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Abstract: 

Background: Liver cirrhosis is associated with reduced heart rate variability (HRV), which 

indicates impaired integrity of cardiovascular control in this patient population. There are 

several different indices for HRV quantification. The present study was designed to: 1) 

determine which of the HRV indices is best at predicting mortality in patients with cirrhosis; 

2) verify if such ability to predict mortality is independent of the severity of hepatic failure. 

 

Methods: Ten minutes electrocardiogram was recorded in 74 patients with cirrhosis. Heart 

rate fluctuations were quantified using statistical, geometrical and non-linear analysis. The 

patients were followed-up for 18 months and information was collected on the occurrence 

of death/liver transplantation.  

 

Results: During the follow-up period, 24 patients (32%) died or were transplanted for 

hepatic decompensation. Cox’s regression analysis showed that SDNN (total HRV), cSDNN 

(corrected SDNN), SD1 (short-term HRV), SD2 (long-terms HRV) and spectral indices could 

predict survival in these patients. However, only SD2 and cSDNN were shown to be 

independent of MELD in predicting survival. The prognostic value of HRV indices was 

independent of age, gender, use of beta blockers, and the aetiology of liver disease.  

 

Conclusion: Two HRV indices were identified that could predict mortality in patients with 

cirrhosis, independently of MELD. These indices are potentially useful tools for survival 

prediction.  
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1 INTRODUCTION 

 

Liver cirrhosis is a global health burden worldwide causing around 1 million deaths annually 

with numbers rising (1). Cirrhosis is a disease with multisystem involvement (cardiovascular, 

renal, neurological, and immunological) and as such cirrhosis can lead to death through 

infection, hepatorenal syndrome, cardiovascular disease, gastrointestinal bleeding, and 

multiorgan failure (2). Median survival time for these patients is just above 78 months with 

compensated disease and much shorter at 29.5 months for decompensated disease (3). 

Therefore, predicting mortality in this population may offer a better way of stratifying -for 

purposes of treatment options and care optimisation. Current clinical indices used in 

prediction of mortality in cirrhosis (e.g. MELD) are based on measurement of biochemical 

markers. Changes in these biomarkers reflect hepatocellular dysfunction or some aspects of 

systemic complications such as hepatorenal syndrome. However, the multisystem 

involvement of cirrhosis is not reflected in these biochemical markers. Physiological markers 

(physiomarkers) exists that may enhance the prognostic value of MELD. For example, the 

addition of EEG analysis improves the prognostic value of MELD in cirrhotic patients 

awaiting transplantation (4). Heart Rate Variability (HRV) analysis is another physiomarker 

that has been used to assess the integrity of cardiovascular control system. Lower HRV in 

the general population is a predictor of mortality and other adverse outcomes and its 

relationship with mortality in disease has been explored in several studies (5). With liver 

cirrhosis, a clearer understanding of which HRV variables best predict mortality could lead 

to a better understanding of the disease and improved treatment outcomes.  

 

HRV has been characterised by both linear tools and methods derived from non-linear 

dynamics. Linear methods such as the standard deviation of inter-beat intervals (SDNN) 

measure overall variability of the cardiac cycle, while spectral analysis decomposes 

fluctuations into different frequencies. Short-term versus long-term variability of the cardiac 

cycle can also be measured using geometrical methods such as the Poincare’ plot (6,7). Non-

linear tools have also been developed to analyse these fluctuations, such as regularity 

(sample entropy), complexity (multiscale entropy) and self-similarity (detrended fluctuation 

analysis) (8–10). These indices reflect different aspects of cardiac dynamics and there is no 
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consensus as to which index performs best in the clinical setting (11). As for the relationship 

between HRV and survival, several HRV parameters have shown some promise. One such 

example is in congestive heart failure, where SDNN (an index of global HRV) identifies 

patients at higher risk of death due to progressive heart failure when the value is reduced 

(12). In patients with chronic kidney disease, a short-term HRV index was shown to be an 

independent risk factor for mortality (13). In patients with acute myocardial infarction short-

term fractal-like scaling exponent exhibited a better prognostic factor than a global HRV 

index (SDNN) (14). From these examples it is evident that there is benefit in looking at the 

relationship between HRV and mortality. However, different tools may be more or less 

suited to different disease conditions.  

 

Looking at the relationship between HRV and survival in cirrhosis may be beneficial because 

total HRV is reduced in patients with cirrhosis (15). Additionally, an increase in severity of 

cirrhosis is associated with a reduction in HRV (15). Building on this, a few studies have 

looked at HRV as a physiomarker for predicting mortality in liver cirrhosis (6,15,16). Mani et 

al. showed that the variable SD2 from the Poincaré analysis is significantly correlated with 

survival pre-transplantation, with the relative risk of death increasing by 7.7% with a 1 ms 

drop in this variable (6). Two studies looking at pre-transplantation data, also found a 

reduction in time-domain parameters when comparing survivors with non-survivors (15,17). 

