
Accepted Manuscript

Title: Deposition of carbon nanotubes onto aramid fibers using
as-received and chemically modified fibers

Author: O. Rodrı́guez-Uicab F. Avilés P.I Gonzalez-Chi G.
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Graphical abstract 

 
Highlights 

 
 

 The surface of aramid fibers was functionalized by two acid treatments. 
 The treatment based on HNO3/H2SO4 reduced the mechanical properties of the fibers. 
 CNTs were deposited on the aramid fibers, reaching electrical conductivity. 
 Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic 

acid.  
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Abstract 

Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the 

surface of as-received comercial aramid fibers containing a surface coating (“sizing”), and fibers 

modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The 

surface of the aramid fiber activated by the chemical treatments presents increasing density of 

CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile 

mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was 

used. Characterization of the MWCNTs deposited on the fiber surface was conducted by 

scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron 

spectroscopy. These characterizations showed higher areal concentration and more homogeneous 

distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified 

with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs 

and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns 

comprissing ~1000 indivual fibers was in the order of MΩ/cm, which renders multifuncional 

properties.  

 
Keywords: Aramid fiber, carbon nanotubes, surface treatment, mechanical properties, electrical 

properties, multifunctional. 

 
*Corresponding author: E-mail address: faviles@cicy.mx (Francis Avilés) 

1. Introduction 

Aramid fibers are well known for their use in ballistic scenarios and in advanced composites for 

impact-related applications, such as bulletproof vests, helmets, and high performance composites 

for transportation and the automobile industry [1, 2]. These fibers do not show a melting point 

and their thermal descomposition occurs near 400 °C [2-4]. The aromatic rings present in the 

backbone of the fiber molecular structure promote high thermal stability [5]. Aramid fibers 

comprise a highly ordered arrangement of polymer chains yielding a rather smooth surface with 

reduced reactivity [3-7], high crystallinity (~76-95 %) and high mechanical strength [8,9]. 

However, in the composites materials field, surface modifications of the aramid fibers are often 
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necessary to activate their surface. There are several surface treatments that have been attempted 

to promote the generation of functional groups on the surface of aramind fibers, including 

plasma treatments [10], acid chemical treatments [11] and fluorinations [12]. Wu et al. [13], for 

example, investigated the efect of fiber surface treatments using plasmas of ammonia, oxygen 

and water vapor, as well as a solution of chlorosulfonic acid in dichloromethane. According to 

their results, the chlorosulfonic acid treatment produced more changes to the fiber surface 

morphology than the plasma treatments. Maity et al. [14] reported a modification of aramid 

fibers using fluorination; the C-H bonds of the aromatic rings were substituted by C-F bonds, 

yielding higher thermal stability. In multiscale hierarchical composites comprising a macro-scale 

matrix, a fiber with diameter at the micro-scale, and a nanostructure, these kind of surface 

modifications may improve the interactions not only between the fiber and matrix, but also with 

the nanostructures deposited onto the fiber surface, such as carbon nanotubes. The current 

interest in multiscale hierarchical composites focuses on their multifunctionality, and in the case 

of multiwall carbon nanotubes (MWCNTs) their high electrical conductivity is frequently 

exploited. MWCNTs have been deposited onto glass and carbon fibers by electrophoretic 

methods [15, 16] and by simpler methods such as dipping or immersion in nanotube dispersions 

[17-19]. It has been shown that the deposition of MWCNTs onto engeneering fibers can increase 

the fiber/matrix interfacial shear strength [20] and delay the onset of microcrack propagation 

[21]. Furthermore, the generation of a percolative electrical networks on the fiber surface renders 

composite materials with multifunctional features such as self-sensing of strain and damage [20]. 

However, research concerning deposition of MWCNTs onto aramid fibers is scarce. O’Connor et 

al. [22] reported the deposition of MWCNTs onto aramid fibers using N-methylpyrrolidone 

(NMP). The aramid fibers and the MWCNTs were immersed in NMP to swell the fibers, 

promoting physical interactions between the aramid fibers and the MWCNTs. A similar work 

was reported by Chen et al. [3], where the aramid fibers were modified by a mixture of 

hexamethylene diisocyanate and 1,4-diazabi-cyclo octane. The MWCNTs were dispersed in 

NMP and the aramid fibers were inmersed in the MWCNT/NMP solution, promoting fiber 

swelling and chemical grafting. Given this background and motivation, MWCNTs were herein 

deposited onto the surface of Twaron fibers using an immersion process assisted by ultrasound; 

the role of the surface coating of the Twaron fibers was studied examining the effect of two fiber 

chemical treatments. 
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2. Materials and methods 

