
Screen Space 3D Diff: A Fast and Reliable Method for Real-time
3D Differencing on the Web

Jozef Doboš
3D Repo Ltd
London, UK

ceo@3drepo.org

Carmen Fan
3D Repo Ltd
London, UK

Sebastian Friston
University College London

London, UK

Charence Wong
3D Repo Ltd
London, UK

Figure 1: Revisions of a construction 3D model (left/right) are differenced in screen space on a web browser in real time.
Resulting visualization (middle) shows deletions in red and additions in green. Model courtesy of CanaryWharf Contractors.

ABSTRACT
We introduce Screen Space 3D Diff, an interactive method for fast
and reliable visual differencing on the web. This method is based
on the properties of 3D scenes in 2D space such as depth, color,
normals, UV, texture, etc. The central idea states that if two objects
project into the same screen space with identical properties, they
can be assumed to be identical; otherwise, they are different. In
comparison to previous works that require large computational
overheads in 3D space, our approach is significantly easier to im-
plement and faster to determine disparities. This is because screen
space methods scale with resolution and not scene complexity. They
also lend themselves to massive parallelization on modern GPU
hardware, and have the added advantage of being accurate at pixel
level regardless of magnification. The combination of these benefits
allows for instant real-time differencing with minimal disruption to
the rendering pipeline even on web browsers. We demonstrate two
different implementations of this method; one in a desktop applica-
tion and one in Unity 3D game engine on the web. The performance
of the proposed method across a range of devices is presented and
practical benefits of our approach are further evaluated in a user
study of twenty professionals with several large-scale models that

Web3D ’18, June 20–22, 2018, Poznan, Poland
2018. ACM ISBN 978-1-4503-5800-2/18/06. . . $15.00
https://doi.org/10.1145/3208806.3208809

are typical of the Building Information Modelling paradigm. Based
on this evaluation we conclude that our method is invaluable in
day-to-day engineering workflows and is well suited to its purpose.

CCS CONCEPTS
• Computing methodologies→ Rasterization; Image processing;

KEYWORDS
differencing, screen space, z-buffer, Unity 3D

ACM Reference Format:
Jozef Doboš, Carmen Fan, Sebastian Friston, and Charence Wong. 2018.
Screen Space 3D Diff: A Fast and Reliable Method for Real-time 3D Dif-
ferencing on the Web. In Web3D ’18: Web3D ’18: The 23rd International
Conference on Web3D Technology, June 20–22, 2018, Poznan, Poland. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3208806.3208809

1 INTRODUCTION
Being able to quickly and reliably establish what has changed be-
tween two revisions of the same 3D scene, or even between two
entirely different 3D scenes, on the web has numerous applica-
tions across various industries. For example, Computer Aided De-
sign (CAD) and Building Information Modelling (BIM) rely heavily
on 3D models that change over time as the designs evolve. The

https://doi.org/10.1145/3208806.3208809
https://doi.org/10.1145/3208806.3208809

Web3D ’18, June 20–22, 2018, Poznan, Poland J. Doboš et al.

myriad of editing tools and ever growing collaborative teams make
keeping track of frequent changes in 3D space extremely difficult.

Despite being the norm in software engineering, cloud-based
version control and change detection are still not prevalent in 3D
modelling. Only a few tools such as Autodesk Maya or Vistrails
record all modelling history by instrumenting the editor. If, however,
no record of the editing provenance exists, it is nearly impossible to
reliably detect all discrepancies between the models, let alone do so
quickly using the existing techniques. It is well known in the indus-
try that exchanging models between different software packages
can result in information loss due to incompatibilities. In addition,
many packages can exhibit “vendor lock-in”, whereby users are
unable to easily exchange information contained within propri-
etary file formats. Whilst open standards such as Collaborative
Design Activity (COLLADA) [2012], Industry Foundation Classes
(IFC) [2013] (originally based on the Standard for the Exchange of
Product model data (STEP) [1994]), and AutoCAD’s Drawing Ex-
change Format (DXF) do exist, the full support for their respective
encodings is still largely inconsistent. The proposed solution is a
robust, file-format-independent 3D differencing method that can be
used in multiple situations, even on web browsers. For real-world
industrial applications, a successful solution should be i) consistent
and accurate; ii) work across different tools regardless of data rep-
resentation; iii) fit seamlessly into existing editing pipelines; and iv)
scale to large datasets without significant overhead. The tractability
is especially important as large-scale industrial 3D scenes can often
span hundreds of thousands of separate components.

Contributions. To solve the aforementioned problems, we present
a novel Screen Space 3D Diff (see Fig. 1) method for visual 3D differ-
encing. Unlike existing methods listed in §2.2, our solution is based
on screen space differencing which scales with resolution and not
scene complexity. It also has the added benefit that it provides pixel-
level accuracy at any magnification level. Thus, our contributions
can be summarized as follows:

(1) A novel, fast and reliable method for real-time visual 3D Diff;
(2) Addition of differences in colors, textures, normals, etc.;
(3) Desktop as well as web-based implementation;
(4) A comparison to previous work on a selection of 3D models;
(5) A user study with industrial professionals that demonstrates

its usefulness in everyday engineering workflow.

2 RELATEDWORK
The process of differencing, i.e. finding the commonalities and dis-
crepancies between two or more inputs, has long been the focus of
academic as well as industrial research. Traditionally, the topic was
divided between 2D and 3D differencing. In this paper we attempt
to blur the boundaries between such approaches by relying on 2.5D
screen space representation of a 3D scene.

