratio estimation 
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Quantitative MT data for both sites were analysed using in-house software in order to 

estimate the macromolecular proton pool size ratio (F) voxel-wise. First, all the MT- 

weighted volumes (bSSFP for site A and FLASH for site B) and T1 mapping volumes were 

spatially realigned to the 25° flip angle FLASH volume using rigid-body registration by 

means of FSL FLIRT (Jenkinson et al., 2002).  T1 maps were obtained by fitting the 3 

FLASH volumes to theoretical voxel values for the spoiled gradient echo for the three flip 

angles (Venkatesan et al., 1998). The MT parameters were then obtained by performing a 

voxel-wise nonlinear least-squares fitting (Levenberg-Marquardt method) to the appropriate 

binary spin bath model: Gloor’s model (Gloor et al., 2008) for site A, and Ramani’s (Ramani 

et al., 2007) model for site B. 

Multi-shell diffusion data were analysed using either the NODDI (site A) or the AMICO (site 

B) toolboxes (Zhang et al., 2012; Daducci et al., 2015) to compute the intra-cellular water 

compartment and the isotropic component volume maps (vic and viso respectively). Then, MT 

and NODDI data were non-linearly co-registered using ANTs to a common MNI space.  

Maps of the aggregate g-ratio were obtained as described by Stikov and colleagues (Stikov et 

al., 2015). From the maps, the g-ratio was computed assuming that the g-ratio is constant 

within the voxel, using the equation: 

 � = �1 −������ = �	1 +�������
�

 (1) 

 

where g is the g-ratio, MVF is the myelin volume fraction, FVF is the fiber volume fraction, 

and AVF is the axon volume fraction (Stikov et al., 2015). According to this model, MVF can 

be derived from any MRI modality that is sensitive to myelin. Following Stikov et al, we 

used the pool size ratio, F, derived from quantitative MT.  
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We then set: 

 ��� = �� (2) 

where k is a proportionality constant not known a priori, which was derived using a simple 

approach already described in previous works (Cercignani et al., 2016; Cercignani et al., 

2017). Briefly, using the JHU white-matter tractography atlas (available with FSL) the 

unbiased masks of the forceps major and minor were extracted for the F, vic and viso maps 

(appropriately co-registered to the JHU template). The g-ratio values estimated from these 

maps were evaluated as a function of k in order to identify the value corresponding to g-

ratio≈0.7. The procedure was repeated independently for the 2 datasets. 

AVF can be derived from the intracellular volume fraction estimated from NODDI (vic), 

adjusted for MVF and for the volume of the isotropic component of diffusion (viso – also 

derived from NODDI) (Stikov et al, 2015).  

 ��� = (1 −���)(1 − ����)��� (3) 

MVF and AVF were computed voxel-wise and then used to estimate the g-ratio maps. These 

were finally co-registered to the anatomical space using an inverse non-linear warping. 

Further details on the g-ratio computation can be found elsewhere (Cercignani et al., 2017). 

2.4 Connectome reconstruction 

2.4.1 Structural brain networks 

Structural networks were modelled by means of weighted graphs, where n nodes are 

connected by unique edges and each edge has a weight associated that reflects its strength.  

The structural connectome was reconstructed for each subject counting the number of 
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streamlines (NOS) between every possible pair of regions, and arranging such values into an 

adjacency matrix. We used the set of streamlines estimated for the less conservative 

thresholds (FA threshold=0.1; degree threshold=45º) and checked for the absence of 

substantial differences when using the stricter ones. We assessed the presence of outliers in 

both datasets using a simple approach based on the interquartile range. Briefly, for each 

subject we calculated the average number of streamlines, the average FA and g-ratio values, 

and the prevalence of connections and disconnections. For each of those measures, we 

calculated the first and the third quartile as well as the interquartile range (respectively Q1, Q3 

and IQR) and used Q1-1.5·IQR and Q3+1.5·IQR as thresholds for identifying outliers. 

