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Abstract

In this note, the stability of an uncertain system with atiuaaturation using super-twisting controller (STC) islgeed. First, a new
proof of STC ensuring finite-time stability of the sysyem gposed using geometric method which gives a new gain donditThen,
using the proposed proof the domain of attraction (DOA) igliekly calculated for the system with bounded control.
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1 Introduction

Sliding mode control (SMC) is popularly used for stabiligin

in a high amplitude oscillations of state trajectory in aért
cases [11]. Nevertheless, STC is still considered as an alte
native approach to design a continuous SMC. The solutions

the uncertain dynamical systems by a discontinuous control ot he system are absolutely continuous functions thatfyati
[1]. However, the discontinuous control signal causes wear (2) almost everywhere, and are understood in the Filippov’s

and tear of the actuator. In the early nineties, a continuous

SMC, known as super-twisting control (STC), is proposed
that also ensures a sliding mode in finite-time. This control
structure is given by

t
U(t)=—K|S(t)I%Si9n(S(t))—fl- sign@§()dr (1)
0

that stabilizes an uncertain scalar dynamical system

S(t) = a(t) + b(t)u(t) (@)

in finite-time, wherea(t) andb(t) are unknown but continu-
ously diferentiable scalar functions, akdandL are some
positive constants. The control law (1) is studied widely
in literature (e.g., [2], [3], [5]-[8], [11]) due to its ality

to reject the disturbance completely with continuous con-
trol signal. Similarly, the multi-input case is also repsatt

in [4]. Despite of the continuous control, STC may result
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sense on discontinuous manifold [9].

In this paper, the stability of the system is analysed using
STC with actuator saturation which is one of the major con-
cerns in many practical applications. First, a new geometri
proof is proposed to show the finite-time stability of STC
which is diterent from the existing ones, e.g., see [2], [5]-
[8]. The main advantage of this proposed proof is that here
no difficulty arises for the points on the liree= 0. The sim-

ilar proof for super-twisting observer is presented relgent
in [10] but with a diferent gain conditions. Then, using the
proposed proof the domain of attraction (DOA) is explicitly
computed for the actuator saturation such that the system
is finite-time stable within this DOA. It is to be noted that
the stability of STC with saturating actuator is presented u
ing Lyapunov method in [12]. However, in this paper the
stability of STC under actuator saturation is analysedgisin
the proposed geometric proof with an aim of achieving the
largest DOA.

The proposed proof follows the idea of constructing system
trajectories in the original coordinate instead of in thagdh
plane. So, the dliculty incurred for the points on the liree=

0 is avoided. Then, using this technique DOA is computed
for any given saturation limit.
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2 Main results

First, we state some assumptions on the system (2) which
hold throughout this paper.

Assumption 1 The function a and its rate are bounded,
i.e.,, |al < aand|a < A. The function b is bounded and
sign definite, i.e., b+ 0, and without loss of generality,

O<b<bc< b. Further, we also assumbl <B.

The STC given in (1) is rewritten as

u=-K |s|% sign(s) + LiLov
vV = —sign(s)

3)
(4)
whereL = L;L, for some positive constanits andL,. Here,
the gaind_; andL, allow the flexibility in the design of as

we shall see later. The closed loop system with the control
law (3) and (4) is given as

5= b(-K|sf? sign(s) + Lyu)
= —Losign(s) + e
Ly

(5)
(6)

whereu = Lov + L_ll(ﬁz andy = $(2). Itis easy to see that
lyl <T* wherel'* = %‘. The classical notions of solution

are not applicable since the system (5)—(6) is discontisuou
for the points ons = 0. So, the dterential equation on the
discontinuous manifold is replaced by an inclusion which

is nonempty, closed and bounded, convex and upper semi-

continuous in its argument. Then, there exists an absglutel
continuous function which satisfies the inclusion almost ev

u
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Fig. 1. Majorant curve of STC ins(u) plane.

¥, = 0 divides the § y) plane into two parts namely; > 0
andX; < 0 such that any trajectory iy > O crosse&; = 0
before enterin@, < 0 and vice versa. Similarly fat, = 0.

We now proceed to find the trajectory of the system (5) and
(6) as shown in Fig. 1. Consider the first quadrant; 0
andu > 0. Any trajectory starting in the regidty > 0 with

erywhere, and is regarded as a solution to the system in thenitial condition (Q x(0)) is bounded by the line segment |

Filippov’s sense [9].
2.1 Stability of super-twisting control

The following Theorem gives the proof of STC without as-
suming any bound on control which is used later for calcu-
lation of DOA.

