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Introduction  

Routine immunisation against infectious diseases of childhood prevents 2-3 million annual 

deaths worldwide [1]. At the end of 2016, the UK’s routine childhood vaccine programme 

protects against twelve vaccine-preventable diseases (VPDs) and is administered within the 

first five years of life (Table 1). Potential changes to this schedule such as adding a new 

vaccine or changing the age at which a vaccine is administered are evaluated on a case-by-

case basis, often informed by cost-effectiveness analysis [2-6] focussed on the disease 

directly affected.  However, alterations to one component of a vaccine schedule may have 

additional, indirect effects on the burden of other diseases covered by vaccines administered 

at the same time or later in the schedule.  

For example, it is well documented that the measles-mumps-rubella (MMR) vaccine scare in 

the late 1990s, based on now discredited [7] research from 1998 [8], induced a dramatic 

reduction in the uptake of the MMR vaccine (from 92% in 1995 [9] to 79% in 2003 [10] at 2 

years old), resulting in resurgence of measles [11] and outbreaks of mumps. An indirect effect 

of this scare was reduced uptake of the vaccine protecting against Haemophilus influenza 

type b (Hib) delivered at the same point in the schedule as the MMR vaccine: Hib uptake at 

2 years declined to 93% in 2003 [10] from a record high 96% in 1996 [12] resulting in 4-fold 

increase in invasive Hib cases: from 51 in 1996 to 241 cases in 2003 [13]. 

Assessing the potential size of indirect effects associated with changes to a vaccination 

programme is particularly relevant in the context of national routine childhood vaccination 

programmes which often change as vaccine preventable diseases emerge as significant 

threats to population health and as new vaccine products become available.  For example, in 

the UK, recent changes to the routine childhood immunisation programme include the 

addition of the Hib/MenC vaccine booster dose in 2006, the introduction of vaccination 

against Pneumococcus from October 2006, the introduction of the Rotavirus vaccine in 2013 
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[14], the addition of the vaccine against Meningitis B from September 2015 [15] and the 

removal of the primary dose vaccine against Meningitis C from July 2016 [16].  

The direct benefit of vaccinating against an individual VPD is based on formulation and 

application of mathematical models used to simulate disease outcomes under different 

vaccine scenarios. These can be mathematical and statistical models that consider the historic 

trends in disease burden and effective vaccine coverage and employ statistical techniques to 

make future predictions [17]. Alternatively, dynamic disease transmission models that 

estimate the temporal evolution of (age or risk-stratified) cohorts of Susceptible, Exposed, 

Infected and Recovered populations (SEIR modelling framework – reviewed in Appendix A 

with more details in [18]) may be utilised. Dynamic transmission models are based on disease 

epidemiology, parametrised to setting-specific data (e.g. the POLYMOD contact patterns 

data obtained across UK are relevant to those infections transmitted by the respiratory or 

close-contact routes [19]) and calibrated to reproduce historic disease burden (e.g. disease 

notifications, hospitalisations or laboratory confirmed incidence or prevalence data). The 

calibrated models project how disease burden is likely to change under different vaccination 

strategies and, combined with health economic analysis, can be used to identify optimal 

schedules for vaccination against individual VPDs. (e.g. [2-6]).  

 

However, there is currently no accepted method to assess the indirect impact of changes to a 

schedule on the residual disease burden of a set of VPDs, or to compare the residual per-

disease and overall burden of different vaccination schedules. In our previous work [20] we 

developed a modelling framework to estimate, for a given vaccine schedule, the age-

dependent effective vaccine coverage (uptake times vaccine efficacy) for each disease within 

a set of diseases comprising a vaccine schedule.  This enabled us to project the vector of 

effective vaccine coverage, at different time points over the first five years of life, for a set 

of VPDs. However, the modelling framework in [20] was limited because it did not extend 
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to disease burden. Therefore, in this work, which was at the request of and commissioned by 

the Department of Health - Health Protection Analytical Team (DH HPAT), we developed a 

modelling framework to quantify the disease burden, expressed in quality adjusted life years 

(QALY) lost per year, at different levels of effective vaccine coverage against a set of VPDs.  

By combining this framework with the model from [20], we aim to derive estimates of the 

vectors of the effective vaccine coverage (time-averaged over the first five years of life) and 

residual disease burden for a set of VPDs associated with a given vaccine schedule. 

This gives a method to assess the benefit of candidate vaccination schedules across a set of 

VPDs, allowing direct schedule level comparison of benefits that accounts for any indirect 

effects. 

