UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model

Figini, M; Scotti, A; Marcuzzo, S; Bonanno, S; Padelli, F; Moreno-Manzano, V; Manuel Garcia-Verdugo, J; ... Zucca, I; + view all (2016) Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model. PLoS ONE , 11 (8) , Article e0161646. 10.1371/journal.pone.0161646. Green open access

[thumbnail of Figini_journal.pone.0161646.PDF]
Preview
Text
Figini_journal.pone.0161646.PDF - Published Version

Download (6MB) | Preview

Abstract

Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the optimization of acquisition protocols for preclinical and clinical dMRI studies on the spinal cord.

Type: Article
Title: Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pone.0161646
Publisher version: http://dx.doi.org/10.1371/journal.pone.0161646
Language: English
Additional information: © 2016 Figini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords: Science & Technology, Multidisciplinary Sciences, Science & Technology - Other Topics, PRINCIPAL EIGENVECTOR MEASUREMENTS, GRADIENT SAMPLING SCHEMES, WHITE-MATTER PATHOLOGY, TO-NOISE RATIO, TENSOR MRI, FRACTIONAL ANISOTROPY, MEAN DIFFUSIVITY, APPARENT DIFFUSION, LONGITUDINAL MRI, AXONAL INJURY
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10058787
Downloads since deposit
57Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item