In order to avoid spurious connections, we considered as connected only regions with at least 

two estimated streamlines between them, and we used more conservative thresholds (at least 

four and at least six streamlines) to test how robust the results were. Furthermore, to avoid 

false positives, we selected only the edges present in at least 50% of the subjects of each 

dataset (de Reus and van den Heuvel, 2013). NOS-based strength distribution for all the 

regions was computed in order to characterize the structural networks. We then looked at the 

hub organization: hubs have been defined as the eight regions with the highest strength values 

in line with the literature (van den Heuvel and Sporns, 2013), using therefore NOS measures 

as weights. To assure the reliability of the results, we repeated our analysis using alternative 

hub definitions. In particular, we defined hub regions first considering the top twelve regions 

in terms of strength (instead of the top eight), and then as a further criterion we selected 

regions with strength greater than the average plus one standard deviation. The connections 

have been then classified on the basis of the nodes interconnected and in light of the 

estimated hub structure (connection between two hub regions: rich-club (RC); connection 

between a hub region and a peripheral one: feeder (FD); connection between two peripheral 

regions: local (LC)). In this way, we were able to characterize the hub organization without 
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focusing specifically on hub-hub connections (van den Heuvel et al., 2013). The 

classification has been repeated for all the hub definition criteria for reliability purposes. In 

order to take into account different perspectives, other classification criteria were explored: 

the connections were classified on the basis of the subcortico-cortical (subcortical (SUB); 

subcortico-cortical (SC); cortico-cortical (CORT)) and the inter-/intra-hemispherical (intra-

hemispheric, left; intra-hemispheric, right; inter-hemispheric) organization levels. 

2.4.2 G-ratio weighted networks 

G-ratio weighted networks were modelled using a slightly different approach. Rather than 

using the average g-ratio of the streamlines between a given pair of regions, the g-ratio values 

for all the streamlines were taken into account, modelling the network as a multigraph 

(Shafie, 2015), where multiple edges (instead of a single one) connect the nodes (one for each 

streamline), and every edge has its own weight, in this case the g-ratio itself. Although it may 

sound cumbersome, this approach is naturally sound for brain structural connectivity, since it 

gives us the chance of characterising individually the different white matter fibers estimated 

between a given pair of regions. This choice was mainly due to avoid biased results as in the 

Simpson’s paradox (Kievit et al., 2013): using a multigraph, the average weight (e.g. the g-

ratio) of a node’s connections is given by the mean of all the weights of its streamlines rather 

than subdividing those streamlines by specific pairs of regions.  

However, it must be kept in mind that the aim of this paper is the characterization of the g-

ratio weighted network in relation to the NOS-weighted structural network. The 

characterization of the g-ratio distribution will be then given in terms of average across 

connection classes and brain regions, avoiding further assumptions on concepts such as 

distance and motifs. As a result, the use of such model will not present any further difference 

compared to simple graph-based approaches.  
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As a first characterization, we calculated for each region the average g-ratio for all the 

connected streamlines and compared it to NOS-weighted strength distribution. As a second 

step, we sorted the obtained average g-ratio distribution in ascending order, since given the 

axon diameter the g-ratio is inversely proportional to the myelin volume and also to the 

electrostatic energy cost (Paus et al., 2014). Then, for each connection class previously 

identified, we calculated the median of the related g-ratio distribution. For each classification 

criteria, we tested the median values to identify significant differences. Sign test was used for 

assessing the significance of the difference between connection classes, therefore testing non-

parametrically the hypothesis that the difference between each pair of classes had zero 

median under the assumption of continuous distributions (Whitley and Ball, 2002). Given the 

number of comparisons performed (three for each classification criterion, three classification 

criteria) and in order to avoid the multiple comparisons problem, we corrected the p-values 

with the Bonferroni correction as appropriate. In order to show further elements of the hub 

structure, we used the s-core decomposition (van den Heuvel and Sporns, 2011): for an 

increasing range of strength thresholds, the connections with a lower strength value were 

removed and the median g-ratio of remaining streamlines was computed. 

