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Design of Experiments to Generate a Fuel Cell Electro-Thermal Performance Map 

and Optimise Transitional Pathways 

Abstract:  

The influence of the air cooling flow rate and current density on the temperature, voltage and power 

density is a challenging issue for air-cooled, open cathode fuel cells. Electro-thermal maps have 

been generated using large datasets (530 experimental points) to characterise these correlations, 

which reveal that the amount of cooling, alongside with the load, directly affect the cell 

temperature. This work uses the design of experiment (DoE) approach to tackle two challenges. 

Firstly, an S-Optimal design plan is used to reduce the number of experiments from 530 to 55 to 

determine the peak power density in an electro-thermal map. Secondly, the design of experiment 

approach is used to determine the fastest way to reach the highest power density, yet limiting acute 

temperature gradients, via three intermediate steps of current density and air cooling rate. 

Keywords — fuel cell; electro-thermal mapping; S-optimal design; cost-reduction; optimum 

transitional pathway.  

1-Introduction 

Hydrogen Fuel cells vehicles (FCV)s are part of the solutions considered to considerably reduce 

the carbon footprint in automotive applications (Sarioglu et al., 2014). However, due to the 

challenges associated with dynamics operations of fuel cells, and specifically heat and water 

management under non-steady state operation, optimisation of their operating parameters is of 

paramount importance to respond to abrupt performance changes.  

Air-cooled open-cathode PEFCs have attracted increasing interest over the last decade. Unlike 

closed-cathode systems, self-breathing architectures offer the advantages of simple design and 

integration into systems, taking air directly from the atmosphere, hence particularly attractive for 

powertrain applications. Literature studies indicate passive open-cathode systems are typically 

limited to a maximum current density of ~600 mA cm-2 (Bussayajarn et al., 2009; Hahn et al., 2004; 

Jeong et al., 2006a, 2006b; Schmitz et al., 2003) due to heat and water management issues, since 

no water is actively removed from the membrane, other than through evaporation (Fabian et al., 

2010; Jeong et al., 2006a). Forced convection of air using fans improves performance in the open-
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cathode configuration, and enables much higher current densities to be attained (Kim et al., 2013; 

Rosa et al., 2007; Sasmito et al., 2012; Wu et al., 2009). It has been shown, through modelling and 

experimentation (Quentin Meyer et al., 2015b; O’Hayre et al., 2007), that increasing the air flow 

rate reduces the stack temperature, improves the membrane hydration and increases the limiting 

current density, so widening the operational boundaries. Furthermore, lowering the cell 

temperature in a controlled manner reduces the risk of heat spikes and thermal runaway, alongside 

with limiting the thermal stress on the membrane, which can lower the fuel cell performance, and 

drastically reduce the lifespan of the system(Sutharssan et al., 2016) 

As such, an air-cooled, open-cathode fuel cell represents a system that generally benefits from 

having greater air supply from blowers (both reactant supply and cooling) at the expense of the 

increasing parasitic power required to deliver the air. Recent investigations have been carried out 

by the authors to map the current, temperature and water distribution in air-cooled, open-cathode 

fuel cells (Meyer et al., 2016; Q Meyer et al., 2015a, 2015b, Quentin Meyer et al., 2015a, 2015b), 

revealing that these parameters need to be considered in unison to understand how these complex 

systems operate. However, as the experiments are typically expensive in terms of planning, 

resource and time, a “smart” reduction of the number of experiments, yet with identical relevance 

in the interpretation is desirable.  

Design of Experiments (DoE) enables a factorial experimental plan to be created which increases 

productivity by both minimising the number of test runs required and maximising the accuracy of 

the results obtained (Telford, 2007; Wahdame et al., 2009). As fuel cells have a wide range of 

material responses and operating conditions, DoE has been used extensively for analysis of material 

properties (Al-Saleh and Al-Zakri, 1998), improvement of bipolar plate design (Grujicic and 

Chittajallu, 2004; Rama et al., 2008), and optimisation of membrane electrode assembly 

composition (Akyalçın and Kaytakoğlu, 2008; Endoo et al., 2010) (including membrane type, 

platinum loading, Nafion impregnation in the electrode and gas diffusion layer assessment). DoE 

has also been used to improve the performance of fuel cell systems by maximising the power output 

and overall system efficiency (Chang et al., 2009; Torchio et al., 2005; Wahdame et al., 2007). 
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The current work presents the results obtained by firstly applying a central composite design, then 

an S-optimal design plan, to reduce the number of experiments required, whilst obtaining a 

maximum power similar to the one of the large map (533 points (Quentin Meyer et al., 2015a)), 

yet with significantly less experiments. Further on, as the maximum power has been determined, 

the path to maximum power is optimised, via three intermediate steps of different current density 

and air flow rate (determined by the fan voltage) for a given time, in order to limit drastic 

temperature increases, yet reach optimum performance at the fastest rate possible. 

