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Abstract 

Adverse events resulting from drug therapy can be a cause of drug withdrawal, reduced and or 

restricted clinical use, as well as a major economic burden for society. To increase the safety of 

new drugs, there is a need to better understand the mechanisms causing the adverse events. One 

way to derive new mechanistic hypotheses is by linking data on drug adverse events with the 

drugs’ biological targets. In this study we have used datamining techniques and mutual information 

statistical approaches to find associations between reported adverse events collected from the FDA 

Adverse Event Reporting System and assay outcomes from ToxCast, with the aim to generate 

mechanistic hypotheses related to structural cardiotoxicity (morphological damage to 

cardiomyocytes and/or loss of viability). Our workflow identified 22 adverse event-assay outcome 

associations. From these associations 10 implicated targets could be substantiated with evidence 

from previous studies reported in the literature. For two of the identified targets, we also describe 

a more detailed mechanism, forming putative adverse outcome pathways (AOPs) associated with 

structural cardiotoxicity. Our study also highlights the difficulties deriving these type of 

associations from the very limited amount of data available. 
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Introduction 

Despite major efforts to avoid off-target effects and toxicity in the development of new drugs, 

adverse events (AE) resulting from drug treatment remain a major clinical and economic burden.1 

Toxicity is also a major cause of drug attrition, severely hampering the productivity of drug 

discovery and development.2 A detailed understanding of the mechanisms leading to AEs is 

important to allow for the efficient development of safer drugs in the future. 

The recognition of the need for a more holistic understanding of toxicity is also reflected in the 

recently increased interest in the mechanisms of AEs, often formalised in Adverse Outcome 

Pathways (AOPs). AOPs are developed as a standardised way to structure evidence leading to an 

adverse outcome over different layers of biology.3 An AOP starts with a molecular initiating event 

(MIE)4 and then follows the pathway through a number of key events until it results in the adverse 

outcome. The pathway typically starts at the molecular level with a chemical entity interacting 

with for example a protein; the effect of this MIE is then seen at a cellular level, the tissue level, 

organ level, and finally at an individual level.5 An AOP can incorporate different amounts of 

information and evidence depending on the stage of development, where a putative AOP might 

only include plausible links between events, a fully developed quantitative AOP includes 

information not only on how the different events links to one another in the pathway but also on 

the concentrations and time of exposure required to trigger each event.6 

The compilation of an AOP requires a clear hypothesis on what biological mechanisms are 

involved in the observed outcome. One way to generate such hypotheses for further evaluation is 

by mining available data resources and linking recorded biological activities of chemicals to the 

observed outcomes,5 and a number of studies have reported on the use of computational techniques 

to derive information for AOP development. Edwards et al. used databases such as ToxCast HTS 
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assays, the Comparative Toxicogenomics Database (CTD), and TG-GATEs to derive 

computationally predicted AOPs.7–9 These studies used frequent item set mining to find 

associations between entries in the different data sources. Perkins et al. used mutual information 

and network-based methods to analyze gene expression changes induced by compound exposure 

to derive putative AOPs for modulation of the hypothalamus-pituitary-gonadal endocrine axis in 

fathead minnows.10 Still, large quantities of information are available in various heterogenous data 

sources and additional studies are required both to develop new methods to productively link these 

information sources and to assemble information on additional putative AOPs.  

In order to make connections between AE and biological mechanisms there is a need to access 

large amounts of data on patient treatments and the biological targets perturbed by drug 

compounds. The FDA Adverse Event Reporting System (FAERS) is one of the largest collections 

of reported AEs and is frequently used as a data source for studies of AEs.11–13 Although a very 

valuable resource, the data can be hard to utilize due to the lack of standardization of the reports. 

Several studies have looked at ways to standardize the data to make it amenable to informatics 

studies.14,15 Another potential problem when making links between drugs and their AEs is that it 

is difficult sometimes to separate drug-induced AEs and deterioration in patient health related to 

the underlying disease, this is usually referred to as ‘indication bias’.11 In addition, biases 

stemming from co-medications and patient demographics might influence the results. 

