BMI is negatively associated with telomere length; a collaborative cross-sectional meta-analysis of 72 observational studies


Affiliations

1NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Department of Complex Genetics, Maastricht University, The Netherlands 2NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Department of Toxicology, Maastricht University, The Netherlands
3 Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
4 Östersund Hospital, Department of Medicine, Sweden
5 Twin Research & Genetic Epidemiology, King’s College London, United Kingdom
6 NIHR Biomedical Research Centre at Guy’s and St. Thomas’ Foundation Trust, London, UK
7 Cell and Molecular Biology, Madras Diabetes Research Foundation, Gopalapuram, Chennai, India
8 Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
9 Population Sciences Branch of the National Heart, Lung, and Blood Institute, NIH, NHLBI’s Framingham Heart Study, Framingham, MA, USA
10 Department of Mathematical and Statistical Sciences, University of Colorado – Denver, Denver, CO, USA
11 Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
12 Cardiovascular Genetics Division, Department of Medicine, University of Utah, Salt Lake City, Utah USA
13 Division of Epidemiology, Human Genetics, and Environment Sciences, University of Texas Health Science Center- Houston, Texas, USA
14 Department of Molecular Biology and Genetics, B.S.R.C. "Alexander Fleming", Athens, Greece
15 Department of Family Medicine, Medical University of South Carolina, Charleston, SC, USA
16 Division of Cardiology, San Francisco General Hospital, San Francisco, CA, USA
17 Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.

And Department of Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel.
Centre for Cognitive Ageing and Cognitive Epidemiology, and Medical Genetics Section and Centre for Genomics and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom

Department of Preventive Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA

Department of Biosciences, University of Helsinki, Helsinki, Finland

Department of Health, National Institute for Health and Welfare, Helsinki, Finland

Cancer Prevention and Control Program, Georgia Regents University Cancer Center, Augusta, GA, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC

Epidemiology Unit, Hebrew University-Hadassah School of Public Health and Community Medicine, Jerusalem, Israel

Department of Cardiology, Hadassah University Medical Center, Jerusalem, Israel

Department of Cardiology, Triemli Hospital, Zurich, Switzerland

Centre for Healthy Brain Ageing, Psychiatry, UNSW Australia, Sydney, Australia

Department of Neurology, Medical University Innsbruck, Innsbruck, Austria, and Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom

Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington DC, USA

Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova, Italy
31 Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
32 The Copenhagen General Population Study, Dept. of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
33 Institute of Nutrition and Food Technology University of Chile, Chile
34 Department of Epidemiology and Public Health, University College London, UK.
35 Mayo Clinic College of Medicine, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Rochester, MN, USA
36 Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
37 Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
38 Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
39 CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
40 Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
41 Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
42 Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
43 Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
44 Department of Internal Medicine Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
45 Department of Medicine, University of Utah, Salt Lake City Utah, USA (currently at Tulane School of Medicine, New Orleans, Louisiana USA)

46 Department of Public Health, University of Helsinki, Helsinki, Finland

47 Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland

48 National Cancer Institute, NIH, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA

49 Research Unit of Molecular Epidemiology and Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

50 Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, Second University of Naples, Naples, Italy

51 Department of Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense C, Denmark

53 David Geffen School of Medicine at UCLA, Department of Medicine, Los Angeles, CA, USA

54 Stanford University School of Medicine, CA, USA

55 Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland

56 Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands

57 Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands

58 Medical University of Innsbruck, Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck, Austria

59 University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; University of Oulu, Centre for Life Course Epidemiology, Oulu, Finland

60 Department of Anthropology and Center for Studies in Demography and Ecology, University of Washington, Seattle WA 98195

61 The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
62 Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands

63 Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, the Netherlands

64 Pediatrics Unit, Azienda Ospedaliera Universitaria, Senese/University of Siena, Policlinico Le Scotte, Siena, Italy

65 CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands

Other authors in the TELOMAAS group

Göran Roos MD PhD, Umeå University, Department of Medical Biosciences, Umeå University, Umeå, Sweden

Birgitta Stegmayr MD PhD, Umeå University, Department of Public Health and Clinical Medicine, Sweden

Peter Nilsson MD PhD, University Hospital, Malmö, Clinical Sciences Medicine, Sweden

Mats Eliasson MD PhD, Sunderbyn Hospital, Luleå, Department of Medicine, Sweden

Olle Melander MD PhD, University Hospital, Malmö, Department of Clinical Sciences Medicine, Sweden

Tim Spector MD PhD, Twin Research & Genetic Epidemiology, King’s College London, United Kingdom

Abraham Aviv MD, Center of Human Development and Aging, New Jersey Medical School, UMDNJ, Rutgers The State University of New Jersey, Newark NJ, USA

Antony Sunil Adaikalakoteswari PhD, Division of Metabolic and Vascular Health, University of Warwick, Coventry, United Kingdom
Viswanathan Mohan MD PhD, department of Diabetology Madras Diabetes Research Foundation & Dr.Mohans’ Diabetes Specialities Centre, Gopalapuram, Chennai, India
Sofie Bekaert PhD, Bimetra Clinical Research Center Ghent, Ghent University Hospital, Ghent, Belgium
Denil Simon PhD, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
Ernst Rietzschel MD PhD, Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
Marc De Buyzere BSc, Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
Thierry Gillebert MD PhD, Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
Caroline Van daele MD, Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
Michel Langlois MD PhD, Department of Clinical Chemistry, AZ St-Jan Brugge-Oostende AV, Bruges, Belgium
Patrick Segers PhD, IBITECH, Ghent University, Ghent, Belgium
Gui De Backer MD PhD, Department of Public Health, Ghent University, Ghent, Belgium
Dirk De Bacquer PhD, Department of Public Health, Ghent University, Ghent, Belgium
Michael Fenech PhD, Department of Animal Food & Health Sciences, CSIRO, Adelaide BC, Australia
David Hughes PhD, Institute of Food Research, Norwich, United Kingdom
Janet Cross PhD, Institute of Food Research, Norwich, United Kingdom
Helen Murphey PhD, Department of Diabetes and Endocrinology, Ipswich Hospital, Ipswich, United Kingdom
Rosemary C. Temple MD, Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospital NHS Trust, Norwich, United Kingdom
Duncan Fowler MD, Department of Diabetes and Endocrinology, Ipswich Hospital, Ipswich, United Kingdom
Nicoletta Dozio MD, Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospital NHS Trust, Norwich, United Kingdom
Jackie Hughes PhD, Institute of Food Research, Norwich, United Kingdom
Mark Winterbone PhD, Institute of Food Research, Norwich, United Kingdom
Shi-Jen Hwang PhD, Population Sciences Branch of the National Heart, Lung, and Blood Institute, NIH, NHLBI's Framingham Heart Study, Framingham, MA, USA
Daniel Levy MD, Population Sciences Branch of the National Heart, Lung, and Blood Institute, NIH, NHLBI's Framingham Heart Study, Framingham, MA, USA
Daan Kromhout MPH PhD, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
Anthony Kafatos MD PhD, Department of Preventive Medicine and Nutrition Clinic, Medical School, University of Crete, Heraklion, Crete, Greece
Richard M. Cawthon MD PhD, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah USA
Ana V. Diez-Roux MD PhD, Drexel University School of Public Health, Philadelphia, PA, USA
Steve E. Humphries PhD, Department of Cardiovascular Genetics, Institute Cardiovascular Science, University College London, London, United Kingdom
Arch G. Mainous III PhD, Department of Health Services Research, Management and Policy, University of Florida, Gainesville, FL, USA
Marty S. Player MD MSc, Department of Family Medicine, Medical University of South Carolina, Charleston, SC, USA
Charles J. Everett PhD, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
Nir Barzilai, Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
Ian J. Deary MB ChB PhD, Centre for Cognitive Ageing and Cognitive Epidemiology and department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
John M. Starr, MB BS, Centre for Cognitive Ageing and Cognitive Epidemiology, and Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
Thomas von Zglinicki PhD, Institute for Cell and Molecular Biosciences and Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
Carmen Martin-Ruiz PhD, NIHR Biomedical Research Centre at Newcastle upon Tyne, Institute of Neuroscience and Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
Nazmul Huda PhD, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
Laura Kananen BSc, Research Programs Unit, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
Dale P. Sandler PhD, Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
Christine G. Parks PhD, Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
Ronit Sinnreich PhD, Epidemiology Unit, Hebrew University-Hadassah School of Public Health and Community Medicine, Jerusalem, Israel
Barbara Kloekener-Gruissem PhD, Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland and Department of Biology, ETHZ, Zurich
Simon Easteal PhD, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
Peter J. Milburn PhD, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
Stefan Kiechl MD, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
Johann Willeit MD, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
Julia Raschenberger MSc, Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
Susan McCann, PhD, Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo NY, USA
Christine Ambrosone PhD, Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo NY, USA
Andrea A. Baccarelli, Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA USA
Mirjam Hoxha PhD, Department of Clinical Sciences and Community Health, EPIGET - Epidemiology, Epigenetics and Toxicology Lab, University of Milan, Milan, Italy
Pier Alberto Bertazzi MD PhD, Department of Clinical Sciences and Community Health, University of Milan & IRCCS Ca' Granda Maggiore Hospital Foundation, Milan, Italy
Santo Davide Ferrara MD PhD, Department of Cardiac, Thoracic and Vascular Sciences, Unit of Legal Medicine and Forensic Toxicology, University of Padova, Padova, Italy
Massimo Montisci MD PhD, Department of Cardiac, Thoracic and Vascular Sciences, Unit of Legal Medicine and Forensic Toxicology, University of Padova, Padova, Italy
Miryoung Lee PhD, Community Health, Lifespan Health Research Center, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
Stig E. Bojesen, MD PhD DMSc, The Copenhagen General Population Study, Dept. of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
Børge G. Nordestgaard MD DMSc, The Copenhagen General Population Study, Dept. of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
Gladys Barrera RN, Institute of Nutrition and Food Technology University of Chile, Chile
Sandra Hirsch MD MSc, Institute of Nutrition and Food Technology University of Chile, Chile
María Pía De la Maza MD MSc, Institute of Nutrition and Food Technology University of Chile, Chile
Halcyon Skinner PhD, Truven Health, Durham, NC, USA
Kristin Litzelman PhD, National Cancer Institute, Division of Cancer Control and Population Sciences, Rockville, MD, USA
Songwon Seo Ms, Korea Institute of Radiological & Medical Sciences, National Radiation Emergency Medical Center, Seoul, South Korea
An Qiang MPH, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
Sonia Garcia-Calzon PhD, Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain

Guillermo Zalba PhD, Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain

J. Alfredo Martinez MD PhD, Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain and CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain

Miguel Angel Martinez-Gonzalez MD PhD, Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain and CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain

Nancy Adler PhD, Department of Psychiatry, University of California, San Francisco, CA, USA

Steven Grogorich PhD, Department of General Internal Medicine, University of California, San Francisco, CA, USA

David Rehkopf ScD, Department of General Medical Disciplines, Stanford University, Stanford, CA, USA

Jue Lin PhD, Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA

Elisabeth Blackburn PhD, Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA

Elissa Epel PhD, Department of Psychiatry, University of California, San Francisco, CA, USA

