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Considerable ambiguity remains over the extent and nature of millennial/centennial-scale

climate instability during the Last Interglacial (LIG). Here we analyse marine and terrestrial

proxies from a deep-sea sediment sequence on the Portuguese Margin and combine results

with an intensively dated Italian speleothem record and climate-model experiments. The

strongest expression of climate variability occurred during the transitions into and out of the

LIG. Our records also document a series of multi-centennial intra-interglacial arid events in

southern Europe, coherent with cold water-mass expansions in the North Atlantic. The spatial

and temporal fingerprints of these changes indicate a reorganization of ocean surface cir-

culation, consistent with low-intensity disruptions of the Atlantic meridional overturning

circulation (AMOC). The amplitude of this LIG variability is greater than that observed in

Holocene records. Episodic Greenland ice melt and runoff as a result of excess warmth may

have contributed to AMOC weakening and increased climate instability throughout the LIG.
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The Last Interglacial (LIG; 129–116 thousand years ago (ka))
was characterized in its earlier part by strong positive
summer insolation and temperature anomalies at high

northern latitudes, amplified by ocean, sea ice and land ice, and
vegetation feedbacks1,2. Attendant sea-level rise is estimated to
have been ~6–9 m above present, with 0.6–3.5 m derived from
Greenland ice-sheet (GrIS) melting3. Although several North
Atlantic and European records indicate the presence of LIG cli-
mate instability, the number, timing, and geographic extent of
millennial/centennial-scale climate oscillations remain unclear.
Sea-surface temperature (SST) fluctuations have been detected in
the Nordic Seas4, and lithological variations in subpolar North
Atlantic cores have indicated multiple incursions of drift ice5.
Isotopic, faunal and ice-rafted detritus (IRD) analyses have
revealed the presence of a series of moderate surface-cooling
events and decreases in benthic foraminiferal δ13C (refs. 6–11).
However, the relationship between ocean surface variability and
changes in deep-water circulation remains ambiguous. LIG cli-
mate instability has been detected in European pollen and spe-
leothem records12–18, but correlation uncertainties complicate an
assessment of how terrestrial events are related to ocean changes.
Compounding the ambiguity, the Greenland NEEM LIG record,
reconstructed from a folded ice core, shows a relatively smooth
surface temperature profile with gradual cooling following early
peak conditions, but also indicates multiple episodes of extensive
ice surface melting19.

Here we bypass correlation uncertainties by linking terrestrial
and marine records through joint pollen and ocean proxy ana-
lyses in a deep-sea core on the Portuguese Margin. A key to this
is the geographical setting of the area where the combined effects
of the Tagus River and a narrow continental shelf lead to the
rapid delivery of terrestrial material, including pollen, to the
deep-sea environment. Previous joint marine–terrestrial analyses
on the Portuguese Margin20 led to a re-evaluation of the LIG
duration in southern Europe, but the sampling resolution (~500
years) was not sufficient to establish the presence of abrupt
events. We return to the same area and generate palaeoceano-
graphic proxies and pollen records from the same sample depths
at ~100-year resolution in core MD01-2444 (see Methods). To
produce an independent timescale of interglacial changes, we use
a new, stacked δ18Ospeleothem record from Antro del Corchia, a
large cave system in the Alpi Apuane karst, Italy, comprising
four individual stalagmites from a single chamber, and anchored
in time by 87 uranium–thorium (U–Th) ages (see Methods). The
cave receives most of its recharge rainfall via westerly air masses
crossing the North Atlantic, and previous work has shown a
close connection between changes in surface-ocean and atmo-
spheric conditions on the Iberian Margin and the amount of
rainfall reaching the site21. Combining cave and ocean data in
this way provides a stratigraphic lattice, linking changes in North
Atlantic and Southern European conditions and placing them on
a detailed chronological framework. We then compare our
records with two of the most detailed marine sequences in the
northern North Atlantic, containing evidence for changes in
ocean circulation during the LIG. Finally, to explore the
mechanisms and spatial distribution of climate variability, we
perform a suite of experiments under LIG boundary conditions
with the LOVECLIM Earth system model and with the atmo-
spheric component of the NCAR Community Earth System
Model (CESM, see Methods). We found that the LIG was
punctuated by a series of multi-centennial arid events in
southern Europe and cold water-mass expansions in the North
Atlantic, consistent with low-intensity disruptions of the over-
turning circulation. Our results suggest that the LIG was char-
acterized by enhanced climate instability relative to the pre-
industrial Holocene.

Results and discussion
Linking terrestrial and marine records. Figure 1 shows that high
values in the X-ray fluorescence (XRF) Zr/Sr ratio (reflecting the
relative proportion of detrital and biogenic sediment supply) at
22–21.45 and 19.63–19.52 m demarcate Heinrich Stadial 11
(HS11)22 and cold water event 24 (C24), respectively23. Closer
inspection suggests that HS11 contains three cold events (HS11.1,
HS11.2, HS11.3) as indicated by declines in alkenone24 and
Globigerina bulloides Mg/Ca SST, and δ13C of epibenthic species
Cibicidoides wuellerstorfi (δ13CC. wueller.). HS11.2 and HS11.3 are
characterized by high IRD values, δ13CC. wueller. minima, and low
δ18Oplanktonic and seawater δ18O (δ18Osw) values, pointing to large
meltwater pulses and Atlantic meridional overturning circulation
(AMOC) weakening, in agreement with previous results25. The
onset of the interglacial at the end of HS11.3 is marked by 5–6 °C
rise in SST and increases in δ13CC. wueller. and temperate tree
pollen values. A brief climatic reversal at ~21.35 m, indicated by a
small IRD peak and decreases in SST, δ13CC. wueller. and temperate
tree pollen, is correlative with event C28 in North Atlantic
records7–9. This is followed by peak interglacial values in tem-
perate tree pollen, including a peak in Mediterranean taxa,
indicating increased summer temperature and evaporation and
enhanced winter precipitation, in line with evidence from
southern Europe26. The section 21.10–20.15 m contains reduced
variability, but is punctuated by episodic decreases in temperate
tree pollen values and small increases in δ18Oplanktonic, which are
not always observed in our SST records. This could arise from
habitat biases that limit the proxy-carrier’s ability to record
moderate temperature changes27, as well as the effects of
upwelling from May/June to September/October along the Por-
tuguese Margin28. A small increase in XRF Zr/Sr values coupled
with lower Mg/Ca SST and temperate tree pollen values and
higher δ18Oplanktonic between 20.20 and 20.12 m is correlative
with event C25 in North Atlantic records7–9. The section
20.12–19.70 m, characterized by increased Mg/Ca SST and tem-
perate tree pollen values and lower δ18Oplanktonic, corresponds to
Greenland InterStadial GIS 25c (GIS nomenclature follows
ref. 29); the second part of this interval has higher Mediterranean
tree pollen values, coeval with higher CH4 values within GIS 25c
(ref. 30). At 19.70 m, Mg/Ca SST, δ18Oplanktonic, temperate tree
pollen and XRF Zr/Sr values begin to shift to stadial conditions
interrupted by a brief warm reversal, similar to the sequence of
events GIS 25b and GIS 25a observed in Greenland ice-core
records29,30.

