Systemic endotoxaemia in peritoneal dialysis patients

1Ali M Shendi MD, 2Nathan Davies PhD, 3Andrew Davenport FRCP

1Renal Division
Department of Internal Medicine
Zagazig University, Egypt
2Institute for Liver & Digestive Health
Royal Free Hospital
UCL Medical School
3UCL Centre for Nephrology
Royal Free Hospital
University College London
Rowland Hill Street
London NW3 2PF

Address for correspondence
Ali M Shendi ali.shendi@zu.edu.eg
Nathan Davies nathan.davies@ucl.ac.uk
Andrew Davenport andrewdavenport@nhs.net

contact andrewdavenport@nhs.net

UCL Centre for Nephrology
Royal Free Hospital,
University College London
Rowland Hill Street,
London NW3 2PF
tel 44-2074726457
fax 44-2073178591

Funding: None

short title endotoxaemia in peritoneal dialysis patients

key words peritoneal dialysis endotoxin icodextrin nutrition bioimpedance

word count abstract 250
body 1428
Tables 1
references 21

The authors have no conflicts of interest
Previous reports have linked systemic endotoxaemia in dialysis patients to increased markers of inflammation, cardiovascular disease and mortality. Many peritoneal dialysis (PD) patients use acidic, hypertonic dialysates which could potentially increase gut permeability resulting in increased systemic endotoxaemia. However, the results from studies measuring endotoxin peritoneal dialysis (PD) patients have been discordant. As such we measured systemic endotoxin in a cohort of 55 PD outpatients attending for routine assessment of peritoneal membrane function; mean age 58.7±16.4 years, 32 (58.2%) male, 21 (38.2%) diabetic, median duration of PD treatment 19.5 (13-31) months, 32 (58.2%) using 22.7 g/L dextrose dialysates, and 47 (85.5%) icodextrin. The median systemic endotoxin concentration was 0.0485 (0.0043-0.103) EU/ml. We found no association between endotoxin levels and patient demographics, markers of inflammation, serum albumin, N-terminal pro-brain natriuretic peptide, extracellular volume measured by bioimpedance, blood pressure, peritoneal dialysis prescriptions or peritoneal membrane transporter status, or medications. The measurement of endotoxin can be affected by failure to effectively release protein bound endotoxin prior to analysis on the one hand, and on the other by contamination when taking blood samples, processing and storing the samples. Additionally, the presence of fungal β-glucan from fungal cell walls and the use of different assays to analyse endotoxin can also give differing results. These factors may help to explain the disparate results reported in different studies. Our study would suggest that
exposure to peritoneal dialysates does not affect systemic endotoxaemia, and
that endotoxin is not a major cause of inflammation in adult PD outpatients.

Introduction

Patients with chronic kidney disease (CKD), especially dialysis patients
are at increased risk of inflammation [1], which drives muscle wasting,
malnutrition, and vascular calcification, cumulating in an increased risk of
mortality [1,2]. There are many potential sources of inflammation, including
direct inflammatory effects of uraemic toxins, to increased peri-odontal disease
due to underlying kidney bone mineral disease, absorption of toxic products
from the gastrointestinal biome, contamination of dialysis fluids and catheter
related infections. As circulating i cytokines and other inflammatory mediators
are normally cleared by the kidney, then patients with CKD would be expected to
have elevated levels [3].

There has been recent interest in circulating endotoxin as a cause of
inflammation in kidney dialysis patients [4,5]. Endotoxins are complex
lipopolysaccharides, ranging in size from 10 to 1000 kDa (larger masses form due
to hydrophobic aggregation), present in the cell wall of gram negative bacteria.
Endotoxins trigger activation of the innate immune system, as well as activating
monocytes and macrophages through their CD14/Toll like receptor 4 complex
activation. As endotoxins are such potent activators of inflammation, there are
natural host defence mechanisms designed to rapidly bind and detoxify any
circulating endotoxin.

Previous reports have linked circulating endotoxin levels with
hypertension and extracellular volume overload [6,7] and systemic inflammation
[5,6], whereas other reports have shown no association with volume status, or
markers of systemic inflammation [4]. In view of the differing reports we set
out to measure endotoxin and volume status in a cohort of peritoneal dialysis
(PD) patients.

