Electronic Supplementary Information

Direct and Continuous Hydrothermal Flow Synthesis of Thermochromic Phase Pure Monoclinic VO₂ Nanoparticles

Delphine Malarde[†], Ian D. Johnson[†], Ian J. Godfrey[†], Michael J. Powell[†], Giannantonio Cibin[‡], Raul Quesada-Cabrera[†], Jawwad A. Darr[†], Claire J. Carmalt[†], Gopinathan Sankar[†], Ivan P. Parkin[†] and Rob G. Palgrave^{†,*}.

Full width half maximum of peak (001) of XRD patterns

Table 1a: FWHM of un-doped VO_2 and Nb-doped VO_2 calculated via Origin software with PersonVII peak function.

Samples	Un-doped VO2	Nb-doped VO2
FWHM	0.32 ± 0.01	0.52 ± 0.03

Continuous Hydrothermal Flow Synthesis (CHFS) of VO2 nanoparticles

Figure s1: Schematic diagram of confined jet mixer (CJM) used for the synthesis of the VO_2 nanoparticles. The supercritical water stream combines with the V^{4+} precursor at the supercritical water outlet within the 1/4" cross piece. This rapidly formed a nanoparticle slurry, which exited the mixer as shown by the red arrow.

Particles size analysis

Figure s2: Particle size analysis of the VO₂ and Nb-doped VO₂ samples (50 particles per distribution) showed average particle sizes of 33 ± 13 nm (top) and 39 ± 13 nm (bottom).