Chan et al., explored post-transplantation survival data to understand if HRV could better 

predict mortality 1 year after transplantation (16). Their findings showed a benefit in 

incorporating these parameters in their predictive tools (16).  However, limited information 

remains available on which HRV parameter performs best in predicting mortality, and if they 

are independent of the severity of liver failure.  

 

Several investigators have interpreted reduced HRV in cirrhosis as a marker for autonomic 

neuropathy. However, a physiological link between reduced HRV and autonomic 

dysfunction has not been demonstrated directly. This is important as a recent study by 

Monfredi et al has questioned the interpretation of reduced SDNN as an index of autonomic 

dysfunction (18). Monfredi et al. pointed out that there is a strong relationship between 

heart rate and SDNN, which does not depend on the autonomic nervous system (18). 
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Monfredi et al. have also devised an HRV index known as corrected SDNN (cSDNN), which 

eliminates this HRV dependence (18).  

 

The present study was designed to determine which of the aforementioned HRV 

physiomarkers derived from pre-transplant short-term heart rate recordings is best at 

predicting mortality in patients with cirrhosis. Additionally, if this ability to predict mortality 

is independent of the severity of hepatic failure.  

 

2 METHODS 

 

2.1 Patients 

Ninety-eight patients with cirrhosis referred to the outpatient clinics of the Department of 

Medicine of the University of Padua from 29 June 2009 till 2 May 2011 were enrolled. 

Patients were excluded if they were under 16 or over 82 years of age; had cirrhosis on a 

transplanted liver, hepatocellular carcinoma, severe co-morbidity with short prognosis per 

se, a history of significant head injury, neurological or psychiatric disease other than hepatic 

encephalopathy, active alcohol misuse or acute infection. 74 patients (age ± SD: 56 ± 10.8 

years) met the inclusion/exclusion criteria. Patients were followed-up for 18 months and 

information was collected on the occurrence of death/liver transplantation. Patients who 

were transplanted for hepatic failure were considered ‘non-survivor’ on the day of 

transplantation (as they were in the immediate need of a new liver). Patients were 

followed-up for 18 months (mean ± SD, 12.3 ± 6.4 months); if a patient was lost to follow up 

before the pre-defined time was up, the patient was censored on the date of latest available 

information. The flowchart of study procedures is shown in figure 1.  

 

2.2 Ethics statement 

The study protocol was approved by the Hospital of Padua Ethics Committee. All 

participants provided written, informed consent. This study was conducted according to the 

Declaration of Helsinki (Hong Kong Amendment) and Good Clinical Practice (European) 

guidelines. 
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2.3 Heart rate variability analysis 

 A 10-min, lead II ECG was recorded at a sampling rate of 256 Hz. The R peaks were 

detected, and the inter-beat interval time-series generated by using Chart software (Chart 5, 

AD-Instrument, Australia). The R-R interval series was visually inspected and 8-min, artefact-

free continuous R-R interval sections were selected for analysis. All HRV indices were 

analysis using MATLAB (MathWorks) unless stated otherwise. The following indices were 

used for HRV analysis: 

 

SDNN: Standard deviation of R-R intervals is calculated by the square root of the average of 

the squared individual differences. SDNN provides a measure of total HRV. 

 

cSDNN: Corrected SDNN (cSDNN) for heart rate was therefore calculated using the following 

formula (18):  

cSDNN =
SDNN

e− Heart rate
58.8

 

 

SD1: The Poincaré plot graphically represents the correlation between consecutive R-R 

intervals. We used the Poincaré plot to calculate short-term and long-term variability. The 

standard deviation of the points perpendicular to the line of identity (SD1) describes short-

term variability, which is mainly related to the effects of respiration on the vagal drive. 

 

SD2: The standard deviation along the line of identity in the Poincare’ plot (SD2) describes 

the long-term HRV variations. Many physiological factors including thermoregulation and 

the baroreflex loop contribute to long-term HRV. 

 

Skewness: Increased asymmetry of the distribution of inter-beta interval around mean R-R 

interval has recently been reported in rats with cirrhosis and systemic inflammation (19). 

Skewness measures the asymmetry of the distribution of a time-series around its mean. The 

skewness for a symmetric distribution would be 0, positive if the distribution has a longer 

tail to the right (i.e. more deceleration in cardiac rhythm than acceleration), and negative if 
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the distribution has a longer tail to the left i.e. more acceleration in cardiac rhythm than 

deceleration).  