Methods

We measured plasma endotoxin in adult PD patients attending for
peritoneal membrane assessment [8]. Patients who had peritonitis or PD
catheter exit site infection or hospital admission in the preceding three months
were excluded. In addition to standard laboratory biochemical measurements,
we measure brain-natriuretic peptide (NT-proBNP) (Roche Integra, Roche
diagnostics, Lewes, UK), and C reactive protein (CRP) with an assay with a
detection limit ≤1.0 mg/L [9]. Blood samples for endotoxin were collected
aseptically into sterile heparinised tubes, and plasma separated by
centrifugation and stored at -80°C until assayed. All phlebotomy equipment,
pipette tips and Eppendorf storage tubes were checked for endotoxin
contamination, and all apparatus had no detectable endotoxin (<0.0005 EU/ml).
Samples were assayed using endochrome-K lysate (Charles River Laboratories,
France) with manufacturer supplied depyrogenated equipment, and the kinetic
chromogenic limulus amoebocyte lysate analysed using FLUOstar Omega microplate readers with MARS data analysis software (BMG Labtech, Offenburg, Germany) and read at 405 nm and compared to standard curves [10]. Extracellular water (ECW) and body composition were measured using multifrequency bioelectrical impedance (MFBIA) (InBody 720, Seoul, South Korea) [11], after patients had emptied their bladder and peritoneal dialysate drained out [12,13],

Patients provided informed consent for this observational study which was approved by London Camden and Islington research ethics committee (13/LO/0912) and registered (ISRCTN70556765). All patient data was anonymised.

Statistical analysis

Data is presented as mean ± standard deviation, median (interquartile range), or percentage. Data was analysed using D’Agostino & Pearson normality test, and standard statistical tests; t test and Mann Whitney U test, ANOVA, Kruskal Wallis and Chi square test, with appropriate post hoc corrections for multiple testing (Tukey or Dunn) and Spearman correlation. For multivariable models, nonparametric data was log transformed if required. Statistical analysis used Prism 7.0 (Graph Pad, San Diego, USA) and SPSS 24 (IBM SPSS Statistics, Armonk, New York, USA). Statistical significance was taken as p<0.05.

Results
We measured endotoxin in 55 patients (table 1). The median endotoxin concentration was 0.0485 (0.0043–0.103) EU/ml, with endotoxin undetectable (<0.005 Eu/ml) in 12 patients. There was no difference in endotoxin levels according to primary renal disease (table 1). There were no statistically significant correlations between endotoxin concentrations and any of the variables in table 1.

Neither multivariable models or binary logistic models (above and below median) showed any significant association between endotoxin concentrations and potential variables of interest (serum albumin, NT-proBNP, CRP, systolic blood pressure, pulse pressure, ECW, body composition, Davies Co-morbidity grade, primary renal disease, residual renal function, peritoneal membrane transporter status or peritoneal or total urea clearance).

Discussion

The results from previous studies reporting on systemic endotoxaemia in peritoneal dialysis patients have been discordant, both in terms of the circulating concentrations reported and association with systemic inflammation and outcomes. We report a median circulating endotoxin concentration of 0.05 Eu/ml, which compared to reports of as low as 0 Eu/ml [14], up to 15.9 Eu/ml [15]. Generally, PD patients from South East Asia have been reported to have greater endotoxin levels [16] than those from Western Europe [18].

Studies have used assays from different manufacturers, with varying detection limits from 0.005 to 0.01 to 1 Eu/ml [5,10,15]. As such this may
partially explain some of the differences reported between studies. These assays were originally developed to detect very low levels of endotoxin in water as part of sterility quality control procedures. As endotoxin is such a potent activator of inflammation, plasma endotoxin is highly regulated by binding to albumin and other proteins such as lipopolysaccharide binding protein, and intestinal alkaline phosphatase to minimise free plasma endotoxin. Measuring endotoxin therefore requires heat pre-treatment of samples to ensure that all endotoxin is freed from plasma protein and so becomes available for measurement. On the other hand, samples may be contaminated by addition of exogenous endotoxin from numerous sources including phlebotomy equipment, blood sampling tubes, storage tubes. More recently it has been recognised that the most common assay, the limulus Amoebocyte Lysate (LAL) assay is not endotoxin-specific and can be activated by (1→3)-β-glucan, a component of fungal cell walls leading to false positive signals [19]. Fungal peritonitis is more commonly reported from South East Asia than Europe [20,21], and differences in environmental exposure to fungi may account for the much higher endotoxin levels reported from Hong Kong and Taiwan [15,16].