2.4.3 Additional analyses 

In order to provide further elements to characterize the datasets in terms of NOS 

distributions, we compared the connection classes in the NOS-weighted networks and 

provided for comparison purposes a brief characterization for FA-weighted networks. 

Moreover, for further assessments of relationship between the NOS- and G-ratio-weighted 

networks, we examined the correlation of those networks and characterised them as a 

function of the streamline length. Details about these additional methods and the related 

results are available in the supplementary materials. 
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3. Results 

Good quality g-ratio maps were obtained for all participants. The scaling factors k were, 

respectively, 2.4 and 2.5 for sites A and B. Figure 2 shows the networks respectively 

reconstructed using NOS and g-ratio values and the histogram of the g-ratio distribution for 

the reconstructed streamlines, averaged over the subjects. Apart from some differences in 

terms of number of reconstructed tracts, it can be observed that the most frequent g-ratio 

value is 0.76 for the main dataset and 0.71 for the replication one. 

 

Please insert Figure 2 about here 

 

As expected, the strength distribution in terms of NOS for both the datasets shows the trend 

of a power law distribution (figure 3). Among the nodes with the highest strength, there are 

the superior frontal gyrus, the precentral one, the superior parietal gyrus (dataset A) and the 

putamen (dataset B). The corresponding average g-ratio distribution does not follow the same 

trend. Sorting such distribution by ascending g-ratio values, the regions with the lowest 

values in both datasets are given by the precentral and the paracentral gyri as well as the 

superior frontal gyrus. 

 

Please insert Figure 3 about here 
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In terms of the hub structure, there is a significant trend which is consistent in both the 

datasets (figure 4): the rich-club and feeder connections show a significantly lower g-ratio 

than the local ones (dataset A, RC-LC: pcorr=0.036; FD-LC: pcorr =0.0027; dataset B, RC-LC: 

pcorr=0.00054; FD-LC: pcorr=0.00054). Although the rich-club connections show also a 

significantly lower g-ratio than the feeder ones in the replication dataset, this result is not 

consistent with the main dataset (dataset A, RC-FD: pcorr =0.18; dataset B, RC-FD: pcorr 

=0.0081). As a further confirmation of this trend, the median g-ratio decreases as the strength 

increases in the s-core decomposition in both the datasets. 

From the subcortico-cortical point of view, in both the datasets there are significant 

differences comparing all the connection classes (dataset A, SUB-SC: pcorr=0.00027; SUB-

CORT: pcorr=0.0045; SC-CORT: pcorr=0.00027; dataset B: SUB-SC: pcorr=0.00054; SUB-

CORT: pcorr=0.00054; SC-CORT: pcorr=0.00054). However, while the subcortical connections 

showed consistently and significantly higher values than the others in both the datasets, 

subcortico-cortical and cortical connections gave conflicting results when comparing the 2 

datasets. 

Finally, from the inter-intrahemispheric point of view, again in both the datasets there are 

several significant differences comparing the connection classes, with the intrahemispheric 

connections of the left hemisphere showing consistently a higher g-ratio than the others 

(dataset A, L-I: pcorr=0.00027; L-R pcorr=0.00027; dataset B, L-I: pcorr=0.00054; L-R: 

pcorr=0.00054). The other comparisons did not match between the main and the replication 

datasets (dataset A, I-R: pcorr=0.63; dataset B, I-R: pcorr=0.0081). 

Further details on the results as well as individual data for the subjects are available in the 

supplementary materials. 
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Please insert Figure 4 about here 

 

4. Discussion 

In this paper, we proposed the integration of the connectome with myelin content measures 

using network modelling and g-ratio computation. Since the white matter is practically a 

transport system (Paus et al., 2014), in order to assess its structure and function it is necessary 

to have information about the transport processes in terms of speed and delay. Therefore, we 

characterized NOS-weighted structural connectivity with the related g-ratio data in two 

different datasets in order to describe the myelinated connectome in healthy subjects. 

Our results can be summed up in three points: first, the average g-ratio for the connections of 

each region does not follow the trend of the related strength distribution; second, a myelin 

blueprint can be observed looking at the hub structure; third, the anatomical organization 

follows patterns consistent with existing literature. 