Yong Cui MD MSPH, Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
Yu-Tang Gao MD, Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
Xiao-Ou Shu MD PhD, Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
Carly Skamra MD, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
Alexander Sandhu BA, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
QiQuan Huang MD, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Jungwha Lee MPH, PhD, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Richard Pope MD, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Julia Kozlitina PhD, Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
Martha Slattery PhD, Department of Medicine, University of Utah, Salt Lake City Utah, USA
Merja K. Laine MD, Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland; Vantaa Health Centre, Vantaa, Finland.
Johan G.Eriksson MD PhD, Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland.
Urho M. Kujala MD PhD, Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
Rahul Raj MD PhD, Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland.
Heli M Bäckmand, PhD, City of Vantaa, Health and Social Welfare Department, Finland.
Markku Peltonen, PhD Department of Health, National Institute for Health and Welfare, Helsinki, Finland.
Seppo Sarna, PhD, Department of Public Health, University of Helsinki, Helsinki, Finland.
Kendra Schwartz MD, Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, USA
Faith Davis PhD, School of Public Health, University of Alberta, Alberta, Canada
Julie Ruterbusch, Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, USA
Mirjam Hoxha, Department of Occupational and Environmental Health, University of Milan, Milan, Italy
Bridget McCarthy, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
Nathaniel Rothman MD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
Joanne Colt MPH MS, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
Wong-Ho Chow PhD, Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
Mark Purdue PhD, Ontario Institute for Cancer Research, Toronto, Canada
Clemens Baumbach, Research Unit of Molecular Epidemiology and Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
Annette Peters PhD, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
Martina Müller-Nurasyid PhD, Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany and Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany

Michelangela Barbieri MD PhD, Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, Second University of Naples, Naples, Italy

Kaare C. Christensen, Department of Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense C, Denmark

Anu Loukola PhD, Department of Public Health, University of Helsinki, Finland

Tellervo Korhonen PhD, Department of Public Health, University of Helsinki, Finland & University of Eastern Finland, Kuopio, Finland

Pamela AF Madden PhD, Washington University School of Medicine, Saint Louis, USA

Sharon Merkin, David Geffen School of Medicine at UCLA, Department of Medicine, Los Angeles, CA, USA

Katri Räikkönen PhD, Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland

Eero Kajantie MD PhD, Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland

Johan Eriksson PhD DMSc, Department of General Practice and Primary Health Care and Helsinki University Hospital, University of Helsinki, Helsinki, Finland

Pascal Arp, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands

Albert Hofman PhD, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands

Cornelia M. van Duijn PhD, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
André G. Uitterlinden PhD, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
Lyudmyla Kedenko, Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
Bernhard Paulweber, Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
Margot Haun, Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
Barbara Rantner, Division of Genetic Epidemiology, Departments of Medical Genetics, Molecular and Clinical Pharmacology and Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
Angelika Hammerer-Lercher, Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, Innsbruck, Austria
Gustav Fraedrich, Department of Vascular Surgery, Innsbruck Medical University, Innsbruck, Austria
Marietta Stadler, 3rd Medical Department of Metabolic Diseases and Nephrology, Hietzing Hospital, Vienna, Austria
Peter Klein-Weigel, Clinic for Angiology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
M. Geoffrey Hayes PhD, Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Tarry 15-759, 303 East Chicago Avenue, Chicago IL 60611 and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago IL 60611 and Department of Anthropology, Northwestern University, 1810 Hinman Ave, Evanston IL 60208.
CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

FUNDING

For this study, no funding was received.

AUTHOR CONTRIBUTIONS

M.G. wrote the manuscript, researched data and contributed to design and discussion had responsibility for final content.

G.H. contributed to design and discussion and reviewed/edited manuscript.

E.A. contributed to design and reviewed/edited manuscript


M.Z. contributed to design and discussion and reviewed/edited manuscript.

AUTHORS’ LAST NAMES FOR PUBMED INDEXING

Gielen

Hageman
Antoniou
Nordfjall
Massimo
Balasubramanyam
de Meyer
Hendricks
Giltay
Hunt
Nettleton
Salpea
Diaz
Farzaneh-Far
Atzmon
Harris
Hou
Gilley
Hovatta
Kim
Kark
Nassar
Kurz
Mather
Willeit
Zheng
21

Kronenberg
Kollerits
Strandberg
Eisenberg
Duggan
Verhoeven
Schaakxs
Zannolli
Zeegers
Roos
Stegmayr
Nilsson
Eliasson
Melander
Spector
Aviv
Adaikalakoteswari
Mohan
Bekaert
Simon
Rietzschel
De Buyzere
Gillebert
Van daele
Langlois  499
Segers  500
De Backer  501
De Bacquer  502
Fenech  503
Hughes  504
Cross  505
Murphey  506
Temple  507
Fowler  508
Dozio  509
Hughes  510
Winterbone  511
Hwang  512
Levy  513
Kromhout  514
Kafatos  515
Cawthon  516
Diez-Roux  517
Humphries  518
Mainous III  519
Player  520
Everett  521
Deary  522
Barrera
Pía De la Maza
Skinner
Litzelman
Seo
Qiang
Garcia-Calzon
Zalba
Alfredo Martinez
Angel Martinez-Gonzalez
Adler
Grogorich
Rehkopf
Lin
Blackburn
Epel
Cui
Gao
Shu
Skamra
Sandhu
Huang
Lee
Pope
Kozlitina  571
Slattery  572
Laine  573
G.Eriksson  574
Kujala  575
Raj  576
Bäckmand  577
Sarna  578
Schwartz  579
Davis  580
Ruterbusch  581
Hoxha  582
McCarthy  583
Rothman  584
Colt  585
Chow  586
Purdue  587
Baumbach  588
Peters  589
Müller-Nurasyid  590
Barbieri  591
Christensen  592
Loukola  593
Korhonen  594
Madden
Räikkönen
Kajantie
Eriksson
Arp
Hofman
van Duijn
Uitterlinden
Kedenko
Paulweber
Haun
Rantner
Hammerer-Lercher
Fraedrich
Stadler
Klein-Weigel
Kuzawa
Lee
Mason
Risques
Rabinovitch
Wang
McTiernan
ABSTRACT

Background

Obese persons are expected to have shorter telomeres, but the association between body-mass index (BMI) and leucocyte telomere length (TL) might differ across the lifespan, ethnicities and sexes.

Objective

A collaborative cross-sectional meta-analysis of observational studies was conducted to investigate the associations between BMI and telomere length (TL) across life span.

Design

Seventy-two distinct study populations were included in the meta-analysis capturing data from 128,673 individuals. Study-specific age and sex adjusted regression coefficients were combined using a random-effects model in which absolute (base pairs [bp]) and relative (T/S ratio) TLs were regressed against BMI. Stratified analysis was performed by three age categories (“young” ≥18 and ≤60 years, “middle” > 60 and ≤75, “old” > 75 years), sex, and ethnicity.

Results

Each unit increase in BMI corresponded to a -4.14 bp (95%C.I. -5.69, -2.59) difference in TL; among young adults -8.09 bp (95%C.I. -10.26, -5.92). Each unit increase in BMI corresponded to a -1.50 units T/S ratio (95%C.I. -2.12, -0.88) difference in age and sex adjusted relative telomere length; among young adults -2.30 units T/S ratio (95%C.I. -3.75, -0.84). The associations were stronger for whites than for African Americans. No sex differences were observed.

Conclusions
Higher BMI is associated with shorter telomeres, especially in younger individuals. The presently observed difference is not negligible. Meta-analyses of longitudinal studies evaluating change in body weight alongside change in TL are warranted.

KEY WORDS:
BMI, telomere length, obesity, low grade inflammation, meta-analysis, observational studies
INTRODUCTION

Telomeres, the nucleoprotein structures at the ends of chromosomes, shorten with each cell division in somatic cells (1). When telomere length reaches a critical value, cells either enter a state of senescence or undergo apoptosis (2). Oxidative stress and chronic inflammation are suggested to play a role in accelerated telomere attrition (3-5). Even before the onset of age-related diseases obesity might be a contributing factor to the cumulative burden of oxidative stress and chronic inflammation throughout the life course.

Obesity is a growing health problem and worldwide its prevalence has more than doubled since 1980 (6). In addition, the burden of diabetes and cardiovascular disease is partly attributable to being overweight and obese (6). A study in the elderly found that telomere length is associated with adiposity, but not obesity (7), and a study of aging found no relation between telomere length and morbidity and mortality in the very old (8). Therefore, we hypothesize that obese persons are expected to have shorter telomeres, compared to those of normal weight of the same chronological age (3,7-15), but the association between obesity and telomere length might differ across the lifespan.

Sex and ethnicity may influence the association between BMI and telomere length. On average, women have longer telomeres than men (9-11). However, published results on sex differences in association between BMI and telomere length are inconsistent (12-14). African Americans and Native Americans have higher rates of obesity (15), and also racial differences in telomere length have frequently been reported with adult African Americans having longer telomeres than white individuals (16-20), but evidence is lacking whether the association between BMI and telomere length differs between ethnicities.
Two recent meta-analyses reported the negative association between BMI and telomere length on reported summary statistics in the literature, but could not examine sex differences nor the influence of age and ethnicity (21, 22). To further evaluate whether BMI is associated with telomere length, a large-scale collaborative cross-sectional meta-analysis was conducted across observational studies that collected information on BMI and telomere length of adult individuals. To avoid publication bias and maximize the data in the analyses, a consistent standardized analysis plan across studies was used and principal investigators (PIs) of published studies were contacted and asked to participate in the TELOMAAS group. As the relationship between telomere length and BMI could be moderated by age, sex, and ethnicity we completed additional analyses stratifying by these factors.

METHODS

Search strategy
We performed a broad literature search up till the end of January 2016 using PUBMED, EMBASE and the Cochrane database without restrictions. Numerous studies have measured BMI and telomere length for purposes other than the association between telomere length and BMI as an outcome. Therefore, the search was rather broad and not narrowed to telomere length or BMI. Based on the existing relation between obesity, diabetes and cardiovascular diseases, and because telomere length is related to aging we completed a search in which terms related to these conditions were entered. Additionally, search items related to study design were entered. The complete search criteria are listed in Online Resource 1 (supplemental material). Citation and reference tracking were performed until no new studies were found. One author (MG) performed
the literature search and selected potentially relevant publications. Titles and abstracts of potentially relevant studies were screened. In addition, when the abstract indicated that the article was reporting a study of diabetes and/or cardiovascular disease, the full text was screened. No restrictions for study design or language were applied.

Eligibility criteria

Studies were included if height and weight or BMI was collected. The corresponding author was invited to participate in the meta-analysis and identified additional unpublished studies. PIs of these unpublished studies were also invited to participate. Only cohort studies with healthy individuals at baseline were included and if the study design was a case-control study, only controls were included in the meta-analysis. In compiling the database care was taken to exclude overlapping study cohorts. The study sample (abbreviated as study) was taken as the unit for this meta-analysis.