2- Experimental  

Fuel cell test station 

The test system (Figure 1) supplies dry, non-heated, hydrogen (with a purity of 99.995 %) into the 

anodes and air is blown by three fans to the active cathodes and cooling channels (Meyer et al., 

2013; Noorkami et al., 2014). A 5-cell, air-cooled, open-cathode fuel cell (Intelligent Energy, UK) 

is being used, generating a maximum power of 140 W. The voltage to the fans, which provide 

cooling air and oxidant supply to the cathode, is controlled by a programmable power supply 

(3649A Agilent). The fuel cell is electrically loaded using a programmable load (Kikusui PLZ164). 

An in-house computer controlled system controls the air, hydrogen, cooling and electrical valves 

(LabVIEW, National Instruments), as well as recording and presenting data measured using a data 

acquisition card (PCI 6221, National Instruments), with a resolution of 30 μV (i.e. 2 V / 216). 

Ambient temperature, pressure (absolute) and relative humidity (RH) were measured, being of 

around 25 °C, 1.02 bar and 40% RH respectively, during all tests. The software enables a maximum 

sampling rate of 3.33 Hz. This was chosen as it enables to sufficiently capture temperature and 

voltage gradients, while avoiding data overflow. 

The inlet hydrogen flow rate in through-flow mode was measured using a thermal flow meter 

(MassVIEW, Bronkhorst) to be 3 × 10-5 m3 s-1. The stack is operated in quasi through-flow mode 

(high purge rate in order to avoid performance losses). Details on the stack cooling and active 

channel geometries has been provided in previous work (Meyer et al., 2013; Noorkami et al., 2014). 

A K-type thermocouple was inserted into the central cooling channel of the third cell (middle cell) 

in order to measure the temperature in the centre of the stack.  
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Experiment generation 

The electro-thermal dataset was generated by measuring the cell voltage, temperature and stack 

power, while controlling the current density and fan voltage (which regulates the air flow rate and 

cell temperature), varying the current density between 0 and 1 A cm-2 and the fan voltage between 

4.5 and 14 V. Each point was held for 30 seconds to reach pseudo steady state performance 

(Quentin Meyer et al., 2015a). In addition, the cell was allowed to cool down for 1 minute when 

the fan voltage was changed and the load reduced, making the total experimental time 8 hours with 

533 datasets.  

For the path optimisation, a further 330 experiments (72 paths using 4 different steps with the 

addition of the cooling step at the end), using the matrix generated by CAMEO were achieved in 4 

hours, with different holding time (0 s - 174 s), different current densities (0.05 to 0.83 A cm-2), 

and different fan voltage (5.2 V to 10.42 V). The cooling step was achieved by reducing the load 

to 0 A cm-2 and increasing the fan voltage to 11.5 V. 

Modelling and Optimisation 

A commercial optimisation software (CAMEO, AVL, Austria) has been used for data fitting of the 

experimental matrix, generation of the two reduced matrices, construction of the robust neural 

network and 2nd order polynomial models(“Avl CAMEO - Calibration, All-in-one Powertrain,” 

n.d.). It has also been used to generate the test-bed for the optimum pathway and predict the 

optimum pathway. 

3- Results 

First, the full experimental data matrix is used in order to generate the reference models. In the two 

following steps, DoE is applied with the target to get comparable results with a significantly 

reduced data set, using the central composite design (NIST/SEMATECH, n.d.) and the S-optimal 

design (Das, 2002; Lewis, 2009; Zloklikovits et al., 2008) approaches. 

3.1. Reduction of the number of experiments required to reach the optimum power  

First, the full experimental data matrix is used in order to get the reference models. In the two 

following steps, DoE is applied with the target to get comparable results with much less effort, 
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using the central composite design (NIST/SEMATECH, n.d.) and the S-optimal design (Das, 2002; 

Lewis, 2009; Zloklikovits et al., 2008). 