Several papers in the last years have started characterizing the g-ratio distribution in vivo 

using MRI (Campbell et al., 2017), both in the healthy adult (Cercignani et al., 2017; 

Mohammadi et al., 2015) and developing brains (Dean et al., 2016; Melbourne et al., 2016). 

To the best of our knowledge, this is the first attempt to characterize the variability of this 

measure in the streamlines used to reconstruct the connectome. As a first step, then, we have 

focused on the strength distribution used to characterize most real-world networks and 

compared it to the average g-ratio of each node. As clear from figure 3, the g-ratio 

distribution does not resemble the strength one. However, sorting the distribution by 

ascending g-ratio values, the regions with lower g-ratio and therefore with higher myelin 

proportion are the ones involved in motor and somatosensory functions as one would expect 
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(Nave and Werner, 2014). This observation confirms the fact that the g-ratio can provide 

complementary information to that provided by tractography, generating interesting 

perspectives for the study of structure-function coupling. 

A second important result is that the rich-club and feeder connections have significantly 

lower g-ratio values than local connections, suggesting that the connections that involve the 

hubs have higher myelin content than the others. A preliminary result by Collin and 

colleagues showed a similar trend using magnetization transfer ratio while taking into 

account only a reduced number of hubs and only in terms of hub-hub connections (Collin et 

al., 2014). Using the g-ratio, we were able to see a more general trend in both datasets 

involving all the hub connections, both the ones with other hubs and the ones with peripheral 

regions, and using different hub definition criteria. As a consequence, rich-club and feeder 

connections are capable of faster and more efficient propagation than the local ones. At the 

same time, the energetic cost for oligodendrocytes maintenance outweighs savings in 

propagation (Harris and Attwell, 2012), making the higher myelin content another one of the 

high-cost features of the brain (Collin et al., 2014; van den Heuvel and Sporns, 2013). 

Regarding anatomical classifications, the subcortico-cortical results suggest less myelinated 

fibers between the subcortical structures than in the cortical case. This result is consistent 

with g-ratio values measured in rats, where the axons connecting the brainstem and the 

internal capsule showed higher g-ratio than the ones in the anterior commissure and the 

corpus callosum (Chomiak and Hu, 2009). Instead, the inter-intrahemispheric results show a 

less clear picture, although confirming the idea of asymmetry between the hemispheres 

(Cercignani et al., 2017). It must be noticed that the largest commissural fiber bundle, the 

corpus callosum, contains axons of variable calibers. In particular, those in the splenium are 

known to have very large diameter and thin myelin sheath (Hildebrand and Hahn, 1978; 
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Stikov et al., 2015). In light of this observation, characterizing interhemispheric streamlines 

as a whole may offer a too general view that is not consistent and hard to interpret. 

It is worth having a deeper look at comparison of the g-ratio with other possible weights for a 

network. The NOS-weighted results included in the supplementary materials showed good 

agreement with previous literature (van den Heuvel and Sporns, 2011; Collin et al., 2014) but 

they were not indicative of the ones based on g-ratio. When looking at the correlation 

between NOS and g-ratio, the relationship was rather modest and the related plot qualitatively 

different from a linear relationship. Examining the possible relationships with the fiber 

lengths, we did not again observe strong relationships using neither the g-ratio or the NOS as 

a weight. In the latter case, we could in any case distinguish differences in light of the hub 

structure. As a further analysis, we used FA-weighted networks as an additional comparison. 

Although we obtained trends comparable with the ones previously described (Collin et al., 

2014), we did not observe shared patterns with the g-ratio-weighted ones (as detailed in the 

supplementary materials). This result highlights how the g-ratio do not rely only on diffusion-

based measures and that the use of both magnetization and diffusion data is necessary for the 

chosen model. 

