Lost in Translation: Deciphering the mechanism of action of anti-human CTLA-4

Running title: Challenges deciphering anti-CTLA-4's mechanism in the clinic

Sergio A. Quezada and Karl S. Peggs
Cancer Immunology Unit, Research Department of Haematology
University College London Cancer Institute, UK

Correspondence: s.quezada@ucl.ac.uk and k.peggs@ucl.ac.uk
UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley St, London WC1E 6JD, UK

The authors have no conflict of interest to disclose

Acknowledgments: This work was supported by Cancer Research UK (CRUK) C36463/A22246 and C36463/A20764 to S. A. Quezada, and National Institute for Health Research (NIHR) 167097 to K. S. Peggs.

Abstract
Despite a number of pre-clinical studies demonstrating that the activity of anti-CTLA-4 antibodies in murine models of cancer relies on effector T cell activation and Treg depletion, the activity of the clinical antibodies remains controversial. To decipher such mechanisms is critical to the development of novel and more potent immunotherapies.

In this issue of CLINICAL CANCER RESEARCH, Sharma and colleagues(1) use samples from melanoma, prostate and bladder cancer patients in an attempt to determine whether anti human CTLA-4 antibodies promote depletion of tumor infiltrating regulatory T cells (Treg) in the clinical setting. When comparing stage matched untreated to anti-CTLA-4- (ipilimumab) treated samples the authors observed a higher density of effector CD4 and CD8 effector T cells (Teff) in ipilimumab-treated samples. Contrary to prior findings from a number of pre-clinical mouse models, the authors observed an increased rather than reduced density of Foxp3+ T regulatory cells (Treg). Similar findings were obtained when analyzing paired tumor samples in a cohort of melanoma patients treated with a different anti CTLA-4 antibody (tremelimumab), re-igniting the controversy around the in vivo mechanism of action of anti-CTLA-4 antibodies in the clinic.

Cytotoxic T lymphocyte antigen-4 (CTLA-4) was the first immune inhibitory checkpoint identified by Jim Allison and colleagues, who proposed it as a potential target for agents aiming to augment the anti-cancer activity of the immune system. More than 20 years after the seminal proof of principle experiments in mice (2), a large phase III clinical trial formally demonstrated the efficacy
of anti CTLA-4 antibodies (ipilimumab) against late stage metastatic melanoma (3), re-invigorating the field of immunotherapy and opening the minds and doors of the cancer research community to both anti CTLA-4 and the avalanche of novel immunotherapy agents that followed.

Defining the mechanism of action of anti-CTLA-4 antibodies has, however, proven difficult at both the pre-clinical and clinical level. Whilst the initial work in pre-clinical models demonstrated a clear impact on the effector T cell compartment, further analysis identified regulatory T cells as an additional key target (4). In mice, the checkpoint-blocking activity of anti CTLA-4 drives the expansion of both Teff and Treg compartments, whilst the ability of the antibody to engage with activating Fcγ Receptors (FcγR) on innate cells drives depletion of CTLA-4th regulatory T cells. This dual activity promotes a change in the intra-tumor immune balance, favouring the accumulation of effector T cells and driving tumour rejection (5-7). Several groups have now confirmed the impact of anti CTLA-4 on both Teff and Treg compartment in mouse models, supporting a series of new studies evaluating whether the same mechanisms are active in the context of the clinically available antibodies. Whether these antibodies (ipilimumab [human IgG1 with predicted depleting activity] and tremelimumab [human IgG2 with low predicted depleting activity]), are able to promote Treg depletion in vivo is not only relevant to our basic understanding of cancer immunology and immunotherapy, but also critical to the potential development of a next generation of anti-CTLA-4 antibodies with enhanced Treg depleting and anti-tumor activity.

Whilst simple in principle, the translation of murine mechanistic findings to the clinical setting is complicated by a number of elements significantly differing between the two ‘models’. Genetic homogeneity combined with the ability to synchronize tumor challenge and to serially monitor immune infiltrates within the whole tumor greatly facilitates mechanistic studies in mice, but cannot be easily recapitulated in the context of clinical trials. Experiments assessing Treg depletion in mice are performed in well characterized models where the kinetics of tumor growth and response to anti-CTLA-4 are clearly defined and, importantly, where the whole tumor is collected for analysis of immune infiltrates. Genetic homogeneity provides a mirrored version of ‘serial’ sampling, enabled by evaluation of parallel cohorts of mice assessed at different time points. Clinical studies are limited to a single, or in the best cases to a couple biopsies, which due to intra-tumor heterogeneity provide a partial and heterogenous representation of the whole tumor lesion.