Data extraction

The PI of each study completed a questionnaire and additional information was extracted from the manuscript. The following data were collected: study name, study design (cohort or case-control), sample size (cohort size or control group size), presence of the variables age, sex, ethnicity (a cut off value of 70% was chosen to define a population as being white or African American, Native American, Asian, Hispanic, when at least 70% of the population was classified as white or African American, Native American, Asian, Hispanic), leucocyte telomere length, and BMI (kg/m²), whether BMI was measured or self-reported, white blood cell types from which DNA was extracted for telomere measurements, method of telomere length measurement, and of DNA storage (Online Resource 1 (supplemental material)). Absolute telomere length in
base pairs (bp) was distinguished from relative telomere length based on T/S ratio (Telomere to Single Copy Gene ratio). The PI was free to provide the de-identified raw data or to perform analyses and provide summary statistics. If the PI provided raw data, MG conducted the linear regression analyses to obtain the summary statistics. The summary statistics included the results of twelve linear regression analyses with telomere length (bp or T/S ratio) as the outcome and BMI as the independent variable. The linear regression analyses were a combination of one of the following sex and age groups: men and women analyzed together and separately; all age groups together and analyzed in three a priori chosen subgroups (“young” ≥18 and ≤ 60 years, “middle” > 60 and ≤ 75, “old” > 75 years). When appropriate, i.e. men and women analyzed together and/or all age groups together, the analyses were corrected for sex and/or for age. If the T/S ratio was used to estimate absolute telomere length, the PI was asked to provide new analyses with the T/S ratio as the outcome. If the PI did not respond to this request absolute telomere length based on the T/S ratio was used for analyses and included in the analysis. The regression coefficients (beta estimates) and standard errors (SE) were then used in the meta-analyses. In the case of longitudinal data one randomly selected telomere length measurement along with the corresponding measurements (e.g. BMI, age) for that time point was used in the analysis.

Assessment of small study effects
To examine the potential presence of publication bias, visual inspection of funnel plots for asymmetry was performed, followed by the Egger and Begg’s linear regression test for small study effects (23) and use of the Duval and Tweedie nonparametric "trim and fill" method (24).

Statistical analysis
Statistical pooling
The primary outcome of the meta-analysis was a pooled estimation of the difference in absolute telomere length in bp or relative telomere length (T/S ratio) per unit increase in BMI. Study specific regression coefficients (beta estimates) and standard errors (SE) were combined using random-effects pooling in twelve meta-analyses. Either absolute telomere length (bp) or relative telomere length (T/S ratio) was considered as the outcome measure and BMI (kg/m²) was the independent variable.

Assessment of heterogeneity

Statistical heterogeneity was estimated by Q and $I^2$ statistics (25, 26) for each of the twelve meta-analyses. Low heterogeneity was indicated by $I^2$ up to 25%, medium heterogeneity by 25-50%, and high heterogeneity by > 50% (26). To confirm the expected differences in association for age and sex, meta-regression analysis was performed with age and sex as sources of heterogeneity. Other potential sources of heterogeneity were investigated by meta-regression analysis if medium or high heterogeneity was observed in at least one of the twelve meta-analyses. Details are given in Online Resource 1 (supplemental material).

Sensitivity analyses

The following sensitivity analyses were performed: (1) outlier analyses by omitting one study at a time, (2) omitting studies that used the relative telomere length to estimate the absolute telomere length, (3) stratification by method of measurement of telomere length (Southern blot vs. q-PCR), (4) using a cut off value of 90% for defining ethnicity. Details are given in Online Resource 1 (supplemental material).

Statistical analyses were performed using Stata software version 12.0 (StataCorp, College Station, TX, USA). All statistical tests were two-sided; p values < 0.05 were considered statistically significant, except where otherwise specified.
RESULTS

Search

The search (PUBMED, EMBASE, and Cochrane) yielded 4,282 publications, from which 158 potentially relevant publications were identified. Some authors contributed to more than one publication. As a result, 126 corresponding authors were identified and contacted. Sixty one corresponding authors responded positively, 56 authors did not respond, six declined to participate, and three authors did not have the requested data. Since one publication could include multiple studies, the PIs (if not the same as corresponding authors) of the studies were contacted. Six additional studies were identified by the corresponding authors and the PIs of these additional studies were contacted. Diversity in relative telomere length assays were used and we decided to exclude eight studies using techniques other than Southern blots and q-PCR, because the regression coefficients (beta estimates) may not be directly comparable.

In total, 72 unique studies were included in the meta-analyses. Twenty-six studies measured absolute telomere length and 46 studies used the T/S ratio. A flow chart of the inclusion procedure is presented Figure 1.

Description of studies

The characteristics of the 72 studies included in this meta-analysis are provided in Table 1. Absolute telomere lengths were obtained from 26 studies (3, 5, 12, 13, 16, 27-58) (and the unpublished data of the HyperGEN study), of which three studies estimated absolute telomere length based on the T/S ratio (18, 59-65). In 16 studies Southern blots were used (3, 5, 12, 13, 16, 27-39, 43, 44, 47-51, 54, 55, 58). Forty-six studies presented the relative telomere length (T/S...
The total population of this meta-analysis consisted of 128,673 adults (45% men), the young population (≥18 and ≤ 60 years) consisted of 81,540 adults (43% men), the middle aged population (> 60 and ≤ 75 years) consisted of 37,166 adults (46% men), and the old population (> 75 years) consisted of 9,948 adults (53% men). Overall, the majority of the adults were white (including Arab; 85%), followed by Asian (5%), African American (4%), Hispanic, and Native Americans (both 3%). Four studies provided data of mixed populations stratified by ethnicity (16, 68, 69, 98) (and the unpublished data of the HyperGEN study). Fifty-six studies consisted of > 70% white individuals (of which 52 had at least 90% white individuals) (3, 5, 12-14, 16, 27-33, 35-44, 47-58, 60-62, 65, 68-92, 95, 97-100, 102, 105-111, 113-115) (and unpublished data of the HyperGEN, and Utah Pedigree studies). Four studies consisted only of African Americans (16, 68, 69, 98) (and the unpublished data of the HyperGEN study); three only of Asians (34, 97, 112), one study only of Native Americans (93, 94, 103, 104), and three studies comprised only Hispanics(68, 69, 80, 81, 98).

Assessment of small study effects

Visual inspection of the funnel plots for absolute telomere length and for relative telomere length yielded symmetric plots. No publication bias was detected using Egger’s test or Begg’s test. The “trim and fill” method added one hypothetical study to the meta-analysis for absolute telomere length. However, the recalculated summary estimate did not change substantially and was still significant with their inclusion (beta= -4.20 (95%C.I. -5.67 to -2.72); p < 0.001).

Meta-analyses
An overall summary of the meta-analysis is shown in Table 2a and Table 2b in which the beta estimates of all meta-analyses for absolute telomere length as the outcome (Table 2a) and of all meta-analyses for relative telomere length as the outcome (Table 2b) are presented. The accompanying forest plots are presented in the Online Figure 1a Absolute telomere length (Online Resource 2) and Online Figure 1b Relative telomere length (Online Resource 3).

**Overall meta-analysis**

Overall, sex- and age-adjusted absolute telomere length was significantly associated with BMI. Each unit increase in BMI corresponded to a -4.14 bp (95%C.I. -5.59 to -2.51; $I^2 = 7.1\%$) difference in absolute telomere length (Table 2a and Figure 2a Forest plot). For example, an estimated difference in telomere length between a normal weight individual with a BMI of 25 kg/m² and an obese individual with a BMI > 30 kg/m² is at least 20.5 bp, and, if a larger difference is used (BMI 20 kg/m² vs. BMI > 30 kg/m²), 41.4 bp. The estimated difference between normal weight and morbid obesity (BMI > 40 kg/m²) is at least 62.1 bp. Each unit increase in BMI corresponded to a -1.50 units T/S ratio (95%C.I. -2.12 to -0.88; $I^2 = 41.1\%$) difference in age- and sex-adjusted relative telomere length. An estimated difference in relative telomere length between normal weight and obesity is at least 7.5 units T/S ratio (Table 2b and Figure 2b Forest plot) and between normal weight and morbid obesity at least 22.5 units T/S ratio. The associations between BMI and telomere length did not differ significantly between men and women (see below).

**Age**

Analysis stratified by age category revealed that in young adults (≥18 and ≤ 60 years) a unit increase of BMI corresponded to a -8.09 bp (95%C.I. -10.26 to -5.92; $I^2 = 15.3\%$) difference in absolute telomere length (Figure 3a).
In middle age adults (> 60 and ≤ 75) the overall association between BMI and telomere length was -2.59 bp (95% C.I. -4.95 to -0.23; $I^2= 0.0$) per unit increase in BMI.

In old adults (> 75 years) the overall association between BMI and telomere length was -6.15 (95% C.I. -11.05 to -1.25; $I^2= 11.5$) per unit increase in BMI.

For relative telomere length, each unit increase in BMI corresponded to a -2.30 units T/S ratio (95% C.I. -3.755 to -0.84; $I^2= 83.7\%$) difference in relative telomere in young adults (Table 2b and Figure 3b).

In middle age adults, the association between BMI and relative telomere length was -0.95 units T/S ratio (95% C.I. -1.68 to -0.21; $I^2= 0.0$) per unit increase in BMI. For old adults no statistically significant associations were found between BMI and relative telomere length.

**Meta-regression and sources of heterogeneity**

Age, ethnicity and study design were a source of heterogeneity at study level in the meta-regression analyses. Sex was never a source of heterogeneity (Online Resource 1 (supplemental material)). Therefore, all analyses were stratified by ethnicity and study design in addition to the originally planned analyses. With absolute telomere length as the outcome, stratified analyses revealed that for the young white population all estimates were bigger than those for the African American. With relative telomere length as the outcome, stratified analyses revealed that the estimates for the white population and Native Americans all estimates were bigger than those for the African American.

The beta estimates of the cohort studies were consistent with the estimates without stratification by study design. The beta estimates of the case-control studies were not statistically significant, except for one disproportionately large estimate (beta= -60.24 (95% C.I. -100.90 to -19.58)) in the old age category, based on a meta-analysis that included only two study samples.
Sensitivity analysis

None of the sensitivity analyses resulted in substantial change of the summary estimate ((Online Resource 1 (supplemental material)). Stratified analysis by method of measurement yielded an estimate of \(-4.52\) bp (95\%C.I. \(-6.77\) to \(-2.27\)) for the Southern blots method and \(-3.93\) bp (95\%C.I. \(-5.71\) to \(-2.16\)) for q-PCR method.

DISCUSSION

This cross-sectional meta-analysis of 72 observational studies of adult populations confirmed previous observations that BMI is negatively associated with telomere length. After stratification for age and ethnicity the negative association between BMI and telomere length appeared to be stronger in “young adult” populations (age < 60 years) and in white populations, the latter of which was apparent only when absolute telomere length was measured. Differences between men and women could not be confirmed.

Based on our estimates for absolute telomere length, a \(\approx \)5-unit increase in BMI appears to be equivalent to a difference in telomere length of \(\approx 21-41\) bp or \(\approx 7.5-12\) units T/S ratio. Compared to an estimated average yearly decrease (i.e., \(\approx 25\) bp/year or \(\approx 0.01\) T/S ratio/per year) of leucocyte telomere length in adults based on cross-sectional data (3, 31, 116-118), the association is not negligible. In addition, compared to accelerated attrition (i.e. 3-5 bp/year) due to smoking one pack of cigarettes daily (91, 119) the association reported in this meta-analysis appears relevant and could exceed or at least be in line with the effect of smoking. A major disadvantage of cross-sectional analysis is the impossibility to infer causation. However, the robust association
between higher BMI and lower telomere length found in this meta-analysis highlights another potential area of concern for the obesity epidemic.