One source of bioactivity data is the United States Environmental Protection Agency toxicity 

forecaster program (ToxCast)16,17. Within ToxCast a large number of chemicals have been tested 

in a broad range of biological assays in order to create datasets for predictive toxicology.16,17 These 

bioassays involve screening diverse sets of target-based and phenotypic endpoints. Although a 

valuable resource for data mining, there are also some issues associated with the data in ToxCast 
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when used for constructing mechanistic hypotheses leading to toxicity (some of these limitations 

will be addressed in future developments of ToxCast18). Ideally, information about a drug’s 

interaction with a particular target at biologically meaningful concentrations and conditions would 

be desired in order to identify an association between the target and an AE. However, the ToxCast 

assays generally measure the transcription of a particular gene within whole cells, rather than a 

direct interaction with a target. This adds complicating factors, such as the relevance of a particular 

cell type to the toxicity endpoint under evaluation. Furthermore, the doses tested in the ToxCast 

assays are not necessarily in the same range as the clinical concentrations and the time of exposure 

is clearly not the same as that which would be experienced by patients. The assays also lack the 

full complexity of an in vivo system and do consider the effect of metabolism and other ADME-

T properties. Taken together, it is to be expected that many compounds will show activity in 

ToxCast assays without displaying any effects in vivo. 

Cardiotoxicity can affect all components and functions of the cardiovascular system, either 

directly or indirectly and can be functional (acute alteration of the electromechanical function of 

the heart) and or structural (morphological damage to cardiomyocytes and/or loss of viability) in 

nature, as previously defined by Laverty et al. (2011).19 Structural and functional cardiotoxicity 

can sometimes be challenging to separate since structural damage to the heart also often results in 

a reduced function and chronic heart dysfunction can result in structural damage. A well-known 

example of functional cardiotoxicity is the QT prolongation and associated arrhythmia resulting 

from the inhibition of the hERG potassium channel,20 whereas structural cardiotoxicity is typically 

associated with certain classes of drugs such as anthracyclins21, kinase inhibitors,22 and 

serotonergic drugs23. A major problem is that the damage to the heart can be difficult to detect 

before it manifests clinically, by which point, the changes might be both life-threatening and 
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irreversible. The clinical situation is further complicated by the fact that it can take many years 

from exposure for the toxicity to manifest. Currently the mechanisms behind structural 

cardiotoxicity are poorly understood,24,25 and a better understanding of the mechanisms of drug-

induced structural cardiotoxicity have been recognised as an area of great need.26  

In this study we investigate a data mining-based approach to generate mechanistic hypotheses 

for toxicity, exemplified by an analysis of structural cardiotoxicity. Data from FAERS and 

ToxCast was analysed to identify associations between reported assay activities and AEs, and the 

identified associations were evaluated by an extensive literature survey. The results indicate that  

the computationally identified associations can serve as valuable starting points for the 

construction of mechanistic hypotheseses leading to structural cardiotoxicity. This serves as an 

example how heterogenous data sources can be combined and queried to derive mechanistic 

hypotheses, something that also can be extended to other data sources and outcomes. 

 

Methods 

An overview of the workflow used in this study is shown in Figure 1. 

FAERS data 

Drug-AE pairs were extracted from the standardized version of FAERS reported by Wang et al. 

14 

One concern when working with reported AEs is that the AE might originate in an underlying 

pathology rather than from the medication. One option is to filter the data to reduce this kind of 

bias. However, because the overlap of FAERS and ToxCast is very limited, removing too many 

drugs would reduce our chances of uncovering novel associations. For our analysis we therefore 

decided to implement and test three ways of accounting for indication based on various 

stringencies: 1. The less stringent approach was to not filter for indications at all; 2. the moderate 
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stringency filter consisted of removing all patient reports for which the indication started with 

‘HEART’, ‘CARDI’ or ‘MYOCARD’; 3. the most stringent approach removed all drugs in 

FAERS where the drugs were used to treat a cardiovascular condition that matched any preferred 

term falling under the system organ class "Cardiac disorders". The second filter was deemed the 

most productive (see Results and Discussion) and the remainder of the methods section refers to 

the results obtained using this filter. 

Apart from the above described process to reduce indication bias, no other confounding factor 

was addressed in this study. 