Theorem 1 Consider the systeigd) and (6). Then, the sys-
tem is finite-time stable if

T+

Ll (Lg + )

)

+

and L2>F—

K>18
> ™

(7)

where Iy > 0.

PROOF. The proof follows by the construction of geomet-
rical trajectories in each quadrant separatelysin) plane.
Note that every solution of the system (5)-(6) satisfiegFili
pov's inclusion for all points on the line = 0. The system
trajectory leaves the line= 0 whenever it crosses= 0 for
nonzeragu due to (5).

Define the curve&; = Liu - K ls? sign(s) = 0 andZ; =
Liu+K |s|% sign(s) = 0 as shown in Fig. 1. Clearly, the curve

due tol, > [—1 The equation of segment | is governed by
§>0 and u=0.

So, the line segment starting from the pointy®)) hits

¥ = 0 at (S(ty), K|s(t1)|% /L1). Then, it enters the region
%1 < 0 in the same quadrant. Similarly, all the trajectories
in this region remain bounded by the line segment Il which
drops from §(t1), K |s(t1)|% /L1) to (s(t1), 0). This is because
boths < 0 andy < 0 as¥; < 0 andL, > {-, respectively.
Then, the system trajectory enters into the fourth quadrant
(s> 0 andu < 0) wheres'< 0 andyu < 0. It is easy to see

that in this quadrant all the trajectories remain bounded by
the segment Il which is governed by

§= pmax{Ll,u, -K |s|%}

Clearly, the dynamical equations of curve segment Il until
it reaches the curvE, = 0 are represented by = blL;u

andsi = - (L2 + ) asZ, > 0 ands > 0, respectively. On



solving these two, the equation of motion of this segment is ~412 (|_2 ) /b2 Then, it follows immediately that for
obtained as

2(L +F_+) x> (1+ V5)—— ( ) , we guarantee? + w1 X+ wy > 0. So,
LA = - L ((tr) — (1) (8) we conclude |f
B L]_ (Lz + II:—+)
, . o . K>18y—m—". (13)
for all t € [t1,t;] wheret, is the time instant at which the b ’
trajectory reaches the cun® = 0. A simple calculation -
shows t/hat the s/eglment of curve lll intersects the chipve the relation (12) always holds. In other words, atatis-
0 at (s(ty), —KIs(t,)|z/L1) where fying (7) yields O< a < 1. As a consequence, the intercepts
by the majorant curve oB; = 0 decreases successively in
2|_1(|_2 + i_) geometric progression. We write the intercepts on the line
s(ty) = - s(tw). s = 0 as{lu(ta)liez., = {@'[u(to)llicz,, WithO=to <tp < ---
bK2 +2L4 (Lz + L—l) So, the system trajectory converges to origin asymptdyical

Once the trajectory reach& = 0, it moves towards the  In order to show finite-time convergence, we find the time
line s = 0 due to boths'< 0 andy < 0. During this, the  of convergence oft on the lines = 0 successively. From

dynamics of segment IIl is governed by (6), we see that fos > 0,
1 r+ -\ . r+
5= — 2 | = — L+ —|<ip<-[L-—
§=-bK|gZ and u= (L2+L1) ( 2+Ll)_y_ ( 2 Ll)
asZ, < 0. Itis seen that with the above dynamical equations Solving the right side of dierential inequality and using
the majorant curve now traverses froe(r[p K|s(t1)| /Ll) (11), we obtairt, < “ﬁ |1(0). The same time expression
to (O, u(tp)) and is given as L-p

may also be obtained for the case 0. DefineT; := ty,2 —
tyi. Then, the total time of convergence is calculated as

T=-YT1<) (Lli‘i_) (0

) =16) - g (12 + ) (s - 01). - @)

This curve hits the lins = 0 in finite time with the intercept i€Zso i€Zso
u(t2) < 0. Using the above relation, we compute the value l+a - |u(0)
of this intercept as lu(0)] Z = CV -
( 2710 i€Zs0 Ll)
ut2) = — |5(t1)|_ (L2+ )|5(t1)| (10)  whered := 2. In the cases(0) # O, the total time of

convergence is given as LMIZF{‘ '”(f) G This can be
n N - A . . 2*|__1 2*_
Using the value of(t,) in the above and simplifying further, further simplified, usingu(0)] < u(t2)l/a, to

yields
- u(t)l
2 2 2 T<ao—————.
i)l _ N2l (Lo + K2+ 41 (Lo + ) an (- )
k) bK?2 '
This shows that the finite-time stability of STC and hence
\/ZbLl(L2+ o )K2+ 4L2(L2+ - )2 the proof is completed. O