Since obesity, and more specifically an increase in leptin and a decrease in adiponectin have been associated with low-grade inflammation and oxidative stress (120), the observed negative association between BMI and leucocyte telomere length may be due in part to the chronic inflammatory state associated with higher leptin. Recently, a negative association was observed between age-related relative telomere length and serum leptin in seven cohorts of 11,448 participants, which remained significant after adjustment for BMI (100). These data suggest that beyond a high BMI, especially via the increase in leptin, inflammatory conditions likely contribute to telomere shortening. Since a longitudinal study found a tendency for a higher reduction in BMI over a 5 year period in participants who initially had the longest telomeres (95), it is also suggested that a common factor, such as chronic inflammation, is associated both with leptin resistance and with telomere length.

The negative association between BMI and telomere length was most apparent in the younger population, in which a stronger association was found for absolute and relative telomere length compared to the other age groups, which highlights the urgency to address the obesity epidemic. Three possible explanations could explain this observation. First, BMI could be a better marker for adiposity in younger individuals aged less than 60 years compared to older individuals (21). Above 65 years of age BMI may less consistently reflect obesity because of potential loss of muscle and bone mass and height (21). The fact that older men weigh less than the middle-aged men at a given height is attributed to older men having less lean tissue, and a lower BMI can actually reflect a higher fat mass (121). Second, selective survival might be one of the causes for the stronger association found in the younger age category. As Manson et al. state “obesity in one’s 40s contributes to the onset of type 2 diabetes in one’s 50s, which leads to myocardial
infarction (MI) in one’s 60s, heart failure and weight loss due to debilitation and muscle wasting at age 70, and death at age 75” (122). People who suffered from age-related diseases may have died and those who survived may therefore differ from those who died. (123) Third, older people are more likely to have chronic diseases that lead to weight loss and people with chronic diseases are probably less likely to participate in studies (122).

The negative association between BMI and leucocyte telomere length was found predominantly amongst white populations. One possible explanation could be that telomere length differs between different cell types (124) and that leucocyte cell subpopulations (125) differ between whites and African Americans. However, more research is required to resolve whether this observation explains the racial differences in association between telomere length and BMI for white and African Americans. Second, it was recently reported that the estimation of visceral adipose tissue, the most relevant tissue that determines the risk to develop chronic metabolic diseases, was different in white and African American adults (126). At higher BMI or increased waist circumference (WC), white adults had higher levels of visceral adipose tissue than African American adults (120). Since the presence of leptin resistance or markers of inflammation were not included in these studies, it remains to be determined whether the relation between BMI, leptin resistance, inflammation and telomere attrition is different for African Americans from whites. Surprisingly, the one study consisting of 3,256 Native Americans showed similar trends as found for the white populations (104). The majority of this study sample was centrally obese, and leucocyte telomere length was negatively correlated with C-reactive protein.

Although just one author performed the literature search and selected potentially relevant publications, which is a limitation of this meta-analysis, one of the main strengths of this study is that we did not rely on publications. Instead we contacted PIs, which in turn have pointed us
towards important studies we may have missed, to obtain the regression coefficients for the meta-
analysis. Also we incorporated several potential confounders (age and sex) and sources of
heterogeneity (ethnicity and study design). The response rate of the originally contacted PIs was
55% with a final count of 72 unique studies and over 120,000 individuals. Although it is
impossible to make a direct comparison with the unpublished beta estimates of the non-
responders, we assume, also based on the absence of significant publication bias, that the studies
in this meta-analysis are a random selection of all studies conducted and that we present a valid
representation of the association between BMI and telomere length. Because of the large
variation in adult telomere length, as well as biological and measurement variation (q-PCR), large
sample sizes are needed, especially in cross-sectional studies, to detect modest effects (29). In
this meta-analysis we were able to detect a statistically significant association of -4.14 bp or -1.50
units T/S ratio per unit increase BMI, despite the use of cross-sectional data, and the large
biological and measurement variation. Since 35% of the analyses showed a statistically
significant association with estimates of the same magnitude (except for one), we assume that
false positive reporting is only of minor concern.

Two recently meta-analyses, which relied on published data, also reported negative
associations between BMI and telomere length. The first reported negative regression coefficients
on the association between telomere length and BMI (21), (in total 7,530 individuals), of which
five studies were also included in this meta-analysis (12, 13, 18, 79, 127). The larger scale meta-
analysis reported a weak negative correlation (48,334 individuals), a standardized mean
differences of 0.84 (95%C.I. 0.22 to 1.46) between obese individuals (n= 1,947) and normal
weight individuals (n= 6,063) and an odds ratio of 1.39 (95%C.I. 1.15 to1.69) (n= 4250) (22). Of
the 45 samples that met our inclusion criteria 33 collaborated in our analysis. This shows that,
despite the fact that different statistical techniques were used and slightly different populations
were analyzed, the results between the meta-analyses are consistent and very robust. Although age and ethnicity were taken into account, it should be mentioned that the older study sample was relatively small (~10,000 individuals), and that the majority of the individuals were white (85%). Unfortunately, we did not include smoking in the meta-analysis. Smoking is generally associated with a lower BMI and shorter telomere length (3, 119, 122), which may have caused an underestimation of the inverse association between BMI and telomere length. Also inflammation was not directly measured. We were also not able to measure telomere attrition as we did not incorporate longitudinal data and reverse causation cannot be excluded. However, there are very few large scale studies with repeated measures of telomere length. The issue of inter and intra assay measurement variation (inter and intra assay CV) is relevant when combining data from different techniques and laboratories. Inter assay CV is higher for q-PCR (T/S ratio) than for Southern blots (bp) (128) and although the method of measurement of telomere length was not detected as a large source of heterogeneity, we stratified the analyses by method of measurement and indeed the estimate of the Southern blots method and of q-PCR differed slightly. However, we did not take intra assay CV into account. Two other weaknesses were that we did not take into account the DNA extraction method, although DNA extraction method has been found to influence the telomere length (129-131), and that we did not use standardized betas in the regression analysis for a more accurate comparison between white blood cell types, because telomere length differs across white blood cell types. Leucocytes are a mixture of cells that may actually change with increasing inflammation. Control for differential counts would have improved the accuracy of the associations. However, cell type was not a source of heterogeneity and additional stratification by cell type did not change the results (data not shown).
The lengths of telomeres at different ages are highly correlated, and it has been suggested that most of the variation in leucocyte telomere length in adults is a result of telomere length at birth and that therefore the impact of environmental and lifestyle factors is rather small (119, 132). Benetos et al. described that ranking of individuals into deciles according to their telomere length barely changes across adult life. They showed that around half of the individuals stay in the same decile, whereas 17.9% showed a downwards shift and 20.7% showed an upward shift of one decile (119). Our meta-analysis shows that five units increase in BMI corresponds to ~25 bp or even ~40 bp change in the young population, which is equivalent to at least a yearly decrease irrespective of ranking. This could be an additional argument to tackle the obesity epidemic.

In summary, a higher BMI is associated with shorter telomeres, especially in the younger population. Although no causal inference can be drawn and the possibility of residual confounding is always a possibility, the results were robust across a variety of potential confounders. Given this, we could possibly infer that the obesity epidemic may be contributing to an increased biological aging of the population. However, meta-analyses of longitudinal studies that can evaluate change in body weight alongside change in telomere length are warranted.

ACKNOWLEDGEMENTS

We thank the Principle Investigator of the Bogalusa study for the willingness to share the data, but with whom we lost contact despite our efforts. TwinsUK. The study was funded by the Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London.
The Dallas Heart Study (DHS). Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award number UL1TR001105.

The acquisition and analyses of these data from the Multi-Ethnic Study of Atherosclerosis (MESA) was funded by contracts N01-HC-95159 through N01-HC-95165 and N01-HC-95169 from the National Heart, Lung, and Blood Institute, by R01 HL076831 (Diez Roux PI), and by funding from the MacArthur Foundation. Jennifer A. Nettleton was funded by a career development award from the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases (5K01DK082729-04). MESA thanks the investigators, staff, and participants of the MESA study for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

S E Humphries is a British Heart Foundation Professor and he and Dr Klelia D. Salpea are supported by the British Heart Foundation (RG008/08 and FS/06/053) and by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. The EARSII study was funded by the EC Concerted Action BMH1 CT92–0206.

Lothian Birth Cohort 1936: we thank the cohort participants and team members who contributed to these studies. Phenotype collection was supported by Age UK (The Disconnected Mind project). The work was undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from the BBSRC and Medical Research Council (MRC) is gratefully acknowledged.

The Sister Study was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01 ES 044005).
The Jerusalem LRC: The study was funded by the Chief Scientist of the Israel Ministry of Health [300000-5352], the Israel Science Foundation [593/01], and the US-Israel Binational Science Foundation [87-00419].

Jerusalem Palestinians: The study was funded by the USAID MERC Program (Grant # TA-MOU-01-M21-002) and by a research grant from DCURE Israel.

The PATH study was supported by the Australian National Health and Medical Research Council Program Grant 17805 and Project Grant 418020.

The Bruneck Study was supported by a grant of the ‘Tiroler Wissenschaftsfonds’, Austria, and the Dr. Johannes und Hertha Tuba Foundation.

The Fels Longitudinal Study, Research reported in this manuscript was supported by the National Institute of Health grants (R03AG023251, R01HD012252).

The authors would like to thank the Strong Heart Study (SHS) participants, the Indian Health Service facilities, and the participating tribal communities for their extraordinary cooperation and involvement, which has contributed to the success of the SHS. The views expressed in this article are those of the authors and do not necessarily reflect those of the Indian Health Service. This study was supported by National Institutes of Health grants R01DK091369, K01AG034259, R21HL092363 and cooperative agreement grants U01HL65520, U01HL41642, U01HL41652, U01HL41654, and U01HL65521.

SOLVABLE was supported by: NIH/NIAMS T32AR07611, K24AR002138, P60 AR30692 which is now updated as P60 AR064464,

Kirkland Scholar Award; AFMR Summer Clinical and the Eleanor Wood-Prince Grant: A Project of the Woman’s Board of Northwestern Memorial Hospital.

Former Athletes study: The study was funded by the Ministry of Education and Culture, the Juho Vainio Foundation, the Finnish Heart Research Foundation, Paavo Nurmi Foundation, the
Finnish Cultural Foundation, and by a grant from Medical Society of Finland, Finska Läkaresällskapet. We would like to thank National Institute for Health and Welfare, Department of Public Health, University of Helsinki, Sports & Exercise Medicine Department of Health Sciences, University of Jyväskylä, Paavo Nurmi Centre, Turku and ORTON Research Institute, Invalid Foundation, Helsinki for collaboration during the large epidemiological and clinical research program in the year 2008.

Finnish Twin Cohort data comes primarily from the Nicotine Addictions Genetics family study of twins and their siblings (Loukola et al, 2014). Data collection for this work was supported by Academy of Finland grants (JK) and a NIH grant DA12854 (PAFM), and further support has come from ENGAGE – European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, the Academy of Finland Center of Excellence in Complex Disease Genetics (grant numbers: 213506, 129680 to JKaprio), and the Academy of Finland (grants 141054, 265240, 263278 to JKaprio), The US Kidney Cancer Study (USKCS). This work was supported, in part, by the intramural research program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH.

The KORA study was initiated and financed by the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ.