For the resulting drug – AE-pairs, we applied an established method in signal detection, 

reporting odds-ratio (ROR) and Fisher’s exact test as described in van Puijenbroek27. Drug – AE-

pairs with an ROR ≥ 2 and Fisher’s test p-value ≤ 10-4 were extracted,28,29 yielding a total of 6,715 

drug – AE-pairs matching 2,711 unique drugs and 132 unique AEs. 

Cross-referencing with ToxCast 

The compounds used in this study were retrieved from ToxCast phase I,II and E1K screening 

(retrieved from actor.epa.gov/dashboard/ on 26th November 2015). To associate drugs with 

ToxCast target/readout information, the compounds extracted from FAERS in the previous step 

were cross-referenced with the data in ToxCast by matching standardized InChI strings. For the 

overlapping compounds, binary assay activity data (using the ToxCast “activity call”) was 

extracted from the ToxCast database, generating a compound – assay response matrix. The final 

dataset contained 88 compounds with information from 551 different assays and linked to 132 

different AEs. Overall, the available activity data was very sparse with only 8% of the matrix 

populated. 

Calculation of Mutual Information Between ToxCast and FAERS data 
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Before the mutual information was calculated we removed assays and adverse events with low 

variance (scikit-learn VarianceTreashold 0.09), leaving 207 assays and 13 AEs (when calculating 

the lowest mutual information pairs low variance filtering was omitted). To compute the pairwise 

mutual information between assays and adverse events, compounds that have not been tested in a 

particular assay were, for the purpose of the computational analysis, treated the same as 

compounds inactive in that assay. This was done to obtain vectors with the same lengths for all 

assay/AE pairs. 

The associations between assays and adverse events were calculated using the normalised 

mutual information function in scikit-learn30 (range 0-1). Mutual information, which has long been 

used in information theory and has recently found applications also in bioinformatics,31 measures 

how much information about one variable can be derived from another (mutual dependence), in 

this case how much information about the AEs can be derived from the ToxCast assays. 

The mutual information was computed for each assay – AE pair, and for each AE we identified 

the top three assays with the highest mutual information values. These were further required to 

have at least one observation (drug) that was associated with both the AE and displayed assay 

activity, leaving 22 assay – AE-pairs. 
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Figure 1. Schematic of the workflow used to identify AE-target associations. These associations 

were subsequently substantiated by cross referencing with previous studies available in the 

literature.  

Background distributions 

To generate background distributions for each assay and adverse event, we computed the 

probability of observing the assay and the event. The computed probability vector was used to 

generate background distributions using the rv_discrete class from SciPy v0.19.1. The size 

parameter was set to 10,000 to generate 10,000 samples, representing 10,000 random profiles of 

activity across ToxCast assays.  

Open Targets query 

To examine to what extent the significant targets from this study have previously been linked to 

cardiovascular diseases, we queried each target in the Open Targets Platform against 

“Cardiovascular Disease”.32 The Open Targets Platform is a large-scale integration of data sources 

linking drug targets and diseases and is designed to rank entities based on currently available 
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evidence for the associations, as well as prioritize targets for further investigation. The types of 

evidence in the platform include data from single nucleotide polymorphisms, animal models, text-

mining, targets of approved drugs, and affected pathways. The platform provides an association 

score between 0 and 1 for a given target-disease association to summarize the strength of the 

evidence for the association.  

Literature searches 

For literature support, the main target (as indicated in the ToxCast annotations) name was used 

in combination with terms such as “cardiotoxicity”, “cardiovascular”, “cardiomyocyte”, as well as 

name of the adverse event, to search PubMed for studies implicating the target in structural 

cardiotoxicity. Studies considered relevant were those reporting for the investigated target any of 

the following: modulation of activity in connection with cardiovascular disease; considered to be 

a marker for heart disease; role in ischemia/reperfusion repair or injury; shown to have 

pharmacological effect in cardiomyocytes; expressed in cardiomyocytes; and known to play a role 

in homeostasis. 