2.1. Materials  

The aramid fibers used were Twaron 2200 from Teijin Aramid Inc. (Georgia, USA). According 

to the manufacturer, the fibers have a tensile elastic modulus between 130 and 180 GPa, a 

density of 1.45 g/cm3 and individual fiber diameter of ~ 12 µm. The fiber yarn contains ~1000 

individual filaments. After their commercial synthesis, the fibers are coated with chemical agents 

generically called “fiber surface coating (FSC)” and frequently refered to in the jargon as 

“sizing” or “finish”. This coating reduces fiber damage when handled and improves the 

processability of the fibers [23]. The FSC formulation is complex and varies according to the 

final application and manufacturer; it may contain, among others, additives, lubricants, antistatic 

agents, emulsifiers and antioxidants [23].  

Commercial MWCNTs were acquired from Cheaptubes Inc. (Vermont, USA), with a typical 

length of 1-6 µm, an inner average diameter of 5-15 nm and an outer average diameter of 30-50 

nm [24]. Chemical oxidation of the MWCNTs was conducted with a mixture of H2SO4 (97.9 % 

v/v) and HNO3 (65.4 % v/v) from J.T. Baker (Pennsylvania, USA). Chlorosulfonic acid at 97 % 

v/v from Merck & Co (New Jersey, USA) and dichloromethane 99.8 % v/v from Winkler LTDA 

(Santiago, Chile). To remove the FSC, ethanol and methanol 98 % v/v were acquired from 

Merck, acetone (98 % v/v) from Winkler LTDA and dichloromethane 99.8 % v/v also from 

Winkler LTDA. The deposition of MWCNTs onto the fiber surface was made with Chloroform 

at 99.9 % v/v from J.T. Baker. 

 

2.2. Chemical oxidation of carbon nanotubes  

All MWCNTs used in this work were chemically oxidiezed. A 3.0 M mixture of nitric and 

sulfuric acids was used for chemical oxidation of MWCNTs, using a previously reported method 

[25]. Briefly, the acid mixture and MWCNTs were first mechanically stirred in a hot plate for 15 

min at ~ 60 °C. Then, the acid mixture and MWCNTs were ultrasonically dispersed using an 

ultrasonic bath of 70 W and 42 kHz for 2 h. The slurry was then filtered, thorougly washed with 

distilled water and dried at 100 °C for 24 h. 

2.3. Aramid fiber treatments 
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The aramid fiber yarns used are classified into three groups, viz. as-received (without treatment) 

and treated by one of the two chemical modifications conducted herein. Prior to these chemical 

treatments, the FSC was removed by Soxhlet extraction and sequential inmersions in solvents as 

described in section 2.3.1. Then, the aramid fibers were subjected to a treatment with 

chlorosulfonic acid or to a (more aggressive) treatment using a mixture of nitric and sulfuric 

acids. Finally, previously oxidized MWCNTs were deposited on each of the three types of 

aramid fibers using a chloroform immersion method assisted by ultrasound. The following 

sections describe the removal of the FSC, the chemical treatments and the MWCNT deposition 

processes.  

2.3.1. Removal of fiber surface coating  

The FSC was removed by a Soxhlet extraction and secuential inmersions in chloroform, ethanol, 

acetone, and methanol, as recommended in [4]. The aramid fibers were dried in a convection 

oven at 70 °C after each sequential step. First, the aramid fibers were placed in a Soxhlet 

extractor recirculating chloroform for 6 h. The process was repeated in the Soxhlet extractor for 

6 h using ethanol, and then with acetone and methanol. After removing the FSC, one of the two 

chemical treatments described below (sections 2.3.2 and 2.3.3) were applied to activate the fiber 

surface.  

2.3.2. Fiber treatment by a mixture of nitric and sulfuric acids  

The modification of the aramid fiber surface (with FSC previously removed, see section 2.3.1) 

was performed by immersing the yarn in a 3.0 M mixture of HNO3 and H2SO4 for 1 h. Then, the 

aramid fibers were washed with 1.5 L of distilled water. This treatment is expected to affect the 

amorphous phase of the aramid fibers (< 24 %) through amide bond opening situated at the 

backbone of the fiber structure and the generation of amide and carboxyl groups in some fiber 

sections, see Figure 1 [26,27]. These functional groups can interact through hydrogen bonds with 

the carboxyl and hydroxyl groups of the previously oxidized MWCNTs [28]. 