Initial experimental matrix 

An electro-thermal performance map is first generated, as a function of the current density and fan 

voltage, to describe the variations of the cell temperature and cell voltage for 533 experimental 

data points. It is clear from this map (Figure 2) that the temperature largely affects the performances 

and cannot be neglected as a crucial parameter for operations. However, the determination of the 

optimum operating point (for example, the maximum power point may be the objective) can be 

more challenging. 

The three quantities of cell voltage, stack power and temperature are fitted in order to generate a 

model of the experimental data as a function of the fan voltage and current density. Figure 3a-c 

show the 3D-plots of the model based on two input variables. 

The empirical model used the Robust Neural Networks (RNN) approach automatically suggested 

by CAMEO as the most suitable model. As can be seen, such a modelling technique is capable of 

following highly nonlinear trends - as long as enough measurements are available.  

The models are created from the 530 points, with the coefficients of determination R2, R2 adjusted 

and R2 predicted, higher than 0.99 (Figure 3). This therefore represents an accurate representation 

of the experimental data.  

The maximum power (131 W) is found for a current density of 0.83 A cm-2, a cell voltage of 

0.52 V, an operating temperature of 56 oC and a fan voltage of 10.41 V (b).  

The S-optimal design matrix with 50-5 experiments provides a maximum power within less than 5 

% difference of the initial experimental matrix for all the predicted variables, along with a narrower 

95 % confidence interval (Table 1, Figure 8). Therefore, the experimental matrix provided by the 

S-optimal design plan is suitable for a reduction of the number of experiments in similar future 

tests, yet enables the determination of the maximum power with similar accuracy to the much larger 

(10 times) experimental matrix.  

To the authors’ best knowledge, this is the first time the S-Optimal design of experiments has been 

used to reduce the number of experiments required to map the operations of a fuel cell. Although 
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the number of experiments (here 50-5) may potentially vary from one fuel cell system to the next, 

depending on the level of non-linearity and the ability of the S-Optimal plan to describe it, this 

methodology is widely applicable to different fuel cell optimisation challenges. 

)The use of a large dataset ensures validity of the model and fitting. On the other hand, it makes 

studying the influence of other variables (e.g. materials, design and hardware alterations) 

challenging due to the extensive time required (8 hours) to capture this map. Therefore, the design 

of experiment approach can be used to reduce the number of experiments, yet build a model robust 

enough to predict the same maximum power for the same operating points. 

 

Reduction of the dataset using the DoE 

This section aims to reduce the number of experiments significantly, yet determine the maximum 

power with < 5 % difference compared with the results determined with the experimental matrix. 

The 5 % criteria not only applies to the response (power), but also to the two inputs (current density 

and fan voltage) and the stack temperature, as altogether these parameters will affect the conditions 

of the fuel cell. 

Due to restrictions of the original experimental matrix caused by intrinsic performance limitations 

of the fuel cell (e.g. it is not possible to operate at a fan voltage of 4 V and a current density of 0.95 

A cm-2 without leading to overheating and irreversible damage), a central composite design (CCD) 

is used to account for the curvature of the design space. The CCD for two factors is the combination 

of a two level experimental plan with a central point, and four points that account for the interaction 

terms of the polynomial model equation up to 2nd order of the input variables (NIST/SEMATECH, 

n.d.). Therefore, they can only be fitted with a 2nd order polynomial equation. Altogether, it is 

composed of 11 points: nine design points, where the first one - in the centre of the domain - is 

repeated twice. The CCD plan has been used to generate the experimental matrix (DoE Wizard 

Toolkit, CAMEO) with nine experimental points and two repeats, or the so-called Central 

Composite Design Matrix. For real experimental data generation, CAMEO would drive a 

corresponding test bed to run these settings and return the measured data. For this comparison, the 

‘measurement-data’ were taken out of the reference model. The ‘measurement noise’ in the 
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repetition points is generated by using the lower and upper borderline of the ‘model prediction 

interval for 95%’.  

Specifically for the repetition points (marked in Figure 6), the statistical noise is lower than the 

deviations of the measurements from the model in the other areas. This observation is expressed in 

the so-called ‘lack of fit’. This means that the model is probably not capable of sufficiently 

representing the nonlinearity of the unit under test. The Central Composite Design (CCD) is 

designed to only build 2nd order polynomial models, which is verified in Figure 6.  