Denotea = +— leKz . If the right side of

One immediate consequence to the Theorem 1 is the fol-

(11) less than unity, then the successive intercepts of thelowing

system decrease monotonically. So, in order to showl,
it is equivalent to consider that Corollary 1 The system, given i{$) and (6), is finite-time
stable if the gains satisfy

2L+ D) a2 (L + Y

K4 - K? - > 0. 12 L
b 2 (12) K>1.8\/; and L>T*. (14)
We consider a quadratic equation i = K? as x* + PROOF. From Theorem 1, the system is finite-time stable
wiX+wy = 0 with wy = 2L (La+ £)/b and wp = if the gains satisfy the relation (7). The gain can be



chosen sfiiciently large such thaE (= 6) very small and M
become close to zero as the gdin is increased further.
Similarly, L, can always be designed to enslé, (= L)
just greater thah™*. So, the gain condition (7) can be written

asK > 1.8, /2% and L > T* for any 0< 6 < +co.

Now, if the gainK is selected using (14), sa§ = 611.8\/E
for any 6, > 1, then there always existssa> 0 such that
K = 611.8\/E > 1.8,/@. This implies that for every

gain K satisfying (14), theL; can be selected fiiciently
large such thaK also satisfies (7). The relation > T'*

follows immediately from (7) by multiplyind.; on both the
sides ofL, > E This completes the proof.[]

Remark 1 For an unperturbed system. i.&(t) = u(t) with

a(t) = 0 and Ht) = 1, the gain conditions are found to be
K >0and L>0as Ly > 0. Similarly, if b(t) = 1 but &t) is

a bounded uncertainty then the gains satisfy the relation as
K > 18+VL and L>I'* wherel* = A.

Remark 2 It may be noted here that the gains K and L
do not depend on the controller bound. However, if the un-
certain functions become state dependent, the gains of STC
depend on the controller bound as the case in [2].

2.2 Stability with bounded control

Fig. 2. Domain of attraction of STC with bounded control.

and

In this section, we present the stability of the system using bKZ—2(L+T*)
STC with saturating actuator. Lety > O be the saturation T2(p) := = o 1Sz — (1 - q)Um + aK /pB
limit of actuator such that the control is bounded By, =

i.e.,|u < Uy. Now, we state the assumption on uncertainty (16)
for a given saturation limit.

(1-g)*U2
K

for any pe (0,1) andg = —%. We denote

Assumption 2 |2| < 2 < qUy for some e (0, 1).

Here, we obtain the largest possible DOA for STC such that  p* — argmaxi(p) >0 and g = argmaxs(p) <0
) pe(0.1)

the closed loop system is finite-time stable with bounded pe(0.1

control within this DOA. Using the results of Theorem 1,

we proceed to find this positively invariant region. for all s € [ApB, pB] and se [0, ApB], respectively, where
= m(zz(%i)m Then, if g = min{p}, p5}, the closed loop

Usingu = Lov + Lil(f—)‘) in (3) givesX; = u+ 2. Since
lul < U, it must be ensured; — | < Uy. Thus, it follows
from Assumption 2 that iff;| < (1 - q)Uy then

2
_ Q= S\U Si (17)
i=1

a
S |Zl|+ E

<(1-9Um+qUu = Up.

system(5) and (6) is finite-time stable in DOA given by

a
-

for all s € [0, p*B], where

.- 2. * K [ A%
Using these facts, we estimate DOA for STC with bounded Si= {(&”) ERTIIS = P8, Il = L P*p
control. ( r+)
. . 2 Lz + —
Theorem 2 Consider the syste(2) subjectto bounded con- Sy = Ryl — A= Y/ mpg_ 0
trol input |u] < Uy. Define 1= (8K € u bLy (Pp =19 >
_ bK? +2(L +T%) ; K
Tl(p) = #H - 2(1_ q)KUM|S|2 Sy = {(S»/l) e R?: |l — L_l "/lp*ﬁ
2(L+T* +
g - 2D g (15) e (L2 ) (VB - 18) > of.
= LS 1



PROOF. Refer to Fig. 2. Observe that the control signal
is less than or equal to saturation limit of the actuator in
the region bounded by two curvé&s = —(1 - q)Uy and

%1 = (1 - q)Upm. Clearly, anyu(0) in the DOA (17) is less
than the intercept of the cun® = (1 - q)Uwm on the line

s = 0. So, the segments | and Il do not contribute towards
control saturation. Thus, the idea of the proof follows by
constructing the segment Il of the trajectory such that it
is always constrained by the cur¥e = —(1 - q)Uy, and
hence saturation limit is avoided.