2.1 2D Differencing
Chen et al. [2011] introduced non-linear version control for 2D
images. There, a directed acyclic graph (DAG) represents images and
edits evolving over time. Images are compared by superimposing
one over the other with support for operation-based merging. A
similar approach to image comparison is offered by a number of
tools including Guiffy Image Diff Tool, Araxis Merge and GitHub

Image View, which overlay images and display commonalities and
differences with support for overlays, side-by-side visualizations,
sliders, etc. Our method takes inspiration from these and applies a
similar approach to a 3D view frame by frame.

2.2 3D Differencing
Matching identifiers. Doboš and Steed [2012a] devised an interac-

tive 3D Diff tool which assumes component-level correspondence
based on matching identifiers (IDs) stored in a version control sys-
tem 3D Repo [2012b]. This includes visualization modes such as
superposition, juxtaposition, and explicit encodings, as well as two,
three and n-way differencing. Similarly, long established desktop-
based solutions such as Detect IFC Model Changes in ArchiCAD by
Graphisoft, IFC Change Management in Tekla by Trimble and Model
Compare in FME by Safe rely on object-level IDs being preserved
between consecutive revisions of 3D files. Online, Version Compare
in BIM 360 Team by Autodesk is based on Three.js library and
supports change detection in 2D as well as 3D using matching IDs.
Equivalent solutions also exist in cost estimation packages such as
Vico Office by Trimble in 3D and CostX by Exactal in 2D. What
all these tools have in common is that they are unable to detect
changes when the component identifiers are lost or modified. They
also take a considerable amount of time to calculate their results. In
contrast, our method requires neither matching IDs nor any prior
version control knowledge and runs in real-time online.

Voxelization. Other methods rely on implicit correspondence
by subdividing the space into a voxel grid. Voxels that share the
same (x ,y, z) coordinates are implicitly correspondent assuming
the input models occupy the same volume. For instance, Ngrain 3D
Geometric Differencing performed voxelization of the entire render-
ing volume, which is slow andmemory consuming. Similar methods
on point-clouds are also employed in industrial 3D laser scanning
by Leica and Faro. In contrast, our method is akin to implicit on-
the-fly voxelization of the surface layer from the current camera
view only. This significantly reduces computational complexity and
memory footprint, making it suitable for real-time rendering. It also
increases the perceived precision of the differencing as the implicit
comparison volume is always equal to the current pixel size.

Editor instrumentation. Another approach to change detection is
to record and store the entire editing provenance during the model-
ing process. Denning et al. [2011] obtained editing sequences using
a Blender plug-in. These were analyzed and clustered to convey
the changes visually. Similarly, commercial tools, such as Autodesk
Maya and VisTrails, record the editing history. In contrast, our
method is able to detect differences without pre-recorded histories
even when the models were created in different tools altogether.

Correspondence estimation. There also exist those 3D differenc-
ing methods that try to establish correspondence across models
simply from geometry without the reliance on preserved editing
histories or metadata, e.g. MeshGit [2013] and 3D Timeline [2014].
MeshGit generates a dual graph of vertices and edges in order
to define a minimum mesh edit distance. From these, an iterative
greedy algorithm with backtracking attempts to calculate graph
isomorphism. This is non-trivial to implement and takes consider-
able amount of time to calculate, see comparison to our method

Screen Space 3D Diff: A Fast and Reliable Method for... Web3D ’18, June 20–22, 2018, Poznan, Poland

Figure 2: Processing pipeline. Two input 3D scenes A and B are firstly pre-aligned. Next, each scene is rendered from the same
camera position in order to produce depth, color, etc. buffers. These are then differenced and finally visualized. The rendering
loop is repeated on each frame based on user navigation.

in Fig. 11. GitHub also provides a basic 3D File Diff visualization
for StereoLithography (STL) file comparison. This is achieved by
performing Constructive Solid Geometry (CSG) operations on the
STL files using binary space partitioning trees and calculating their
per-component differences. Removed and added components are
cached and displayed in red and green respectively. In addition, a
slider enables the users to blend between two revisions seamlessly
akin to key-frame animation. A similar slider interface was also
employed by Jain et al. [2012] to swap parts of models in order to
generate novel shapes as well as in Doboš et al. [2014] to interpolate
component changes between consecutive model revisions. There
also exist mesh descriptors such as [Han et al. 2017]. Nevertheless,
these methods provide only approximate correspondence and do
not scale well to real-life industrial applications.

2.3 Screen Space Methods
The biggest advantage of screen space methods, such as Screen
Space Ambient Occlusion [Mittring 2007; Shanmugam and Arikan
2007], is that they work in real-time with minimal overhead even on
large scenes. Such methods often employ the z-buffer which repre-
sents rasterized depth values. Using this, [2002] calculated an error
metric to define the dissimilarity between two 3D models. Depth
readings from multiple camera views that are perpendicular to the
surface of a model (surface roving) are averaged and compared.
Similarly, [Krivokuća et al. 2012] defined an error metric based on
the depth buffer by rendering 3D models from various viewpoints
and averaging the depth discrepancy in order to quantify shape
distortion. The closest to our method is Kahn [2013] where 3D
models are iteratively aligned with images from a depth camera to
provide better visualization for augmented reality. Improvements
in alignment are measured by comparing the depth of a synthetic
image with the depth from a physical camera at the same pixel.