Erasmus Rucphen Family (ERF) study. The study was supported by grants from The Netherlands Organisation for Scientific Research (NWO), Erasmus MC, the Centre for Medical Systems Biology (CMSB), The European Community's Seventh Framework Programme (FP7/2007-
2013), ENGAGE Consortium, grant agreement HEALTH-F4-2007-201413 and Netherlands Consortium for Healthy Ageing (grant 050-060-810). We are grateful to all general practitioners for their contributions, to Petra Veraart for her help in genealogy, Jeannette Vergeer for the supervision of the laboratory work and Peter Snijders for his help in data collection.

Rotterdam Study (RS). The Rotterdam Study is supported by the Erasmus MC and Erasmus University Rotterdam; the Netherlands Organization for Scientific Research (NWO); the Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); the Netherlands Genomics Initiative (NGI); the Ministry of Education, Culture and Sciences; the Ministry of Health Welfare and Sports; the European Commission (DG XII); and the Municipality of Rotterdam.

The analysis of data from the National Health and Nutrition Examination Survey was funded by grant R01 AG033592 from the National Institute on Aging (Elissa Epel, PI).

The Zutphen Elderly Study was supported by grants from The Netherlands Prevention Foundation (Preventiefonds) and the survey on Crete was financially supported by Danone.

The RPCI study was supported by grants from Susan G Komen for the Cure (BCTR 0600562) and the U.S. National Institutes of Health Cancer Center Support Grant (P30 CA016056)

The Heart Scan study was funded by the British Heart Foundation (RG/10/005/28296 and the Medical Research Council, UK. A. Steptoe is funded by the British Heart Foundation.

The Helsinki Businessmen Study (HBS) was initially funded by the Academy of Finland and various foundations during the decades, most recently by the Sohlberg Foundation; the Jahnsson Foundation; and Gustav V och Victoria Frimurarestiftelse. Funding has also been provided by the Helsinki University Central Hospital, and the Oulu University Hospital (VTR/EVO-funding), and the Academy of Finland grants no 286294 and 294154.
Laboratory analysis of the Cebu Longitudinal Health and Nutrition Survey (CLHNS) was funded by NSF (Doctoral Dissertation Improvement Grant BCS-0962282), the Wenner-Gren Foundation (Gr. 8111) and institutional support from Northwestern University; data and sample collection funded by the NIH (grants RR20649 & ES10126). DNA extracts provided by Karen Mohlke. Richard Cawthon, Justin Tackney, Katarina Nordfjäll, Klelia Salpea, Christine Ackerman and Margrit Urbanek provided laboratory advice. We especially thank the many researchers at the Office of Population Studies, University of San Carlos, Cebu, the Philippines, for their central role in study design and data collection, and the Filipino participants, who provided their time and samples for this study.

NESDA is funded through the Geestkracht program of the Netherlands Organization for Health Research and Development (Zon-Mw, grant number 10-000-1002) and is supported by participating universities and mental health care organizations. J.E. Verhoeven and telomere length assaying were supported through a NWO-VICI grant (number 91811602).
REFERENCES


52. Rode L, Nordestgaard BG, Weischer M, Bojesen SE. Increased body mass index, elevated C-reactive protein, and short telomere length. J Clin Endocrinol Metab. 2014;jc20141161.


81. Bunout D, Barrera G, de la Maza MP, Leiva L, Hirsch S. Effect of weight maintenance or gain in a 10 years period over telomere length, sirtuin 1 and 6 expression and carotid intima


Table 1 Characteristics of included Study samples

<table>
<thead>
<tr>
<th>ref</th>
<th>Study Name</th>
<th>all</th>
<th>men</th>
<th>women</th>
<th>18 - 60 yrs</th>
<th>&gt; 60 - 75 yrs</th>
<th>&gt; 75 yrs</th>
<th>Cell type</th>
<th>TL measure</th>
<th>DNA</th>
<th>BMI</th>
<th>Data</th>
<th>Design</th>
<th>Ethnicity (proportion)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3, 27-30)</td>
<td>TwinsUK</td>
<td>3236</td>
<td>286</td>
<td>2950</td>
<td>2630</td>
<td>574</td>
<td>32</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>stored</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(16, 31-33)</td>
<td>Bogalusa</td>
<td>635</td>
<td>635</td>
<td>0</td>
<td>635</td>
<td>0</td>
<td>0</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>unknown</td>
<td>measured</td>
<td>raw</td>
<td>cohort</td>
<td>0.71 / 0.29 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(133)</td>
<td>India CURES Study</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>37</td>
<td>3</td>
<td>0</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>stored</td>
<td>measured</td>
<td>raw</td>
<td>control</td>
<td>0 / 0 / 1 / 0 / 0</td>
</tr>
<tr>
<td>(35)</td>
<td>Campania</td>
<td>528</td>
<td>251</td>
<td>277</td>
<td>320</td>
<td>100</td>
<td>108</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>stored</td>
<td>measured</td>
<td>raw</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(13, 36-38)</td>
<td>Asklepios</td>
<td>2509</td>
<td>1218</td>
<td>1291</td>
<td>2509</td>
<td>0</td>
<td>0</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>stored</td>
<td>measured</td>
<td>raw</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(5, 12, 39)</td>
<td>Framingham</td>
<td>1146</td>
<td>557</td>
<td>589</td>
<td>658</td>
<td>444</td>
<td>44</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td>(41)</td>
<td>COPD</td>
<td>178</td>
<td>89</td>
<td>89</td>
<td>113</td>
<td>60</td>
<td>5</td>
<td>Leucocytes</td>
<td>Real Time PCR</td>
<td>measured</td>
<td>raw</td>
<td>control</td>
<td>1 / 0 / 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td>(42)</td>
<td>Crete</td>
<td>109</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>Leucocytes</td>
<td>Real Time PCR</td>
<td>measured</td>
<td>raw</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td>(40)</td>
<td>Zutphen Family Heart African American Family Heart</td>
<td>189</td>
<td>189</td>
<td>0</td>
<td>0</td>
<td>68</td>
<td>121</td>
<td>Leucocytes</td>
<td>Real Time PCR</td>
<td>measured</td>
<td>raw</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>White Hispanic/ Native American</td>
<td>625</td>
<td>216</td>
<td>409</td>
<td>459</td>
<td>148</td>
<td>18</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>0 / 1 / 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>White HyperGEN African American</td>
<td>2603</td>
<td>1170</td>
<td>1433</td>
<td>1419</td>
<td>997</td>
<td>187</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td>Not publ</td>
<td>Not publ White HyperGEN</td>
<td>224</td>
<td>108</td>
<td>116</td>
<td>172</td>
<td>51</td>
<td>1</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>0 / 1 / 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td>(43, 44)</td>
<td>LSADT</td>
<td>525</td>
<td>171</td>
<td>354</td>
<td>0</td>
<td>82</td>
<td>443</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td>(45, 46)</td>
<td>Heart and Soul</td>
<td>954</td>
<td>777</td>
<td>177</td>
<td>274</td>
<td>451</td>
<td>229</td>
<td>Leucocytes</td>
<td>Real Time PCR</td>
<td>unknown</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>0.60 / 0.16 / 0.12 / 0.09 / 0.03</td>
</tr>
<tr>
<td>(56, 57)</td>
<td>Lothian</td>
<td>1057</td>
<td>530</td>
<td>527</td>
<td>0</td>
<td>1057</td>
<td>0</td>
<td>Leucocytes</td>
<td>Real Time PCR</td>
<td>stored</td>
<td>Buffy coat</td>
<td>Buffy coat</td>
<td>stored</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(47, 48)</td>
<td>WarTwins</td>
<td>639</td>
<td>639</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>553</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>reported</td>
<td>Buffy coat</td>
<td>Buffy coat</td>
<td>stored</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(54)</td>
<td>Jerusalem LRC</td>
<td>620</td>
<td>413</td>
<td>207</td>
<td>620</td>
<td>0</td>
<td>0</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td>(55)</td>
<td>Jerusalem Palestinians</td>
<td>939</td>
<td>498</td>
<td>441</td>
<td>336</td>
<td>306</td>
<td>0</td>
<td>Leukocytes</td>
<td>Southern Blot RF</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>Cross-sectional</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(49-51)</td>
<td>Helsinki Businessmen Study (HBS)</td>
<td>487</td>
<td>487</td>
<td>0</td>
<td>0</td>
<td>250</td>
<td>237</td>
<td>Leucocytes</td>
<td>Southern Blot RF</td>
<td>stored</td>
<td>reported</td>
<td>raw</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(52)</td>
<td>Copenhagen General Population Study</td>
<td>45069</td>
<td>20422</td>
<td>24647</td>
<td>26040</td>
<td>14525</td>
<td>4504</td>
<td>Leucocytes</td>
<td>Real Time PCR</td>
<td>stored</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(53)</td>
<td>SOLVABLE</td>
<td>152</td>
<td>0</td>
<td>152</td>
<td>136</td>
<td>16</td>
<td>0</td>
<td>PBMC</td>
<td>Real Time PCR</td>
<td>stored</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>0.70 / 0.22 / 0.03 / 0.05 / 0</td>
</tr>
<tr>
<td>(58)</td>
<td>ZTL2008</td>
<td>25</td>
<td>17</td>
<td>8</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>PBMC</td>
<td>Southern Blot RF</td>
<td>stored</td>
<td>measured</td>
<td>raw</td>
<td>cohort</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
</tbody>
</table>

**absolute TL estimated from T/S ratio**

(18, 59, 63, 64)

<table>
<thead>
<tr>
<th>ref</th>
<th>Study Name</th>
<th>all</th>
<th>men</th>
<th>women</th>
<th>18 - 60 yrs</th>
<th>&gt; 60 - 75 yrs</th>
<th>&gt; 75 yrs</th>
<th>Cell type</th>
<th>TL measure</th>
<th>DNA</th>
<th>BMI</th>
<th>Data</th>
<th>Design</th>
<th>Ethnicity (proportion)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(57)</td>
<td>South Carolina</td>
<td>323</td>
<td>145</td>
<td>178</td>
<td>305</td>
<td>18</td>
<td>0</td>
<td>Leucocytes</td>
<td>Real Time PCR</td>
<td>unknown</td>
<td>measured</td>
<td>summary</td>
<td>cohort</td>
<td>0.57 / 0.41 / 0.01 / 0.01 / 0</td>
</tr>
<tr>
<td>(60, 61, 65)</td>
<td>Bruneck</td>
<td>800</td>
<td>395</td>
<td>405</td>
<td>363</td>
<td>315</td>
<td>122</td>
<td>Leucocytes</td>
<td>Real Time PCR</td>
<td>stored</td>
<td>measured</td>
<td>summary</td>
<td>cohort case-control</td>
<td>1 / 0 / 0 / 0 / 0</td>
</tr>
<tr>
<td>(62)</td>
<td>RPCI</td>
<td>174</td>
<td>0</td>
<td>174</td>
<td>111</td>
<td>47</td>
<td>16</td>
<td>Leucocytes</td>
<td>Real Time PCR</td>
<td>stored</td>
<td>reported</td>
<td>raw</td>
<td>cohort case-control</td>
<td>0.93 / 0.05 / 0 / 0 / 0.02</td>
</tr>
</tbody>
</table>