First, we find the intercept on the line= 0 by the curve
Y14+ (1 -qUm = 0. We see that it intersects = 0 at
(B,0) whereg = % Let s(t;) = pB for anyp € (0, 1).

The objective is to find the maximum value pfdenoted

by p* such that the segment Ill does not intersect the curve
Y1+ (1-qUm =0forall se[0, p*al.

The equations of segment Il are given by (8) and (9). We
obtain the condition under which the segment Il does not
intersect the curv&; + (1 - q)Uy = 0. Using (8), we must
ensure

2 L E 1 —
l@ S(ty) — S(t)| < L£|5(t)|§ _ @UM .
bL, . -

(18)

On squaring both sides and then rearranging, it giuép) >
0 where71(p) is given by (15). The maximum value @f
denoted bypy, is calculated such thati(py) > O for all

se [/lpz[;’, pzﬁ].

Using (9) for the second part of segment lll, it must be
ensured

L2
bK

-

“)]w(t;)ﬁ

(Lg + E)|s(t)|% > Els(t)l% - (%q)UM. (19)

bK2 + 2Ly (Lo +
bKL,

Rearranging the above relation, givés(p) < 0. Let p;
be the maximum value of such that7>(p3) < O for all

Se [O,Ap;ﬂ].

To summarize, if71(p;) > 0 and7>2(p) < O, then the
segment Ill remains bounded By = —(1-q)Uy. Thus, the
maximum value op satisfying both the conditions given by
(15) and (16) is given ap* = min{p;, p3}.

The same analysis can be carried out for the trajectories
in the second quadrant. Now, DOA can be constructed as
follows. Note that the set$; and S, denote the regions
beyond the curve 1l in the fourth quadrant, and also beyond
the similar curve in the second quadrant. So, DOA can be
obtained by excluding these regions from theSgand is

2.
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(a) Response of the system. (b) STC within DOA.

Fig. 3. Simulation results of the closed loop system.

given by (17). Hence, the finite-time stability follows from
Theorem 1 in DOA given by in (17). This completes the
proof. O

Remark 3 The DOA in(17) depends explicitly on the gain
L;. So, for diferent values of {, the DOA changes, e.g.,
large Ly reduces DOA and vice versa. So, the largest DOA
can be obtained by selecting minimum value of L

3 Numerical ssimulation

Consider the system (2) with(t) = 0.5sint and b(t) =
1+ 0.1sint. Different constants are obtained @s= 0.5,
b=09,b=11,A=0.5,B=0.1. From this['* = 0.7407.
The gaind. andK are chosen using (7) a8148 and 23796,
respectively. The actuator saturation lintity, is chosen as
5andqg=0.1111. The values qb; andp are calculated as
0.62 and 0659, respectively. Sq* = 0.62. For simulation,

<
the initial condition is chosen 25] which belongs

to DOA given by (17). The simulation is run in MATLAB
using Runge-Kutta method of fourth order with a time step
of 10°3. The results are shown in Fig. 3. It is seen that
the states goes to zero in finite-time while the integrator
in the control rejects the disturbance as shown in Fig. 3(a).
Due to this the control signal becomes equal to the negative
of disturbance when the state converges to zero as shown
in Fig. 3(b). The control magnitude also remains bounded
within the saturation limit in the estimated DOA as proved
in Theorem 2 which is also depicted in Fig. 3(b). The plot
of system trajectory ing ) plane is shown in Fig. 4. The
trajectory converges to the origin in finite-time such that i
does not intersect with the curn®y = —(1 - Q)Upy. This
guarantees that the control signal respects the satutitiibn

of the actuator.

4 Conclusion

In this paper, the finite-time stability of STC is discussed
with bounded control magnitude. To analyse the stability,
a new geometric proof of STC is proposed in this paper.
Then, using this proposed proof, the largest possible DOA
is calculated such that the control signal always resphets t
saturation limit of the actuator while ensuring the finitad
stability of the system which is useful in practice.
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