3 METHOD OVERVIEW
Our method computes accurate and consistent visual differences
between two 3D scenes as part of a wider 3D Repo web plat-
form [2012b]. Since its initial introduction in 2012, this open source
project underwent several major upgrades; firstly with rendering
in XML3D [2010] by Doboš et al. [2013], later in X3DOM [2009]
by Scully et al. [2015; 2016], and finally in Unity 3D by Friston et

al. [2017]. Over the years, 3D Repo has been utilised on some of
the largest construction projects in the UK. Especially in the archi-
tecture, engineering and construction (AEC) industry, 3D models
consist of millions of disparate components and change frequently
throughout various stages of a project. Thus, instead of exhaus-
tively calculating differences between components—which would
be computationally infeasible—we devise a method that can visual-
ize changes instantly on desktops and web browsers alike.

3.1 Processing Pipeline
To achieve real-time 3D differencing, we use amulti-stage rendering
pipeline as shown in Fig. 2. Firstly, the pre-processing step aligns
two input scenes in screen space. If the scenes are not in a common
coordinate system, they need to be aligned either manually or
automatically through a suitable alignment algorithm, e.g. [Aiger
et al. 2008]. In addition, the rendering settings such as viewing
frustum and projection parameters need to be matched. Next, both
scenes are rendered and compared to highlight any geometric and
other disparities between them. Finally, as this entire pipeline can
be computed in real-time, the rendering settings of both scenes are
kept synchronized to allow for reliable comparison on each frame.

Difference metrics. The differences are computed by calculating
the distance between separate rendering passes with varying met-
rics, one at a time. Initially, depth differences establish geometrical
correspondence across the scenes. This is achieved by comparing
pixel-by-pixel signed depth values from their respective z-buffers re-
gardless of the underlying rendering, as shown in Fig. 3. Intuitively,
it can be inferred that if the distance to the camera is larger in the
first scene than in the second, new parts must have had come into
the view, hence, they can be labelled as added. Conversely, if the
distance to the camera is smaller in the first scene, some parts must
have had been omitted, hence deleted. Note, however, that the same
geometric changes can be also achieved by simply repositioning
existing objects instead of actual addition or deletion as discussed
in §7. Nevertheless, for any parts of screen space with the same
depth, we assume it is the same object and thus further compared
on other metrics, namely color, texture, normals, andmetadata. Each
secondary metric can be encoded in a RGBA buffer which is akin
to an n-dimensional vector field where n ≤ 4. To find the distance

Web3D ’18, June 20–22, 2018, Poznan, Poland J. Doboš et al.

Figure 3: Screen Space 3D Diff. Two input models in (a) are instantly differenced and colored as (b) point cloud, (c) wireframe,
(d) shaded wireframe and (e) shaded only rendering. Green corresponds to features being added while red deleted. Notice how
this method correctly identifies differences in geometry, triangulation, vertices and even surface features down to individual
pixels beyond simple object-level detection. Any other rendering and shading is equally possible.

between corresponding pixels in the rendered frames A and B, the
Euclidean distance between the vectors is calculated as,

∆MAB =

 ®MA − ®MB

 =√√ n∑
i=1

(
Mi

A −Mi
B

)2
(1)

where ®MA and ®MB are the corresponding metric vectors in A and
B respectively and ∆MAB is their difference. Once the distance
for every corresponding pixel has been established, a semantic
meaning can be assigned to each as,

∆MAB :=


added, if ®MA = ∅ ∧ ®MB , ∅

deleted, if ®MA , ∅ ∧ ®MB = ∅

modified, if ®MA , ∅ ∧ ®MB , ∅ ∧

 ®MA − ®MB

 > ϵ

unmodified, otherwise,
(2)

where ∅ denotes a null vector, i.e. value not present, and ϵ a small
positive threshold defined for each metric.

4 SCREEN SPACE 3D DIFF
Assuming the input 3D scenes are synchronized, any suitable screen
space metric can be used to calculate the differences between them.

4.1 Depth Difference
To reliably compare two depth buffers as shown in Fig. 4, their
values must increase linearly with the distance from camera. If it
were not the case, the differences would be view dependent, which
leads to inconsistent results between subsequent frames as objects
get closer or further away from the camera. For a near and far
plane, n and f , a normalized depth value z in the range of [0, 1] will
project under the standard perspective equation:

z′ =
f + n

2(f − n)
+
1
z

(
−f n

f − n

)
+
1
2
. (3)

The inversion of this equation transforms from perspectively pro-
jected depth value z′ to linearized value z′′, and takes the form:

z′′ =
2n

f + n − (2z′ − 1)(f − n)
. (4)

Fig. 5 demonstrates how a consistent semantic meaning can be
assigned to all (z′′A, z

′′
B) corresponding ordered pairs. The case of

z′′ = 1 can represent both an object at the far plane, or simply
no object at all. This duality means the semantic assignment from
Eq. (2) has to be adapted to utilize the signed depth difference as,

∆ZAB :=


added, if (z′′A − z′′B) > 0
deleted, if (z′′A − z′′B) < 0
unmodified, otherwise.

(5)

If the subtraction equals to zero, no reliable geometric differ-
ence can be detected using this metric alone. Thus, it is marked as
unmodified and further differenced using other metrics below.

4.2 Color Difference
For practical purposes, color difference using Euclidean distance
in RGBA space can provide little utility to the user. For instance
in Fig. 6, a modeler might be concerned about the roof changing
color from dark green to dark pink , yet they might not care
about subtle changes from lighter to darker sand color in

Figure 4: Depth differencing. Linearized depth values in (a)
are subtracted from (b). The results are highlighted in red
denoting deletion and in green denoting addition.

