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Abstract 

 
It was recently shown that the quantum mechanical results of the Landauer theory of 

conduction, applied to a simple one-layer channel FET, can be recast in the traditional 

drift-diffusion form but with the mobility and injection velocity redefined in a new 

context. Based on that, we have performed two-dimensional Poisson-Schrödinger-

Continuity calculations for both long drift-diffusion and short ballistic quantum well 

FETs. Very good agreement with many-layer, state-of-the-art InGaAs devices has 

been achieved provided that only one parameter, the saturation velocity υsat of the 

mobility function, is rescaled so that our calculated drain current agrees with the 

experimental value at very large gate voltages VG. This single value of υsat has been 

used at all other VG. Our calculations are not only a test of the equivalence described 

above but valuable information about the sub-threshold regime and especially the 

leakage currents is obtained. This information is usually absent in rigorous Landauer-

type -or equivalently non-equilibrium Green functions- calculations which are 

performed in simplified FET systems. 

 

 

 



Introduction 

 

MOSFETs with III-V channels -also called Quantum Well FETs (QW-FETs) 

are expected to be the dominant technology in the post-Si area. Such expectations are 

based on the superior mobilities of these materials as summarized in detail in [1]. The 

research activity in these type of devices has been intense [2-17]. Originally the focus 

was on inversion type devices [2-3] but very soon these type of III-V FETs were 

abandoned in favor of devices with intrinsic channels filled with electrons from a 

supply layer [4-12]. Furthermore long-gate FETs [4] were quickly substituted with 

nanometric gate FETs [5-17] and indeed, at the moment, 30-60nm gate length QW 

FETs with InGaAs channels exist having superior performance such as a subthreshold 

slope of 96mV/dec and a peak transconductance of 2.4mS/μm [9-10]. 

Compared to the experimental work, the theoretical work on this type of 

devices is scarce. There have been two publications dealing with gate leakage [15-16]. 

One of these uses the tight binding basis to calculate the effective mass [15] and the 

other ones uses the pseudopotential method [16] both tackling a tunneling problem 

only. There exists only one paper that analyzes a complete device –i.e. with all its 

constituent layers. It is by Hwang et.al [17] and uses the Poisson and Continuity 

equations i.e. they do not use the Schroedinger equation, so any confinement effects 

are not accounted for. In this paper we will use the full set of the Poisson, 

Schroedinger and Continuity equations to analyze QW-FETs. The method is a well-

established one. It was originally applied successfully to Si MOSFETS [18-19] and 

then -accordingly modified- to HEMTS [20-21] and to simple surface channel QW-

FETs [22]. It is presented in detail in the next section but an initial justification for its 

use in nanoscale QW-FETs (as opposed to long-gate ones) is given immediately 



below. We note that this type of modelling is not available in commercial simulation 

packages.  

 The physics of charge transport in nanometer gate length transistors is very 

different from the drift-diffusion driven long-gate (e.g Lg=200nm) FETs. Transport in 

the former is ballistic necessitating a quantum approach such as the Landauer theory, 

to analyze it. However, recently, it has been recognized that the results of the 

Landauer theory for a simple channel connected to a source and a drain reservoirs can 

be recast in a drift-diffusion form for both the linear and the saturation regions, 

provided that the mobility and saturation velocity can be reinterpreted as apparent 

mobility and injection velocity respectively [23]. 

 However, the above equivalence was derived using as a model a simple 

channel while state-of–the-art QW-FETs are composed of many layers (excluding the 

ones needed for mechanical stability). The computational labor needed to perform a 

full Landauer method – or equivalently a non-equilibrium Green’s function method- 

analysis is by no means trivial. In this paper we examine proposed state of the art 

QW-FETs with InGaAs channels. We show that the traditional analysis of the 

Poisson-Schroedinger-Continuity model can be employed also for short gate QW-

FETs provided that the numerical value of the saturation velocity of each layer of the 

multilayer transistor is altered in accordance with the equivalence ansatz or principle 

described above [23]. More details are given in the method section. 

 The present work does not constitute only a numerical experiment. Valuable 

information about the QW-FET, especially in the sub-threshold region can be 

obtained by utilizing much of the existing software. In particular the leakage currents- 

usually occurring below the channel layer- and the subthreshold slope can be 



evaluated and used to optimize the III-V FETs. This information is lost in strict 

quantum mechanical calculations which are usually restricted to a one- layer- FET. 

  

Method 

 We have examined two QW devices. One long gate [4] with Lg=200nm and 

one nanometric one [8] with Lg=30nm. These are shown in figure 1. Our method 

follows our previous work on HEMTs [21]. This method is based on solving the 

fundamental equations of semiconductor physics and –as already stated-was 

originally applied extensively to Si-MOSFETs [18-19] but has not as yet been 

employed to multiple layer III-V FETs. These equations are the Poisson-Schroedinger 

and Continuity equations and are solved as a system of three differential equations for 

the three unknowns: the potential 𝑈, the charge density 𝑛 and the Fermi level 𝐸𝐹𝑛. 