The maximum power modelled with the CCD differs from the one of the initial experimental 

matrix (b).  

The S-optimal design matrix with 50-5 experiments provides a maximum power within less than 5 

% difference of the initial experimental matrix for all the predicted variables, along with a narrower 

95 % confidence interval (Table 1, Figure 8). Therefore, the experimental matrix provided by the 

S-optimal design plan is suitable for a reduction of the number of experiments in similar future 

tests, yet enables the determination of the maximum power with similar accuracy to the much larger 

(10 times) experimental matrix.  

To the authors’ best knowledge, this is the first time the S-Optimal design of experiments has been 

used to reduce the number of experiments required to map the operations of a fuel cell. Although 

the number of experiments (here 50-5) may potentially vary from one fuel cell system to the next, 

depending on the level of non-linearity and the ability of the S-Optimal plan to describe it, this 

methodology is widely applicable to different fuel cell optimisation challenges. 

). It is 5 % lower, therefore not suitable as defined by our criteria. More importantly, it corresponds 

to a different operating point (higher current density and lower fan voltage in comparison with the 

Initial Matrix). This would provide an operating temperature 6 oC higher, which would not be 

suitable for operations of the fuel cell. Operations at this modelled maximum power would cause 

large dehydration in the cell, as it is too hot to maintain liquid water in the cell. The main issue 

with the CCD plan is that there are not enough experimental points, with some areas of the domain 

omitted, along with the second order polynomial not being complex enough to provide a suitable 

fitting. Therefore, a larger design space, alongside a higher order non-linear model is required. 
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S-Optimal Design 

The S-optimality criteria ensures that the points throughout the design space are as spread out as 

possible, yet describes the entire design space, which ensures that non-linearity is detectable by a 

modelling approach (Das, 2002; Lewis, 2009; Zloklikovits et al., 2008). The S-optimal design plan 

has been used to generate the experimental matrix (DoE Wizard Toolkit, CAMEO) with 50 

experimental points and five repeats, or so-called 50-5 S-Optimal Design Matrix (Figure 7a). The 

data has been fitted using the Robust Neural-Network (RNN), which is also able to detect non-

linearity appropriately (Figure 7 b). The S-Optimal design plan is particularly relevant to describe 

fuel cells performances. Indeed, this design plan provides the possibility to avoid particular areas 

of the operational map. This feature is typically observed in fuel cells, whereby operating the fuel 

cell above a certain current density / fuel and reactant flow rate can potentially lead to irrecoverable 

performance losses and drastic failures. 

As expected, the S-optimal design matrix describes the area much better than the CCD matrix 

(Figure 7a). Secondly, the RNN models are of much higher quality for the R2 predicted than the 

2nd order polynomial model, specifically for the cell voltage (Figure 7b).  

The S-optimal design matrix with 50-5 experiments provides a maximum power within less than 5 

% difference of the initial experimental matrix for all the predicted variables, along with a narrower 

95 % confidence interval (Table 1, Figure 8). Therefore, the experimental matrix provided by the 

S-optimal design plan is suitable for a reduction of the number of experiments in similar future 

tests, yet enables the determination of the maximum power with similar accuracy to the much larger 

(10 times) experimental matrix.  

To the authors’ best knowledge, this is the first time the S-Optimal design of experiments has been 

used to reduce the number of experiments required to map the operations of a fuel cell. Although 

the number of experiments (here 50-5) may potentially vary from one fuel cell system to the next, 

depending on the level of non-linearity and the ability of the S-Optimal plan to describe it, this 

methodology is widely applicable to different fuel cell optimisation challenges. 

The maximum power point has been determined here, but a further challenge involves how best to 

get to this point from another location on the operational map. For most applications, it is desirable 

to get to the maximum power point in as short a time as possible; however, sharp increases in 
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temperature, or operation at temperatures outside the recommended range could lead to stack 

damage or significantly reduce the lifespan of the cell when repeated regularly. Therefore, an 

optimum pathway across the operational map exists which represents a trade-off between the 

factors. 

 

3-2 Determination of the optimum pathway to reach the maximum power. 

The effect of increasing the current density and fan voltage in a single increment from open circuit 

to maximum performance is described below (Figure 9 a-b). 