Screen Space 3D Diff: A Fast and Reliable Method for... Web3D ’18, June 20–22, 2018, Poznan, Poland

Figure 5: Linearized z-buffer differencing as a unit cube on a
4 × 4 screen. Top row: Depth changes in ZA and ZB are calcu-
lated in (x ,y) screen space and visualized in ∆ZAB as green
for additions and red for deletions. Bottom row: Cross sec-
tions of the cube show the relative z-distances from camera.

the corner stones. This becomes increasingly important in scenes
with too many color variations for the user to comprehend. For ease
of argument we begin by considering differencing in the diffuse
color only, as other material parameters can be constructed in a
similar way. Alpha transparency also has to be treated separately
due to blending which makes it view dependent.

Firstly, effects that are due to lighting need to be removed to
suppress influence of any extrinsic factors. This avoids banding
artefacts that may be caused by fragment interpolation over iden-
tical geometry but with different triangulation. Thus, the input
here are two pre-aligned, unlit, unshaded and untextured diffuse
color buffers for A and B respectively. Unlike standard color spaces
such as RGB, HSV and HSL, the CIELAB [2008] and CIELUV [2009]
attempt to provide improved perceptual uniformity across the tonal
range. Hence, to take into account the perceptual differences be-
tween colors cA and cB , we base ∆CAB on the original CIELAB
color-difference [Robertson 1977] as

∆E∗AB =

(L∗A,a∗A,b∗A) − (L∗B ,a

∗
B ,b

∗
B
)

 , (6)

Figure 6: Diffuse color differencing. Unlit, unshaded and un-
textured diffuse color values are subtracted between two
frames. Their differences are displayed in (a) and (b) in orig-
inal coloring while unmodified parts are in greyscale.

where L∗ corresponds to the lightness of the color, a∗ its position
between the red and green, and b∗ between the yellow and blue
values in the L*a*b* color space. Based on Eq. (2), for ∆CAB =
∆E∗AB , the value of ϵ ≈ 2.3 is in experimental psychology known
as just-noticeable difference (JND) [Sharma and Bala 2002]. Color
differences below this threshold are effectively imperceivable by
the human visual system, hence labelled as unmodified, although
in practice, the threshold could be set by the user using a sliding
scale. Similarly, it is possible to visualize the ‘rate of change’ as a
heat map of ∆CAB .

4.3 Texture Difference
Texture difference can occur due to changes in the source image, its
mapping onto the surface or both. However, simultaneous changes
in both can cancel each other out. For instance, shifting a repeated
pattern image as well as its mapping coordinates by exactly half a
period each would result in the 3D rendering looking unmodified.
Yet, the user might want to get notified of such a modification
despite the lack of apparent visual discrepancy. Thus, texture maps
need to be compared for changes in both color and parameter space,
same as normal maps further discussed in §4.4.

Changes in fragment color due to the application of a texture
can be detected similarly to color differencing in §4.2. Texel values
(tA, tB) have to be sampled uncolored, unlit and unshaded as shown
in Fig. 7. There, it is important to disregard all material properties
as those, depending on the selected blending parameters, would
attenuate the rendering and therefore skew the differencing. How-
ever, to apply texturing on a 3D model, each side of a source image
needs to be parametrized in a chosen coordinate space P . For ease
of argument we consider only (u,v) space as change detection in
other spaces can be constructed in a similar way. Unlike previous
metrics, texture parameters are not influenced by scene appearance
due to lighting, shading, etc. They are also not view dependent and
do not require normalization. Hence, the differences in pA and pB
parameters can be easily determined as

∆PAB = ∥(uA,vA) − (uB ,vB)∥ , (7)

Figure 7: Texel differencing. Unlit, unshaded and uncolored
but fully textured values in (a) are subtracted from those in
(b). The differences are left in their original coloring while
the rest of the scene is suppressed in greyscale.

Web3D ’18, June 20–22, 2018, Poznan, Poland J. Doboš et al.

Figure 8: Normal differencing. Per-fragment input normals
in (a) and (b) are differenced with unmodified sections in
greyscale. Notice the fine detail in the roof tiles being cor-
rectly distinguished from the unchanged surface normals.

whereu andv are the texture coordinates in range [0, 1]. For texture
differencing, the ϵ threshold is especially important as depending on
the image resolution and the mapping function, small fluctuations
in the parameter vector might fall within the same texel.

4.4 Normal Difference
Even though normal maps could be directly compared using the
underlying source images, it would exclude the effect that the ge-
ometry has on transforming the normals into a local tangent space
as shown in Fig. 8. Thus, it is important to identify all changes in
normal orientation mapped across the visible surfaces as well as
the mapping parameters already discussed in §4.3.

For dot product, the projection of a unit normal n̂ onto itself
does not change its length, hence n̂A · n̂B = 1. Conversely, the dot
product of a normal with its inverted self yields −1. Distinguishing
the latter case is generally useful as inverted normals are a frequent
cause of lighting artefacts in 3D rendering. Based on this, a semantic
meaning can be assigned to all (n̂A, n̂B) as

∆NAB :=



added, if n̂A = ®0 ∧ n̂B , ®0
deleted, if n̂A , ®0 ∧ n̂B = ®0
inverted, if (n̂A · n̂B) = −1
modified, if (n̂A · n̂B) , 1
unmodified, otherwise,

(8)

where ®0 signifies an undefined or zero vector.

4.5 Metadata Difference
Several 3D formats including COLLADA, FBX and IFC containmeta-
data describing non-rendering specific properties of the geometry.
Popular AEC tools such as Solibri Model Checker and Autodesk
Dynamo let users create custom rule sets to further evaluate and
visualize changes in metadata. In a similar way, we aim to detect
all areas where metadata changed between revisions.