 

Kurtosis: After mean, standard deviation and skewness, kurtosis is the fourth central 

moment of a distribution. It is a measure of whether the R-R interval data is heavy-tailed or 

light-tailed relative to a normal distribution when plotted as a histogram. In a similar way to 

skewness, kurtosis is a descriptor of the shape of distribution. Kurtosis represents how tall 

and sharp the distribution of data is. Data sets with low kurtosis have light tails. Data sets 

with high kurtosis tend to have heavy tails. 

 

Spectral indices: Spectral analysis of the R-R interval time series was carried out by fast 

Fourier transformation. We employed Kubios software for spectral analysis without 

detrending (20). Three bands were identified: 1) a very low-frequency component (VLF: 0-

0.04 Hz), 2) a low-frequency component (LF: 0.04–0.15 Hz), and 3) a high-frequency 

component (HF: 0.15–0.4 Hz). The LF/HF ratio was used as a measure of sympatho-vagal 

balance. 

 

Sample entropy: The sample entropy (SampEn) estimates the degree of regularity of a time-

series such as inter-beat intervals. SampEn calculates the probability that an epoch of 

window length m, with a degree of tolerance r, will be repeated at later time points. In the 

present study, m=2 and r=0.2 was used as recommended by Richman and Moorman (10). 

 

Heart rate complexity (HRC): Complexity of a rhythm can be defined as “meaningful 

structural richness”. Costa et al. extended the concept of entropy by incorporating multiple 

scales calculation of SampEn in a time-series (9). Such multiscale entropy method has been 

used to measure the complexity of different physiological time-series such as HRV and 

oxygen saturation variability (21). In present study, HRC was defined as the summation of 

entropies of scales from 1 to 20 as described (16). 

 

Fractal-like exponents: Cardiac cycles exhibit scale-free or fractal-like dynamics which may 

be affected by systemic inflammation in cirrhosis (22). Detrended fluctuation analysis (DFA) 

is a classic method to quantify fractal-like correlation properties of physiological time-series 



8 
 

(8). In this method, a linear relationship between log(fluctuations) and log(scale) indicates 

the presence of a fractal-like time series. The slope of this line (α) is the fractal-like 

exponent which can be separately calculated for short windows (scale ≤ 16) and long 

windows (scale > 16). Thus, we calculated two different values of α, α1 and α2, which reflect 

short-term and long-term fractal-like exponents respectively (8). 

 

2.4 Measurement of inflammatory markers 
 
Plasma samples were collected from 37 patients with cirrhosis enrolled in the study and 

were stored at −80°C until analysed for C-reactive protein (CRP), Tumour Necrosis-α (TNF-α) 

and Interleukin-6 (IL-6) using routine laboratory protocols.  

 

2.5 Statistical analysis 

 

HRV indices of survivors and non-survivors were compared using either Student’s t-test or 

the non-parametric Mann-Whitney U-test according to the distribution of the variable.  

Cox’s proportional hazards regression was used for survival analysis. In this analysis, Cox’s 

regression coefficient (β) and the hazard ratio (eβ) were calculated and the p-value for 

testing the null hypothesis (β=0, hazard ratio = 1) was determined using Wald test. 

Multivariate Cox’s regression model was used to test if prediction of mortality by HRV 

indices is independent of the severity of hepatic failure.  

 

The ROC curve was used to choose the best cut-off points for categorization of patients in 

the Kaplan-Meier graph based on their HRV indices. Log-rank (Mantel-Cox) test was used for 

survival analysis in the Kaplan-Meier graph. SPSS package (IBM) was used for statistical 

analysis. A p-value less than 0.05 is considered statistically significant.  
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3 RESULTS  

 

3.1 Participants 

 

The data set used for this analysis was collected at the University of Padua and the patients 

were analysed in the 18-month follow-up. During the follow-up period, 24 patients (32%) 

died or were transplanted for hepatic decompensation and were considered as “complete” 

cases. None of the recruited patients were transplanted for hepatocellular carcinoma.  

The general characteristics of the study population are presented in Table 1. There was no 

significant difference between the age and gender of survivors and non-survivors, however, 

both the MELD and Pugh scores were significantly different. When looking at the HRV 

characteristics, several parameters were significantly different when comparing the two 

groups (Table 2). The SDNN and cSDNN were significantly lower in non-survivors (p<0.05) 

and as was the SD1 and SD2 (p<0.05). The spectral analysis variables VLF, VF, and HF were 

also lower in non-survivors (p<0.05).  