 

To demonstrate the feasibility and utility of this work, and on advice of our colleagues within 

the DH HPAT, we populated the framework with the VPDs included in the current routine 

childhood immunisation schedule for the UK. We applied our methodology to the schedule 

at the end of 2016 and 3 recent or plausible variations of this schedule. 

 

Materials and Methods  

 

We first describe how we obtained, for each of a set of VPDs a quantified relationship 

between the effective coverage against that disease and the residual burden of disease. We 

then describe how we used these relationships to quantify the residual burden of disease 

associated with 4 distinct vaccine schedules relevant to the UK routine childhood vaccination 

programme.  

 

Modular framework for projecting disease burden at different levels of effective 

coverage of vaccination  



 4 

 

We developed a modular framework for estimating the burden of remaining disease 

associated with a vaccination schedule, with each module concerning a single vaccine 

preventable disease. For each VPD considered, the steps involved in estimating the burden 

of disease were: 

1) to identify a published model of the impact of differing levels of effective coverage 

of vaccination on disease burden, or in the absence of a suitable model to develop 

one, or if infeasible to develop one to identify historic data linking effective coverage 

of vaccination to disease burden;   

2) to convert the burden of disease obtained from the process at step (1) into an annual 

loss of quality adjusted life years (QALYs). 

3) to combine (1) and (2) to estimate the residual QALY loss associated with that disease 

at different levels of effective coverage of vaccination. 

 

The approach taken in step (1) for the 12 VPDs currently included in the UK routine 

childhood vaccination campaign is set out in detail in Appendix A. To summarise, for those 

diseases where a mathematical model was available (summarised in Table S3 of Appendix 

A), we varied the vaccine coverage for a fixed vaccine efficacy and projected the disease 

burden as the number of annual cases of the disease in all ages  at different levels of effective 

coverage among children under 5 years of age (vaccine coverage among children under 5 

years of age times vaccine efficacy). Using the constraints provided by the known disease 

burden before vaccination started and by assuming that at 100% effective coverage no disease 

burden is expected (except in the cases of Men B, rotavirus and Pneumococcal – see sections 

A13 and A14 in Appendix A for reasoning) we then determined a relationship between 

disease burden and effective coverage of the associated vaccine.  
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Where no mathematical models could be feasibly applied1, historic publicly available data 

on disease burden and vaccination for England was used. Across different diseases the unit 

of disease burden was either the number of notified or laboratory confirmed cases of the 

disease (stratification per disease is outlined in Table S3 in Appendix A). In this case, the 

historically available data on vaccine uptake, efficacy and burden were combined to 

determine a relationship between disease burden and effective coverage among children 

under 5 years of age of the associated vaccine.  

 

We identified and were able to use or adapt published models relating to Hib, Rotavirus, 

Pnemococcal and Men B. For measles and the remainder of the diseases (polio, diphtheria, 

tetanus, pertussis, Men C, mumps and rubella) we had to resort to use of historical data on 

effective coverage and disease burden. 

 

At step (2) we calculated the QALY loss per disease case using the method described by 

Sassi in [21] with details given in Appendix B. This uses published disability weights, 

duration of disease (as days per year) and discounting (currently at 3.5%). For some diseases, 

such loss of QALYs per episode of the disease values were available from the literature and 

we checked their comparability with the multiplier determined by our chosen method from 

Sassi [21].  

 

At step (3), we simply scaled the disease burden for each disease obtained at step (1) by the 

respective QALY multiplier obtained at step (2) to give the relationships between effective 

coverage among the children under 5 years of age and the estimated residual QALY loss 

associated with that disease.  

                                                 
1 Because vaccination has been successful and disease burden is low, utilising transmission models 

is ether not needed (e.g. polio, diphtheria, tetanus), or the application of the model is longer than our 

timescale (e.g. Men C, mumps, rubella and pertussis). 
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Once these steps were completed for all vaccine preventable diseases considered, the total 

residual burden of disease associated with a given schedule was obtained by assuming that 

the residual burdens associated with different diseases are independent and additive and then 

summing across diseases. 

 

Application to schedules relevant to the routine childhood immunisation programme 

in the UK 

 

To illustrate the feasibility and utility of our approach, we applied it to the set of diseases that 

are currently (December 2016) included within the routine childhood vaccination programme 

in the UK. The childhood vaccination programme in the UK includes five scheduled GP 

visits timed at 2,3,4,12-13 months and 40-60 months and comprises immunisation against 

twelve infectious diseases (Table 1): Polio, Diphtheria, Pertussis, Tetanus, Neisseria 

Meningitides Group C (Men C), Haemophilus influenzae B (Hib), Measles, Mumps, Rubella, 

Pneumococcal disease (Pneumo), Rotavirus and Neisseria Meningitides Group B (Men B).  