 

Results and Discussion 

FAERS report filter 

One major bias in this study could be the reports of cardiovascular events for patients with a 

known cardiovascular indication and current treatment. To prevent this we applied a filter to 

remove reports in which compounds were given for a cardiovascular indication. To investigate the 

effects on filtering the data we evaluated three different approaches; one without any filter, another 

moderate filter, and the third a more stringent filter completely removing drugs that can be given 

for any cardiovascular indication. These approaches generated 58, 22, and 11 associations 
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respectively (see Supporting Information). We elected to use the moderate filter, leaving 22 

associations. Although not exhaustive, this filter removes some of the obvious biases while still 

retaining a large portion of the available data. 

Target-AE associations 

For the final dataset we performed a mutual information analysis to identify assay activities 

associated with the reported AEs.33 The analysis produced 22 associations between a ToxCast 

assay and an AE, which are listed in Table 1. The assay activities that were associated with an AE 

included 16 distinct protein targets and two cell-based readouts. The assays that measure direct 

interaction of compounds with the target are indicated in Table 1. The other assays measure gene 

expression, transcription factor activity, or cellular endpoints.  

Table 1. The 22 associations derived through the mutual information analysis. Rows including 

assay readouts that could be linked to structural cardiotoxicity in the literature survey are 

highlighted in grey. The mutual information and Pearson correlation is shown for each association, 

a higher value indicates a stronger association.  

Adverse Event ToxCast Assay* 

Assay 
Target/Reado
ut 

Direct 
Target 
Interaction 

Mutual 
Information 

Pearson 
Correlation  

Cardiac failure congestive 
BSK_BE3C_PAI1_dow
n 

PAI-1  
0.120 

0.369 

Cardiac failure congestive 
BSK_4H_Eotaxin3_do
wn 

CCL26  
0.116 

0.366 

Left atrial dilatation ATG_PXRE_CIS_up NR1I2  0.110 0.332 

Left atrial dilatation NVS_NR_cAR AR √ 0.105 0.337 

Mitral valve incompetence NVS_MP_rPBR TSPO √ 0.104 0.338 

Mitral valve prolapse NVS_NR_bER ERα √ 0.096 0.322 

Cardiac failure congestive 
Tox21_PPARg_BLA_an
tagonist_ratio 

PPARγ √ 
0.096 

0.314 

Left atrial dilatation ATG_VDRE_CIS_up VDR  0.096 0.323 

Mitral valve incompetence NVS_NR_cAR AR √ 0.084 0.320 

Mitral valve prolapse NVS_NR_hER ERα √ 0.082 0.299 
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Mitral valve incompetence 
BSK_BE3C_IP10_dow
n 

CXCL10  
0.081 

0.309 

Left ventricular 
hypertrophy 

BSK_CASM3C_MCSF_
down 

CSF1  
0.081 

0.282 

Pericardial effusion 
NVS_ADME_hCYP2C1
9 

CYP2C19 √ 
0.074 

0.283 

Left ventricular 
dysfunction 

BSK_3C_Eselectin_do
wn 

SELE  
0.067 

0.262 

Left ventricular 
dysfunction 

BSK_3C_TissueFactor
_down 

Tissue factor  
0.067 

0.262 

Cardiomegaly 
Tox21_PPARg_BLA_A
gonist_ratio 

PPARγ √ 
0.066 

0.255 

Cardiomegaly ATG_PPRE_CIS_up PPARα  0.066 0.255 

Ischaemic cardiomyopathy 
APR_HepG2_StressKin
ase_72h_up 

Stress kinases  
0.066 

0.255 

Left ventricular 
dysfunction 

BSK_hDFCGF_TIMP1_
down 

TIMP-1  
0.066 

0.255 

Ischaemic cardiomyopathy 
APR_HepG2_CellCycle
Arrest_72h_dn 

Cell phenotype  
0.060 

0.247 

Aortic valve incompetence 
APR_HepG2_StressKin
ase_72h_up 

Stress kinases  
0.053 

0.230 

Aortic valve incompetence 
BSK_3C_TissueFactor
_down 

Tissue factor  
0.053 

0.234 
 

* For description of the ToxCast assays please refer to 

https://actorws.epa.gov/actorws/toxcast/v01/assays 

The obtained mutual information values were generally quite low, but this is not a surprising 