 

3.2 HRV predictors of mortality 

 

The first part of the analysis was to determine which HRV parameters from Table 2 were 

linked with mortality and specifically, which one had the greatest predictive effect. From the 

variables listed in Table 3, it is evident that only 6 HRV variables could predict mortality. As 

expected, both MELD score and Pugh’s classification could also significantly predict 

mortality. Surprisingly, the traditional HRV indices (i.e. SDNN, SD1, SD2, VLF, HF), came up as 

significant as opposed to the novel complexity analysis tools. All HRV indices that were 

significant in the analysis were protective in nature, with an increase in variability being 

associated with a reduction in mortality.  We also tested whether any of the HRV indices 

could distinguish between patients who died or underwent liver transplantation during the 

follow up period. There was no statistically significant difference in any measured HRV index 

between these groups (Table S-1). In addition, Cox’s regression analysis showed that none 

of HRV indices could predict death from liver transplantation during the follow up period 

(data not shown).  
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3.3 Analysis of the independence of HRV parameters in predicting mortality 

 

With the 6 HRV variables that were significant in the first analysis, we combined the analysis 

with a measure of disease severity to determine if their ability to predict mortality was 

independent of severity of liver failure. Multivariate Cox’s regression analysis showed that 

only two HRV indices were calculated to be independent of MELD: SD2 (Hazard ratio = 

0.967, p<0.05) and the cSDNN (Hazard ratio = 0.984, p<0.05). The results of this analysis are 

presented in Table 4. This analysis was also repeated with the Pugh score and results were 

similar (Table 5). Among the HRV indices tested; SDNN, cSDNN and SD2 were all significant 

predictors of mortality independent of Pugh score.   

 

We used death and liver transplantation as the main clinical end-points. MELD is often used 

to candidate patients for transplantation and is a clinical predictor of mortality in cirrhosis. 

We wondered whether HRV indices could influence the prognostic value of MELD score 

below or over 15 and the results showed that SD2 improved the prediction of survival in 

multivariate survival analysis with the decompensation index of MELD>15 (hazard ratio of 

SD2 was 0.961, p=0.019). 

 

3.4 The effect of beta blocker administration on HRV parameters and survival  
 
Thirty-seven patients had received a beta adrenoceptor blocking agent for management of 

portal hypertension. We wondered if taking beta blockers would affect HRV indices or 

survival rates in patients with cirrhosis. Table S-2 demonstrates that basal heart rate was 

lower in cirrhotic patients who had received a beta receptor blocking agent (60.7 ± 1.6 

versus 68.7 ± 1.7 beats/min, p<0.001). However, none of the measured HRV indices were 

different between beta blocker-positive and beta blocker-negative groups. Besides, 

receiving beta blocker was not associated with an increase in mortality rate after 18 months 

follow up (hazard ratio=1.917, p=0.144, table 6).  

 

3.5 The effect of alcohol-related cirrhosis on HRV parameters and survival  
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The aetiology of the cirrhosis was alcohol in 30 patients (40%), chronic viral hepatitis 

(hepatitis B or C virus) in 28 patients (38%), primary biliary cirrhosis in 1 patient (1.4%), non-

alcoholic steatohepatitis in 1 patient (1.4%) and mixed in the remaining 14 patients (18.9%). 

We wanted to determine if alcohol-related liver disease affected the HRV indices and 

mortality in patients with cirrhosis. Therefore, we compared the HRV indices between 

patients with alcohol-related cirrhosis and non-alcoholic cirrhosis. As shown in Table S-3, 

HRV indices were statistically identical in patients with alcohol-related cirrhosis compared 

with the rest of patients. In addition, having alcoholic-liver cirrhosis was not associated with 

an increase in mortality rate after 18 months follow up (Hazard ratio=0.924, p=0.858, table 

6).  

 

3.6 Kaplan-Meier graph analysis 

 

Survival analysis on the three variables that showed clear independence from liver damage 

and showed a small predictive effect of mortality: SDNN, cSDNN, and SD2. A ROC analysis 

was conducted to find the cut-off value that provided the best possible trade off of 

sensitivity and specificity (data not shown). The cut off values for SDNN, cSDNN and SD2 

were 20.4ms, 56.7ms and 25.5ms, respectively. This visualisation of the cut-off values is 

provided in the Kaplan-Meier plots for these three variables (Figures 2). In figure 2A, the cut 

off value for SDNN clearly separates into 2 groups which show marked difference in overall 

survival (p<0.0001). The group below the cut-off have a significantly higher risk of mortality 

compared with the group above the cut-off. From figure 2B, it is evident to see a clear visual 

difference between the two groups that is statistically significant for cSDNN (p<0.0001). The 

same is true in figure 2C for SD2, where survival prognosis was poorer for individuals below 

the cut-off value calculated (p=0.0018). 