 

Full details of the models used, adapted and developed are given in Appendix A. All of the 

disease transmission models we used have been calibrated to historic data on disease burden 

from Public Health England (PHE) for England or England and Wales. Within the calibrated 

models, projections were made for disease burden, in terms of number of disease cases in all 

ages, at different levels of effective vaccine coverage. 

 

The QALY multipliers calculated at step (2) for the 12 diseases are given in Appendix B, 

based on which, along with the output of step (1), we quantified the relationship between 

effective coverage and QALY loss for each of the 12 diseases.    
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To illustrate the feasibility of our approach and how it might bring useful insights on the 

impact of childhood vaccination in the UK that are currently not available, we applied our 

techniques to four different vaccination schedules relevant to the childhood vaccine 

programme in the UK (schedules A-D outlined in Tables 1-4). These reflect A) the vaccine 

schedule that applied in July 2016, B) a plausible alternative to this schedule with different 

products and timings, C) the schedule that applied in August 2015 with no vaccination against 

Men B and D) the current (December 2016) schedule. The differences between vaccine 

schedules A-D are illustrated in Table 5.  

 

For each of these schedules, we applied the simulation model from [20] (details in Appendix 

C) to estimate the effective coverage against each of the 12 diseases over the first 60 months 

of life. The simulation accounts for observed relationships between age at vaccination offer, 

the number of opportunities for a previous adverse experience of vaccination and uptake.  We 

then calculated a vector of effective coverage for each disease by taking an average of the 

projected effective coverage over 0-60 months (using the method from section A3.4 in 

Appendix A). For each of these four vectors of effective coverage, we used the projections 

of disease burden at different levels of effective vaccine coverage from our new framework, 

to estimate the associated four vectors of disease burden associated with each schedule.   

 

Results  

 
The relationships between the annual loss of QALYs and effective coverage among the 

children under 5 years of age obtained from combining our analysis of the models (for four 

diseases) and data (for eight diseases) (Appendix A) and the calculated QALY multiplier for 

each disease (Appendix B) are shown in Figure 1. 

For each of the 4 schedules A-D, the vectors of effective coverage among the children under 

5 years of age against each disease, as estimated using the simulation model [20], and the 



 8 

corresponding estimates of residual burden of disease are shown in Table 6, which also shows 

the total residual burden of disease associated with each schedule. 

 

Mindful that our intent is to demonstrate the feasibility and utility of this approach rather 

than provide a definitive analysis of schedules, we focus on those results that illustrate the 

potential of this approach.  First, the results in Table 6 and Figure 2 suggest that the 4 

schedules explored differ by at most 19% (reduction in schedule C compared to schedule B) 

in terms of the residual burden of disease expressed in QALYs loss. The estimated burden 

for each disease within each schedule suggests that the largest residual burden of disease is 

associated with infections of measles (around half of all residual burden in different 

schedules) and pneumococcal disease (around a quarter of all residual burden in different 

schedules). The residual burden of measles infections is large due to the low time-averaged 

effective vaccine coverage, whereas the large burden due to pneumococcal infections is 

associated with strains not covered by the vaccine used currently. The differences between 

the estimates of residual burden of disease associated with schedules A and B (9%) illustrate 

the potential benefits of scheduling vaccination to be completed at younger ages, with 

benefits driven by two effects within the model - younger vaccination being associated with 

slightly higher uptake [20] and younger vaccination giving higher time-averaged protection 

among the cohort of children under 5.  

 

The value of having an approach that incorporates indirect effects is illustrated by comparing 

schedules A and C or schedules A and D. Here, our analysis suggests that vaccinating against 

Men B (in schedule A and not in schedule C) reduces the overall burden. However, the 

benefits of vaccinating against Men B are tempered slightly by the additional injections at 

2,4 and 12 months having the indirect effect of slightly reducing uptake of later vaccinations 
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against other diseases and hence inducing a slight increase in the residual QALY loss in the 

other diseases in the schedule. 

 

Removing one dose of the Men C vaccine (in schedule D compared to schedule A) reduces 

the averaged effective coverage in children under 5 years of age against Men C, hence 

directly increasing the burden associated with this disease. However, within the model, 

having one less injection indirectly increases the averaged vaccine effective coverage of the 

vaccines later in the schedule inducing a reduction in the residual QALY loss in these 

diseases and a reduced overall disease burden.  