 
 

Figure 1. Proposed hydrolysis reaction for aramid fibers treated with 
the mixture of nitric and sulfuric acids. 

 
2.3.3. Fiber treatment by chlorosulfonic acid  
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The aramid fibers whose FSC previously removed were treated with a solution of chlorosulfonic 

acid in dichlorometane at 0.2 % w/w, stirring the solution at room temperature for 2 min. 

Subsequently, the aramid fibers were inmmersed in distilled water stirring for 2 more min and 

finally dried for 1 h at 70 °C. This treatment is expected to produce sulfuryl chloride (SO2Cl) 

groups in the active sites of the aromatic rings, see Figure 2. The subsequent inmersion in 

distilled water is expected to convert the sulfuryl chloride groups into sulfonic groups (SO3H), as 

discussed in [4]. This treatment is also expected to modify the amorphous phase of the aramid 

fiber surface [26, 27]. The central amide group of the fiber can separate due to sulfonation 

yielding carboxylic functional groups (see Figure 2), which are expected to interact with the OH, 

COOH and CO functional groups of the oxidazed MWCNTs through hydrogen bonding [28].  

  

 

Figure 2. Proposed reaction for aramid fibers treated with chlorosulfonic acid. 

 

 

2.4. Deposition of carbon nanotubes onto aramid fibers 

Figure 3 shows the process used to deposit MWCNTs onto aramid fibers. 4 mg of previously 

oxidized MWCNTs were deposited onto ~ 550 mg of aramid fibers rolled on a cylindrical frame 

and inmmerded into 100 ml of chloroform. The MWCNT deposition onto aramid fibers was 

conducted by using an ultrasonic horn for 1 h at 165 W and 20 kHz. Finally, the aramid fibers 

were dried in a convection oven for 2 h at 100 °C.  
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 Figure 3. Schematic of the method used for the deposition of MWCNTs onto aramid fibers. 

The nomenclature of the as-received, chemically modified and fibers with deposited MWCNTs 

used in the present study are described in Table 1. 

Table 1. Nomenclature used for the aramid fibers without and with MWCNTs. 
Label Aramid fiber condition 

TF Pristine fibers (as-received). 

TFAC Fibers were immersed in a mixture of sulfuric and nitric acids for 3 h. 

TFCL Fibers were immersed in a solution of chlorosulfonic acid in dicloromethane for 
a few minutes. 

TF-CNT TF with deposited MWCNTs. 

TFAC-CNT TFAC with deposited MWCNTs. 

TFCL-CNT TFCL with deposited MWCNTs. 

2.5. Fiber characterization 

2.5.1. Infrared spectroscopy 

Fourier transform infrared spectroscopy (FT-IR) was conducted using a Nicolet 8700, Thermo 

Fisher Scientific spectrometer. The FT-IR spectra of the samples were collected in the 650-4000 

cm-1 interval with a resolution of 4 cm-1. The samples were analyzed in the absorbance mode 

using KBr pellets. These analyzes were repeated 5 times finding reproducibility. 
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2.5.2 Raman spectroscopy 

Raman spectroscopy of individual aramid fibers fixed in a cardboard frame was obtained by a 

micro Raman spectrometer equipped with an Andor DV401 CCD camera. A laser of 35 mV with 

a wavelength of 632.8 nm (1.96 eV) was used. Raman spectra were collected in the frequency 

range of 20-200 cm-1. The analysis of individual Twaron fibers was conducted by mounting the 

fiber in a cardboard frame using adhesive tape. The total exposition time was 25 min.  

The analysis of the MWCNT distribution on the fiber was performed using a WITec ALPHA 

300R confocal Raman spectrophometer. Raman spectra of 30 × 45 pixeles were obtained with an 

exposition time of 2 s per pixel covering an area of 5 × 10 µm. For this maping, each pixel was 

generated by the intensity of the 2D Raman band of the MWCNTs at ~ 2700 cm-1 [31]. The 

images were processed using a WITec Project 2.08 software. 

2.5.3 X-ray phoelectron spectroscopy 

X-ray phoelectron spectroscopy (XPS) was carried out over aramid fiber tows using a sampling 

area of 400 µm by 400 µm. A Thermo Scientific K-AlphaTM X-ray photoelectron spectrometer 

with monochromatic Al Kα X-ray source operated with an energy of 1486.6 eV. The XPS survey 

scans were obtained by setting the analyzer to a 1 eV energy pass, while an energy pass of 0.1 

eV was employed for high resolution windows. The high resolution C1s orbital curves were 

corrected by using a baseline obtained from a Shirley background [29, 30], and fitted using Voigt 

functions [29] to obtain additional information.  