  

3.7 Inflammatory markers and HRV indices in patients with cirrhosis 
 
Previous reports have indicated that depressed HRV is associated with high plasma IL-6 

levels in patients with systemic illnesses (6,23,24). However, it is not known if elevated IL-6 

levels explain the prognostic value of HRV in patients with cirrhosis. We firstly used Cox’s 

regression analysis to see whether inflammatory markers can predict mortality in our 
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patient’s population. Our results indicated that among CRP, TNF-α and IL-6; only IL-6 could 

predict death in our study population (hazard ratio: 1.052, p=0.003, table 6). Further 

analysis showed that IL-6 level is independent of MELD in predicting mortality as both 

hazard ratios held significant in multivariate analysis (table 7). We also looked at the 

dependency of HRV indices to IL-6 in predicting mortality. The results showed that the 

prognostic value of HRV indices (cSDNN and SD2) depends on IL-6 level as only the hazard 

ratio of IL-6 held statistically significant in multivariate analysis along with HRV indices (table 

7). 

 

4 DISCUSSION  

 

This study was aimed at determining which HRV variables best predict mortality in patients 

with cirrhosis. From the analysis carried out, the variables SDNN, cSDNN, and SD2 were 

found to be independent predictors of mortality in liver cirrhosis. The variables cSDNN and 

SD2 being the only variables independent from both markers of cirrhosis severity (i.e. MELD 

and Pugh scores). This result was surprising as these parameters are not the most recent 

methods developed to quantify heart rate complexity, especially when compared to DFA 

analysis or multiscale entropy analysis. Furthermore, they both show a protective role in 

reducing the likelihood of death in patients with cirrhosis. 

 

The number of studies investigating this topic are limited but they all help build a better 

picture of the predictive ability of HRV analysis in cirrhosis (6,15–17). Both Fleisher et al. and 

Ates et al. reported that a reduction in HRV could indicate a poor prognosis and mortality in 

cirrhosis (15,17). Ates et al. showed that after a two year follow up period, HRV 

measurements were significantly lower in non-survivors compared to survivors (15). Our 

study expands this finding, as one of the measurements that was significantly different 

between the two groups was SDNN, which we confirmed through our analysis to be able to 

predict mortality. The predictive ability of long term HRV parameters (i.e. SD2) was known, 

as our team has previously reported that a 1-ms decrease in SD2 was associated with a 7.7% 

increase in the relative risk of death in a group of cirrhotic patients referred to a tertiary 

liver unit in London (6). The current study confirms such findings in a larger and entirely 



13 
 

separate cohort of patients, and also allowing for analysis of the relationship between this 

variable and the severity of hepatic failure. Chan et al. also looked at the relationship 

between the two in post-transplantation patients. Their findings showed that heart rate 

complexity and the deceleration capacity could accurately predict the mortality rate in 

patients 1-year post transplantation (16). However, they all have not looked whether this 

predictive ability of HRV is independent of cirrhosis severity, something novel in this study 

(6,15,16). Chan et al. also showed that adding HRV tools to current methods of predicting 

mortality improves it, indicating that perhaps HRV is analysing an aspect additive to their 

predictor tool (16).  

 

A second confounder that should be considered is the effect of mean heart rate on HRV. 

Although in this study age and heart rate were not significantly different between survivors 

and non-survivors, we know that patients with cirrhosis suffer from cardiac chronotropic 

incompetence (a component of cirrhotic cardiomyopathy)(25,26). Thus, global HRV indices 

should be corrected for heart rate, in case this affects the results. cSDNN is a novel index 

which corrects for the effect of heart rate on SDNN (18). Our results on this were surprising 

as when we corrected SDNN for heart rate, the corrected value became independent of 

MELD. This suggests that either cSDNN or SD2 are the best physiomarkers for monitoring 

HRV in patients with cirrhosis. 

 

We also considered beta blockers and aetiology of cirrhosis as possible confounder. Beta 

blockers can potentially alter heart rate dynamics and are routinely administer to patients 

with cirrhosis for management of portal hypertension. We wondered whether treatment 

with beta blocker had preferentially influenced a subgroup of patients with more advanced 

liver disease/portal pressure and hence unevenly affected HRV in patients with cirrhosis. 