They read as follows:  

a) the Poisson equation  ∇2𝑈 = −
𝜌

𝜀𝜊𝜀𝑟
  where  is the charge density, 

b) the Continuity equation ∇𝐽𝑛 = 0  with  𝐽𝑛 = 𝑛 ∙ 𝜇𝑛∇𝐸𝑓𝑛  

where 𝐽𝑛 is the current density and 𝐸𝐹𝑛 the Fermi level and  

c) the Schroedinger equation  (−

2

2∙ 𝑚𝑛
∗ ∇2 + 𝑈𝑡𝑜𝑡) 𝛹(𝑟) = (𝐸 − 𝐸𝐶)𝛹(𝑟)    

where 𝐸𝐶 is the bottom of the conduction band and  𝑚𝑛
∗  is the conduction band 

effective mass. All remaining symbols in the above equations have their conventional 

meaning.  

The above equations are solved in 2 dimensions, i.e. along the depth and length of 

the device where quantization effects are important. Along the 3rd direction, the width, 

the device is considered to be of a macroscopic dimension so that eigenstates along 

this direction are taken care by a one-dimensional density of states function. 



In solving the Schrödinger and Poisson equations we must note that the charge 

density 𝑛 inside the quantum well is obtained (at each stage of the iteration) by 

dividing the energy spectrum of the Schrödinger equation into two parts:  

a) below the top of the barrier Etop, it is obtained quantum mechanically by: 

                                        𝑛 = ∑ |𝛹𝑖|2 ∗ 𝑃𝐹𝐷(𝐸𝑖) ∗ 𝐷1𝐷(𝐸𝑖)𝑖                        (1) 

where 𝛹𝑖 are the eigenfunctions, 𝑃𝐹𝐷 is the Fermi-Dirac occupation function and 

𝐷1𝐷(𝐸𝑖) is the one dimensional density of states mentioned above;  

b) above Etop , n behaves as 3D  in nature and is obtained by the usual Fermi integral 

of order one half. 

                                    𝑛 = 𝐹1
2⁄ (𝐸𝐹 − 𝐸𝐶)                                  (2) 

 Furthermore, the QW is not taken to be just the channel layer. Additional 

layers below the oxide layer are included in which the wavefunction Ψi decreases 

exponentially inside them. Also, the QW extends a few nm (typically 5) inside the 

drain and the source area. 

 In employing the formula for the current density  𝐽𝑛 = 𝑛 ∙ 𝜇𝑛∇𝐸𝑓𝑛 we note that 

this formula includes drift, diffusion and thermionic emission currents. When it is 

applied to a one layer MOSFET channel it delivers the well-known voltage-current 

characteristics [23]. 

                                𝐼𝐷𝐿𝐼𝑁 =
𝑊

𝐿
𝜇𝑒𝑓𝑓 𝑄𝑛𝑉𝐷𝑆                               (4.a) 

 

                                      𝛪𝐷𝑆𝐴𝑇 = 𝑊𝑄𝑛𝜐𝑠𝑎𝑡                               (4.b) 

 

where L and W are the length and width of the QW FET, 𝜇𝑒𝑓𝑓  is the effective 

mobility and Qn is the charge below the gate. On the other hand, if the Landauer 



theory is applied to a simple MOSFET channel we get the corresponding equations 

[23]. 

          𝐼𝐷𝐿𝐼𝑁 = 𝑇𝐿𝐼𝑁𝑊𝑄𝑛(𝑉𝐺𝑆, 𝑉𝐷𝑆)
𝜐𝑇

2(
𝑘𝐵𝑇

𝑞
)

𝑉𝐷𝑆                 (5.a) 

 

                    𝛪𝐷𝑆𝐴𝑇 = (
𝑇𝑆𝐴𝑇

2−𝑇𝑆𝐴𝑇
) 𝑊𝑄𝑛(𝑉𝐺𝑆, 𝑉𝐷𝑆)𝜐𝑇                      (5.b) 

where 𝑇𝐿𝐼𝑁 and 𝑇𝑆𝐴𝑇 are the transmission coefficient for the linear and the saturation 

regime respectively and 𝜐𝑇 is the thermal velocity of the electrons. Again the 

remaining symbols have their conventional meaning. 