The maximum power point has been determined here, but a further challenge involves how best to 

get to this point from another location on the operational map. For most applications, it is desirable 

to get to the maximum power point in as short a time as possible; however, sharp increases in 

temperature, or operation at temperatures outside the recommended range could lead to stack 

damage or significantly reduce the lifespan of the cell when repeated regularly. Therefore, an 

optimum pathway across the operational map exists which represents a trade-off between the 

factors. 

Pathway generation planning 

In order to approximate the continuous generic pathway, a discrete pathway was created with 

intermediate steps of current density and fan voltage held for a given time, as the fuel cell behaviour 

is non-linear with time. A time target was defined, requiring the stack to be operating at maximum 

power and optimum temperature within 180 s. This rapid start-up time is in agreement with (Gwak 

and Ju, 2015). Nevertheless, this target is lower than the DoE targets (30 s). Yet, this large target 

ensures that different heat patterns can be observed and understood, with the aim of further 

optimisation(Fuel Cell Technical Team Roadmap, 2013). Such requirement could for instance 

correspond to the time required in a hybrid battery fuel cell vehicle for the fuel cell to be operating 

at full power ready to support battery operation, while the battery responded faster to the power 

spike. 

As each step is composed of three variables (current density, fan voltage, step duration), the model 

has six degrees of freedom for two steps, nine degrees of freedom for three steps, and 12 degrees 
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of freedom for four steps. The tests have been restricted to three intermediate steps, in order to limit 

the number of experiments and still provide enough flexibility on the variables. In addition, the 

minimum step size for the current density and fan voltage has been defined, in order to avoid 

operations of the cell in regions leading to stack failure (typically fan voltage below 5 V, and 

current density above 0.6 A cm-2).  

To avoid steps where the current or the fan voltage reduces in comparison with the previous steps, 

or where the current or fan voltage reaches a plateau at an intermediate step, and to ensure that the 

current and fan voltage always increase from one step to the next (as illustrated Figure 10 in the 

‘Path with backward step’, ‘Path with current density plateau’ and the ‘Requested path’), the 

current density and fan voltage u increments are defined as follows (equation 1-5): 

𝑢𝑖 = 𝑣𝑎𝑟𝑢,𝑖 +  𝑢𝑖−1 ,             (Equation 1) 

𝑢1 = 𝑣𝑎𝑟𝑢,1              (Equation 2) 

where u is either the current density j or fan voltage Vfan, i  the actual step (1,2,3), and varu the 

variation of the parameter u, generated in CAMEO. The duration of each step i, Stepi is also 

generated by CAMEO. 

As the fans needs a set voltage to operate, an offset Vfandefault has been introduced:  

𝑉𝑓𝑎𝑛1 = 𝑣𝑎𝑟𝑉𝑓𝑎𝑛,1 + 𝑉𝑓𝑎𝑛𝑑𝑒𝑓𝑎𝑢𝑙𝑡          (Equation 3) 

The final step u4, where the target performances are reached, is calculated as follows: 

𝑢4 = 𝑢𝑡𝑎𝑟𝑔𝑒𝑡              (Equation 4) 

The duration of each step i, Stepi is also generated by CAMEO, ensuring that each step is smaller 

than Steptotal. The final Step, Step4, is calculated as follows: 

𝑆𝑡𝑒𝑝4 = 𝑆𝑡𝑒𝑝𝑡𝑜𝑡𝑎𝑙 −  𝑆𝑡𝑒𝑝1 − 𝑆𝑡𝑒𝑝2 − 𝑆𝑡𝑒𝑝3                 (Equation 5) 

The dependency of the last Step on the three previous steps, alongside set target parameters (Table 

2) reduces the number of variables from 12 to 9. 

Finally, the load I is calculated as follows 
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𝐼 = 𝑗𝐴𝑐𝑒𝑙𝑙                (Equation 6) 

with Acell the cell active area 

To ensure the entirety of the restricted domain is described, as fuel cell operation is highly non-

linear, a number of discrete intermediate variations varu have been introduced between the 

minimum and maximum step size for the time, current and fan voltage (Table 3). 

These steps ensure that there is at least 12 s at the maximum current and fan voltage, at the 

minimum conditions the fan voltage is at least 5.1 V, for a minimum current of 0.05 A cm-2, that 

the third step cannot exceed 0.67 A cm-2 and the fan voltage does not exceed 10.42 V at the final 

step. A plateau in the fan voltage (third step to final step) has been implemented, in order to study 

the effects of a smoother final temperature increase. 