2.5.4 Scanning electron microscopy  

Morphological analysis of the fiber surface and the analysis of the presence of MWCNTs on the 

fibers were performed by scanning electron microscopy. SEM analysis was performed by using a 

JEOL JSM-630-LV microscope at 20 kV.  

 

 

2.6 Tensile testing 

Tensile testing of individual Twaron fibers was conducted by mounting the fiber in a cardboard 

frame using adhesive tape and a commercial cyanoacrylate-based glue (Figure 4). Tests were 

conducted in an AG1-100 Shimadzu universal testing machine using a double sensitivity load 

cell of 100 N at cross-head speed of 1 mm/min. Since strain was measured with the machine 

cross-head displacement, a compliance correction was carried out for the elastic modulus (E) and 
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maximum strain (εmax), using specimens with effective gauge lengths of 10, 20 and 40 mm, 

following the procedure described by Adams et al. [32].  

 
Figure 4. Setup used for tensile testing of individual fibers. Dimensions in mm.  

P shows the loading direction.  
 

2.7 Electrical resistance measurements 

Diecr current electrical resistance of MWCNT-modified aramid fiber yarns (comprising ~ 1000 

individual fibers) was measured using a two point method. 15 mm long yarns were fixed in a 

cooper frame with an effective span of 10 mm, as shown in Figure 5. The yarn ends were bonded 

to the cooper electrodes using commercial conductive silver paint (Ted Pella Inc. type 16062, 

CA, USA) and the electrical resistance was measured using a Keithey 7517B electrometer. 

 
Figure 5. Setup used to measure the electrical resistance of MWCNT-modified aramid  

fiber yarns. 
 

3. Results 
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3.1. Characterization of modified aramid fiber 

3.1.1 Infrared spectroscopy 

Figure 6 shows the FT-IR anaylsis of the as-received Twaron fibers (TF) and those with a 

chemical modification (TFCL and TFAC), as described in Table 1. Figure 6a shows the 

absorption bands of TF, TFAC and TFCL. The bands at 1123 cm-1 and 1305 cm-1 are attributed 

to stretching vibrations of C-N bonds [33]. The bands at 1514 cm-1 and 1636 cm-1 are attributed 

to stretching vibrations of N-H and C=O groups, respectively [33, 34]. The band at 1541 cm-1 is 

related to the combined motion of N-H bending and C-N [23]. The band at 3313 cm-1 is related 

to stretching vibrations of N-H of the amide groups [34]. Additionally, the band located at 820 

cm-1 is asigned to stretching vibrations of the C-H bonds of the aromatic ring present in the 

backbone structure of the aramid fiber. This band does not present significant variations in 

intensity when the fiber is subjected to chemical treatments [23], and therefore was selected for 

normalization purposes. A detailed analysis in the interval 1200-1800 cm-1 is included in Figure 

6b, where the intensities have been normalized with the intensity of the C-H band located at 820 

cm-1. 

Figure 6. FT-IR analysis of aramid fibers without and with chemical treatment. a) Spectra of 

TF, TFCL and TFAC, b) 1200-1800 cm-1 region normalized with the 820 cm-1 band. 

Figure 6b shows a slight increase in the intensity of the band at 1305 cm-1 (C-N) for TFCL with 

respect to TF, which can be attributed to the sulfonation of the aromatic rings [35]. Further 

indication of sulfonation is observed from a new band of small intensity at 1389 cm-1 for FTCL. 

The band at 1636 cm-1 also shows an increase in intensity for TFCL compared to TF, indicating 

fiber oxidation. The slight decrease in the C=O band at 1636 cm-1 for TFAC with respect to TF is 
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possibly caused by a competition between fiber oxidation and rupture of the bonds between the 

C=O and the N-H groups of the main aramid chain for such an aggresive fiber treatment [23]. 

Furter indication of rupture of the amide bonds for FTAC is observed by the intensity decrease of 

the bands at 1514 cm-1 and 1541 cm-1, corresponding to N-H [35]. 