However, our analysis showed that treatment with beta blocker only affects mean heart 

rate and does not have any significant effect either on HRV indices or survival.   We also 

tested if alcohol-related cirrhosis affects heart rate dynamics differently in our study 

population. Likewise, alcohol-related liver disease was neither a predictor of mortality nor 

had any significant influence on HRV indices. Hence, this indicates that neither taking beta 

blocker or alcohol-related aetiology are confounders in our study. 
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In order to physiologically interpret our findings, we need to understand what this 

independence means. The first hypothesis would be that the decrease in HRV which is 

associated with mortality is a sign of autonomic neuropathy. The LF variable represents 

sympathetic function while the HF variable is related to the effect of respiration on heart 

rate, which is mainly modulated by the vagus nerve. However, one would expect to see the 

best result with LF or HF, as they are clinically used to diagnose autonomic neuropathy in 

clinical settings such as diabetes (27). Surprisingly, LF, HF and the LF/HF ratio were all poor 

predictors of mortality, especially when compared to SD2. However, we cannot rule out the 

effect of autonomic neuropathy in cirrhosis simply from this finding. 

 

One can consider other physiological components of long-term HRV. For example, the renin 

angiotensin system and thermoregulation and how they impact the VLF, another measure 

of long term HRV (28). Fleisher et al. showed that the VLF component is modulated by 

thermal stimuli related to core hypothermia and thermoregulatory activity (29). 

Additionally, as recent studies have showed thermoregulatory impairment in cirrhotic 

patients both in skin temperature recordings and core body temperature readings (30,31). 

Perhaps the reduction in HRV independent of cirrhosis severity might be due to this 

impaired thermoregulation. However, as VLF was not affected perhaps this change could be 

due to another unknown factor. It appears that SD2 provides a better computational 

method for measurement of long-term HRV as VLF is heavily affected by de-trending R-R 

interval time-series in short-time recordings. The association between SD2 and core body 

temperature fluctuations in cirrhosis remains unstudied, something that can help explain 

these relationships.  

 

An advantage of HRV analysis from short-time ECG recording (e.g. 8 min) is that it can be 

incorporated into routine clinical monitors. Longer recording (e.g. 24 hours) are clinically 

less practical and would require heavy computational cost for automatic noise removal due 

to patient’s movement or electrode detachment. The Task Force report suggests that 5-min 

inter-beat interval recording provides enough data for application of HRV in clinical practice 

and longer recording is not usually required (32). Calculation of both SD2 and cSDNN can be 

incorporated into routine clinical practice (e.g. in cardiac monitors). Chan et al. showed that 

incorporating HRV characteristics into a predictor tool with the MELD score, could predict 
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post-transplant mortality in their patient population (16). It appears that reduced HRV does 

not necessarily respond positively to the liver transplant (33) and perhaps patients with 

reduced HRV would not benefit from liver transplantation. This suggests that reduced HRV 

could be considered as a comorbidity factor in the process of organ allocation (34). 

However, further study on post-transplantation survival is needed to better understand the 

role HRV plays with transplantation.  

 

Although the mechanism of reduced HRV in cirrhosis is unclear, its correlation with IL-6 level 

suggests a mechanistic role for systemic inflammation (6). Cirrhosis shares mechanistic links 

with systemic inflammatory response syndrome and sepsis. In fact, reduced HRV is also a 

predictor of mortality in septic patients (35).  Circulating IL-6 level is negatively correlated 

with HRV in both medical conditions (sepsis and cirrhosis) (6,23). The results of the present 

study reveal that among inflammatory mediators, IL-6 is the only marker that could predict 

mortality in patients with cirrhosis. Similar to cSDNN and SD2, the predictive value of IL-6 is 

independent from MELD. Interestingly, the prognostic value of HRV indices (cSDNN and 

SD2) were influenced by IL-6 levels as shown in the multivariate Cox’s regression analysis 

(table 7B). Hajiasgharzadeh et al. reported that infusion of IL-6 in mice decreases HRV and 

uncouples cardiac pacemaker from parasympathetic regulation (36). Based on these 

findings, increased IL-6 could explain reduced HRV in cirrhosis. However, the mechanistic 

link to survival is not clear. At least in theory, cirrhotic patients with reduced HRV might be 

more susceptible to develop severe sepsis. Such a hypothesis supports the role of the 

cholinergic anti-inflammatory pathway in prevention of organ failure in sepsis (37). Reduced 

HRV might mean lower activity in the neural anti-inflammatory pathway and hence higher 

chance of organ damage/failure after minor infection (38,39) . Although evidence for the 

contribution of this neural anti-inflammatory pathway in cirrhosis is emerging (40–42), the 

exact mechanistic link awaits further investigation. One limitation of our study is that the 

cause of death was not registered in our study. Future studies can look at the relationship 

between reduced HRV and cause of death in patients with cirrhosis. 