The step matrix and incremental experimental matrix for the 72 experiments are described in 

Error! Reference source not found. and Error! Reference source not found. of the appendix 

section and have been generated using CAMEO. 

Comparison of the behaviours of three paths using the steps generated by CAMEO 

The behaviour of the cell voltage and temperature through 3 paths, with different CAMEO-

generated intermediates steps (Figure 10 a), can be found below (Figure 11b,) (path 4, 12 and 55). 

The three paths have completely different thermal behaviours, alongside with a different level of 

voltage drop in the final step. This indicates the relevance of using intermediates steps, as it enables 

to tune the temperature gradients and the time taken to reach the steady state performances.  

Definition of the key performance indicators (KPIs) 

A key performance indicator (KPI) is a performance measurement that evaluates the success of an 

experiment. For this path optimisation, the KPIs are calculated via processing of the 72 experiments 

and extracting key variables.  Two KPIs are identified, in order to characterise the efficacy of the 

responses (cell temperature, cell voltage). Firstly, KPI1 is defined as the time taken for the 

temperature to reach 50 oC, an indicator of the time necessary to reach steady-state performance. 

On the other hand, KPI2 is defined to evaluate the heating rate per second over the course of the 

transition.  
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Reproducibility on the two KPIs 

The reproducibility was evaluated by repeating eight paths across the 72 runs, choosing points in 

the centre of the domain, with every Step lasting 29 s, every variation of current density varj of 0.15 

A cm-2, and every variation of fan voltage varVfan of 1.12 V. For each path, the KPIs were evaluated 

and the standard deviation across the eight measurement points calculated 

Path 1 consistently provides larger values for KPI1 and KPI2 than the other 7 paths, highlighting 

that the stack heats up slower initially, which could be due to a gradual conditioning of the cell 

materials, leading to a larger standard deviation. It is chosen to discard this experiment, as the cell 

may not be stable in terms of hydration. This leads to much lower standard deviations across the 7 

remaining repeats, hence suitable for the model.  

Determination of the optimum path 

Three different optimisations strategies are discussed here. Firstly, the most suitable path is to reach 

50 oC as fast as possible in order to reach steady state performance in the shortest time (minimising 

KPI1). At the same time, the second target is to minimise the temperature gradients through the 

experiments to avoid stress on the materials (minimising KPI2). As these two variables are directly 

correlated in the single step path 0 (Figure 11), this optimisation is only possible with intermediate 

steps, via modulations of the 9 parameters. The optimisation was achieved using the CAMEO 

simulation and optimisation toolkit.  

The Pareto chart shows that the combined optimisation of both variables, minimisation of KPI1 or 

minimisation of KPI2, can only be reached via a trade-off that depends on the particular application 

of the fuel cell and the way in which it is to be operated. For each path, the corresponding nine 

parameters were generated using CAMEO.  

The two local extremes correspond to the points which have the highest KPI1, yet lowest KPI2, and 

vice-versa. Path 73 provides the worst case scenario, as it reaches performances very fast but with 

the maximum temperature gradient. This may be useful in applications that are extremely time 

sensitive, however this is not the target of this optimisation. Similarly, path 75 takes the longest to 

heat up the cell, yet with the lowest temperature gradient which could reduce strain on the fuel 

cell’s materials. On the other hand, it may take too long to reach a stable operating point. Path 73 
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and path 75 are further discussed however, as more than a single point is necessary for the 

validation, they only highlight extreme cases. Path 74 corresponds to the operating point with the 

lowest combination of KPI1 and KPI2 (although neither of them have been fully minimised), and 

therefore is the most suitable candidate for the optimisation study.  

Validation results 

In order to validate the accuracy of this model, three predicted paths were measured experimentally 

(path 73, path 74 and path 75) and their corresponding KPIs calculated and compared with the two 

predicted KPIs. 

The error between measured and predicted has been defined as follows: 

𝐸𝑟𝑟𝑜𝑟 = 100
|𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
                       (Equation 7) 

The error is significantly larger for KPI1 (37 %) than KPI2 (4%) for path 73, slightly larger for path 

74, and within the same range for path 75.  

Altogether, this suggests that more experiments than 64 may have been necessary to appropriately 

describe the design space, as 2 experiments did not meet the criteria of 50 oC, hence restricting the 

test-bed to 62 experiments for the model. Nevertheless, the predictions and measured values are 

within the same range and satisfy the optimisation criteria, even if the values differ. 