 It can be seen that the two expressions become equivalent if the following 

assignments are made:  

                                    𝜇𝑒𝑓𝑓 = 𝑇𝐿𝐼𝑁 ∗ 
𝜐𝑇

2(
𝑘𝐵𝑇

𝑞
)
                                         (6.a) 

                                              𝑢𝑠𝑎𝑡 = (
𝑇𝑆𝐴𝑇

2−𝑇𝑆𝐴𝑇
) ∗ 𝜐𝑇                                        (6.b) 

Hence both the linear and saturation regimes can still be treated by the traditional 

expressions provided that 𝜇𝑒𝑓𝑓 and 𝑢𝑠𝑎𝑡  are reassigned new values. This equivalence 

is valid for a system with a single layer (being the channel) to which voltages VS and 

VD are applied at its two ends. We expect that this equivalence will hold true for real 

QW-FETs which are composed of 3-5 layers at least (excluding the layers for 

mechanical stability). When the device length is shorter than the mean free path then 

TSAT is very near the value of one and hence the prefactor is also one, so that this 

assignment takes care of the ballisticity for short-gate devices. Therefore provided 

that we can treat usat as a parameter we choose to continue using the following 

standard expressions [25] for the field dependent mobility: 

 



𝜇𝑛(𝐹𝑛) =

𝜇𝑛0  +𝜐𝑠𝑎𝑡,𝑛 ∗
𝐹𝑛

𝐹0
2

1 +
𝐹𝑛

2

𝐹0
2

                                              (7. 𝑎)  

                     𝐹𝑛 = |∇U|                                             (7.b) 

 

where 𝜇𝑛0 is the low field mobility, U is the potential and F0 is a constant equal to 

3.1*105 V/m [25]. The quantity υsat has been fitted only for the short gate device so as 

to give the correct current ID at high gate voltages VG. It amounts to a multiplication 

of the usual drift velocity by a factor of 10. We note that by the same amount Hwang 

et al [17] –to be discussed immediately below- have fitted the velocity of their model. 

Once fitted at high VG, the same value has been used at all other VG. For the long-gate 

device no fitting has been employed and standard values [25] from the literature have 

been used.  

It is worth pointing out that the above approach of fitting the saturation 

velocity and the mobility to take account of ballistic effects has also been by Hwang 

et.al [17] but as has been described above they only solve the Poisson and Continuity 

equations ( and not the Schroedinger also) so their approach will not be good enough 

for nanoscale QW-FETs. We also note that they applied their method to much earlier 

forms of III-V devices. Furthermore Kotlyar et al [24] have used an approach similar 

to ours. They have also described ballistic effects by a drift-diffusion formalism but 

have taken a step further in their analysis of stressed nano-P-MOSFETs and have 

defined a ballistic mobility which is position dependent. We have not adopted such an 

approach but have followed the theoretical ground work of [23] as already presented 

above. 

The band-edge offsets have been obtained from Palankovski [25] while the 

Schottky barriers of the oxides have been obtained from Robertson and Falabretti [26] 



and slightly adjusted by 0.2-0.3eV. Their values are still however near the half band-

gap of the corresponding oxide. Note that the Schottky barriers can only move the 

transconductance curves rigidly and do not affect their shape. The same band edges 

have been used for both devices as their channel and supply materials are the same. 

We found that it was not necessary to simulate the whole of the device but only 3-5 

layers near the channel. The domain of simulation for both devices is shown in figure 

1.  

 

Results 

 

Our calculated 2-dimensional charge density inside the simulated domain of 

the long-gate device is shown in figure 2 for VD=1V and VG=1V. Notice the 

overdoped source and drain regions whose charge density spills below them and the 

formation of the channel which is pinched at the drain end of the device. The ID-VG 

transconductance characteristics are shown in figure 3. A representative 

transconductance curve for the linear regime, i.e. VD=0.1V, is shown in figure 3a. It 

can be seen that reasonably good agreement with the experimental result is obtained 

without the need of any fitting. We stress again that all parameters have been obtained 

from the literature without any fitting (except for 𝑢𝑠𝑎𝑡 for the 30nm FET only). The 

saturation regime is shown in figure 3b. Three curves are shown in this figure: one is 

the experimental curve and the remaining two are our calculations for two different 

depths of the substrate area below the supply channel. It can be seen that very good 

agreement is obtained, provided that the chosen depth of the simulated device is large 

enough. As we go into smaller and smaller currents (and consequently smaller and 

smaller VG) a larger portion of the substrate needs to be included in the simulated 



region to get agreement with experiment. No such problem arises in the low VD 

regime due to the absence of parasitic currents as will be explained immediately 

below. 

