UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Modelling and optimisation of intensified extraction in small channels for spent nuclear fuel reprocessing

Bascone, Davide; (2018) Modelling and optimisation of intensified extraction in small channels for spent nuclear fuel reprocessing. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[img]
Preview
Text
final thesis Bascone.pdf - Accepted version

Download (3MB) | Preview

Abstract

Nuclear energy is considered an option for future power supply. Spent Nuclear Fuel (SNF) reprocessing is essential to reduce the volume of nuclear wastes and to recover reusable materials, such as uranium and plutonium. Nowadays, all the commercial plants rely on the Plutonium Uranium Reduction Extraction (PUREX) process, an over 60-year old process. In the present work, a mathematical model for liquid-liquid extraction in small channels has been developed. The model is suitable for SNF reprocessing. Calculations of thermodynamics, hydrodynamics, pressure drop and nuclear criticality are included in the model. Several components and redox reactions, between the various oxidation states of U, Pu and Np, have been considered. Also, to increase the throughput and provide a good flow distribution within the channels, the design of a comb-like manifold has been included into the calculations. The resulting model, posed as optimisation problem, is a mixed-integer differential optimisation problem. The goal is to develop a methodology that allows to explore alternative flowsheets for the nuclear fuel cycle, using the small-scale extractor. Different case studies have been investigated. Firstly, the “codecontamination” section of the PUREX process has been investigated to demonstrate the applicability of the model. Secondly, a novel codecontamination section has been investigated to compare the small-scale extractor and the two main conventional technologies, i.e. pulsed column and mixer-settler. Finally, an alternative flowsheet has been proposed, using the small-scale extractors. This process has been obtained using a superstructure optimisation approach. The flowsheet produces a mixed uranium/plutonium oxide, to preclude the risk of nuclear proliferation. The mathematical model, despite its size and complexity, has been successfully solved in a short computational time. Results have shown that intensified extraction in small channel can provide to several benefits over the conventional technologies, in particular in terms of solvent degradation and mass transfer.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Modelling and optimisation of intensified extraction in small channels for spent nuclear fuel reprocessing
Event: University College London
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/10058926
Downloads since deposit
182Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item