 

Further on, the three different paths agree with the trends desired by the model. In path 75, the 

temperature gradients are so low that 55 oC is not reached in 180 s. In opposition, path 73 reaches 

the optimum the fastest, yet with a high temperature gradient (Figure 13 b). Finally path 74 points 

towards the optimal route, as the voltage reaches quasi steady state in the intermediate states and 

the temperature gradient does not go above 1.09 oC s-1.  

To further reduce KPI2, the number of intermediate steps may need to be increased to 4 or higher, 

to increase the number of experiments significantly and fill the design space more extensively. 

Maybe more KPIs were needed, such as the voltage gradient as soon as the voltage reaches the 

maximum current density, which would be an indicator of steady state condition. However, this 

methodology demonstrates the clear advantage of varying multiple parameters at the same time 
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instead of optimising each of the 9 parameters separately. Alternatively, it is not impossible that 

the target set for KPI1, 50 oC, could have been extended to 52 oC to better describe the change of 

curve of the temperature as it settles towards 55 oC, which may have provided a better closer 

agreement between the predicted and measured value, and a start-up time within the DoE targets 

(below 30 s). 

Overall, this optimisation study is particularly relevant for powertrains applications. As the 

requirements from the engine can vary drastically to speed up / slow down the vehicle, the system 

fuel cell and battery hybrid needs to be able to cope with these changes.  

Although, as highlighted in this work, fuel cells do not behave well under abrupt performance 

changes (Figure 9), the quick, yet controlled increment of the fan voltage and current density 

presented here enables to operate the fuel cell in a safe manner, while still responding to sharp 

increases of power requirements. The optimisation methodology provides a method to ensure that 

heat spikes and drastic voltage decay will be avoided, while reaching the performance targets 

within acceptable times. Therefore, this extends the fuel cell and overall powertrain system 

lifetime. Altogether, this type of methodology provides a roadmap to operate fuel cells in 

powertrains applications, while ensuring that catastrophic failure will be avoided. 

 

Conclusion 

Generating a functional map of fuel cell performance over a range of operating conditions is 

expensive in terms of resource and time and must be repeated when design or material changes are 

made. To substantially reduce the experimental effort, it has been shown how DoE can be applied 

to an air-breathing, open-cathode fuel cell and identify the maximum power point. The CCD design 

using 2nd order polynomials does not satisfy our criteria for accuracy but the more advanced S-

optimal plan in combination with advanced Neuronal Networks provides suitable results to 

characterise the system with less than 10% of the experimental effort.  

The ‘route’ taken across an operational map of fuel cell performance is critical for determining 

overall efficiency, time and durability of a system. Considering the transition from open circuit 

potential (no load) to maximum power point, a DoE scheme is described and implemented in 
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CAMEO that describes the optimal route based on three intermediate steps considering rate of 

temperature change and time for the transition as the key performance indicators.  

More generally, the methodology presented here can be widely used for fuel cells, enabling the 

determination of the optimum operating ‘area’ for a given set of parameters throughout an 

extensive experimental matrix. Once this has been achieved, further studies can use a minimised 

experimental matrix that satisfies a similar model quality, to study the effect of a different set of 

parameters. This methodology can be applied to fuel cells, batteries, hybrids and powertrain 

systems, to optimise for different coupled objectives and reduce the number of experiments to 

describe the system. 
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Figure 1. Process and Instrumentation diagram (P&ID) (a) and photo (b) of the test station 
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Figure 2. Electro-thermal performance map of the fuel cell, cell voltage (a) and stack power (b), 

for a fan voltage between 4.5 and 14 V, and a current density between 0 and 1 A cm-2. The black 

lines show examples of the various different paths across the power map to reach the maximum 

power. 
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Figure 3. ”Measured versus Predicted plot” for the reference models, cell voltage (a), stack power 

(b) and temperature (c) using CAMEO, over the 530 points. 
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Figure 4. Plots of the modelled cell voltage (a), power (b) and temperature (c) using the full 

experimental matrix. 