 From the transconductance characteristics we see that the device turns on 

slowly at large VD. This is due to parasitic currents below the channel region as can 

be seen from figures 4a and 4b where we show the charge and current density 

respectively along the depth (x direction) of the device at the middle of the gate at 

VD=1V. Two curves are shown on each diagram, one for VG=2V and another for 

VG=1V. We observe in figure 4a that for VG=1V a tail below the depth x=15nm 

appears (the channel is between 10 and 15nm) which gives a parasitic current below 

the channel as it is seen figure 4b. In fact this parasitic current at VG=1V does not 

decay fast with depth which is the reason why in the ID-VG characteristics an 

increasingly higher depth of the domain of simulation is needed for good accuracy as 

VG decreases. The obvious explanation of this is that at low VG the gate is not able to 

“lift” the electrons from the dopants in the supply layer (below the channel). This 

disadvantage of this device has been corrected in subsequent work by these authors by 

the addition of AlAsSb (high band-gap) layers above and below the channel layer [9-

10]. 

 We now turn our attention to the Lg=30nm device described in [8]. The ID-VG 

characteristics of this device together with our simulation are shown in figure 5. A 

representative transconductance curve for the linear regime, i.e. VD=0.05V, is shown 

in figure 5a. It can be seen that good agreement with the experimental results is 

obtained but this time however we have employed the fitting of 𝑢𝑠𝑎𝑡 described in the 

Method section. Note that no such fitting was employed for the long gate device. The 

transconductance curve for the saturation regime is shown in figure 5b. Here however 



the agreement is much better. This difference we attribute to the more difficult 

convergence at smaller currents occurring at small VD. The same commented can be 

made about the previous long-gate device. It should be obvious that this nanometric 

device exhibits a much faster turn on compared to the previous one. This is due in fact 

to the absence of any parasitic charge below the channel. The charge density and the 

longitudinal current along the depth of the device at the mid-point of the gate are 

shown in figure 6.a and 6.b respectively for VD=0.5V. It should be clear that no 

charge or current density is observed below the x=80nm mark. We remind the reader 

that the channel is between x=70nm and x=80nm for this device.  

 At this point the question arises as to the different behavior of the two devices 

studied in this paper. It is worthwhile pointing that, usually, the shrinking of the 

length of the channel decreases the SS as the gate loses control over the channel. 

However, in this case, the improvement in SS in the short-gate FET is due to the 

disappearance of the leakage current below the channel. Given that the supply and 

channel layer materials are the same in both long and short gate FETs one may 

wonder why should there be a leakage in the long-gate FET and not in the short-gate 

one. The answer lies in two factors: a) the dopants of the supply layer in the long-gate 

FET are positioned immediately below the channel layer whereas the in the short-gate 

FET they are positioned 10nm away from the channel /supply interface and b) the 

doping level in the long-gate FET is an order of magnitude greater that the short-gate 

FET.  

 

Conclusions 

 We have shown that the Poisson-Schrödinger-Continuity calculations may be 

extended to apply for multi-layer nanometric-gate QW FETs by altering one 



parameter, the saturation velocity at high gate voltages VG but keeping it constant-

once changed- at all VG. Then valuable information for the design of the QW FET is 

obtained that is normally not available in present quantum mechanical calculations 

that consist of one layer due to numerical limitations.  

 

 

 

 

 

Figure Captions 

 
Figure 1: Cross Section of the experimental devices examined in our paper. The 

domain of simulation for each device is shown by the black dashed lines. a: the long 

gate device [4], b: the short gate device [8]. 

 

Figure 2: Two dimensional charge density of the device of figure 1a at VG =1V and 

VD=1V.  

 

Figure 3: Experimental and Simulated Id-VG curves for the long-channel FET [4]:  

a) VD=0.1V. The curve with the squares is the experimental one while the curve with 

the circles is our simulation.  

b) VD=1V. The two simulations are for two different device depths. The curve with 

the squares is the experimental one. The curve with triangles is for a depth of device 

equal to 40nm and the curve with the circles is for a depth of device equal to 250nm.  

 

Figure 4a: The charge density along the depth of the device at the middle of the gate 

at VD=1V. The dashed curve is for VG=1V and the solid curve is for VG=2V. 

 



Figure 4b: The longitudinal current density along the depth of the device at the middle 

of the gate at VD=1V. The thick curve is for VG=1V and the thin curve is for VG=2V. 

 

Figure 5: Experimental and Simulated ID-VG curves for the short - channel FET [8]. 

The curve with the squares is the experimental one and the curve with circles is our 

simulation. The linear regime is shown in figure (a) and the saturation in (b). 

 

Figure 6a: The charge density along the depth of the device at the mid-point of the 

gate at VD=0.5V. The dashed curve is for VG=1V and the solid curve is for VG=2V. 

 

Figure 6b: The longitudinal current along the depth of the device at the mid-point of 

the gate at VD=0.5V. The thick curve is for VG=1V and the thin curve is for VG=2V. 
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