The original Diff algorithm by Hunt [1975] finds a common
subsequence, i.e. an edit distance, of two text files on a line-by-line
basis. In Screen Space 3D Diff we attempt to find those metadata
that have changed on a fragment-by-fragment basis instead. Instead

Figure 9: Tablet support. Our Unity-based implementation
available at https://www.3drepo.io runs on desktops and
tablets alike. Model courtesy of Canary Wharf Contractors.

of exhaustive comparison, we can calculate approximate differences
by encoding the data in a separate render pass. This neatly falls into
the same metric differencing methodology as before. Encoding can
be performed using any hashing function that transforms metadata
into values within a 32-bit rendering buffer, e.g. Adler-32 [1996].
Once the modified metadata is identified, a standard line-by-line
text differencing can be further performed on demand.

5 IMPLEMENTATION
Screen Space 3D Diff has been implemented in both 3D Repo GUI
C++ desktop application and 3drepo.io web client. The latter is built
using the Unity game engine , c.f. [Friston et al. 2017], which relies
on a component based programming model. This functionality
is implemented in highly specialized Components (objects) that
are attached to GameObjects, i.e. scene graph nodes, and invoked
via callbacks. Our Unity application, therefore, consists of two
parts; i) A Component generated texture buffers containing the
operands from themodel data, and ii) a post-processing effect which
implements the difference metric and resulting visualization.

Models. Both A and B models are loaded into the same scene
graph but under different branches. The scenes are already pre-
aligned as they come from the same project stored in 3D Repo. Unity
has the ability to assign GameObjects to ‘Layers’ that can be used to
cull meshes attached to GameObjects during rendering. B-branch
GameObjects are, therefore, assigned to one such layer, which is
culled by the main color camera in the default configuration.

Operand rendering. A dedicated ‘3D Diff’ Component produces
the operand buffers. It uses Unity’s Replacement Shader functional-
ity to render all scene geometry with a specific shader. The camera
renders to a single-precision depth texture. The shader itself uses
the default Unity depth functionality: it writes the inverse recipro-
cal of the view-space depth. Two passes are required, one culling
everything but the Amodel, and one culling everything but the B
model. Each pass then writes to a separate texture. Camera culling

https://www.3drepo.io

Screen Space 3D Diff: A Fast and Reliable Method for... Web3D ’18, June 20–22, 2018, Poznan, Poland

masks can also be used by the 3D Diff Component to implement
different viewing configurations, see Fig. 1.

5.1 Visualization
Unity’s post-processing Effect functionality is used to display the
results. This is invoked after the main color pass. Each Effect copies
the color pass from one buffer to another by utilizing a full-screen
quad rendered with a typical shader that reads the color buffer
as a texture. This way, screen space effects can be applied to the
color pass, one fragment shader invocation per pixel. The final
effect renders to the front buffer. As Effects are traditional shaders,
they can utilize a number of resources. The 3D Diff Effect binds
the aforementioned depth textures and implements the difference
metric. In the fragment shader, the color is sampled and converted
to greyscale. The depth values are sampled and compared, and
a red or green hue applied if their difference exceeds a constant
threshold. Other visualizations can be easily implemented, however.
The 3D Diff tool does not explicitly have to render the scene as the
Effect operates on the main Unity color pass. This means the tool
can not only overlay different combinations of the A and B models
as above, but overlays the effects of other arbitrary components
without needing any modifications to the Effect pass.

Depth precision. Unity uses a reversed-z depth buffer which bet-
ter distributes the precision [Lapidous and Jiao 1999]. AEC models
are larger than typical game assets, so even the inverse distribution
can be insufficient. In this case, logarithmic depth buffers can be
used. This is done by explicitly writing the depth in the Replace-
ment Shader. The vertex shader computes the view space depth
and passes it as a single-precision fragment parameter. The frag-
ment shader then encodes the depth using a logarithmic function
and writes it to the depth texture. The inverse is performed in the
3D Diff Effect shader to recover the original view-space depth for
the difference metric. Regardless of the storage format, the raster-
izer will always work with the reciprocal of the depth needed for
correct interpolation under perspective projection. This not only
limits the precision but makes the metric threshold view and clip
plane dependent. An enhanced implementation could perform a
ray-plane intersection test in the fragment shader, with plane pa-
rameters from a geometry shader to compute the absolute per-pixel
eye space depth. This could be stored in a floating point or RGBA
texture. The hardware depth testing would still use the reciprocal,
requiring a logarithmic buffer or multiple passes to avoid render-
ing artefacts. However, it would allow truly linear depth, and also
enable single-precision storage on platforms that do not currently
support it.

6 EVALUATION
The proposed method has been evaluated on a number of industrial
3D models with several engineering practices. Special attention
was put on encompassing a variety of authoring tools and modeling
techniques but also on demonstrating the rendering being indepen-
dent of scene complexity. We ensured that the method produced
consistent visualization without flickering, misalignments or other
visual artefacts due to quantization errors. In addition, its usability
was evaluated in a user study further described in §6.2.

Figure 10: Clash detection. Overlapping surfaces can be de-
tected as an inverse of differencing. Here,mechanical (Fig. 1)
and structural (Fig. 9) models of the same building are exam-
ined for design clashes which are highlighted in red.

6.1 Results
Our solution is independent of any specific rendering technique and
works equally well on points, lines and polygons. Fig. 3 (c) and (d)
shows that object-level changes and changes in the underlying tri-
angulation are correctly identified and highlighted. Similarly, Fig. 1
and Fig. 9 show differences in engineering models of a multi-storey
building. Despite a large number of components and polygons,
our method operates in real-time with minimal overhead. Tab. 1
lists performance using various models across different devices
and screen resolutions. In addition, an inverse of the differencing
calculation highlights not the changes but rather commonalities, i.e.
areas where themodels overlap, known as clash detection in the AEC
industry, see Fig. 10. The final result is presented in Fig. 11 where
our method is compared with MeshGit [2013]. The intention was to
emulate the visualization of MeshGit using their largest 3D model
in order to demonstrate that screen space differencing can produce
directly comparable results at a fraction of the computational cost.