Compared to previous work on the LIG in Corchia Cave21, the
new speleothem stack provides a continuous, higher-resolution
and intensively dated record of the interval 140–108 ka (Fig. 2).
The stack was produced by synchronizing previously published
individual speleothem stable isotope records21,31–33 to a common
depth scale (Fig. 2a), assigning the U–Th ages from individual
speleothems to their corresponding position on this same depth
scale, then producing a single depth-age model (Fig. 2c; see
Methods and Supplementary Figs. 1, 2 for further details). In
addition to providing a robust test of replication amongst coeval
samples, the advantage of stacking is that it uses all speleothem
ages and their ±2σ errors, which significantly increases the age
density and therefore yields a depth-age model with markedly
reduced age uncertainties (Fig. 2d) compared to the age model of
any single speleothem (see Supplementary Fig. 2). The final
stacked isotope time series (Fig. 2e) utilizes the highest resolution
data from the individual speleothems (Fig. 2b). This yields a
continental isotope time series for the LIG of compelling detail,
displaying a series of millennial-to-centennial-scale isotopic
excursions that are evident in both isotope ratios.

Examination of the MD01-2444 and Corchia archives
(Fig. 3a, b) reveals a striking similarity between the temperate
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tree pollen and δ18Ospeleothem records and this forms the basis for
transferring the Corchia U–Th timescale to the MD01-2444
sequence (see Methods and Supplementary Fig. 3), on the
premise that rainfall amount in southern Europe exerts a
dominant control over both the composition of vegetation and
the isotopic signature of Corchia speleothems21,31,34. Lower
δ18Osw values (Fig. 1d) associated with the HS11.2 and HS11.3
meltwater pulses suggest that at least part of the more negative
δ18Ospeleothem signal at that time (Fig. 3a) is related to changes in
surface hydrography and their influence on the isotopic signature

of moisture advected across the Mediterranean35. Further shifts in
δ18Ospeleothem and also temperate tree pollen and SST (Fig. 3a, b,
d) mark the onset of the LIG at ~129.3 ka. After the C28 reversal,
the speleothem and pollen records show a climatic optimum at
~128 ka characterized by increased (winter) precipitation. After
that, δ18Ospeleothem and temperate tree pollen records indicate a
series of low-amplitude decreases in rainfall amount in Iberia and
Italy, centred at ~126.4, 124.9, 123.1, 121.4, 119.1, 117.2 and
115.3 ka. The replication of these events as increases in
δ13Cspeleothem (Fig. 2e) suggests that these rainfall reductions
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were probably associated with regional cooling, which would
decrease the contribution of isotopically depleted, soil-derived
biogenic CO2 reaching the cave chamber32,33,36. The duration of
these events is 0.6–0.8 kyr, apart from the one centred at 115.3 ka,
which lasts 1.5 kyr and contains internal variability. Intra-
interglacial oscillations are also observed in speleothem, pollen
and lithological records in SW France, Italy, Greece and eastern
Turkey13–15,17,37, pointing to a pervasive variability in the
hydrological cycle across southern Europe and the Near East.

We then explore whether the aridity events defined in the
Corchia Cave δ18Ospeleothem and MD01-2444 pollen records are
associated with ocean changes on the Portuguese Margin. We
detrend and smooth our records to examine whether decreases in
temperate tree pollen values during these events are accompanied
by increases in δ18Oplanktonic values in two or more stratigraphi-
cally successive samples (see Methods and Fig. 4). As the analyses
were undertaken on the same samples in MD01-2444, the
comparison is independent of chronological uncertainties. We
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also inspect the δ13CC. wueller. record throughout the entire
108–140 ka interval, but note that C. wuellerstorfi is not
continuously present within the interglacial. HS11.1–11.3 and
C24 are clearly indicated by changes in δ18Oplanktonic and δ13CC.

wueller.; the deglacial temperate tree pollen record shows only
subdued changes, a reflection of the small size of refugial tree
populations. Of the seven intra-interglacial events, five show
directly coupled pollen and δ18Oplanktonic changes, while the local
pollen minimum and δ18Oplanktonic maximum are offset by one
sample at the ~124.9 ka event. Only the ~117.2 ka event has
negative δ18Oplanktonic rather than positive values (although
δ13CC. wueller. decreases).