outcome. Since we have used AEs reported for drugs on the market, a very strong correlation 

between a certain mechanism and the AE cannot be expected, as those probably would have 

excluded the drug from being marketed in the first place.34  

Compounds that were associated with the specific AEs were on average more frequently active 

in the associated assay than compounds that were not associated with AEs. Figure 2 shows the hit 

rate, which is the fraction of compounds tested that are active in the assay, of the compounds 

behind each of the selected 22 assay-AE associations. 
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Figure 2. The hit rates (fraction of compounds tested that were active in the assay) of compounds 

behind each of the selected 22 assay-AE associations in Table 1. On average, the AE-associated 

compounds are more frequently active in these selected ToxCast assays. 

We tested whether the hit rate in each of the individual assay was significantly higher for AE-

associated compounds than the rest of the compounds. For all but two associations (Left atrial 

dilatation - NVS_NR_cAR and Pericardial effusion -NVS_ADME_hCYP2C19) the set of 

compounds associated with the AE was more frequently active in the associated assay, although 

only for 8 associations were the activity ratios significantly different (Fisher’s exact test, Holm–

Šidák correction for multiple testing, p < 0.05, see Supporting Information). 

Background distributions 
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To evaluate the strength of the associations we compared the mutual information values from 

the 22 associations to the maximum mutual information for the same AEs and any ToxCast assay 

in the randomly generated background distribution with the same information content as the 

original data (see Supporting Information). Figure 3 shows the mutual information of the 22 top 

assay-AE associations in this study versus the maximum mutual information observed for the same 

adverse events in the randomly generated background distribution. This analysis indicated that all 

the associations in Table 1 were stronger than what would be expected from random data.  

 

Figure 3. Histogram of the mutual information values observed for the top 22 assay-AE 

associations in this study versus the maximum mutual information observed for the same adverse 

events and any ToxCast assay in the randomly generated background distribution.  

Open Targets query 
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We also extracted the bottom ranked associations for each of the AEs based on the MI analysis 

(see Supporting Information). To evaluate the strength of the associations compared to the top 

associations we used Open Targets32 association scores between the identified targets and 

“Cardiovascular disease”. The average association score for the targets from the top associations 

was 0.4 while the targets from the bottom associations had an average score of 0.26 (Supporting 

Information). Figure 4 shows the Open Targets association scores for the top and bottom associated 

targets of each AE.  More of the top-ranked targets have perfect scores of 1, indicating they have 

been strongly associated with cardiovascular diseases based on the integrated evidence in Open 

Targets. These targets are AR, PPARα, PPARγ, and VDR. For the other targets, the top and bottom 

scores are in the same range. While this could mean that the integrated evidence does not support 

the associations, it could also be due to less data being available for these targets and the 

associations being novel. 
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Figure 4. The Open Targets association scores for ‘Cardiovascular Disease’ of targets ranked 

highest and lowest by the mutual information analysis. The association score represents the 

strength of evidence for associations between targets and diseases based on currently available 

integrated data. The horizontal lines show the mean. 

In summary, our computational validations appear to indicate that the generated associations 

could be informative of structural cardiotoxicity. 

Literature searches 

In order to further validate the findings, we conducted a survey of the available literature for 

evidence supporting the above associations (see methods section for details). We elected to look 

for associations between the targets and any form of structural cardiotoxicity, not only the specific 

AE indicated by the MI analysis. For 10 out of the 16 indicated targets we could find evidence 

supporting a link between the mechanism queried in the assay and structural cardiotoxicity 

(highlighted in Table 1). A summary of the reported mechanisms is shown in Table 2. 

Table 2. Targets with literature evidence supporting an association to structural cardiotoxicity. 