6.2 User Study
We also conducted a preliminary user study with 20 CAD/BIM pro-
fessionals from some of the largest architectural and construction
companies in the UK. A balanced mix of beginner (6), intermediate
(7) and expert (7) users working daily in tools such as Autodesk
Revit, Navisworks and Bentley Microstation were recruited. In or-
der to contrast the 3D Diff interface, we also developed a Sync
View visualization to provide a basic side-by-side rendering with
interlinked navigation for manual comparison of 3D models. Before

Thinkpad Yoga 260 iPad Pro 10" MacBook Pro 15" Cyberpower PC

Intel HD Graphics 520

(1920x1080px)

A10X

(2224x1668px)

Radeon Pro 560

(2880x1800px)

Nvidia GeForce Titan

(4096x2160px)

Medieval 60 60 60 60

Shuttle 55 60 60 60

Mechanical 16 20 60 60

[FPS]

Table 1: Frames per secondmeasurements across various de-
vices and screen resolutions using sample models: Medieval
(Fig. 3); Shuttle (Fig. 11); and Mechanical (Fig. 9). Most are
capped at V-Sync rate of the screen at hand.

Web3D ’18, June 20–22, 2018, Poznan, Poland J. Doboš et al.

Figure 11: Comparison with MeshGit [2013] on their Shuttle model with over 3k components and 190k polygons. On com-
parable hardware, MeshGit in (a) takes 9.7 minutes while our method in (b) is real-time. Notice how our method segregates
surface-level changes frommodifications in the underlying objects, the geometry and vertex-level connectivity shown in Fig. 3.

each trial, participants were given a sample dataset to familiarize
themselves with the given interface and then a pair of architec-
tural 3D models to detect geometric additions and deletions. After
each session, users completed a system usability scale (SUS) [1996]
questionnaire. The order of the interfaces and datasets was shuffled
according to Latin square. Tab. 2 lists median values for both time
to completion and SUS scores. 3D Diff reached grade B, i.e. an above
the average user interface, while Sync View only grade C, i.e. a be-
low an average user interface. Accordingly, the users found 3D Diff
easier to use and were more confident in its functionality. Overall,
the users agreed 3D Diff would provide a quick and easy way of
determining changes in day-to-day engineering tasks. Nevertheless,
two users preferred the Sync View interface due to a larger field
of view. Many users independently requested to export a written

Experience Time [m] SUS Time [m] SUS

P1 Expert 14 82.5 15 85.0

P2 Intermediate 14 80.0 22 90.0

P3 Expert 10 92.5 10 85.0

P4 Intermediate 13 72.5 10 80.0

P5 Beginner 8 80.0 22 75.0

P6 Intermediate 30 42.5 27 70.0

P7 Intermediate 37 50.0 36 50.0

P8 Expert 14 92.5 13 95.0

P9 Beginner 14 90.0 65 75.0

P10 Expert 22 67.5 17 87.5

P11 Intermediate 29 40.0 17 60.0

P12 Intermediate 5 62.5 10 65.0

P13 Expert 27 47.5 8 50.0

P14 Beginner 20 37.5 20 55.0

P15 Expert 25 62.5 23 62.5

P16 Beginner 11 90.0 24 85.0

P17 Expert 17 47.5 10 42.5

P18 Intermediate 29 32.5 5 62.5

P19 Beginner 20 20.0 32 60.0

P20 Beginner 22 75.0 8 100.0

Median Intermediate 18 65.0 17 72.5

Sync View 3D Diff

Table 2: User study results in Sync View vs 3D Diff based on
time to completion and system usability scale.

report of detected object IDs similar to clash detection in AEC. Also,
a few requested to turn geometry transparent what is a limitation.

7 DISCUSSION
As demonstrated in §6, by calculating differences in the image space,
we avoid the need for computationally expensive correspondence
estimation, such as in MeshGit [2013] or 3D Timeline [2014], each
of which might still lead to errors and omissions. In essence, our
pre-alignment of the input models and their subsequent compari-
son based on the same screen space co-locations defines a quasi-
correspondence that is sufficient for our purposes. Nevertheless,
it is important to note that this approach does not replace actual
object-level differencing in the world space. Our method is merely
a faster approach to get a fragment-based differencing in real-time.
One of the main insights is that in order to present meaningful
results, it is not necessary to calculate all changes in the entire
scene. Instead, it is sufficient to find only those changes that are
currently visible. Since this is a screen space method, its complexity
is O(n) per metric, where n is the number of rendered pixels.

Limitations. Despite obvious advantages such as real-time per-
formance, ease of implementation and massive scalability, it still
suffers from several limitations. Fig. 1 shows that simply reposi-
tioning an object results in it being highlighted as deletion in A
and addition in B. This is because it has no notion of object-level
correspondence. Nonetheless, as demonstrated in our user study in
§6.2, professionals still value these results as they highlight changes
in complex scenes. Although in general any unrelated models can
be compared using our method, the most meaningful results are
produced from revisions of the same scene. Unfortunately, overlap-
ping surfaces of different objects in Fig. 1 register as unmodified.
This is technically correct as based on what is visible, those sur-
faces indeed occupy the same space in world coordinates. Another
limitation is that it cannot reveal changes on occluded objects.