 

Another limitation of our study is that we did not measure portal pressure, hyperdynamic 

circulation, echocardiogram or degree of cirrhotic cardiomyopathy in our patients. Cirrhosis 

is associated with peripheral vasodilatation that masks the latent cardiomyopathy at resting 
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state (43). Thus, measurement of the degree of cardiomyopathy without intervention is not 

trivial in patients with cirrhosis. The relationship between reduced HRV and cirrhotic 

cardiomyopathy is not well understood. Studies in animal models of cirrhosis suggest that 

reduced HRV in rats with cirrhosis does not depend on impaired chronotropic 

responsiveness to beta-adrenergic (44) or cholinergic stimulation (22). Thus, the 

pathophysiologic link between reduced HRV and cirrhotic cardiomyopathy is missing. For 

this study we used HRV analysis that indicates the integrity of cardiovascular regulation. It 

makes sense to assume that the loss of integrity of cardiovascular control leads to mortality. 

Pioneering studies by Lee et al. demonstrate that central cardiovascular regulation is 

disordered in cirrhotic rats (45). Therefore, future studies could consider the relationship 

between reduced HRV and central cardiovascular regulatory mechanisms in the brain stem.  

 

We conclude that both SD2 and corrected SDNN seem to be not only significant predictors 

of mortality in cirrhotic patients, but also to be predictors independent of liver damage and 

a useful tool for survival analysis.  
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TABLES 

Table 1. The mean characteristics for the study population.  
 

 Survivors Non-Survivors p-value 

Number 50 24 - 

Gender (♂/♀)  65.3% 68.2% 0.999 

Age 56.6±1.6 56.3±2.2 0.888 

MELD a 12.6±0.7 17.6±1.4 0.002 

Pugh 7.6±0.3 9.8±0.5 <0.001 

The data are expressed as ±SEM. Level of significance set at p<0.05. Fisher’s exact test was 
used to compere the gender. a Mann-Whitney-U test used due positive results with Levene’s 
test of equal variances. 
 
 
Table 2. The mean HRV characteristics for the study population.  

 Survivors Non-Survivors p-value 

Number 50 24 - 

Mean Heart rate (bpm) 62.6±1.6 67.5±1.9 0.064 

SDNN (ms)* 29.1±2.1 18.9±2.0 0.002 

cSDNN (ms) 81.9±5.0 68.1±5.4 0.005 

SD1 (ms)* 15.1±1.4 9.5±1.3 0.006 

SD2 (ms) 37.7±2.7 24.8±2.5 0.003 

Kurtosis 5.1±0.8 4.1±0.4 0.395 

Skewness -0.4±0.07 -0.3±0.09 0.194 

VLF (ms2)* 483±73 205±38 0.014 

LF (ms2)* 212±44 89±33 0.011 

HF (ms2)* 239±46 80±30 0.002 

LF/HF 0.42±0.22 1.52±0.21 0.777 

SampEn  1.59±0.06 1.62±0.10 0.581 

HRC 46.1±1.9 49.6±2.6 0.306 

α1 0.96±0.04 1.01±0.04 0.388 

α2 0.99±0.03 1.03±0.03 0.388 

 
The data are expressed as mean ± SEM. cSDNN is the corrected SDNN for heart rate using 
Monfredi et al. formula. HRC is the heart rate complexity calculated using integration of 
multiscale entropy analysis. α1 and α2 are the short-term and long-term fractal-like scaling 
exponent respectively calculated using detrended fluctuation analysis (DFA). Level of 
significance set at p<0.05. * Mann-Whitney-U test used due positive results with Levene’s 
test of equal variances. 
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Table 3. The predictive effect of HRV parameters on mortality  

 β SEM Hazard ratio CI  p-value 

Age 0.004 0.019 1.004 

 

0.967-1.042 

 

0.828 

MELD 0.165 0.037 1.179 1.097-1.268  <0.001 

Pugh 0.478 0.1 1.612 1.324-1.963  <0.001 

Mean Heart rate  0.029 0.019 1.029 0.993-1.067  0.119 

SDNN -0.067 0.022 0.935 0.895-0.977  0.003 

cSDNN  -0.025 0.008 0.975 0.959-0.991  0.002 

SD1 -0.085 0.033 0.919 0.861-0.980  0.010 

SD2  -0.052 0.017 0.95 0.918-0.982  0.003 

Kurtosis -0.103 0.117 0.902 0.810-1.112  0.381 

Skewness 0.69 0.432 1.994 0.710-3.824  0.110 

VLF  -0.003 0.001 0.997 0.995-0.999  0.020 

LF  -0.003 0.002 0.997 0.993-1.000  0.071 

HF  -0.005 0.002 0.995 0.991-0.999  0.023 

LF/HF 0.049 0.131 1.05 0.912-1.357  0.710 

SampEn 0.458 0.512 1.581 0.467-3.257  0.371 

HRC 0.015 0.014 1.015 0.987-1.044  0.294 

α1 0.645 0.797 1.906 0.400-9.090  0.418 

α2 0.866 1.095 2.376 0.278-20.30  0.429 

 
β is the coefficient of Cox’s regression analysis. SEM is the standard error of the mean of β, 

Hazard ratio = 𝐸𝑥𝑝 (β) =  𝑒β. CI = 95% confidence interval of the hazard ratio.  
 