These results could serve as a starting point for investigating other scenarios. The potential 

applications of this approach span several topics. The first one is the study of plasticity 

mechanisms beyond synaptic ones: one of these mechanisms is believed to rely on the 

possibility of changing conduction velocity through changes in myelin (Fields, 2015; Seidl, 

2014; Wang and Young, 2014). In this context, a study on rats showed that an enriched 

environment induces significant increases in terms of myelin content compared to a standard 

one (Yang et al., 2013). Promisingly, estimating the g-ratio in vivo and observing it through 

the lenses of connectomics could lead to new insights on activity-dependent myelination in 

humans. 
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A further perspective related to plasticity is non-invasive brain stimulation: recent works have 

used network modelling to investigate the mechanisms of transcranial magnetic stimulation 

(TMS) given the structural connectivity and the stimulation site (Cocchi et al., 2016; Gollo et 

al., 2017). This approach has provided interesting insights in how brain dynamics respond to 

focal perturbations that could be extended integrating the g-ratio. 

Another important application would be the study of neuroinflammation, with a special focus 

on multiple sclerosis (MS), where demyelination and remyelination phenomena are key 

elements to evaluate pathophysiology and the response to treatment. A few studies have 

given a glimpse of the possible application in particular looking at the g-ratio in lesion sites 

(Cercignani et al., 2015; Stikov et al., 2015). However, it would certainly be interesting to 

investigate whole-brain potential early signs of the disease evolution. In any case, attention 

should be paid to some challenging issues while estimating the g-ratio in MS (Campbell et 

al., 2017; Stikov et al., 2015). 

Despite all the potential applications, it is necessary to briefly present some methodological 

points as well as some limitations of this work. An important choice in network modelling 

regards how to weight the connections between elements (Fornito et al., 2016). In this work, 

we used the g-ratio value as estimated from NODDI and qMT data in order to provide a 

straightforward reference for future studies. Although it would be tempting to obtain and use 

directly conduction velocity as a weight, there are several elements that need to be taken into 

thorough consideration (Fornito et al., 2013). 

The first point is the mathematical expression of conduction velocity itself as a function of 

the g-ratio. For the peripheral nervous system (PNS), such an expression has been clearly 

defined and some papers used it for the central nervous system (CNS) as well (Melbourne et 

al., 2014). However, it is known that such an expression needs to be adjusted because of the 
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different physical aspects of the brain compared to peripheral nerves (Chomiak and Hu, 2009; 

Pajevic and Basser, 2013). Indeed, it is important to be careful with computing the 

conduction velocity: as shown in a computational work (Pajevic et al., 2014), small changes 

in its value can have profound effects on neural activity in terms of synchrony and signal 

propagation. This consideration leads to an important issue: in order to properly estimate the 

conduction velocity in the CNS, it is necessary to have an estimate of the diameter of the 

fibers (Chomiak and Hu, 2009). Such information has been measured ex-vivo for specific 

bundles and there are some attempts to estimate it in vivo for the corpus callosum (Barazany 

et al., 2009), but its integration in the described network model goes beyond the scope of this 

work. 

Another element worth mentioning is the choice of network measures. In this paper, in order 

to compare the g-ratio weighted networks with the NOS weighted ones we restricted our 

analysis to average and median values of the tracts of interest and used classification criteria 

based on NOS and anatomy to characterize the connections in terms of g-ratio. We did not 

calculate canonical measures such as the clustering coefficient and the path length for the 

sake of interpretability: these measures rely on the assumption that the connections are 

weighted proportionally to their information transfer capability. In the case of the g-ratio, the 

relationship with information transfer is not straightforward, since neither directly or 

inversely proportional to it. Again, using conduction velocity as a weight would certainly 

allow to use and interpret properly more measures inherited from graph theory. However, as 

already pointed out, the estimation of the conduction velocity in the CNS requires knowledge 

about both the g-ratio and the axonal diameter. Without knowing the axonal diameter, the g-

ratio itself does not offer clear information for the definition of distance and motifs in a 

network. 
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This work has also some limitations. Estimating the g-ratio relies in first instance on the 

assumption that its value is constant within the voxel. However, these results could be tested 