Previous observational studies in dialysis patients have differed, with reports that patients with higher plasma endotoxin levels have better survival [18], whereas others described a greater incidence of cardiovascular disease and increased mortality [4]. We found no association between volume status and NT-proBNP, which is in keeping with previous European studies [4,17]. Studies in a highly selected small group of elderly patients with chronic kidney disease
suggested that endotoxin levels were positively associated with systemic blood
pressure and vascular stiffness [7], whereas we found no association with blood
pressure and endotoxin levels, and similarly others have shown no association
between cardiac magnetic resonance and pulse wave velocity findings with
endotoxin levels [4,17]. Similarly, there have been varying results reporting an
association between systemic endotoxin levels and markers of inflammation, with
studies reporting a positive association with CRP [5,18] and monocyte
chemoattractant protein-1 [15], whereas others have reported no association
with CRP [7], or the inflammatory cytokines interleukin-6 and tumour necrosis
factor alpha [14]. The largest study reporting a positive association between
endotoxin and CRP, also reported a negative association with albumin, and yet
patients with the greatest endotoxin levels had greater survival [18]. As assays
are designed to measure total endotoxin following protein denaturation, and as
any free endotoxin is rapidly bound in plasma by albumin, this may explain why
the majority of published studies (and our own) have failed to demonstrate any
association between endotoxin levels in healthy PD outpatients and inflammation.
This is supported by one study which measured circulating bacterial DNA, and
could only demonstrate that endotoxin levels could only account for
approximately 5% of the predicted levels from the observed bacterial DNA [16].
We found no association between the amount of peritoneal dialysis urea
clearance, peritoneal transporter status, use of hypertonic glucose dialysates or
icodextrin and systemic endotoxin levels, which is in keeping with previous
reports [18].
Previous studies have differed widely in reporting endotoxin levels in kidney dialysis patients, with some reporting similar levels for PD and hemodialysis patients [4] and others that PD patients have much lower values [14]. Small, but highly detailed studies have failed to demonstrate an effect of endotoxin levels on blood flow in the abdomen in PD patients, or vascular stiffness or vascular permeability with increased extracellular fluid [17]. Our study reports much lower endotoxin levels than previously reported by earlier observational studies [5,8,16]. We were unable to demonstrate any association between systemic endotoxin levels and markers of inflammation of extracellular volume excess, in keeping with more recent reports [17]. Whether these differences in reports relate to the methods used to take blood samples, sample processing, contamination with fungal β-glucan and different assays remains to be determined. However, our study would suggest that systemic endotoxaemia is not the major cause of inflammation in PD patients.

The authors have no conflict of interest.
The data presented in this paper has not been previously published in part or full form.

Dr Mohamed Ali was in receipt of an International Society of Nephrology training scholarship.
References


8. NKF-DOQI CLINICAL PRACTICE GUIDELINES FOR PERITONEAL DIALYSIS ADEQUACY. Assessment of Nutritional status. Am J Kid Dis 2007; 30(3 Suppl 2), S125-9