 

Discussion 

 

The novel approach set out in this paper allows disease-specific models of the impact of 

immunisation to be combined with schedule designs and a quantified model of vaccine 

uptake to give high-level assessments of vaccine schedules. We consider that this approach 

has the potential to augment the other analyses and knowledge available to decision makers 

faced with choosing between candidate schedules as new products become available, others 

are withdrawn and as new threats from vaccine preventable disease emerge. In addition to 

putting the benefits of each component of a schedule in the context of the total residual burden 

of disease associated with the set of vaccine preventable diseases considered, the approach 

we have developed allows account to be taken of indirect or spill-over effects, whereby one 

change to one component of the schedule may enhance or undermine uptake of other 

components of the programme.  Our work could thus be useful in highlighting the trade-offs 

between different candidate vaccine schedules in a way that is not currently done. 
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While we have demonstrated the feasibility of this approach using the example of the UK 

childhood immunisation schedule, the modular structure of our approach means that 

incorporating immunisation against different diseases (for instance Respiratory Syncytial 

Virus) is relatively straightforward, so long as a quantified relationship between effective 

coverage and estimated residual burden of that disease is available. Similarly, as improved 

or updated disease specific models become available, these can simply be used instead of the 

disease specific models we have implemented (given in Appendix A).    

 

This flexibility hinges on the key limiting assumptions of our work that the health benefits 

conferred by immunisation against distinct diseases can be considered independent and 

additive. This is one of the three possible approaches in quantifying the burden of diseases 

with different co-morbidities [22]-[23]. Specifically, we assume that the effectiveness of 

immunisation against one disease is independent of whether an individual is immunised 

against another disease.  We also assume that known significant short-term vaccine 

interactions are avoided in the design of candidate schedules.  The separate assumption of 

additive benefits is that the disease prevented by different immunisations would have been 

spread across a sufficient pool of people that competing cause-effects can be ignored. The 

impact of these assumptions on the estimated results may be tempered by the fact that the 

component disease models used have been developed with or calibrated against data obtained 

in the context of a multi-disease immunisation programme.   

Inevitably, a framework that builds on disease-specific models of immunisation impact and 

a quantified behavioural model of uptake carries forward the limitations associated with those 

component models. The limitations of SEIR models are widely recognised [24], there are 

known uncertainties around employment of regression models to make predictions for 

infectious disease spread and vaccination [25] and we stress that the QALY loss calculation 

study in Appendix B was intended to give a consistent approach fit for the purpose of this 
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feasibility work and not to provide definitive QALY loss estimates. For the inputs to the 

simulation model in [20], partial-uptake of a primary course of vaccination is not considered 

and we assume that missed vaccines will not be given at the next or additional visit. These 

assumptions potentially underestimate effective vaccine coverage and overestimate disease 

burden as even initial doses of most vaccines have some efficacy against VPDs. We note that 

these assumptions were made to give plausible estimates consistent with observed uptake 

data and they could be relaxed should more granular data become available.  

We also made specific assumptions as to what a vaccine schedules comprise, and specifically 

considered plausible schedules to be those that are designed to avoid major vaccine 

interactions. There is a scope in future, when extending our model, to relax these 

assumptions. 

 

We should also note that the estimated indirect effects we report stem from effects included 

in the simulation model developed by our team previously to project the schedule specific 

time varying vector of effective coverage against a set of vaccine preventable diseases. The 

development of that simulation model was informed by the qualitative literature on vaccine 

uptake and calibrated to be consistent with historic uptake data, but its predictive accuracy 

has not been formally assessed.  Indeed, for the potential of the approach we outline in this 

paper to be fully realised, collaborative research effort is required between experts in vaccine 

uptake and vaccine hesitancy, and quantitative modellers to construct quantified behavioural 

models of vaccine uptake in the context of multi-disease childhood immunisation 

programmes. This is potentially an area of work that would benefit from the emerging 

discipline of behavioural operational research [26]. 
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Conclusions 

We have successfully developed and demonstrated the feasibility of a novel analytical 

framework to compare the impact of different candidate vaccination schedules against a set 

of vaccine preventable diseases, illustrating the approach with results based on the UK 

routine childhood immunisation programme. Intended to augment and build upon disease-

specific epidemiological and health economic modelling, this work presents an important 

step towards providing decision-makers means for exploring the direct and indirect trade-

offs between different candidate schedules and informing a strategic approach to adapting 

vaccination schedules to reduce further the burden of vaccine preventable disease.  
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