using approaches that do not rely on this assumption (West et al., 2016) or in light of the 

recent observations on FA (Chang et al., 2017). Another aspect to take into account is that 

since the g-ratio estimation relies on qMT and NODDI, it inherits all the pitfalls of these 

modalities in terms of assumptions and errors. In particular, while F has been shown to 

correlate with myelination (as in Turati et al., 2015), MT is also sensitive to other factors, 

such as oedema, inflammation and pH (Stanisz et al., 2004, Vavasour et al., 2011). In 

addition, the proportionality between MVF and F is established through an empirical 

procedure which may be seen as arbitrary. It is important to reiterate that a wrong calibration 

could lead to the computed g-ratio having some dependency on FVF (Campbell et al., 2017). 

The consequences of this on topological measures derived from graph theory remain to be 

explored. Finally, the values of vic and viso used to compute AVF are derived from NODDI, 

which makes some strong assumptions about the intracellular diffusivity which do not always 

hold true (Lampinen et al., 2017).  

A further limitation lies in the connectome estimation: it has been shown that using diffusion 

data to estimate the connectome inevitably leads to false positive (Maier-Hein et al., 2016). 

This is an issue mainly of reconstruction algorithms and to this day there are no other viable 

solutions to avoid this problem. 

We used two distinct datasets to cross-validate our findings. While overall the main results 

are replicable between datasets, there are of course some important differences that deserve 

discussing. First, there seems to be a systematic difference in the most represented g-ratio 

between A and B. It is possible that this is a consequence of procedure used to calibrate the 

factor k. k can vary depending on the specific MT method or model used (Stikov et al., 2015; 

Campbell et al., 2017) and ideally requires histological validation. We should reiterate, 
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however, that the data were collected at different field strengths, and using very different MT 

acquisitions and modelling, and the effects of noise and field uniformity are expected to 

affect g-ratio measurement. 

Despite this, most of the results on the properties of g-ratio-weighted graphs show good 

agreement overall between the two datasets. This suggests that g-ratio computation is robust 

enough for more applications in experimental studies. 
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Figure legends 

 

Figure 1 Schematic overview of the pre-processing pipeline for obtaining NOS- and g-ratio-

weighted connectivity matrices from the data. Structural data were processed and parcellated 

using FreeSurfer, while diffusion data were used to deterministically reconstruct white matter 

streamlines. NODDI and qMT parametric maps were reconstructed as detailed in the methods 

in order to compute the g-ratio voxel-wise. Appropriate co-registration was applied to 

represent both the streamlines and the g-ratio maps in the anatomical space, in order to count 

the number of streamlines between each pair of regions (NOS-weighted) or evaluating the 

average g-ratio of each streamline (g-ratio-weighted). In this way, NOS-weighted and G-ratio 

weighted networks were obtained. 

 

Figure 2 NOS-weighted (left) and g-ratio-weighted (centre) networks with the related g-ratio 

histograms (right) for the two datasets (top row: dataset A; bottom row: dataset B) averaged 

across subjects. The networks were averaged taking into considerations only the connections 

showed by at least the 50% of the subjects in each dataset and computing the average without 

the null elements as described from de Reus and van den Heuvel (de Reus and van den 

Heuvel, 2013). The histograms show the g-ratio distribution across the streamlines. 

 

Figure 3 NOS-weighted strength distribution (in blue) and related average g-ratio 

distribution (in red) for the two datasets. The average g-ratio distribution was sorted first 

according to the NOS-weighted strength distribution (red dots) and then in ascending g-ratio 

order (red bars) including the related standard deviation. More details about those 

distributions are available in the supplementary materials. 
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Figure 4 Distribution of the g-ratio across connections classes with the related standard 

deviation (rich-club: top-left; subcortico-cortical: bottom-left; inter-intrahemispheric: bottom-

right) and using the s-core decomposition using the NOS-weighted strength (top-right). A star 

mark was used for indicating specific significant comparisons while two star marks were 

used for highlighting where all the comparisons were significant (p<0.05, Bonferroni 

corrected). 
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