Comparisons with northern North Atlantic records. Farther
north and in contrast to the NEEM LIG reconstructed surface
temperature profile19, the most detailed North Atlantic records
have revealed considerable variability. A series of cold water-mass
expansions (cold events C28 to C25)9 has been reported at Ocean
Drilling Project site 984 (ODP984) south of Iceland (Fig. 3e),
coeval with changes at ODP980 on the Feni abyssal drift8.
Reductions in North Atlantic Deep-Water production have been
inferred from a series of δ13CC. wueller. and SST decreases in core
MD03-2664 south of Greenland10,38,39 (Fig. 3f, g). The largest of
these excursions is associated with event C27 and is characterized
by the presence of a distinct red detrital layer, also detected in the
Labrador Sea40 and attributed to an outburst flood through the
Hudson Strait, analogous to the 8.2 ka event in the Holocene. A
major meltwater discharge from the East Greenland margin41

may also be coeval with event C27.
Comparison of the Portuguese Margin and northern North

Atlantic records reveals coherent changes in ocean surface

conditions (Fig. 3). Large shifts in SST and IRD provide an
unambiguous stratigraphic correlation of events HS11.1–HS11.3,
C28, C25 and C24 between MD01-2444 and ODP984 and
between ODP984 and MD03-2664; the temporal relations of
intra-interglacial events C27, C27a, C27b and C26 (and one
additional event C27′ observed in MD01-2444) are constrained
by alignment of δ18Oplanktonic and SST (see Methods and
Supplementary Figs. 4, 5). These correlations, in turn, establish
a link between North Atlantic cold events and southern European
aridity events.

Origin of LIG variability. The multi-centennial mid-to-high
latitude North Atlantic surface coolings point to a significant
reorganization of North Atlantic circulation. The cold water-mass
expansions have been linked to southward displacements of the
Arctic front9,38, but the trigger of these events remains uncon-
strained. Moderate freshwater input that increases stratification in
the North Atlantic and leads to a weakening of the AMOC and
attendant cooling in the North Atlantic represents one possible
scenario. In addition to melting of MIS 6 ice sheets, LIG sea-level
reconstructions require a contribution from the GrIS3. This is
supported by marine sediment records off Greenland42,43, indi-
cating GrIS retreat and runoff, especially in its southern sector. A
series of large-amplitude decreases in δ13CC. wueller. in core MD03-
2664 south of Greenland have been attributed to reductions in
deep-water production10, driven by freshwater fluxes40,42,43. The
δ13CC. wueller. records from shallower sites (ODP984 (ref. 9),
ODP980 (ref. 8)) show smaller amplitude decreases and in some
cases even small increases (in MD01-2444, Fig. 4d).

To investigate the impact of freshwater forcing in the North
Atlantic during the LIG, we examine the spatial and temporal
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fingerprint of climate changes simulated by a series of climate-
model experiments, using the Earth System model LOVECLIM44

under LIG boundary conditions (see Methods), which we
compare to our palaeorecords. The model comprises an ocean
general circulation model and a thermodynamic–dynamic sea-ice
model, with a horizontal resolution of 3° longitude by 3° latitude
and 20 vertical levels coupled to a spectral T21 quasi-geostrophic
atmospheric model.

In our first experiment, 0.05 Sv of freshwater is added to the
northern North Atlantic between 126.8 and 126.4 ka to represent
event C27 (FWF005, see Methods), associated with freshwater
discharges from residual ice sheets, including an outburst flood
from the Laurentide ice sheet10,40,41. Events C27′ through C26
could have resulted from periods of enhanced GrIS melt, and are
here represented by a more moderate freshwater input of 0.03 Sv
between 124 and 123.6 ka in the northern North Atlantic
(FWF003, see Methods). The total amount of freshwater added
in these experiments corresponds to a rise of 1.78 m (4.4 mm yr
−1) and 1.07 m (2.6 mm yr−1) sea-level equivalent (s.l.e.), for

FW005 and FW003, respectively. To place these rates in the
context of present changes, sea level has been rising by 3 mm yr−1

since 1993 as a result of accelerated melting of ice sheets and
glaciers, and ocean thermal expansion45. It is important to note
that while events C28 and C27 are still part of the penultimate
deglaciation, the freshwater fluxes for the later events are within
the upper estimates (3.5 m s.l.e.) of the GrIS contribution to
global sea level3. More recently, combined ice-core surface
temperature reconstructions and model simulations suggest a
GrIS contribution of 5.1 m (4.1–6.2 m) and at least 3.9 m s.l.e. by
121 ka46. The smaller freshwater fluxes for C27′, C27a and C27b,
with a combined total of ~3.2 m s.l.e., could represent periods of
episodic Greenland meltwater discharges, but may have also
included contributions from floating ice tongues, sea-ice or
hydrological changes. Greenland ice regrowth after ~121 ka
(refs. 47,48) would suggest that there was additional ice to melt
for events C26 and C25.

Within 100 years, the AMOC weakens by 35% and 20% in
experiments FWF005 and FWF003, respectively (Fig. 5), reducing
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the advection of warm and salty waters to the Northeast Atlantic
through the North Atlantic current, and inducing a significant
cooling in the North Atlantic (Figs. 5e–g, 6a, d), in agreement
with the SST19 and faunal records9. This surface cooling deepens
the Icelandic Low, thus intensifying the subpolar gyre (SPG) and
enhancing the advection of cold and freshwater through the East
Greenland current. The overall surface temperature decrease in
the North Atlantic and the associated reduced evaporation and
changes in atmospheric circulation lead to a precipitation
decrease over Southern Europe (Figs. 5h, 6b, e), in agreement
with our pollen and speleothem records.

The link between North Atlantic cooling events and precipita-
tion over southern Europe is further explored by forcing the
atmospheric component of the NCAR CESM (see Methods) with
estimates of North Atlantic surface cooling and extended sea-ice
anomalies as simulated in experiments FWF005 and FWF003 (see
Methods). The strong cooling over the northern North Atlantic
leads to a deepening of the low-pressure system at mid-to-high
latitudes, while the subtropical high-pressure system strengthens,
extending towards Europe (Supplementary Fig. 6c, f). The
anomalously strong anticyclonic circulation over Europe favours
a more stable atmosphere and reduces convection, leading to
drier conditions over the continent, particularly in its southern
parts (Supplementary Fig. 6b, c). In addition, reduced ventilation
of the deep North Atlantic, resulting from the AMOC weakening,
leads to a significant δ13C decrease at depths below 3000 m in
experiment FWF005 and a smaller decrease for the FWF003
experiment (Fig. 5i), consistent with the changes in
palaeorecords10.