Target Biological Role Linked to Structural Cardiotoxicity 

ERα Cardioprotective role in mouse ischemia model35 

PAI-1 Related to myocardial neovasculation and cardiomyocyte apoptosis.36 

PPARα Implicated in cardiomyocyte hypertrophy.37,38 Increased levels of PPARα 

may cause adverse remodeling of heart structure and metabolism.39 

PPAR family is important to regulate cardiac metabolism.40 

PPARγ Both PPARγ knock out mice and mice treated with PPARγ agonists 

develop cardiac hypertrophy.41 PPAR family is important to regulate 

cardiac metabolism.40 

AR Protective effect in cardiomyocytes42 

Tissue factor Linked to fibrosis43 

TIMP-1 Improves cardiac function on ischemic cardiomyopathy model rats.44 

TSPO TSPO ligands inhibits toxicity in isolated cardiomyocytes.45 Related to 

reactive oxygen species (ROS).46–49 

VDR Vitamin D deficiency is linked to cardiovascular disease, including left 

atrial /ventricle dysfunction.50–52 
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CSF1 Improves cardiac function after ischemic injury by inducing vascular 

endothelial growth factor and cardiomyocyte survival.53,54 Indicated to be 

important for the progression of cardiomyopathy.55  

 

The assay readouts from ToxCast would typically detect either an increase or a decrease in the 

readout, however for our literature analysis we did not consider the directionality of the effect (i.e. 

stimulation or inhibition of the indicated target), but rather if any modulation of the target could 

be connected to structural cardiotoxicity. We chose this approach since the long-term effect of 

agonising or antagonising a certain receptor is often not known, and we reason that any type of 

effect disturbing a mechanism documented to be important for cardiotoxicity or cardio-protection 

might potentially result in toxicity. 

Some of the identified targets were more evidently linked to structural cardiotoxicity than others 

in scientific literature. The most well-documented targets were tissue factor (TF) and translocation 

protein (18 kDa) TSPO, and the evidence for these mechanisms is described in more detail below. 

Tissue factor and structural cardiac disorders 

The normal, physiological role of TF is essential in the blood coagulation cascade.43 Upon injury 

to the blood vessel, TF detects activated Factor VII (FVII) and initiates the blood coagulation 

cascade via thrombin production, ultimately leading to a fibrinogen blood clot.43 In addition, non-

coagulation functions of TF include the activation of protease-activated receptors (PAR) such as 

PAR-1, PAR-2 and PAR-3. These and related signaling pathways activated by TF result in pro-

inflammatory, pro-angiogenic and anti-apoptotic effects,43 which are also vital in embryonic 

development.56 Cardiac muscle expresses high levels of TF compared to skeletal muscle, and 

within the heart TF levels are highest in the left ventricle.43 

There is evidence to support a role for dysregulated TF in clinical heart pathologies. For 

example, elevated circulating plasma TF has been linked to atherosclerotic cardiovascular disease 
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and acute coronary syndrome.43 Furthermore, TF expression was downregulated in myocardial 

biopsies from patients with hypertension and hypertension-induced ventricular hypertrophy.57 

Similar downregulation of TF in the heart was found in patients with dilated cardiomyopathy, 

where TF levels correlated with the ejection fraction.58 

Some animal studies also provide evidence for the involvement of TF in pathological cardiac 

tissue remodeling, which is closely linked to the structural cardiotoxicity endpoint considered in 

the current work. A genetic variant of mice expressing very low levels of TF developed fibrosis 

selectively in the heart, and displayed impaired heart contractility and left ventricular 

dysfunction.59 Histological examination revealed that hemosiderin deposits, which are evidence of 

haemorrhage, were associated with areas of fibrosis.59 While low-TF mice have normal 

haemostasis under normal conditions, they appear to an have abnormal haemostatic response to 

vessel injuries, probably in part due to low thrombin.59 The authors propose that this impaired 

haemostasis results in haemorrhages from cardiac vessels and subsequent fibrosis in the heart.59  

Another suggested mechanism linking TF and cardiomyopathy involves the dysregulation of 

angiogenic factors influenced by TF.43 TF activation induces the expression of angiogenic factors 

such as vascular endothelial growth factor (VEGF).43,60 Thrombin, which is downstream of TF 

activation, also increases the expression of VEGF and angiopoietin-2 via PAR-1.43 These 

angiogenic factors are essential for vascular maintenance and repair processes, for instance in 

response to ischaemic injury in dogs.61 Several studies have linked imbalances of angiogenic 

factors to cardiomyopathy. For example, in a knock-out study of mice lacking PGC-1α, a 

coactivator of VEGF and other pro-angiogenic factors, the mice developed peripartum 

cardiomyopathy with left ventricular dysfunction, having ventricular dilation and reduced 

contractile function.57 In another study, mice lacking one isoform of VEGF developed ischaemic 
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cardiomyopathy due to left ventricular failure and dilated cardiomegaly.61 A potential pathway for 

low TF-induced heart failure derived from the literature evidence is shown in Figure 5, showing 

two suggested mechanisms. 