**Telomere length T/S ratio**

<p>| (14) | MONICA | 511 | 183 | 328 | 419 | 92 | 0 | Leucocytes | Real Time PCR | measured | raw | cohort | 1 / 0 / 0 / 0 / 0 |
| (14) | MDCC | 476 | 330 | 146 | 199 | 277 | 0 | granulocytes | Real Time PCR | measured | raw | cohort | 1 / 0 / 0 / 0 / 0 |
| Not publ | Utah Pedigree Study | 964 | 493 | 471 | 725 | 183 | 56 | Leucocytes | Real Time PCR | measured | summary | cohort | 1 / 0 / 0 / 0 / 0 |
| (68, 69) | MESA White | 182 | 89 | 93 | 80 | 80 | 22 | Leucocytes | Real Time PCR | stored | measured | summary | cohort | 1 / 0 / 0 / 0 / 0 |
| (68, 69) | MESA African American | 278 | 125 | 153 | 141 | 109 | 28 | Leucocytes | Real Time PCR | stored | measured | summary | cohort | 0 / 1 / 0 / 0 / 0 |
| (68, 69) | MESA Hispanic | 518 | 252 | 266 | 245 | 231 | 42 | Leucocytes | Real Time PCR | stored | measured | summary | cohort | 0 / 0 / 0 / 1 / 0 |
| (70) | EARSII T/S controls | 395 | 395 | 0 | 395 | 0 | 0 | Leucocytes | Real Time PCR | unknown | measured | raw | cohort case-control | 1 / 0 / 0 / 0 / 0 |
| (71) | UCLA MacArthur | 233 | 115 | 118 | 0 | 144 | 89 | Leucocytes | Real Time PCR | reported | summary | cohort | 1 / 0 / 0 / 0 / 0 |
| (72) | Ashkenazi | 359 | 191 | 168 | 50 | 179 | 130 | Leucocytes | Real Time PCR | stored | measured | raw | cohort case-control | 1 / 0 / 0 / 0 / 0 |
| (73) | Warsaw Finland Health 2000 cohort | 714 | 246 | 468 | 235 | 411 | 68 | Leucocytes | Real Time PCR | stored | measured | raw | control | 1 / 0 / 0 / 0 / 0 |
| (74) | Sister Study I (Vanguard sample) | 938 | 350 | 588 | 754 | 137 | 47 | Leucocytes | Real Time PCR | stored | unknown | summary | cohort | 1 / 0 / 0 / 0 / 0 |
| (75) | Sister Study II (Genetic Study subcohort) | 644 | 0 | 644 | 475 | 169 | 0 | Leucocytes | Real Time PCR | stored | measured | summary | cohort | 0.83 / 0.07 / 0.02 / 0.02 / 0.05 |
| (111) | CAS controls | 183 | 96 | 87 | 112 | 53 | 18 | Leucocytes | Real Time PCR | stored | measured | raw | cohort case-control | 1 / 0 / 0 / 0 / 0 |
| (77) | PATH 40 | 331 | 151 | 180 | 331 | 0 | 0 | Leucocytes | Real Time PCR | stored | reported | raw | cohort case-control | 0.95 / 0.03 / 0.02 |
| (77) | PATH 60 | 294 | 157 | 137 | 0 | 294 | Leucocytes | Real Time PCR | stored | reported | raw | cohort case-control | 0.97 / 0.02 / 0.01 |
| (78) | Italy alcohol controls Fels Longitudinal Study | 258 | 258 | 0 | 255 | 3 | 0 | Leucocytes | Real Time PCR | stored | reported | raw | cohort case-control | 1 / 0 / 0 / 0 / 0 |
| (79) | Ecran | 257 | 116 | 104 | 196 | 54 | 7 | Leucocytes | Real Time PCR | stored | measured | summary | cohort | 1 / 0 / 0 / 0 / 0 |
| (80, 81) | Heart Scan Study | 188 | 58 | 150 | 121 | 41 | 26 | PBMC | Real Time PCR | measured | raw | cohort | 0 / 0 / 0 / 1 / 0 |
| (82, 83) | Boiler workers | 434 | 206 | 228 | 169 | 259 | 0 | Leucocytes | Real Time PCR | stored | measured | summary | cohort | 1 / 0 / 0 / 0 / 0 |
| (84, 85) | Mayo HBCS | 2886 | 1470 | 1416 | 2001 | 709 | 176 | Leucocytes | Real Time PCR | measured | raw | cohort case-control | 0.98 / 0.01 / 0.01 / 0 |
| (86, 87) | PREVEND | 1962 | 911 | 1051 | 703 | 1259 | 0 | Leucocytes | Real Time PCR | measured | raw | cohort | 1 / 0 / 0 / 0 / 0 |
| (90-92) | EARSII T/S controls | 7991 | 3994 | 3997 | 6094 | 1897 | 0 | Leucocytes | Real Time PCR | measured | summary | cohort | 0.96 / 0.01 / 0.02 / 0 / 0.01 |
| (93, 94, 103, 104) | Heart Scan Study | 3256 | 1315 | 1941 | 2834 | 340 | 82 | Leucocytes | Real Time PCR | measured | summary | cohort | 0 / 0 / 0 / 1 / 0 |
| (95) | PREVEND | 521 | 236 | 285 | 81 | 401 | 38 | Leucocytes | Real Time PCR | stored | measured | summary | RCT | 1 / 0 / 0 / 0 / 0 |
| (96) | NHANES | 7349 | 3542 | 3807 | 5034 | 1564 | 751 | Leucocytes | Real Time PCR | stored | measured | summary | cohort | 0.52 / 0.18 / 0.30 / 0 |</p>
<table>
<thead>
<tr>
<th>Study/Study Group</th>
<th>Sample Size</th>
<th>Study Type</th>
<th>Leucocytes</th>
<th>PCR Method</th>
<th>Stored</th>
<th>Measured</th>
<th>Summary</th>
<th>Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWHS</td>
<td>2912</td>
<td>Real Time PCR</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/1/0/0</td>
</tr>
<tr>
<td>DHS white</td>
<td>1073</td>
<td>Real Time PCR</td>
<td>493</td>
<td></td>
<td>580</td>
<td>821</td>
<td>245</td>
<td>0/0/0/0/0</td>
</tr>
<tr>
<td>DHS black</td>
<td>1667</td>
<td>Real Time PCR</td>
<td>606</td>
<td></td>
<td>1061</td>
<td>1348</td>
<td>317</td>
<td>0/1/0/0/0</td>
</tr>
<tr>
<td>DHS hispanic</td>
<td>464</td>
<td>Real Time PCR</td>
<td>194</td>
<td></td>
<td>270</td>
<td>412</td>
<td>51</td>
<td>0/0/1/0/0</td>
</tr>
<tr>
<td>DALS</td>
<td>734</td>
<td>Real Time PCR</td>
<td>401</td>
<td></td>
<td>333</td>
<td>268</td>
<td>366</td>
<td>0/0/1/0/0</td>
</tr>
<tr>
<td>FinnTwin study</td>
<td>2096</td>
<td>Real Time PCR</td>
<td>1101</td>
<td></td>
<td>995</td>
<td>1589</td>
<td>385</td>
<td>1/0/0/0/0</td>
</tr>
<tr>
<td>Former Athletes</td>
<td>586</td>
<td>Real Time PCR</td>
<td>586</td>
<td></td>
<td>0</td>
<td>1</td>
<td>376</td>
<td>1/0/0/0/0</td>
</tr>
<tr>
<td>USKCS whole blood</td>
<td>765</td>
<td>Real Time PCR</td>
<td>442</td>
<td></td>
<td>323</td>
<td>395</td>
<td>320</td>
<td>0/0/1/0/0</td>
</tr>
<tr>
<td>USKCS buffy coat</td>
<td>126</td>
<td>Real Time PCR</td>
<td>70</td>
<td></td>
<td>56</td>
<td>87</td>
<td>36</td>
<td>0/0/1/0/0</td>
</tr>
<tr>
<td>Rotterdam Study</td>
<td>2449</td>
<td>Real Time PCR</td>
<td>1082</td>
<td></td>
<td>1367</td>
<td>1900</td>
<td>499</td>
<td>1/0/0/0/0</td>
</tr>
<tr>
<td>KORA F3</td>
<td>3113</td>
<td>Real Time PCR</td>
<td>1509</td>
<td></td>
<td>1604</td>
<td>1768</td>
<td>1051</td>
<td>1/0/0/0/0</td>
</tr>
<tr>
<td>KORA F4</td>
<td>3014</td>
<td>Real Time PCR</td>
<td>1457</td>
<td></td>
<td>1557</td>
<td>1824</td>
<td>943</td>
<td>1/0/0/0/0</td>
</tr>
<tr>
<td>CAVASIC</td>
<td>315</td>
<td>Real Time PCR</td>
<td>315</td>
<td></td>
<td>155</td>
<td>160</td>
<td>0</td>
<td>1/0/0/0/0</td>
</tr>
<tr>
<td>SAPHIR Cebu</td>
<td>1681</td>
<td>Real Time PCR</td>
<td>1055</td>
<td></td>
<td>626</td>
<td>1586</td>
<td>95</td>
<td>1/0/0/0/0</td>
</tr>
<tr>
<td>Cebu Longitudinal Health and Nutrition Survey (CLHNS)</td>
<td>3467</td>
<td>Real Time PCR</td>
<td>893</td>
<td></td>
<td>2574</td>
<td>3380</td>
<td>87</td>
<td>0/0/1/0/0</td>
</tr>
<tr>
<td>Nutrition and Exercise for Women (NEW) Study</td>
<td>437</td>
<td>Real Time PCR</td>
<td>0</td>
<td></td>
<td>437</td>
<td>304</td>
<td>131</td>
<td>0.85/0.08/0.02/0.03/0.02</td>
</tr>
<tr>
<td>NESDO</td>
<td>495</td>
<td>Real Time PCR</td>
<td>173</td>
<td></td>
<td>322</td>
<td>17</td>
<td>135</td>
<td>0.95/0.01/0.04/0/0</td>
</tr>
<tr>
<td>NESDA</td>
<td>2936</td>
<td>Real Time PCR</td>
<td>986</td>
<td></td>
<td>1950</td>
<td>2749</td>
<td>187</td>
<td>0.97/0.02/0.01/0/0</td>
</tr>
</tbody>
</table>
**Table 2** Summary of the beta estimates (regression coefficients) from the meta-analysis of the association between BMI and telomere length as outcome