The work of Sharma and colleagues helps to highlight some of the further difficulties in the field. The snapshots that can be evaluated from clinical studies, particularly if not performed in the context of prospective matched cohorts with pre-defined sampling times, can lead to significant ascertainment or sampling bias. In this regard, Sharma and colleagues’ work shows an accumulation of both effector and regulatory T cells in tumor samples following anti-CTLA-4 therapy, but the data does not fully preclude depletion of regulatory T cells shortly after therapy with a subsequent enrichment of cases in whom this has either not occurred or has only transiently occurred, by virtue of performing biopsies only in those with residual or progressive lesions (Figure 1).
The issue is most prominent in the context of ipilimumab data. Ipilimumab bears the classical ‘depleting’ human IgG1 backbone (like Rituximab for example) and would be expected to demonstrate some depleting activity if this were critical to clinical activity. The comparison between naïve and treated patients, however, is complicated primarily by the timing of biopsies and potential sampling bias. The median time for sample collection was 8 and 18 weeks (prostate/bladder and melanoma respectively) post ipilimumab, with over half of the biopsies obtained more than 15 weeks post the last infusion. This contrasts starkly with mouse studies, where Treg depletion is evaluated shortly (3-10 days in most studies) after the last infusion of anti CTLA-4. This point is critical, as after depletion by antibodies, chemo-, or radio-therapy, the remaining Treg cells rapidly enter cell cycle and proliferate to replenish their empty niche. The rebound on Treg numbers observed in many mouse models post depletion could help explain the high density of tumor-infiltrating Tregs observed by Sharma’s team weeks after the last administration of Ipilimumab, particularly as this rebound will be most noticeable in non-responding or progressing lesions. Whether biopsies in untreated or treated patients take place in residual responding, stable or progressing lesions as opposed to serial biopsies in a responding lesion may also significantly impact both findings and conclusions. One might hypothesize that evidence for regulatory T cell depletion may only be present in responding lesions and be maximal in lesions that completely regress, particularly as these antibodies have not been optimized for depleting activity. Response and depletion should also co-segregate with Fc polymorphism status (8). Furthermore, murine studies suggest that activity against both effector and regulatory compartments is important for optimal response. Activity limited to the effector compartment alone does result in anti-tumor response in murine models, whilst activity confined to the regulatory compartment alone does not. It is the combination that proves optimal (4). Depending on sampling criteria in the clinical data, one could be comparing mechanisms underpinning resistance rather than those defining response to therapy where residual or progressing lesions may well have more Treg than average or responding lesions. Of relevance, whilst prior studies by Antoni Ribas’ team did show Treg expansion in both progressing and regressing lesions, those studies were performed in the context of tremelimumab, a human IgG2 anti CTLA-4 with no predicted antibody dependent cytotoxicity (ADCC) activity due to its poor binding to the activating human CD16 FcγR. It is unfortunate, then, that the data on serial evaluation of Treg numbers, which should have given more compelling evidence for the presence or absence of depleting activity, comes from patients treated with tremelimumab rather than ipilimumab.

Despite all of the caveats noted above, the data from Sharma’s team does argue against Treg depletion as a mechanism of action of Ipilimumab and this needs to be further considered in the design of new trials. Recent work linking the clinical activity of ipilimumab to the presence of high affinity FcR polymorphisms does suggest that anti-CTLA-4 antibodies require FcRs (and potentially Treg depletion) to drive maximal activity (8). However, these data also suggest that ipilimumab is a weak depleting agent as it requires a high affinity FcR polymorphism for its maximal activity, potentially also contributing to the lack of depletion observed in Sharma’s study.
Taken together, the mouse and human data still support the development of a next generation of anti-CTLA-4 antibodies with the hypothesis that enhancing ADCC (and Treg depletion) will drive more potent and durable responses. It is also important, however, to consider the potential side effects associated with ADCC-enhanced anti-CTLA-4 antibodies. If ipilimumab’s main mechanism of action does not involve Treg depletion, then systemic toxicities observed to date are likely driven by the checkpoint blocking activity of the antibody on Teff rather than by Treg depletion. In this case, next generation anti-CTLA-4 antibodies with enhanced ADCC are likely to amplify toxicity. Whether such combined toxicities can be managed and whether the clinical responses obtained from such a next-generation therapeutic outweigh any additional toxicity will need to be evaluated with extreme caution.
Figure Legend

Figure 1: Challenges deciphering the mechanism of action of anti CTLA-4 in the clinic. Sample collection is one of the key challenges when translating murine mechanistic-based findings to the clinic. Whilst in murine modes samples are collected shortly (days) after anti-CTLA-4 administration, in the clinic, sample collection can take weeks. This figure depicts several scenarios illustrating the checkpoint inhibiting (CPI) and potential Treg depleting activity of anti CTLA-4 antibodies. Whilst biopsies taken shortly after therapy would be able to distinguish between the CPI and Treg depleting activity of anti-CTLA-4, later sampling could be confounded by factors such as lesion progression (due to Treg accumulation) or rebound in numbers of Treg cells post therapy.
References


Figure 1:

- Pretreatment biopsy
- CPI and Treg depletion
- Treg accumulate in progressing lesions
- No tumor left for evaluation
- CPI and Treg depletion
- Treg rebound
- CPI only
- CPI only

Time of biopsy post last infusion of ipilimumab
Lost in Translation: Deciphering the mechanism of action of anti-human CTLA-4

Sergio A Quezada and Karl S Peggs

Clin Cancer Res Published OnlineFirst October 5, 2018.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-18-2509

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2018/10/05/1078-0432.CCR-18-2509. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.