An alternative scenario for the origin of LIG variability is that
changes in North Atlantic ocean surface circulation were driven
by atmospheric processes. Observations over the past decades
have highlighted the impact of North Atlantic westerly winds on
the oceanic circulation and European climate associated with the
North Atlantic Oscillation49. Modelling studies have further

shown that this mode of variability leads to decadal changes in
the SPG and in North Atlantic SST50. Through their modulation
of the North Atlantic subtropical and SPGs, atmospheric
processes may have thus been responsible for changes in SST in
the past, and have been invoked to account for decadal to
centennial changes in the SPG and oceanic reorganization in the
North Atlantic during the past millennium51. Experiments with
state-of-the-art coupled models using ~1000-year-long pre-
industrial simulations have shown the occurrence of stochastic
atmospheric changes in sea-level pressure pattern and winds, in
one case enhancing sea-ice growth52, and in the other weakening
the SPG53. These changes lead to a shutdown of deep-ocean
convection in the Labrador Sea and a weakening of the AMOC
for a period of 100–200 years. In these simulations, the persistent
anomalies over high northern latitudes were possible through
atmosphere, ocean and sea–ice interactions, with the weakening
of the AMOC being a crucial factor in sustaining centennial-scale
changes.

Thus, while different triggers may be hypothesized, that is,
freshwater input or atmospheric forcing or a combination of the
two, numerical simulations displaying centennial-scale cooling at
the surface of the North Atlantic converge towards moderate
AMOC weakening (of up to ~4 Sv).

LIG vs. Holocene climate variability. Finally, we compare the
amplitude of LIG intra-interglacial variability with that of the
Holocene, using records from the same sites with broadly similar
sampling resolutions over the two intervals54–56. Figure 7a, b
suggests that the amplitude of LIG excursions in the Corchia
δ18Ospeleothem and MD01-2444 δ18Oplanktonic records is greater
than in the Holocene. This is supported by examination of the
running standard deviations and the relative frequency distribu-
tions of the detrended records, which isolate the centennial-scale
intra-interglacial variability (see Methods). The running standard
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deviations of the detrended δ18Oplanktonic and δ18Ospeleothem

records are consistently higher in the LIG compared to the
equivalent Holocene section, except for the interval centred
around 8 ka in the δ18Ospeleothem record (Fig. 7g, h). Both
δ18Oplanktonic and δ18Ospeleothem exhibit more extreme relative
frequency distributions during the LIG as compared to the
Holocene (Fig. 7j, k). Comparison of the δ13CC. wueller. records
from adjacent sites MD03-2664 (ref. 10) and MD03-2665 (ref. 56),
on the Eirik Drift, reveals overall more negative LIG values
(Fig. 7c) and a long negative tail in the frequency distributions
(Fig. 7l), consistent with reduced ventilation of the deep North
Atlantic relative to the Holocene.

Could the warmer background state of the LIG have
accentuated climate instability? State-of-the-art coupled model
experiments under LIG boundary conditions are needed to test
whether stochastic atmospheric forcing could trigger a series of
events that are greater in amplitude than those of the Holocene.

This is a possible scenario, but its explanatory power must be
evaluated against the evidence for enhanced GrIS melting during
the LIG compared to the Holocene3,46. Sediment data from south
of Greenland indicate that, unlike the Holocene when GrIS runoff
decreased at ~8 ka, the LIG GrIS retreat and runoff persisted
throughout the interglacial until ~116 ka43. A series of anom-
alously low total air content values in air bubbles of the NEEM ice
core from ~127 to 119 ka indicate multiple events of extensive
surface melting19. Although the exact mechanism for repeated
freshwater release from the GrIS is not clear, distinct peaks in
titanium concentration from 127 to 116 ka in the sediment
records off Greenland57 imply a series of pulses of increased
runoff, albeit with uncertain magnitude.

Thus, while atmospheric and freshwater forcing are both
consistent with moderate AMOC weakening, the palaeo evidence
supports a role for episodic GrIS melting and runoff under
intense boreal summer warming, contributing to the observed
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LIG variability. Whether intra-LIG AMOC disruptions were
associated with changes in interhemispheric heat transport, for
example, via a bipolar seesaw mechanism58, remains an open
question. A LIG ultra-high-resolution δD record from the EPICA
Dome C (EDC) ice core shows a series of low-amplitude intra-
interglacial Antarctic warmings59. Timescale uncertainties, how-
ever, preclude a robust assessment of whether these are related to
North Atlantic cold events or represent Antarctic ice sheet—
Southern Ocean variability. Irrespective of these potential
linkages, analysis of the variance of the EDC δD record indicates
that climate conditions on the East Antarctic Plateau were
systematically more variable during the LIG than the Holocene59,
in agreement with our observations.

Accelerated freshwater input into the North Atlantic as a result
of current global warming is expected to weaken the AMOC60–62.
Though not a strict analogue for future anthropogenically driven
changes, the profile of LIG that emerges is one of enhanced
climate instability under conditions of ‘excess warmth’ relative to
the pre-industrial Holocene, with implications for ice-sheet and
ocean dynamics.

Methods
MD01-2444 core location and study interval. Core MD01-2444 (37°33.68′N;
10°08.53′W; 2637 m water depth; 27.45 m in length) was recovered near the
location of core MD95-2042 (ref. 20) (37°48′N, 10°10′W; 3146 m water depth), in
2001, using the CALYPSO Giant Piston corer aboard the French research vessel
Marion Dufresne II. This study focuses on the 22.50–19.50 m section in MD01-
2444, (~140–108 ka), with a mean sedimentation rate of ~10 cm kyr−1. Samples for
pollen and palaeoceanographic analyses were obtained from the same levels,
typically at 1-cm intervals.