 
Figure 5. Putative AOP connecting TF to heart failure via left ventricular dysfunction. Because 

the ToxCast assay measured gene expression of TF instead of direct molecular interaction, it is 

possible that the actual molecular initiating event (MIE) is another interaction upstream of the 

downregulation of TF.  

Translocation protein and structural cardiac disorders 

Another association identified was the one between the “NVS_MP_hPBR” assay and “mitral 

valve incompetence” (MVI). The “NVS_MP_hPBR” assay measures the changes to scintillation 

counting signals produced from the receptor-ligand binding of the key ligand [[3H]-PK11195], 

and are indicative of a change in transporter function and kinetics for the TSPO, whereas MVI can 

be defined as the dysfunction of the mitral valve closing, causing blood to leak back into the atrium 

after contraction.62 

TSPO, also called peripheral benzodiazepine receptor (PBR), is located in the outer membrane 

of mitochondria in various tissues including the heart and plays a role in cholesterol transportation 

into mitochondria.63 It has been shown that TSPO ligands affect the mitochondrial permeability 

pore (mPTP),64 and that inhibitors of TSPO delay its opening.65 Hence, mPTP activity seems to be 

directly linked to TSPO binding. Additionally, it has been shown that TSPO plays a role in the 
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production of reactive oxygen species (ROS).46–49 As a consequence of this oxidative stress, the 

opening of the mPTP66,67 is activated, which in turn leads to cardiomyocyte apoptosis.68,69 This in 

turn can lead to MVI since mitral valve incompetence can occur in patients with dilated 

cardiomyopathy in the absence of primary valvular disease: valve leakage is associated with 

annular dilatation.70 A potential pathway connecting TSPO with MVI is shown in Figure 6. 

 

 

Figure 6. Putative AOP linking TSPO to MVI. 

Limitations 

The above case studies illustrate the complexity of the mechanisms potentially leading to 

structural cardiotoxicity. Further work is needed to understand the full pathway and to develop 

formalised AOPs for the identified associations.  

Although we were able to find literature support for many of the identified targets (10/16), it is 

important to highlight some of the difficulties associated with the reported approach. The small 

number of compounds causing structural cardiotoxicity makes it difficult to establish strong 

signals that are statistically significant. This means that there is a great risk of pursuing false 

signals. Alternative approaches to validate the findings, such as through the literature, always risk 

suffering from confirmation bias. Only by accessing and including more data can this issue be 

eliminated. 

Nevertheless, data mining of post-marketing safety data in combination with compound 

profiling information appears to be a promising way to identify associations between observed 

AEs and plausible mechanisms, as demonstrated here for structural cardiotoxicity as a case 
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study. The mechanistic hypotheses generated by this approach, while in themselves not 

definitive, can serve as promising starting points for further studies. For example, pharmaceutical 

companies use panels of known safety targets during preclinical drug development.71,72 Of the 

targets suggested in this study, AR, ER, and NR1I2 are on these published lists, but not 

specifically for cardiac associations. While more evidence for the associations suggested in this 

study is needed, the results from this study could be useful in selecting candidates for future 

inclusion in such safety studies.  

 

Conclusions 

Using the wealth of data available on AEs and compound biological effects can be a valuable 

complement to more traditional approaches for identifying mechanisms hypotheses leading to 

AEs. In this study several putative mechanisms associated with structural cardiotoxicity were 

mined from the FAERS and ToxCast databases. The analysis yielded 22 associations connecting 

a mechanism to structural cardiotoxicity. A detailed literature survey produced support for 10 of 

the identified associations, and for two of the associations, a large number of reports were available 

in the literature, allowing for the construction of putative mechanistic pathways connecting these 

targets with structural cardiotoxicity. 
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