3.1.2 Raman spectroscopy 

Figure 7 shows the results of Raman spectroscopy for TF, TFCL and TFAC. Figure 7a shows 

bands at 1185, 1280, 1332, 1520 and 1610 cm-1 related to stretching vibrations of the C-C bonds 

in the aromatic rings of the structure of the aramid fiber [36]. The band at 1571 cm-1 is attributed 

to stretching vibrations of the N-H bond. The vibrations at 1652 cm-1 are attributed to stretching 

modes of the C=O groups present in the main fiber structure [36]. The spectra of TFCL and 

TFAC are similar to that of TF, suggesting that the chemical treatments carried out do not 

significally modify the main structure of the aramid fiber. Since the Raman spectroscopy signal 

of the TF fiber is very intense (given its high crystallinity) and only a small amorphous phase at 

the fiber surface is expected to be modified by the chemical treatments, a surface change in the 

TF is difficult to determine by this technique.  

 
Figure 7. Raman spectra of as-received and chemically modified aramid fibers. 

3.1.3 X-ray photoelectron spectroscopy 

Figure 8 shows the XPS spectra of TF, TFCL and TFAC. These spectra show three high intensity 

bands corresponding to C1s, N1s and O1s orbitals at ~ 285, 400 and 532 eV, respectively [34, 

37]. For TF, small bands assigned to sulfur at 105 and 156 eV are observed, which may stem 

from traces of the sulphuric acid employed in their synthesis process [5,37]. On the other hand, 

the bands at 105 and 156 eV in the TFAC fiber are generated by the acid treatment of the fiber 
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with sulfuric acid, as TFCL fibers do not exhibit such bands. For TFCL and TFAC a slight 

increase in intensity of the N1s orbital with respect to that of TF is observed. This increase is 

attributed to the removal of the FSC, which causes that a larger amount of nitrogen bonds 

become exposed on the fiber surface [6,38]. 
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Figure 8. XPS analysis of as-received and chemically modified aramid fibers. a) Survey, b) C1s 

orbital of TF, c) C1s orbital of TFCL, d) C1s orbital of TFAC. 

For a more detailed analysis, Figures 8b-d show deconvolutions of the C1s orbital (~ 285 eV) for 

all treatments, showing four bands; the first one from left to right located ~ 287.8 eV corresponds 

to the contribution of O=C-N-H and C=O bonds (3.2 %), coming from the amide and carbonyl 

functional groups present in the molecular structure of the aramid fiber [6]. Bands at ~ 286.0 and 

284.6 eV are associated to C-O (19.5 %) and C-C (56.5 %) bonds, respectively, coming from the 

FSC and aromatic rings of the fiber [6,38]. Figures 8c and 8d show a deconvolution of the C1s 

orbital for TFCL and TFAC fibers, respectively. Because of the surface treatments, the 

proportions of the functional groups on the fiber surface significantly change with respect to the 

untreated fiber. For TFCL and TFAC fibers the contribution of O=C-N-H/C=O groups is larger, 

since the fiber is uncovered and depleted from the FSC, see e.g. [6,38]. For TF fibers, the 
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contribution of O=C-N-H bonds is 3.2 %, while for TFCL and TFAC is 5.2 % and 6.7 %, 

respectively; this suggests that the FSC has been removed and that the treatement based on the 

acid mixture generates more oxygen-containing functional groups, being more aggressive. 

Evidence of fiber chemical oxidation is observed from the increase of oxygen-containing 

functional groups such as C-O. These functional groups contribute to the C1s orbital in 19.5 % 

for TF, and their contribution greatly increase to 24.7 % for TFCL and 26.5 % for TFAC. This 

indicates that the TFAC fiber has higher degree of oxidation than TF and TFCL. 

3.1.4. Scanning electron microscopy 

Figure 9 shows SEM micrographs of aramid fiber yarns taken at 100x, 1000x and 5000x 

magnifications (from left to right). The as-received aramid fiber (Figure 9a) shows a relative 

smoth surface with shallow longitudinal markings produced by their synthesis process. TFCL 

fibers (Figure 9b) show similar characterictics to TF but they show new surface markings and the 

presence of some irregular material (particles) on the fiber surface. This material may correspond 

to traces of the FSC removed by Soxhlet extraction and by the subsequent chemical treatment 

carried out. The acid treatment (TFAC) was more aggresive with the fiber surface, which is 

evident in Figure 9c by the peeling off of some surface layers. 
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Figure 9. SEM micrographs of the as-received and treated aramid fibers. 

 a) TF, b) TFCL, c) TFAC. 
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3.1.5. Mechanical properties 

Tensile stress (σ) vs. strain (ε) curves of the as-received (TF) and chemically modified (TFAC 

and TFCL) fibers with gauge lengths of 20 mm are presented in Figure 10. Table 2 summarizes 

the mechanical properties (average and standard deviation) obtained from such curves, listing the 

elastic modulus (E), strength (σmax) and the maximun strain (ɛmax).  