MD01-2444 stable isotopes. Measurements were carried out in the Godwin
Laboratory for Palaeoclimate Research (University of Cambridge) using a VG
PRISM, VG SIRA, or Thermo MAT253 mass spectrometer. For PRISM/SIRA
measurements, samples were dried in an oven at 50 °C overnight prior to sealing
the vials with a septum and screw cap. The samples were analysed using a
Micromass Multicarb Sample Preparation System attached to a VG SIRA or
PRISM Mass Spectrometer. Each run of 30 samples is accompanied by 10 reference
carbonates and 2 control samples. For the Thermo MAT253 measurements, for-
aminifera are transferred into sample vials, crushed and then dried in an oven at
50 °C. The vials were loaded into the carousel and analysed using a Thermo Kiel
device attached to a Thermo MAT253 Mass Spectrometer in dual inlet mode. The
preparation system operates automatically analysing samples in sequence. One
hundred percent orthophosphoric acid is dropped onto the evacuated vial and
reacts with the calcium carbonate sample. The evolved carbon dioxide is cryo-
genically dried and then admitted to the dual inlet mass spectrometer for isotopic
analysis by comparison with a reference gas. Each run of 30 samples was accom-
panied by 10 reference carbonates and 2 control samples. The results are reported
with reference to the international standard Vienna PeeDee Belemnite (VPDB) and
the precision is better than ±0.06‰ for 12C/13C and ±0.08‰ for 16O/18O.

For the planktonic-isotope record about 15–30 specimens of Globigerina
bulloides were selected from the 250 to 300 μm size fraction. Replicates were carried
out for a selection of intervals using ~20–30 specimens from the 300 to 350 μm size
fraction, confirming no apparent offset or differences in down-core variability in
the different size fractions. Where replicate analyses were performed,
measurements have been averaged.

For the benthic δ18O record, several different species (Cibicidoides sp.,
Cibicidoides wuellerstorfi, Uvigerina peregrina, Hoeglundina elegans and
Globobulimina affinis) from the >212 μm size fraction were analysed as no single
species was present in sufficient numbers to generate a continuous 1-cm sampling
resolution record. Where possible two or three separate analyses of different species
were made in each sample; a correction factor was applied (Cibicidoides sp.: +0.57;
U. peregrina and similar specimens: 0.0; G. affinis: −0.3; C. wuellerstorfi, +0.64; H.
elegans: −0.67). These adjustments are optimized for this particular core63 in
accordance with the long-standing convention by which U. peregrina is assumed to
deposit oxygen in isotopic equilibrium. The average of all the corrected values at
each level is shown in the figures. The epibenthic δ13C record was derived from
measurements on monospecific samples (1–4 individuals) of C. wuellerstorfi
selected from the >212 μm size fraction wherever they were present. These new
measurements were combined with those previously reported by ref 25.

Results are reported in Supplementary Data 1.

MD01-2444 Mg/Ca measurements. Trace element measurements were con-
ducted at the University of Cambridge via inductively coupled atomic emission
spectrometry, using a Varian Vista machine64. New measurements have been

combined with those previously reported25, with replicate analyses being averaged
to yield a continuous record. All Mg/Ca analyses have been screened for dissolution
artefacts by reference to shell weights and for contamination by reference to
measured iron, aluminium and manganese concentrations. Only analyses with Fe/
Ca and Mn/Ca ratios <0.5 mmol mol−1 were retained. Mg/Ca ratios in G. bulloides
have been calibrated65,66 to temperatures, which yield absolute temperatures that
correspond to the modern habitat ranges of these species. It must be stressed that
any proxy record derived from a biological ‘proxy-carrier’ necessarily reflects a
record of ‘habitat change’, and that this will reflect local climate change to the
extent that the organism’s habitat has been coupled with the ‘synoptic’ local/
regional climate. The ‘shallow water’ (here referred to as ‘surface water’, as distinct
from ‘deep water’) temperature records derived here from G. bulloides Mg/Ca
ratios thus represent a record of the impact of local climate change on the habitats
of this planktonic foraminifer. At present, G. bulloides thrives near the surface
under eutrophic (‘bloom’ or upwelling) conditions during spring and summer, or
at frontal upwelling zones67.

The absolute uncertainty in the calculated temperature estimates (due to
statistical calibration uncertainty and analytical reproducibility) is estimated at ~
±0.7 °C. However, the ‘noise’ in the temperature time series, which can be
approximated by the average standard deviation of paired adjacent measurements
(which essentially provides an estimate of the degree of autocorrelation in the
record), is closer to ±0.8 °C or about ±0.2 mmol mol−1. This estimate is obtained
by assuming that, as their depth offset tends to zero, adjacent measurements will
tend to represent replicates of a single mean value.

Estimates of seawater δ18O (δ18Osw) have been derived by combining calcite
δ18O measurements with Mg/Ca-derived calcification temperature estimates, both
performed on the same planktonic species. We use the palaeotemperature
equation68,69, whereby:

TMg=Ca ¼ 16:9� 4:38 δc � δswð Þ þ 0:1 δc � δswð Þ2: ð1Þ

In the above equation δc and δsw are the calcite and seawater δ18O, respectively,
and are both referenced to the same primary standard (i.e. δc corrected by +0.2‰
to convert from VPDB to Vienna Standard Mean Ocean Water (VSMOW)).

Results are reported in Supplementary Data 1.