**Table 2a: absolute telomere length (bp)**

<table>
<thead>
<tr>
<th></th>
<th>All together (total population, adjusted for age)</th>
<th>“Young” population (age ≥18 and ≤ 60 years)</th>
<th>“Middle” population (60 &lt; age ≤ 75 years)</th>
<th>“Old” population (age &gt; 75 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1 estimate 95%C.I. I^2 (%)</td>
<td>N estimate 95%C.I. I^2 (%)</td>
<td>N estimate 95%C.I. I^2 (%)</td>
<td>N estimate 95%C.I. I^2 (%)</td>
</tr>
<tr>
<td><strong>Both sexes (Men and Women)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>26 -4.14 -5.69 -2.59 7.1 20 -8.09 -10.26 -5.92 15.3 19 -2.59 -4.95 -0.23 0.0 15 -6.15 -11.05 12.5 11.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>20 -4.77 -6.45 -3.01 8.1 14 -9.61 -11.44 -7.78 0.0 14 -3.19 -5.68 -0.71 0.0 13 -6.97 -12.29 1.64 15.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>2 0.86 -4.75 6.46 0.0 2 0.960 -5.51 7.43 1.2 2 4.36 -7.25 15.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1 65.85 -216.58 348.27 1 104.99 -197.96 407.94 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native</td>
<td>0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design cohort</td>
<td>22 -3.98 -5.77 -2.18 20.3 16 -7.88 -10.34 -5.42 31.0 16 -2.64 -5.00 -0.27 0.0 13 -5.07 -9.19 -0.95 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design control</td>
<td>4 -5.76 -24.03 12.51 0.0 4 -7.62 -30.52 15.28 0.0 4 38.33 -50.49 127.15 61.8 2 -60.24 -100.90 19.58 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Men</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>24 -4.22 -7.40 -1.04 34.7 18 -8.38 -12.87 -3.90 42.3 17 -3.04 -7.57 1.50 9.9 14 -3.69 -9.05 1.67 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcategory</td>
<td>n</td>
<td>Design cohort</td>
<td>Design control</td>
<td>Women</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4.18</td>
<td>-90.56</td>
<td>-4.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7.32</td>
<td>-323.80</td>
<td>-6.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.32</td>
<td>142.70</td>
<td>-3.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12.79</td>
<td>66.7</td>
<td>-11.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3.88</td>
<td>6.68</td>
<td>-11.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native American</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Design cohort</td>
<td>17</td>
<td>-4.74</td>
<td>-6.44</td>
<td>-3.04</td>
</tr>
<tr>
<td>Design control</td>
<td>4</td>
<td>-5.11</td>
<td>-29.19</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*N= number of studies; Adjusted for sex; Bold: p< 0.05 or I²>50%*
Table 2b relative telomere length (T/S ratio)

<table>
<thead>
<tr>
<th></th>
<th>All together (total population, adjusted for age)</th>
<th>“Young” population (age ≥18 and ≤ 60 years)</th>
<th>“Middle ” population (60 &lt; age ≤ 75 years)</th>
<th>“Old” population (age &gt; 75 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N(^1) estimate 95% C.I.  I(^2) (%)</td>
<td>N estimate 95% C.I.  I(^2) (%)</td>
<td>N estimate 95% C.I.  I(^2) (%)</td>
<td>N estimate 95% C.I.  I(^2) (%)</td>
</tr>
<tr>
<td>Both sexes (Men and Women)(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>46 -1.50 -2.12 -0.88 41.1</td>
<td>43 -2.30 -3.75 -0.84 83.7</td>
<td>43 -0.95 -1.68 -0.21 0.0</td>
<td>24 0.31 -1.56 2.17 10.7</td>
</tr>
<tr>
<td>white</td>
<td>35 -1.85 -2.49 -1.22 15.7</td>
<td>32 -2.36 -4.55 -1.725 86.9</td>
<td>32 -1.59 -2.46 -0.71 0.0</td>
<td>18 -0.08 -2.36 2.21 9.4</td>
</tr>
<tr>
<td>African American</td>
<td>2 5.66 -6.60 17.92</td>
<td>80.0 2 5.21 -5.67 16.08</td>
<td>68.7 2 0.08 -6.20 6.36 0.0</td>
<td>1 -0.74 -12.62 11.14</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3 2.53 -5.18 10.25</td>
<td>17.7 3 -0.42 -4.19 3.34 0.0</td>
<td>3 2.31 -2.35 6.97 0.0</td>
<td>2 27.29 -40.32 94.61 77.7</td>
</tr>
<tr>
<td>Asian</td>
<td>2 -0.09 -2.85 2.67</td>
<td>52.4 2 -5.00 -5.77 -3.22 0.0</td>
<td>2 2.18 -2.90 7.27 0.0</td>
<td>0</td>
</tr>
<tr>
<td>Native American</td>
<td>1 -2.64 -3.60 -1.68</td>
<td>1 -4.14 -5.28 -3.00 1</td>
<td>1 2.23 -1.00 5.46 1</td>
<td>4.68 -2.35 11.71</td>
</tr>
<tr>
<td>Design cohort</td>
<td>36 -1.58 -2.25 -0.91</td>
<td>38.8 33 -2.56 -4.36 -0.79 86.8</td>
<td>35 -1.16 -1.95 -0.37 0.0</td>
<td>18 0.04 -2.04 2.13 13.2</td>
</tr>
<tr>
<td>Design control</td>
<td>9 -0.32 -2.31 1.67</td>
<td>26.2 9 -0.39 -2.39 1.61 0.0</td>
<td>7 -1.18 -4.56 2.19 34.2</td>
<td>5 -0.60 -6.95 5.75 12.5</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>42 -1.64 -2.40 -0.53</td>
<td>34.3 39 -2.37 -3.95 -0.79 59.4</td>
<td>37 -0.71 -2.22 0.80 21.6</td>
<td>23 -4.26 -10.54 2.03 74.0</td>
</tr>
<tr>
<td>white</td>
<td>32 -1.83 -2.98 -0.67</td>
<td>30.6 29 -2.76 -4.88 -0.64 60.5</td>
<td>29 -0.99 -3.00 1.02 34.7</td>
<td>18 -8.56 -17.77 0.65 79.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.16</td>
<td>-10.39</td>
<td>12.69</td>
</tr>
<tr>
<td>African American</td>
<td>3</td>
<td>-2.12</td>
<td>-6.54</td>
<td>2.31</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1</td>
<td>3.53</td>
<td>-0.05</td>
<td>7.11</td>
</tr>
<tr>
<td>Asian</td>
<td>1</td>
<td>-2.31</td>
<td>-3.72</td>
<td>-0.90</td>
</tr>
<tr>
<td>Native American</td>
<td>1</td>
<td>-2.92</td>
<td>-4.11</td>
<td>-1.73</td>
</tr>
<tr>
<td>Design cohort</td>
<td>32</td>
<td>-1.72</td>
<td>-2.69</td>
<td>-0.75</td>
</tr>
<tr>
<td>Design control</td>
<td>9</td>
<td>-0.37</td>
<td>-3.95</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>41</td>
<td>-1.49</td>
<td>-2.18</td>
<td>-0.80</td>
</tr>
<tr>
<td>white</td>
<td>30</td>
<td>-1.72</td>
<td>-2.45</td>
<td>-1.00</td>
</tr>
<tr>
<td>African American</td>
<td>2</td>
<td>6.10</td>
<td>-5.70</td>
<td>71.3</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3</td>
<td>7.25</td>
<td>-6.05</td>
<td>20.55</td>
</tr>
<tr>
<td>Asian</td>
<td>2</td>
<td>-0.22</td>
<td>-2.43</td>
<td>1.95</td>
</tr>
<tr>
<td>Native American</td>
<td>1</td>
<td>-2.92</td>
<td>-4.11</td>
<td>-1.73</td>
</tr>
<tr>
<td>Design cohort</td>
<td>34</td>
<td>-1.44</td>
<td>-2.21</td>
<td>-0.67</td>
</tr>
<tr>
<td>Design control</td>
<td>6</td>
<td>-0.92</td>
<td>-2.98</td>
<td>1.13</td>
</tr>
</tbody>
</table>
1N= number of studies; 2Adjusted for sex; Bold: p< 0.05 or 1^>50%
LEGEND OF FIGURES

Figure 1
Inclusion flow chart

Figure 2
Forest plot of the beta estimates (regression coefficients) from the meta-analysis of the association between BMI and absolute telomere length (bp) (A) or relative telomere length (T/S ratio) (B) as outcome in the total population

Figure 2a: absolute telomere length (bp)

Figure 2b: relative telomere length (T/S ratio)

Figure 3
Forest plot of the beta estimates (regression coefficients) from the meta-analysis of the association between BMI and absolute telomere length (bp) or relative telomere length (T/S ratio) (B) as outcome in the “young” population (age ≥18 and ≤ 60 years)

Figure 2a: absolute telomere length (bp)

Figure 2b: relative telomere length (T/S ratio)
Figure 1 Inclusion flow chart

3929 publications

screening abstracts or full text:
Exclusion 3790 publications

139 potentially hits

126 corresponding authors

No response: n= 56
No data: n= 3
No participation: n= 6

61 corresponding authors willing to participate

Additional study populations: n= 6
> 1 study population in manuscript: n= 6

80 unique study populations

Exclusion:
1 L/C ratio
5 fish flow fluorescence
1 Exponentiation T/S ratio
1 Summary statistics without regression coefficient

72 unique study populations

26 absolute telomere length
46 T/S ratio
Figure 2 Forest plot of the beta estimates (regression coefficients) from the meta-analysis of the association between BMI and absolute telomere length (bp) (A) or relative telomere length (T/S ratio) (B) as outcome in the total population

Figure 2a: absolute telomere length (bp)
Figure 2b: relative telomere length (T/S ratio)