 
Figure 10. Representative stress-strain curves of individual aramid fibers TF, TFCL and 

TFAC. 

E, σmax and ɛmax measured for the as-received fibers are similar to that reported in the literature 

[5]. According to the results of Figure 10 and Table 2, TF and TFCL show statistically similar 

mechanical properties, although the ones treated with chlorosulfonic acid show a trend to reduce 

their mechanical properties. On the other hand, fibers treated with the acid mixture (TFAC) show 

a more considerable reduction in E, σmax and ɛmax with respect to TF. These results are consistent 

with the ones obtained from FT-IR, XPS and SEM, all suggesting that the treatment with nitric 

and sulphuric acids is more oxidative and also damages more the aramid fibers. 

Table 2. Tensile properties of as-received and chemically modified aramid fibers. 

Fiber E 
(GPa) 

σmax 
(GPa) 

ɛmax 
(%) 

TF 167 ± 25.3 2.70 ± 0.33 2.47 ± 0.50 

TFCL 134 ± 10.8 2.56 ± 0.31 2.01 ± 0.22 

TFAC 124 ± 5.0 1.97 ± 0.40 1.76 ± 0.29 
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3.2. Characterization of MWCNT-modified aramid fibers 

3.2.1 Raman spectroscopy 

Figure 11 shows the Raman spectra of MWCNT-modified aramid fibers. Figure 11a shows the 

spectrum of the oxidized MWCNTs (bottom, labeled as “CNT”) and of the TF, TFCL and TFAC 

fibers containing MWCNTs on their surface. The typical D and G bands of the MWCNTs are 

observed at 1335 and 1587 cm-1, respectively [31]. The spectra of the MWCNT-modified fibers 

TF-CNT, TFCL-CNT and TFAC-CNT show two bands at 1281 and 1610 cm-1 corresponding to 

the C-C vibration of the aromatic rings of the molecular structure of the aramid fiber (see Figure 

7). These bands belonging to the fibers overlap the D and G bands of the MWCNTs, and 

consequently, their intensity and width increase when MWCNTs are deposited on the fiber 

surface, as shown in Figures 11 b-d for the band centerd at 1610 cm-1.  

  

  
Figure 11. Raman spectra of the aramid fibers. a) MWCNTs (CNT), TF-CNT, TFCL-CNT 

and TFAC-CNT, b) TF and TFCNT, c) TFCL and TFCL-CNT, d) TFAC and TFAC-CNT. 
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For a more detaild analysis of the band at 1610 cm-1, the 1550-1700 cm-1 spectral range was 

further investigated (see Figures 11 b-d), normalizing the band intensities with the intensity of 

the band at 1571 cm-1, which is attributed to N-H vibrations. As observed form these figures, the 

presence of MWCNTs on the TF-CNT, TFCL-CNT and TFAC-CNT fibers increases the 

intensity and width of the band at 1610 cm-1, with respect to the fibers without MWCNTs. To 

quantify this observation the area under the band at 1610 cm-1 (A1610) was divided by the 

corresponding area under the band at 1571 cm-1 (A1571), taken as reference. Table 3 shows the 

results of this metric, reporting average and standard deviations corresponding to 5 replicates. 

The last column represents the increase (with respect to averages) of the A1610/A1571 ratio for the 

fiber with MWCNTs (TF-CNT, for instance) relative to its corresponding fiber without 

MWCNTs (TF, for instance). This parameter may be interpreted as an indicator of the amount of 

MWCNTs on the fiber surface. As shown in Table 3, the as-received fiber and the fiber treated 

with chlorosulfonic acid (TFCL) present higher amounts of MWCNTs deposited on their surface 

(ratios of 20.3 and 18.7, respectively). In the case of TF, the functional groups present in the 

oxidized MWCNTs (OH, C-O and COOH) interact with the oxygen-containing functional 

groups present in the FSC of the as-received fiber, as reported for glass and carbon fibers 

[19,38]. Twaron fibers have a standard surface coating which comprises a non-ionic emulsifier 

containing large molecules with ramifications of ethylene and propylene oxide functional groups, 

as well as hydroxyl and carboxyl groups [39,40]. Upon ultrasonic MWCNT deposition, the 

temperature is raised to ~70 °C and the hydroxyl and carboxyl groups of the oxidized MWCNTs 

can covalently react with the ethylene and propylene oxides through anionic ring-opening 

reactions [41]. These ring-opening reactions yield new hydroxyl groups, which could also react 

with the hydroxyl and carboxyl groups on the MWCNT surface through hydrogen bonding [19].  