MD01-2444 pollen analysis. Subsamples of 3–7 g of sediment were prepared for
pollen analysis using the standard hot acid digestion technique. Fine sieving,
through a mesh of 10 μm or less, was not used as it has been found to result in a
loss of pollen, particularly Gramineae. Residues were mounted in silicone oil for
microscopic analysis at magnifications of 400, 630 and 1000 times on a Leica
DM2000 light microscope. Nomenclature follows ref 70. Abundances are expressed
as percentages of the main sum, which includes all pollen except Pinus, Pter-
idophyte spores and aquatics. Pinus is conventionally excluded from the main sum,
as it is strongly over-represented in marine sediments because of its extensive
dispersal ability and buoyancy71. Following the convention for marine pollen
analyses, a minimum of 100 pollen grains, excluding Pinus, spores and aquatics,
was counted in each sample. Pollen totals (including Pinus) ranged from 123 to 540
grains. Shown here are the summary pollen curves of Mediterranean sclerophylls
(Olea, Pistacia, Phillyrea and evergreen Quercus) and temperate trees, which
includes Mediterranean sclerophylls and Eurosiberian taxa (the latter includes
deciduous trees/shrubs and Abies, and excludes Juniperus, Hippophae, Salix,
Betula). Results are reported in Supplementary Data 1.

Pollen studies from continental shelf sequences suggest that palynomorph
transport to these areas is controlled primarily by fluvial and secondarily by aeolian
processes72. Studies on modern pollen deposition in fluvial systems, considering
the transfer of pollen from vegetation to the channel, transport in the channel and
deposition in coastal waters, indicate the rapid incorporation of pollen to marine
sediments72. At the Portuguese Margin margin, aeolian pollen transport is limited
by the direction of the prevailing offshore winds and pollen is mainly transported
to the abyssal site by the sediments carried by the Tagus River73,74. Comparison of
modern marine and terrestrial samples along western Iberia has shown that the
marine pollen assemblages provide an integrated picture of the regional vegetation
of the adjacent continent74. In MD01-2444, the coherence of the pollen and marine
isotope signals in MIS 3 and MIS 6 (ref. 63) argue against reworking of non-
contemporaneous material.

MD01-2444 XRF analysis. Archive halves of sections from Core MD01-2444
were analysed using an Avaatech XRF core scanner at the University of Cam-
bridge55. The core surface was carefully scraped cleaned and covered with a 4-mm
thin SPEXCertiPrep Ultralene foil to avoid contamination and minimize desicca-
tion. XRF data were collected every 2.5 mm. The length and width of the irradiated
surface was 2.5 and 12 mm, respectively, with a count time of 40 s. Results are
reported in Supplementary Data 1.

Corchia Cave analytical methods. The speleothem time series used in this study is
derived from four Corchia Cave stalagmites (CC1, CC5, CC7 and CC28) collected
from a single chamber (44°02′N, 10°18′E) between 1999 and 2005. The interval
reported spans 140 to 108 ka. The cave setting, the collection details and the general
characteristics of each stalagmite have been described in detail
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elsewhere21,32,33,75,76. Except for two small sections of CC5, each segment under
study was microsampled at 100-μm resolution using a Taig CNC micromilling
lathe. A ~41-mm interval of rapid growth in CC5 during the early LIG was
sampled at intervals of between 0.2 and 2.0 mm, while another CC5 section (~38
mm length) at ~121 ka was sampled at an average interval of 0.12 mm.

The δ18O and δ13C measurements were conducted on two identical
continuous-flow mass spectrometers at the Scottish Universities Environment
Research Centre (SUERC) at East Kilbride, UK (an Analytical Precision AP2003)
and the School of Earth Sciences, University of Newcastle, Australia (a GV
Instruments GV2003). In both cases, subsamples of 0.8 ± 0.1 mg were digested in
105% orthophosphoric acid at 70 °C and measurements made on the evolved CO2.
Sample results were converted to the VPDB scale using the known values of
Cararra Marble house standards (NEW1 at Newcastle and MAB2C at SUERC)
previously calibrated to the VPDB scale using NBS19 and NBS18. Each batch of
132 vials included between 22 and 27 house standards ~evenly spaced through the
sequence. At Newcastle, scale corrections (small, <0.10‰) for δ18O were applied
where necessary based on values obtained for two measurements each of NBS19
and NBS18. At SUERC, scale corrections were unnecessary, based on results of
regular measurement of samples against both NBS19 and NBS18 using dual-inlet
mass spectrometry (VG Prism II). The repeatability precision (1σ) on the AP/
GV2003 machines throughout the analyses was ≤0.10‰ for δ18O and ≤0.05 for
δ13C. Results are reported in Supplementary Data 2.

U–Th age data for each speleothem are shown in Supplementary Data 3. The
U–Th dating was conducted either on samples drilled using a 1-mm drill bit or on
composites of leftover powders originally microsampled for stable isotope analysis.
The latter samples represented between 0.1 and 0.5 mm of speleothem distance (i.e.
between one and five 100-μm-thick samples), depending on the amount of powder
remaining. Conservative estimates were made of the 100% sampling uncertainty
(Supplementary Data 3). Chemical separation of U and Th, spike procedures and
the method of isotopic measurements followed the protocol of refs. 77,78. All age
calculations use the latest U and Th decay constants79.

A Bayesian Monte Carlo method ‘finite growth-rate age model’ was used to
calculate depth-age models for each stalagmite and to generate 95% age-
uncertainty estimates for each stable isotope sampling depth position21,32,80. The
depth-age plots and the modelled 2σ uncertainties for each speleothem are shown
in Supplementary Fig. 1. Two U–Th ages were immediately rejected from CC5
because of their outlying position in depth-age space (red symbols in
Supplementary Fig. 1; red text in Supplementary Data 3). Based on the updated
U–Th age calculations, the time periods covered by each speleothem considered in
this paper are:

CC1: 141.0 ± 1.6 to 128.5 ± 1.1 ka.
CC5: 141.0 ± 1.5 to 126.0 ± 1.0 ka, and 124.4 ± 0.99 to 107.0 ± 0.7 ka.
CC7: 128.6 ± 1.4 to 126.4 ± 1.5 ka, and 125.6 ± 1.3 to 121.3 ± 1.6 ka.
CC28: 118.4 ± 1.3 to 107.0 ± 1.0 ka.