 
 
 
 
 
 
Table 4. The independence of the HRV parameters from the MELD score in predicting 
mortality. 
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 β SEM Hazard ratio CI p-value 

SDNN -0.042 0.022 0.959 

 

0.919-1.000 0.051 

cSDNN -0.017 0.008 0.984 0.968-0.999 0.048 

SD1 -0.045 0.032 0.956 0.897-1.018 0.162 

SD2 -0.034 0.017 0.967 0.935-0.999 0.043 

HF  -0.003 0.002 0.997 0.995-1.001 0.137 

VLF -0.002 0.001 0.998 0.996-1.000 0.075 

  
MELD score was significant in the analysis when compared with the other variables listed, 
hence the validity of the data. CI = 95% confidence interval of the hazard ratio. 
 
 
Table 5. The independence of the HRV parameters from the Pugh Classification in predicting 
mortality.  
 

 β SEM Hazard ratio CI p-value 

SDNN -0.042 0.02 0.958 0.922-0.997 0.033 

cSDNN -0.018 0.008 0.982 0.967-0.998 0.024 

SD1 -0.054 0.028 0.948 0.896-1.002 0.059 

SD2 -0.034 0.016 0.967 0.937-0.997 0.034 

HF  -0.003 0.002 0.997 0.993-1.000 0.053 

VLF  -0.002 0.001 0.998 0.996-1.000 0.131 

 
Pugh score was significant in the analysis when compared with the other variables listed, 
hence the validity of the data. CI = 95% confidence interval of the hazard ratio. 
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Table 6. The predictive effect of the aetiology of cirrhosis, receiving beta blocker and plasma 
markers of inflammation on mortality  

 β SEM Hazard ratio CI p-value 

Aetiology (alcoholic 

versus non-alcoholic) -0.080 0.444 0.924 

 

0.387-2.203 0.858 

Beta blocker 0.651 0.445 1.917 0.802-4.583 0.144 

C-Reactive Protein (CRP) 0.001 0.012 1.001 0.978-1.250 0.911 

TNF-α 0.021 0.033 1.021 0.957-1.090 0.527 

IL-6 0.051 0.017 1.052 1.017-1.88 0.003 

      

 
β is the coefficient of Cox’s regression analysis. SEM is the standard error of the mean of β, 

Hazard ratio = 𝐸𝑥𝑝 (β) =  𝑒β, CI = 95% confidence interval of the hazard ratio. 
 
 
Table 7. Multivariate survival analysis to test the independence of MELD (A) and HRV indices 
(B) from plasma IL-6 levels in predicting mortality. 

 
 β is the coefficient of Cox’s regression analysis. SEM is the standard error of the mean of β, 

Hazard ratio = 𝐸𝑥𝑝 (β) =  𝑒β, CI = 95% confidence interval of the hazard ratio. 
 

 

 

  

A β SEM Hazard ratio CI p-value 

MELD 0.115 0.048 1.122 

 

1.021-1.231 0.016 

IL-6 0.038 0.018 1.039 1.002-1.077 0.038 

B      

cSDNN -0.015 0.011 0.985 

 

0.964-1.006 0.152 

IL-6 0.054 0.018 1.056 1.018-1.094 0.003 

      

SD2 -0.030 0.022 0.971 0.929-1.014 0.176 

IL-6 0.054 0.019 1.056 1.016-1.095 0.004 



25 
 

FIGURE LEGEND: 

 

Figure 1. The flowchart of study procedures. 
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Figure 2. Survival graphs depicting the overall survival for patients with cirrhosis above and 

below SDNN, cSDNN or SD2 cut off values. A. SDNN (Log-rank test, Chi square = 15.06, 

p<0.0001). B. cSDNN is the corrected SDNN for heart rate using Monfredi et al., (Log-rank 

test, Chi square = 18.96, p<0.0001). C. SD2 indicates long-term HRV and is calculated using 

Poincare’ plot (Log-rank test, Chi square = 9.74, p=0.0018). 

 

 

 