On the other hand, according to the increase in the area ratio of 18.7 %, the chlorosulfonic 

treatment also promotes good affinity between the treated fibers and the oxidized MWCNTs, 

being mild with the fiber. In contrast, the acid treatment TFAC is aggressive with the fiber and 

concomitant with the remotion of the FSC renders the lowest amount of MWCNTs per area (9.6 

% increase). 
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Table 3. Area under the curve of the band at 1610 cm-1 normalized by the area of the band at 

1571 cm-1. 

Fiber A1610/A1571 
Area increment with respect to the 

corresponding fiber without MWCNTs 
(%) 

TF 211 ± 4.6 - 

TF-CNT 254 ± 9.8 20.3 

TFCL 238 ± 10.3 - 

TFCL-CNT 284 ± 11.5 18.7 

TFAC 190 ± 2.6 - 

TFAC-CNT 208 ± 8.8 9.6 
 
3.2.2 X-ray photoelectron spectroscopy 

Figure 12 shows the XPS results of TF-CNT, TFCL-CNT and TFAC-CNT fibers. Figure 12a 

shows surveys of the fibers with deposited MWCNTs. These spectra show high intensity bands 

corresponding to C1s, N1s and O1s orbitals; additionally, the spectra show a few low intensity 

bands corresponding to traces of metals, likely from the MWCNT synthesis [24,42]. 
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Figure 12. XPS spectra of MWCNT-modified aramid fibers. a) Surveys, b) C1s orbital of TF-

CNT, c) C1s orbital of TFCL-CNT, d) C1s orbital of TFAC-CNT. 

A more detailed analysis is obtained by examining the deconvolution of the C1s band shown in 

Figures 12b-d. In Figure 12b five bands are observed corresponding to O=C-O (289 eV), O=C-

NH/C=O (287.8 eV), C-O (286 eV), C-C (284.6 eV) [6] and C-H (283 eV) [43]. The first one 

from left to right, located ~ 289 eV corresponds to the contribution of C=O and C-O bonds (7.4 

%), probably coming from the interaction between the functional groups of the oxidized 

MWCNTs and the FSC. This band was not observed in Figures 12 c-d (TFCL-CNT and TFAC-

CNT), where the FSC was removed. The emergence of a new band at ~289 eV in as-received 

fibers after MWCNT deposition suggests an interaction between the FSC and the MWCNTs, as 

has been previously reported [19,44]. The increase of the intensity of the band at ~ 287.8 eV 

(O=C-NH/C=O) in Figures 12b-d in comparison to the fibers without MWCNTs (Figures 8b-8d) 

suggests the presence of oxidized MWCNTs. The band at ~ 286 eV corresponds to C-O bonds. 

Its contribution is higher for TFCL-CNT (22.5 %, Figure 12c) than for TF-CNT (20.3 %, Figure 

12a) and even higher for TFAC-CNT (32.2 %, Figure 12d), suggesting an increased contribution 

of the C-O bonds coming from the oxidation of the aramid fibers and the oxidized MWCNTs.  

3.2.3. Scanning electron microscopy 

Figure 13 shows SEM micrographs of the aramid fiber yarns with MWCNTs deposited on their 

surface at magnifications of 100×, 1000× and 5000× (left to right). Figure 13a shows as-received 

fibers with deposited MWCNTs (TF-CNT), showing a relatively homogeneous distribution of 

MWCNTs over the TF surface; a few agglomerations are observed in some regions. Figure 13b 

shows SEM micrographs of TFCL-CNT fibers, where again a rather homogeneous distribution 
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of MWCNTs on the fiber surface with less agglomerates is observed. However, Figure 13c 

shows that for TFAC-CNT fibers the MWCNT distribution is significanlty less homogeneous 

than for TF-CNT and TFCL-CNT fibers. This is probably caused by the removal of the FSC and 

the presence of high density of functional groups in localized areas of the fiber surface. These 

results are in agreement with the results of Raman spectroscopy and XPS. 

 

 



23 

 
Figure 13. SEM micrographs of MWCNT-modified aramid fibers. a) TF-CNT, b) TFCL-

CNT, c) TFAC-CNT. 