Screen Space 3D Diff: A Fast and Reliable Method for... Web3D ’18, June 20–22, 2018, Poznan, Poland

8 CONCLUSIONS
The process of 3D rendering encompasses many disparate layers
that together produce the final image in the screen space. These in-
clude not only the geometry but also materials, lights, normals, tex-
tures, environmental effects and so on. In order to achieve meaning-
ful results when differencing 3D scenes, each of these constituents
needs to be isolated and compared individually. Therefore, in this
paper, we presented Screen Space 3D Diff, a novel method for fast
and reliable discovery of multi-metric changes between two input
models suitable for a web-based implementation. Unlike existing
solutions, our method does not require any computationally expen-
sive correspondence estimation and is independent of both scene
complexity and data representations. This makes it extremely suit-
able for real-time implementation in the Unity game engine. Due
to these crucial characteristics, it presents a uniquely compelling
solution for the AEC industry where there are often very complex
scenes generated by a myriad of modeling tools and processes. One
of the limitations of Screen Space 3D Diff is its inability to detect
differences in occluded areas which is left for future work.

ACKNOWLEDGMENTS
We would like to thank the participants of our user study from
Arup, Balfour Beatty, Canary Wharf Contractors and Crossrail for
their help and feedback. This work has been supported by Innovate
UK Infrastructure Systems grant No. 102813 as well as Horizon
2020 grant No. 700294. Patent applied for: PCT/EP2018/052006.

REFERENCES
Dror Aiger, Niloy J. Mitra, and Daniel Cohen-Or. 2008. 4-points Congruent Sets for

Robust Pairwise Surface Registration. ACM Trans. Graph. 27, 3, Article 85 (Aug.
2008), 10 pages. https://doi.org/10.1145/1360612.1360684

Johannes Behr, Peter Eschler, Yvonne Jung, and Michael Zöllner. 2009. X3DOM: A
DOM-based HTML5/X3D Integration Model. In Proceedings of the 14th International
Conference on 3D Web Technology (Web3D ’09). ACM, New York, NY, USA, 127–135.
https://doi.org/10.1145/1559764.1559784

John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation in
industry 189, 194 (1996), 4–7.

Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. 2011. Nonlinear Revision Control
for Images. ACM Trans. Graph. 30, 4, Article 105 (July 2011), 10 pages. https:
//doi.org/10.1145/2010324.1965000

Jonathan D. Denning, William B. Kerr, and Fabio Pellacini. 2011. MeshFlow: Interactive
Visualization of Mesh Construction Sequences. ACM Trans. Graph. 30, 4, Article 66
(July 2011), 8 pages. https://doi.org/10.1145/2010324.1964961

Jonathan D. Denning and Fabio Pellacini. 2013. MeshGit: Diffing and Merging Meshes
for Polygonal Modeling. ACM Trans. Graph. 32, 4, Article 35 (July 2013), 10 pages.
https://doi.org/10.1145/2461912.2461942

Peter Deutsch and Jean-Loup Gailly. 1996. Zlib compressed data format specification
version 3.3. Technical Report.

Jozef Doboš, Niloy J. Mitra, and Anthony Steed. 2014. 3D Timeline: Reverse Engineering
of a Part-based Provenance from Consecutive 3D Models. Comput. Graph. Forum
33, 2 (May 2014), 135–144. https://doi.org/10.1111/cgf.12311

Jozef Doboš, Kristian Sons, Dmitri Rubinstein, Philipp Slusallek, and Anthony Steed.
2013. XML3DRepo: A REST API for Version Controlled 3D Assets on the Web. In
Proceedings of the 18th International Conference on 3D Web Technology (Web3D ’13).
ACM, NY, USA, 47–55. https://doi.org/10.1145/2466533.2466537

Jozef Doboš and Anthony Steed. 2012a. 3D Diff: an interactive approach to mesh
differencing and conflict resolution. In SIGGRAPH Asia 2012 Technical Briefs (SA
’12). ACM, NY, USA, Article 20, 4 pages. https://doi.org/10.1145/2407746.2407766

Jozef Doboš and Anthony Steed. 2012b. 3D revision control framework. In Proceedings
of the 17th International Conference on 3D Web Technology (Web3D ’12). ACM, New
York, NY, USA, 121–129. https://doi.org/10.1145/2338714.2338736

Sebastian Friston, Carmen Fan, Jozef Doboš, Timothy Scully, and Anthony Steed.
2017. 3DRepo4Unity: Dynamic Loading of Version Controlled 3D Assets into
the Unity Game Engine. In Proceedings of the 22Nd International Conference on
3D Web Technology (Web3D ’17). ACM, New York, NY, USA, Article 15, 9 pages.
https://doi.org/10.1145/3055624.3075941

Z. Han, Z. Liu, C. M. Vong, Y. S. Liu, S. Bu, J. Han, and C. L. P. Chen. 2017. BoSCC: Bag
of Spatial Context Correlations for Spatially Enhanced 3D Shape Representation.
IEEE Transactions on Image Processing 26, 8 (Aug 2017), 3707–3720. https://doi.org/
10.1109/TIP.2017.2704426

J. W. Hunt and M. D. McIlroy. 1975. An algorithm for differential file comparison.
Computer Science. Technical Report.

ISO/TC 184/SC 4. 1994. Industrial automation systems and integration – Product data
representation and exchange. Technical Specification. International Organization
for Standardization. ISO 10303-1:1994.

ISO/TC 184/SC 4. 2012. Industrial automation systems and integration – COLLADA
digital asset schema specification for 3D visualization of industrial data. Technical
Specification. Khronos Group. ISO/PAS 17506:2012.