<table>
<thead>
<tr>
<th>Study ID</th>
<th>ES (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONICA</td>
<td>-3.27 (-4.15, -2.39)</td>
<td>2.86</td>
</tr>
<tr>
<td>MDCP</td>
<td>-2.80 (-4.61, 5.34)</td>
<td>1.29</td>
</tr>
<tr>
<td>Utah Pedigree</td>
<td>-3.90 (-5.45, -2.35)</td>
<td>3.31</td>
</tr>
<tr>
<td>MESA White</td>
<td>-1.09 (-2.23, 0.03)</td>
<td>1.74</td>
</tr>
<tr>
<td>MESA African American</td>
<td>0.34 (-1.32, 1.08)</td>
<td>2.35</td>
</tr>
<tr>
<td>MESA Hispanic</td>
<td>0.19 (-2.90, 2.47)</td>
<td>2.98</td>
</tr>
<tr>
<td>EARSI T/S controls</td>
<td>-10.42 (-44.82, 25.98)</td>
<td>0.02</td>
</tr>
<tr>
<td>UCLA MacArthur</td>
<td>3.31 (-10.84, 11.42)</td>
<td>6.62</td>
</tr>
<tr>
<td>Ashkenazi</td>
<td>-9.92 (-44.45, 24.62)</td>
<td>0.03</td>
</tr>
<tr>
<td>Warsaw</td>
<td>-2.69 (-0.70, 3.91)</td>
<td>0.75</td>
</tr>
<tr>
<td>Finland Health 2000 cohort</td>
<td>7.00 (-0.72, 14.72)</td>
<td>0.20</td>
</tr>
<tr>
<td>Sister Study (Vanguard sample)</td>
<td>-3.60 (-6.94, -0.98)</td>
<td>2.07</td>
</tr>
<tr>
<td>Sister Study II (Genetic Study subcohort)</td>
<td>3.60 (-11.11, 17.15)</td>
<td>1.51</td>
</tr>
<tr>
<td>CAS controls</td>
<td>0.34 (-3.31, 3.88)</td>
<td>2.18</td>
</tr>
<tr>
<td>PATH 60</td>
<td>-1.34 (-9.93, 7.28)</td>
<td>0.49</td>
</tr>
<tr>
<td>FeNa alcohol controls</td>
<td>1.37 (-0.43, 3.18)</td>
<td>2.74</td>
</tr>
<tr>
<td>Fels Longitudinal Study</td>
<td>-27.73 (-59.48, 14.02)</td>
<td>0.04</td>
</tr>
<tr>
<td>ECRAN</td>
<td>8.17 (1.65, 32.92)</td>
<td>0.06</td>
</tr>
<tr>
<td>Heart Scan Study</td>
<td>-2.00 (-3.96, -0.04)</td>
<td>4.30</td>
</tr>
<tr>
<td>Mayo</td>
<td>3.06 (0.73, 8.43)</td>
<td>1.00</td>
</tr>
<tr>
<td>HSIC</td>
<td>4.16 (0.58, 7.86)</td>
<td>1.41</td>
</tr>
<tr>
<td>PREVEND</td>
<td>-2.31 (-5.30, 0.60)</td>
<td>2.83</td>
</tr>
<tr>
<td>Strong Heart Family Study</td>
<td>-5.54 (-13.30, -1.77)</td>
<td>4.67</td>
</tr>
<tr>
<td>PRE3DMECO-NAVARA</td>
<td>0.31 (-0.53, 0.86)</td>
<td>2.39</td>
</tr>
<tr>
<td>NHANES</td>
<td>-1.94 (-2.90, -0.98)</td>
<td>6.37</td>
</tr>
<tr>
<td>SIVHs</td>
<td>-2.20 (-4.12, 1.72)</td>
<td>1.88</td>
</tr>
<tr>
<td>DHS-2 White</td>
<td>-14.83 (-30.88, 1.78)</td>
<td>0.19</td>
</tr>
<tr>
<td>DHS-2 African American</td>
<td>13.02 (24.28, 35.98)</td>
<td>0.33</td>
</tr>
<tr>
<td>DHS-2 Hispanic</td>
<td>17.61 (-6.10, 41.72)</td>
<td>0.07</td>
</tr>
<tr>
<td>DALS</td>
<td>5.00 (-10.88, 0.88)</td>
<td>1.02</td>
</tr>
<tr>
<td>Finn Twin study</td>
<td>-1.61 (-3.58, 0.37)</td>
<td>4.27</td>
</tr>
<tr>
<td>Former Athletes Study</td>
<td>0.77 (21.88, 23.41)</td>
<td>0.05</td>
</tr>
<tr>
<td>USKICS whole blood</td>
<td>-0.18 (-2.33, 1.97)</td>
<td>3.95</td>
</tr>
<tr>
<td>USKICSuffy coat</td>
<td>1.22 (3.78, 5.23)</td>
<td>1.27</td>
</tr>
<tr>
<td>Enaenux Rupheren Family Study</td>
<td>-0.02 (0.60, 2.97)</td>
<td>2.74</td>
</tr>
<tr>
<td>Rotterdam Study</td>
<td>-1.06 (-3.23, 0.82)</td>
<td>4.47</td>
</tr>
<tr>
<td>KOSA F3</td>
<td>-0.58 (-2.96, 1.85)</td>
<td>4.02</td>
</tr>
<tr>
<td>KOSA F4</td>
<td>3.91 (4.18, 1.68)</td>
<td>3.75</td>
</tr>
<tr>
<td>CAVASC</td>
<td>-1.80 (1.78, 4.28)</td>
<td>0.91</td>
</tr>
<tr>
<td>SAPPIR</td>
<td>-0.30 (-2.26, 1.38)</td>
<td>4.30</td>
</tr>
<tr>
<td>Cebu Longitudinal Health and Nutrition Survey (CLHNS)</td>
<td>0.68 (0.43, 2.13)</td>
<td>5.71</td>
</tr>
<tr>
<td>NESDO</td>
<td>-3.00 (-4.83, 0.82)</td>
<td>1.88</td>
</tr>
<tr>
<td>NESDA</td>
<td>2.00 (3.96, -0.04)</td>
<td>4.30</td>
</tr>
<tr>
<td>Nutrition and Exercise (NEW) study</td>
<td>0.76 (-3.78, 5.30)</td>
<td>1.49</td>
</tr>
<tr>
<td>Overall (I-squared = 41.1%, p = 0.002)</td>
<td>-1.50 (-2.12, -0.88)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis.
Fig 3 Forest plot of the beta estimates (regression coefficients) from the meta-analysis of the association between BMI and absolute telomere length (bp) or relative telomere length (T/S ratio) (B) as outcome in the “young” population (age ≥18 and ≤ 60 years)

Figure 3a: absolute telomere length (bp)
Figure 3b: relative telomere length (T/S ratio)

<table>
<thead>
<tr>
<th>Study ID</th>
<th>ES (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONICA</td>
<td>-3.61 (-4.70, -2.52)</td>
<td>3.49</td>
</tr>
<tr>
<td>MDCM</td>
<td>-3.30 (-4.10, -2.89)</td>
<td>1.78</td>
</tr>
<tr>
<td>Utah Pedigree Study</td>
<td>-4.50 (-6.66, -2.34)</td>
<td>3.88</td>
</tr>
<tr>
<td>MESA White</td>
<td>-1.61 (-2.22, -0.41)</td>
<td>2.56</td>
</tr>
<tr>
<td>MESA African American</td>
<td>0.82 (-3.89, 5.42)</td>
<td>2.96</td>
</tr>
<tr>
<td>MESA-Hispanic</td>
<td>-0.66 (-4.50, 3.19)</td>
<td>3.21</td>
</tr>
<tr>
<td>EARSII T/S controls</td>
<td>-17.78 (-42.94, 27.38)</td>
<td>0.10</td>
</tr>
<tr>
<td>Ashkenazi</td>
<td>-77.29 (-145.71, -8.88)</td>
<td>0.04</td>
</tr>
<tr>
<td>Warsaw</td>
<td>6.00 (6.77, 13.95)</td>
<td>0.97</td>
</tr>
<tr>
<td>Finland Health 2000 cohort</td>
<td>-16.00 (-39.72, -2.29)</td>
<td>0.88</td>
</tr>
<tr>
<td>Sister Study (Vanguard sample)</td>
<td>-1.50 (-3.60, 1.60)</td>
<td>2.74</td>
</tr>
<tr>
<td>Sister Study II (Genetic Study subcohort)</td>
<td>-0.27 (-0.86, 0.51)</td>
<td>2.64</td>
</tr>
<tr>
<td>CAS controls</td>
<td>-1.33 (-2.91, 0.25)</td>
<td>1.69</td>
</tr>
<tr>
<td>PATH 40</td>
<td>-25.13 (-46.84, 9.90)</td>
<td>0.20</td>
</tr>
<tr>
<td>Italy alcohol controls</td>
<td>-14.24 (-21.73, -6.75)</td>
<td>1.97</td>
</tr>
<tr>
<td>Fels Longitudinal Study</td>
<td>-0.62 (-32.77, 21.52)</td>
<td>0.27</td>
</tr>
<tr>
<td>ECRAN</td>
<td>-1.09 (-2.86, 0.76)</td>
<td>3.85</td>
</tr>
<tr>
<td>Heart Scan Study</td>
<td>3.63 (-3.11, 10.37)</td>
<td>2.19</td>
</tr>
<tr>
<td>Boiler workers</td>
<td>2.33 (-3.11, 7.77)</td>
<td>2.62</td>
</tr>
<tr>
<td>Mayo</td>
<td>-1.92 (-49.88, 42.03)</td>
<td>0.11</td>
</tr>
<tr>
<td>HBCS</td>
<td>-3.34 (-7.36, -3.32)</td>
<td>3.84</td>
</tr>
<tr>
<td>PREVEND</td>
<td>-4.14 (-5.28, -3.02)</td>
<td>4.04</td>
</tr>
<tr>
<td>Strong Heart Family Study</td>
<td>234.00 (196.76, 271.24)</td>
<td>0.15</td>
</tr>
<tr>
<td>PREMISED-NAVARRA</td>
<td>-3.65 (-4.67, -2.63)</td>
<td>4.03</td>
</tr>
<tr>
<td>NHANES</td>
<td>-5.10 (-6.22, -3.98)</td>
<td>3.11</td>
</tr>
<tr>
<td>DHS-2 White</td>
<td>-15.79 (-32.51, 0.93)</td>
<td>0.64</td>
</tr>
<tr>
<td>DHS-2 Hispanic</td>
<td>12.23 (0.53, 23.95)</td>
<td>1.13</td>
</tr>
<tr>
<td>DHS-2 African American</td>
<td>13.58 (-11.25, 38.41)</td>
<td>0.32</td>
</tr>
<tr>
<td>DALS</td>
<td>-1.36 (-10.18, 7.70)</td>
<td>1.81</td>
</tr>
<tr>
<td>Fin Twin study</td>
<td>-2.38 (-4.59, -0.11)</td>
<td>3.77</td>
</tr>
<tr>
<td>UKHCS whole blood</td>
<td>-1.28 (-4.12, 1.57)</td>
<td>3.57</td>
</tr>
<tr>
<td>UKHCS Buffy coat</td>
<td>-0.03 (-4.88, 4.81)</td>
<td>2.35</td>
</tr>
<tr>
<td>Erasmus Rucphen Family Study</td>
<td>-4.18 (-7.59, -0.75)</td>
<td>3.34</td>
</tr>
<tr>
<td>Rotterdam Study</td>
<td>1.69 (-1.80, 4.80)</td>
<td>3.42</td>
</tr>
<tr>
<td>KORA F3</td>
<td>-1.78 (-4.63, 1.06)</td>
<td>3.57</td>
</tr>
<tr>
<td>KORA F4</td>
<td>-4.43 (-6.45, -2.41)</td>
<td>3.51</td>
</tr>
<tr>
<td>CAVASIC</td>
<td>0.30 (-7.42, 8.02)</td>
<td>1.95</td>
</tr>
<tr>
<td>SAPHIR</td>
<td>-0.60 (-2.96, 1.76)</td>
<td>3.85</td>
</tr>
<tr>
<td>Cebu Longitudinal Health and Nutrition Survey (CLHNS)</td>
<td>-4.43 (-6.55, -2.31)</td>
<td>4.00</td>
</tr>
<tr>
<td>NESSDO</td>
<td>-20.00 (-38.80, -1.20)</td>
<td>0.48</td>
</tr>
<tr>
<td>NESDA</td>
<td>-4.50 (-6.78, -2.24)</td>
<td>3.85</td>
</tr>
<tr>
<td>Nutrition and Exercise (NE) study</td>
<td>0.02 (-3.68, 3.72)</td>
<td>2.52</td>
</tr>
<tr>
<td>Overall (I-squared = 83.7%, p = 0.003)</td>
<td>-2.29 (-3.75, -0.84)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis.

Diagram showing the distribution of the ES (95% CI) values with corresponding % Weight.
ELECTRONIC SUPPLAMENTARY MATERIAL

Online resource 1

Electronic supplemental material

Contains additional information about search, assessing heterogeneity (Meta-regression and sources of heterogeneity), sensitivity analyses and the study protocol for participating PIs

Online resource 2

Electronic Figure 1a Absolute telomere length

All forest plots of the beta estimates (regression coefficients) from the meta-analysis of the association between BMI and absolute telomere length (bp) as outcome stratified by age, sex, ethnicity and study design.

Online resource 3

Electronic Figure 1b Relative telomere length.
All forest plots of the beta estimates (regression coefficients) from the meta-analysis of the association between BMI and relative telomere length (T/S ratio) as outcome stratified by age, sex, ethnicity and study design.