3.2.4. Raman spectroscopy mapping 

Figure 14 shows Raman mapping of the aramid fiber surface containing the deposited 

MWCNTs. Bright regions represent areas of high intensity of the MWCNT 2D band, while dark 

regions are fiber areas with low intensity of such a band, i.e. low density of MWCNTs. Mapping 

the TF-CNT fiber surface (Figure 14a) consistently shows many MWCNT-rich zones. The 

distribution of MWCNTs on the fiber surface looks relatively more homogenous for TFCL-CNT 

(Figure 14b), given the mild chlorosulfonic acid treatment carried out. However, the map of the 

TFAC-CNT fibers (Figure 14c) evidence larger MWCNT agglomerations, likely due to the 

removal of the FSC and the aggressiveness of the fiber treatment, leading to localized active 

regions. These results are again in agreement with the SEM and physicochemical 

characterizations presented earlier.  

   
 

Figure 14. 2D Raman band intensity maps of the MWCNTs on the aramid fiber surface. a) 
TF-CNT, b) TFCL-CNT, c) TFAC-CNT. Dimensions in µm. 
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3.2.5. Electrical resistance of MWCNT-modified fibers  

Twaron fibers are electrically insulating materials with conductivity of the order of 1×10-15 S/cm 

[45]. Upon MWCNT deposition, the surface of the twaron fibers became electrically conductive. 

Figure 15 shows the electrical resistances of 10 mm long fiber yarns for TF-CNT, TFCL-CNT 

and TFAC-CNT fibers. After the deposition of MWCNTs, the majority of the electrical 

resistance values of the three samples fall in the range of 200 kΩ to 50 MΩ, and a few TF-CNT 

fibers reach ~100 kΩ. MWCNTs deposited onto the surface of aramid fibers promote the 

formation of electrically conductive pathways among adyacent fibers and along the yarn, and the 

chemical treatment does not seem to yield an important global effect in the surface conductivity 

of the fiber. The data scattering might seem high, but this experimental scattering is reasonable 

considering the challenges involved in the deposition of MWCNTs onto engineering fibers, due 

to the difficulty of homogeneously depositing MWCNTs at the nano- and micro-scales (see e.g. 

[20]). This electrical property confers multifunctional capabilities to the aramid fibers, such as 

the ability to be used as electrical filaments [46,47], as strain sensors [48] or for “structural 

health” monitoring in multiscale hierarchical composites [49,50]. 

 
Figure 15. Electrical resistance of TF-CNT, TFCL-CNT and TFAC-CNT fibers. 

4. Conclusions 
Oxidized multiwall carbon nanotubes were deposited on as-received (commercial) Twaron fibers 

and on chemically modified Twaron fibers (with “sizing” removed) using chorosulfonic acid at 

0.2 % w/w or using a mixture of nitric and sulfuric acids at 3.0 M. FT-IR and Raman analyses 

showed certain evidence of the success of the chemical treatments, but the surface changes 



25 

detected by these techniques were only moderate due to the high crystallinity of the aramid fiber. 

XPS, however, showed conspicuous evidence of fiber surface changes produced by both 

chemical treatments. O=C-NH/C=O and C-O functional groups were observed in higher 

proportion for fibers modified with the nitric and sulfuric acids mixture, in comparison to those 

generated for fibers treated with the chorosulfonic acid or as-received. This suggests that the 

fiber modification based on the nitric and sulfuric acids mixture generates more functional 

groups, but is also more agressive. Both chemical treatments modified the mechanical properties 

of the fibers. The reduction of strength, ultimate strain, and elastic modulus of the fibers treated 

with chorosulfonic acid was small. However, those treated with the mixture of nitric and sulfuric 

acids experienced more important reductions in their mechanical properties.  

Regarding MWCNT deposition on the surface of aramid fibers, Raman spectroscopy and XPS 

presented conspicuous evidence of the MWCNT deposition on the aramid fiber. The results 

suggest that the presence of the fiber surface coating or a mild chlorosulfonic treatment promote 

increased interactions between the fiber and oxidized MWNCTs. Confirmation of these results 

was obtained by SEM images and Raman intensity maps, pointing towards a more homogeneous 

distribution of MWCNTs on the fiber surface for fibers without treatment and for those treated 

with chlorosulfonic acid.  

The results of electrical resistance measurements of 10 mm long fiber yarns span over similar 

values (0.2-50 MΩ) for as-received or chemically modified fibers. The similarility of these 

values regardless of the fiber treatment suggests that the establishment of electrically percolative 

networks occurs predominantly by side-contact between adyacent fibers, and is not greatly 

affected by the fiber treatment. The electrical resistance of the fiber yarns (~200 kΩ/cm) and 

their excelent mechanical properties render multifunctional properties that may be exploited in 

applications related to energy storage and transportation, as well as structural elements in 

multiscale hierarchical composites which are able to self-sense their damage.  
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