Table 1. Patient demographics, peritoneal dialysis prescriptions, body composition and laboratory investigations. Results expressed as integers, mean ± standard deviation, median (interquartile range) or percentage.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>32 (58.2%)</td>
</tr>
<tr>
<td>Age years</td>
<td>58.7 ±16.4</td>
</tr>
<tr>
<td>Diabetic</td>
<td>21 (38.2)</td>
</tr>
<tr>
<td>Ethnicity White/Asian/Black</td>
<td>20(36.4%);12(21.8%);23 (41.8%)</td>
</tr>
<tr>
<td>Months of peritoneal dialysis treatment</td>
<td>19.5 (13 - 31)</td>
</tr>
<tr>
<td>Endotoxin levels: primary renal disease</td>
<td></td>
</tr>
<tr>
<td>Diabetic nephropathy</td>
<td>0.036 (&lt;0.005-0.158) Eu/mL</td>
</tr>
<tr>
<td>Hypertensive renal disease</td>
<td>0.049 (0.013-0.075) Eu/mL</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
<td>0.078 (0.017-0.107) Eu/mL</td>
</tr>
<tr>
<td>Interstitial nephritis</td>
<td>0.042 (0.019-0.114) Eu/mL</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>0.045 (0.022-0.076) Eu/mL</td>
</tr>
<tr>
<td>PD mode CAPD/APD/CCPD</td>
<td>16(29.1%);8(14.5%);31(56.4%)</td>
</tr>
<tr>
<td>Icodextrin L/day</td>
<td>2.0 (1.15-2.0)</td>
</tr>
<tr>
<td>Icodextrin usage</td>
<td>47 (85.5%)</td>
</tr>
<tr>
<td>22.7 g/L dextrose L/day</td>
<td>4.5 (0 - 8.4)</td>
</tr>
<tr>
<td>22.7 g/L dextrose usage</td>
<td>32 (58.2%)</td>
</tr>
<tr>
<td>Weekly urinary Kt/Vurea</td>
<td>0.68 (0.09 - 1.98)</td>
</tr>
<tr>
<td>Weekly peritoneal Kt/Vurea</td>
<td>1.31 (0.88 -1.83)</td>
</tr>
<tr>
<td>4 hour dialysate creatinine/serum creatinine</td>
<td>0.74 ±0.12</td>
</tr>
<tr>
<td>Combined urinary urea and creatinine clearance</td>
<td>3.0 (0.3 - 7.9)</td>
</tr>
<tr>
<td>Systolic blood pressure mmHg</td>
<td>143 ± 27.1</td>
</tr>
<tr>
<td>Pulse pressure mmHg</td>
<td>35.7 ±16.2</td>
</tr>
<tr>
<td>Intracellular water L</td>
<td>22.9 ±5.2</td>
</tr>
<tr>
<td>Extracellular water L</td>
<td>14.8 ±3.4</td>
</tr>
<tr>
<td>Weight kg</td>
<td>74.5 ± 16.5</td>
</tr>
<tr>
<td>Skeletal muscle mass kg</td>
<td>27.6 ± 6.8</td>
</tr>
<tr>
<td>Fat mass kg</td>
<td>23.4 ± 9.9</td>
</tr>
<tr>
<td>Body mass index kg/m²</td>
<td>26.6 ± 5.0</td>
</tr>
<tr>
<td>Protein nitrogen accumulation g/kg/day</td>
<td>0.97 ± 0.27</td>
</tr>
<tr>
<td>Glycated haemoglobin mmol/mol</td>
<td>34.4 (32.2 - 46.4)</td>
</tr>
<tr>
<td>Haemoglobin g/L</td>
<td>108 ±20.4</td>
</tr>
<tr>
<td>Serum albumin g/L</td>
<td>38.1 ±3.5</td>
</tr>
<tr>
<td>Serum corrected calcium mmol/L</td>
<td>2.34 ±0.14</td>
</tr>
<tr>
<td>Serum phosphate mmol/L</td>
<td>1.58 ±0.42</td>
</tr>
<tr>
<td>C reactive protein g/L</td>
<td>2.0 (1.0-8.0)</td>
</tr>
<tr>
<td>Blood glucose mmol/L</td>
<td>5.8 (4.8 - 8.2)</td>
</tr>
<tr>
<td>Serum sodium mmol/L</td>
<td>136 ±4.3</td>
</tr>
<tr>
<td>Serum potassium mmol/L</td>
<td>4.3 ±0.5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Serum urea mmol/L</td>
<td>19.9 ±5.5</td>
</tr>
<tr>
<td>Serum creatinine umol/L</td>
<td>739 (523 - 1075)</td>
</tr>
<tr>
<td>N terminal probrain natriuretic peptide pg/mL</td>
<td>2233 (894 - 6317)</td>
</tr>
<tr>
<td>Number of anti-hypertensive medications</td>
<td>1 (0.25 - 2.0)</td>
</tr>
<tr>
<td>Patients prescribed anti-hypertensives</td>
<td>40 (72.7%)</td>
</tr>
<tr>
<td>prescription calcium binders tablets/day</td>
<td>0 (0-3)</td>
</tr>
<tr>
<td>prescription non-calcium binders tablets/day</td>
<td>0 (0-2.7)</td>
</tr>
<tr>
<td>Davies co-morbidity grade</td>
<td>1 (0-1)</td>
</tr>
</tbody>
</table>