Corchia Cave composite (‘stacked’) time series. All but ~4 kyr of the 32-kyr
interval is replicated and the isotopic patterns between coeval stalagmite sections
display good consistency (not shown here). Accordingly, we constructed a single
composite stable isotope record that attempts to maximize the level of detail by
utilizing sections with the highest sampling resolution where possible, bearing in
mind the challenges of splicing individual records into a single time series.

We used the stalagmite possessing the most complete record, CC5, as the tuning
target. CC5 spans all but ~1.6 kyr of the 140–108 ka period. To produce the master
time series, each individual speleothem depth series was first smoothed using a 5-
point window. The stable isotopic data for CC1, CC7 and CC28 were then tuned to
the CC5 depth scale using tie points common to overlapping growth segments.
Tuning points were identified by eye using both δ18O and δ13C profiles. In
difficult-to-match sections, the δ18O was used as the main tool for pattern
matching, as this ratio is more robust than δ13C, which is more susceptible to local
(including ‘in-cave’) influences.

For the long period of overlap between CC5 and CC28, we used the stable
isotope data of the latter due to its superior time resolution. Data from this
speleothem commence from a point as close as possible to its base where a clear
isotopic matching with CC5 is evident. For the periods of overlap between CC7 and
CC5, CC7 stable isotope data is only used across the hiatus in CC5 and where the
time resolution is superior and there is confidence in the splice with CC5.

To develop the stack depth scale, the depth scale of CC5 was reset to an
arbitrary zero corresponding to the termination of the longest period of continuous
growth in this stalagmite (124.4–87.8 ka32), which occurs at an absolute depth
position of 14.4 mm from the tip of CC5. To accommodate the hiatus in CC5
growth, a depth increment equivalent to the segment of the CC7 section was
inserted into the stack depth scale. The pre-hiatus depth of CC5 was adjusted
accordingly.

The results of the cross-tuning are shown in Fig. 2a, b and reveal good
replication between the overlapping portions of the speleothems for both δ18O and
δ13C. For CC7, we added 0.3‰ to the δ18O data to bring its profile into a more
convincing alignment with CC5, although it appears this adjustment is somewhat
inconsistent with the older segment. The need to apply an offset, and the
inconsistency of such an offset over several thousand years, is not entirely
surprising: the cave chamber lies at great depth below the ground surface (at least

400 m), and this plus the recharge elevation range of the structurally complex
carbonate geology that comprises the aquifer31 would conspire to permit recharge
waters from markedly different altitudes (and thus with different isotopic
composition31) to reach the chamber at different times, according to the evolution
of the flow path for individual drip points. The final stable isotope series on the
stack depth scale is shown in Fig. 2b and reported in Supplementary Data 2.

The advantage of a single-stacked-record approach is that it allows the U–Th
age data from all speleothems to be combined into a single depth-age model,
thereby reducing overall age-model uncertainties for the entire 140–108 ka
interval21. Accordingly, we transposed the original U–Th age-depth positions from
the individual speleothems onto the stack depth scale and derived a new stack
depth-age model using the Monte Carlo technique described previously (Fig. 2c, d).
In implementing this model, we increased the sample-depth error (by ±1 mm) of
all non-CC5 ages to account for uncertainty in the tuning procedure. The
composite depth-age model reveals a further age outlier not detected in the original
single-speleothem depth-age model, giving a total of three rejected outliers from a
total of 90 U–Th age determinations. These outliers are highlighted by red symbols
in Fig. 2c and have been excluded from the depth-age model.

Finally, a useful test of the robustness of the chronology of a stacked record is
how closely the model stack age for each isotope data point agrees with its original
model age. Supplementary Fig. 2 shows the results of this comparison. Only five
very brief intervals display stack model ages outside the 95% uncertainties of the
original model age, equivalent to ~2% of the entire record. In each case, the model-
age difference is small (within 99% model-age uncertainties) and in no instance do
these intervals correspond to the inferred aridity events identified in Fig. 3.

MD01-2444 age model. The age model of the LIG section of MD01-2444 is
based on aligning its temperate tree pollen curve to the δ18Ospeleothem record from
Corchia Cave (Supplementary Fig. 3), on the premise that, under the influence
of mid-latitude westerlies and cyclogenesis over the Mediterranean, rainfall
amount in southern Europe exerts a dominant control over both the composition
of vegetation and isotopic signature of speleothems21,31,34. Supplementary Data 4
provide the alignment tie points, ages and associated uncertainties. It is
important to emphasize that the comparisons of proxy records from the same
samples in the MD01-2444 sediment sequence are independent of the choice of
age model.

Detrending the MD01-2444 and Corchia Cave records. To remove the low-
frequency component from the temperate tree pollen, planktonic foraminifera and
speleothem-isotope records, a 6-kyr Gaussian interpolation was subtracted from
the data sets on their original time step. The residuals were then smoothed using a
600-year window Gaussian interpolation, significantly reducing the amplitude of
periodicities below (shorter than) 400 years (Fig. 4).

Comparison of intra-interglacial aridity events and ocean changes. To identify
interglacial samples with negative temperate tree pollen and positive δ18Oplanktonic

values, the detrended data on their original time step (common to both data sets)
were examined (Fig. 4). To avoid selecting minor variations that may be analytical
noise or artefacts of the detrending method, temperate tree pollen and
δ18Oplantonicvalues in the same sample had to reach or exceed thresholds of –1.13%
and +0.04 ‰, respectively. These thresholds are equivalent to one-third the mean
absolute deviation of the respective data sets.