ISO/TC 184/SC 4. 2013. Industry Foundation Classes (IFC) for data sharing in the con-
struction and facility management industries. Technical Specification. International
Organization for Standardization. ISO 16739:2013.

ISO/TC 274. 2008. Colorimetry - Part 4: CIE 1976 L*a*b* Colour space. Technical
Specification. Commission internationale de l’ï£¡clairage. ISO 11664-4:2008.

ISO/TC 274. 2009. Colorimetry - Part 5: CIE 1976 L*u*v* Colour space and u’, v’ uniform
chromaticity scale diagram. Technical Specification. Commission internationale de
l’ï£¡clairage. ISO 11664-5:2009.

Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel. 2012. Explor-
ing Shape Variations by 3D-Model Decomposition and Part-based Recombination.
Comp. Graph. Forum (Proc. Eurographics 2012) 31, 2 (2012).

Svenja Kahn. 2013. Reducing the Gap Between Augmented Reality and 3D Modeling
with Real-time Depth Imaging. Virtual Real. 17, 2 (June 2013), 111–123. https:
//doi.org/10.1007/s10055-011-0203-0

Maja Krivokuća, Burkhard C. Wünsche, and Waleed Abdulla. 2012. A New Error
Metric for Geometric Shape Distortion Using Depth Values from Orthographic
Projections. In Proceedings of the 27th Conference on Image and Vision Computing
New Zealand (IVCNZ ’12). ACM, 6. https://doi.org/10.1145/2425836.2425911

In Kyu Park, Kyoung Lee Mu, and Sang Lee Uk. 2002. Efficient Measurement of Shape
Dissimilarity between 3D Models Using Z-Buffer and Surface Roving Method. 2002
(10 2002).

Eugene Lapidous and Guofang Jiao. 1999. Optimal depth buffer for low-cost graphics
hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware. ACM, 67–73. https://doi.org/10.1145/311534.311579

Martin Mittring. 2007. Finding Next Gen: CryEngine 2. In ACM SIGGRAPH 2007
Courses (SIGGRAPH ’07). ACM, New York, NY, USA, 97–121. https://doi.org/10.
1145/1281500.1281671

Alan R Robertson. 1977. The CIE 1976 Color-Difference Formulae. Color Research &
Application 2, 1 (1977), 7–11.

Timothy Scully, Jozef Doboš, Timo Sturm, and Yvonne Jung. 2015. 3Drepo.Io: Building
the Next GenerationWeb3D Repository with AngularJS and X3DOM. In Proceedings
of the 20th International Conference on 3D Web Technology (Web3D ’15). ACM, New
York, NY, USA, 235–243. https://doi.org/10.1145/2775292.2775312

Timothy Scully, Sebastian Friston, Carmen Fan, Jozef Doboš, and Anthony Steed. 2016.
glTF Streaming from 3D Repo to X3DOM. In Proceedings of the 21st International
Conference on Web3D Technology (Web3D ’16). ACM, New York, NY, USA, 7–15.
https://doi.org/10.1145/2945292.2945297

Perumaal Shanmugam and Okan Arikan. 2007. Hardware Accelerated Ambient
Occlusion Techniques on GPUs. In Proceedings of the 2007 Symposium on In-
teractive 3D Graphics and Games (I3D ’07). ACM, New York, NY, USA, 73–80.
https://doi.org/10.1145/1230100.1230113

Gaurav Sharma and Raja Bala. 2002. Digital color imaging handbook. CRC press. ISBN
0-8493-0900-X.

Kristian Sons, Felix Klein, Dmitri Rubinstein, Sergiy Byelozyorov, and Philipp Slusallek.
2010. XML3D: Interactive 3D Graphics for the Web. In Proceedings of the 15th
International Conference on Web 3D Technology (Web3D ’10). ACM, NY, USA, 175–
184. https://doi.org/10.1145/1836049.1836076

https://doi.org/10.1145/1360612.1360684
https://doi.org/10.1145/1559764.1559784
https://doi.org/10.1145/2010324.1965000
https://doi.org/10.1145/2010324.1965000
https://doi.org/10.1145/2010324.1964961
https://doi.org/10.1145/2461912.2461942
https://doi.org/10.1111/cgf.12311
https://doi.org/10.1145/2466533.2466537
https://doi.org/10.1145/2407746.2407766
https://doi.org/10.1145/2338714.2338736
https://doi.org/10.1145/3055624.3075941
https://doi.org/10.1109/TIP.2017.2704426
https://doi.org/10.1109/TIP.2017.2704426
https://doi.org/10.1007/s10055-011-0203-0
https://doi.org/10.1007/s10055-011-0203-0
https://doi.org/10.1145/2425836.2425911
https://doi.org/10.1145/311534.311579
https://doi.org/10.1145/1281500.1281671
https://doi.org/10.1145/1281500.1281671
https://doi.org/10.1145/2775292.2775312
https://doi.org/10.1145/2945292.2945297
https://doi.org/10.1145/1230100.1230113
https://doi.org/10.1145/1836049.1836076

	Abstract
	1 Introduction
	2 Related Work
	2.1 2D Differencing
	2.2 3D Differencing
	2.3 Screen Space Methods

	3 Method Overview
	3.1 Processing Pipeline

	4 Screen Space 3D Diff
	4.1 Depth Difference
	4.2 Color Difference
	4.3 Texture Difference
	4.4 Normal Difference
	4.5 Metadata Difference

	5 Implementation
	5.1 Visualization

	6 Evaluation
	6.1 Results
	6.2 User Study

	7 Discussion
	8 Conclusions
	Acknowledgments
	References