 

 

 

 

 

 

 

 

 

 

(b)

(c)

(a)

(d)

(e)
Current density / A cm-2

Current density / A cm-2Current density / A cm-2

C
e
ll 

V
o
lt
a
g
e
 /

 V
C

e
ll 

V
o
lt
a
g
e
 /

 V
P

o
w

e
r 

/ 
W

T
e

m
p
e
ra

tu
re

 /
 o

C

Fan voltage / V

Current density / A cm-2

T
e

m
p
e
ra

tu
re

 /
 o

C

P
o
w

e
r 

/ 
W

(c)



 

24 

 

  

Figure 5. (a) Initial design matrix (blue) and Central Composite Design matrix (CCD) (red), (b) 

measured versus predicted plot for 2nd order models generated out of the CCD plan with nine design 

points plus two repetitions for cell voltage, stack power and temperature. 
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Figure 6. 2nd Order Polynomial models for cell voltage (a), power (b) and temperature (c) using the 

CCD with 9-2 points.  
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Figure 7. (a) Initial design matrix (blue) and S-optimal design matrix (red), (b) Measured versus 

Predicted plot for RNN models generated out of the S-optimal plan with 50 design points plus five 

repetitions for the cell voltage, stack power and temperature. 
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Figure 8. RNN-models for cell voltage (a), power (b) and temperature (c) using the S-optimal 

design with 55 points only. 
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Figure 9. Electro-thermal performance for path 0 for the cell voltage. (a) Path description, with the 

Step duration added on the dot. (b) Electro-thermal performance over time, the dash lines are for 

the cell voltage, the full lines the temperature. 

 

 

 

Figure 10. Path with current density plateau, requested path and path with backward step. 
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Figure 11. Electro-thermal performance for path 4, path 12 and path 55 for the cell voltage. (a) Path 

description, with the Step duration added on each dot. (b) Electro-thermal performance over time, 

the dash lines are for the cell voltage, the full lines the temperature. 
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Figure 12. Pareto chart describing the combined minimisation of KPI1 and KPI2, generated using 

CAMEO, and the experimental points in the domain and the random points filling the design space 

using the model. 
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Figure 13. Electro-thermal performance for path 73, path 74, path 75 for the cell voltage and 

temperature. (a) Path description, with the Step duration added on each dot. (b) Electro-thermal 

performance against time, the dash lines are for the cell voltage, the full lines the temperature. 
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Table 1. Modelled maximum power using the initial experimental matrix, CCD matrix and S-

optimal matrix 

 Maximum 

power / W 

Temperature / 
oC 

Cell Voltage / 

V 

Current 

density / A 

cm-2 

Fan Voltage 

/ V 

Initial 

experimental 

matrix (530 

points) 

131±0.5 55.5±0.1 0.52±0.002 0.83 10.41 

CCD matrix (9 

points+2 

repetitions) 

124±6.21 61±3.58 

 

0.48±0.08 0.89 10.26 

S-Optimal 

matrix (50 

points + 5 

repetitions) 

128.1±1.3 56.6±0.35 0.49±0.009 0.86 10.85 

 

 

Table 2. Physical constants used for the calculations of the increments steps 

Parameter Value 

Total experiment time, Steptotal   180 s 

Target current density, jtarget 0.83 A cm-2 

Target fan voltage, Vfantarget 10.42 V 

Minimum fan voltage, Vfandefault 4.3 V 

Cell active area, Acell 60 cm2 
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Table 3. Intermediate steps in the domain. The three columns are not correlated. 

Step duration / s Varj / A cm-2 VarVfan / V 

2 0.05 0.8 

12 0.1 1.12 

29 0.15 1.6 

37 0.19 2.04 

48 0.22  

56  

 

 

Table 4. KPIs for eight repeats of Path 1 throughout the test and standard deviations 

Path KPI1 / s KPI2 / 
oC s-1 

Repeats of path 1 

1 104.119 1.00328 

11 99.1640 0.96523 

21 98.1381 0.97712 

31 98.2485 1.0876 

41 98.3584 0.99703 

51 98.39258 1.06592 

61 99.1 1.02046 

72 98.90234 1.01244 

Standard deviation  1.857563 0.039148 

Standard deviation excluding path 1 0.395732 0.041527 

 

Table 5. Predicted and measured KPIs for path 73, path 74 and path 75. 
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 KPI1 / s KPI2 / 
oC s-1 

Predicted Measured Error / % Predicted Measured Error / % 

Path 73 24 38.11 37 1.87 1.95 4.1 

Path 74 43.2 59 26 0.95 1.09 12.8 

Path 75 112 133 15 0.68 0.58 17 

    

 