Alignment of ODP984 to MD01-2444. The LIG record9 of ODP984 south of
Iceland (61.25°N, 24.04°W; 1648 m water depth) is here aligned to that of MD01-
2444 (Supplementary Fig. 4) on the basis that iceberg discharges, expansion of cold
surface-water and attendant SST changes are quasi-synchronous (within the
sampling resolution) between the two sites. Large changes in XRF Zr/Sr and IRD
and also SST and percentages of Neogloboquadrina pachyderma, sinistral coiling
(s.), considered a cold indicator species9, provide an unambiguous stratigraphic
correlation of HS11.1–HS11.3 and C24. Smaller decreases in SSTs also constrain
the correlation of C28 and C25. In between these events, the alignment of the two
records is based on correlations of their respective δ18Oplanktonic records. Supple-
mentary Data 4 provide the alignment tie points, ages and propagated
uncertainties.

Alignment of MD03-2664 to ODP984. The LIG record10,38,39 of MD03-2664
from the Eirik Drift, south of Greenland (57°26.34′N, 48°36.35′W; 3442 m water
depth) is here aligned to that of ODP984 (ref. 9) (Supplementary Fig. 5), on the
basis that iceberg discharges, expansion of cold surface water and attendant SST
changes are quasi-synchronous (within the sampling resolution) between the two
sites. Large changes in IRD, SSTs and percentages of N. pachyderma (s.), provide an
unambiguous stratigraphic correlation of HS11.1, HS11.2 and C25 and C24.
Although the deglacial section of MD03-2664 is condensed, the end of HS11 and
start of the LIG is clearly recorded in the IRD and SST records, which then allows
the correlation of C28. The alignment of the intra-interglacial sections is based on
correlations of changes in Mg/Ca SSTs in MD03-2664 and in the percentages of
subpolar N. incompta percentages, representing a warm indicator species in
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ODP984 (ref. 9). Supplementary Data 4 provide the alignment tie points, ages and
propagated uncertainties.

Numerical experiments performed with LOVECLIM. North Atlantic meltwater
experiments were performed with the Earth System model LOVECLIM44, which
comprises a spectral T21 quasi-geostrophic atmospheric model and an ocean
general circulation model coupled to a thermodynamic-dynamic sea-ice model,
with a horizontal resolution of 3° longitude by 3° latitude and 20 vertical levels. The
experiments were performed under varying LIG boundary conditions, that is,
appropriate orbital parameters81, Northern Hemisphere ice-sheet extent and
albedo82, atmospheric CO2 content83 and constant CH4 (700 ppb) and N2O (310
ppb) values. Two experiments were performed with meltwater added in the
northern North Atlantic, to the area south of Greenland (55.5°N–66.3°N, 58.5°
W–31.5°W) for 400 years. For the first experiment, 0.05 Sv (103 m3 s−1) was added
between 126.8 and 126.4 ka (FWF005), and for the second one, 0.03 Sv was added
between 124 and 123.6 ka (FWF003). Both experiments run for another 400 years
without any forcing and were compared to an LIG control experiment. Following
the freshwater addition, the AMOC weakens from ~23 to 15 Sv (~35%) at 126.7 ka
and from 24 to 19 Sv (~20%) at 123.9 ka. We note that LOVECLIM’s North
Atlantic and European climate response to an AMOC weakening is within the
range of coupled climate models84.

Numerical experiments performed with CESM. To further assess the link
between changes in North Atlantic SST and precipitation over Europe, we perform
additional experiments with an independent model, the NCAR CESM. The
atmospheric component of the CESM, namely the Community Atmospheric
Model version 4 (ref. 85) is forced with monthly SST and sea-ice conditions from
LOVECLIM. The CAM4 configuration consists of a spatial resolution of 1.9°
latitude by 2.5° longitude and 26 vertical levels in a hybrid sigma-pressure coor-
dinate. Four experiments are performed with an atmospheric CO2 concentration
fixed at 284.7 ppmv and integrated as follows: (i and ii) two control run experi-
ments forced with a repeating 12-month climatology of SST and sea-ice con-
centration from the LOVECLIM LIG control run at 126.8 and 124 ka; (iii) an
experiment forced with a climatology of both North Atlantic SST and sea-ice
concentration derived from the LOVECLIM FWF005 simulation when the AMOC
is reduced by 35% (Supplementary Fig. 6b, c); and (iv) an experiment forced with a
climatology of both North Atlantic SST and sea-ice concentration derived from the
LOVECLIM FWF003 simulation when the AMOC is reduced by 20% (Supple-
mentary Fig. 6e, f).

Outside the forcing domain, a 10° latitude/longitude band was used to linearly
damp the North Atlantic SST and sea-ice conditions to the control run climatology.
Unless otherwise specified, SST and sea-ice concentration were the same as for the
control run. The control runs were integrated for 270 and 100 years and the
perturbation experiments were integrated for 90 and 80 years, respectively.

Analysis of the variance of LIG and Holocene records. Holocene and LIG
Corchia Cave δ18Ospeleothem, MD01-2444 δ18Oplanktonic and MD03-2664/5 δ13CC.

wueller. were each linearly resampled to an even time step (δ18Ospeleothem= 10 years,
δ18Oplanktonic= 100 years, δ13CC. wueller.= 25 years) (Fig. 7a–c) and detrended by
removing a 6000-year Gaussian interpolation (Fig. 7d–f). No smoothing was
applied to the detrended data. To compare the relative variability of Holocene and
LIG records, two approaches were used. First, a 2500-year window running stan-
dard deviation was calculated for each record (Fig. 7g–i). The 2500-year window is
centred, meaning that the first and last 1250 years of the running standard
deviations have different statistical properties to the remaining data. Second, his-
tograms were constructed to compare the relative frequency distributions of the
Corchia δ18Ospeleothem, δ18Oplanktonic and δ13CC. wueller. detrended records in the
Holocene and LIG. Bin width is consistent for Holocene and LIG records and bar
height equals number of observations in bin normalized to total number of
observations (Fig. 7j–l).

Data availability
All data generated for this study are available in the article and its Supplementary
materials.
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