UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Harnessing buildings' operational diversity in a computational framework for high-resolution urban energy modeling

Ghiassi, N; Tahmasebi, F; Mahdavi, A; (2017) Harnessing buildings' operational diversity in a computational framework for high-resolution urban energy modeling. Building Stimulation , 10 (6) pp. 1005-1021. 10.1007/s12273-017-0356-1. Green open access

[img]
Preview
Text
BS_accepted.pdf - Accepted version

Download (1MB) | Preview

Abstract

To achieve computational efficiency, efforts toward developing urban-scale energy modeling applications frequently rely on various domain simplifications. For instance, heat transfer phenomena are captured using reduced order models. As a consequence, specific aspects pertaining to the temporal dynamics of energy load patterns and their dependency on transient phenomena (e.g., weather conditions, inhabitants’ presence and actions) cannot be realistically represented. To address this circumstance, we have conceived, implemented, and documented a two-step urban energy modeling approach that combines cluster analysis and sampling techniques, full dynamic numeric simulation capability, and stochastic methods. The paper describes the suggested urban energy modeling approach and the embedded cluster analysis supported sampling methodology. More particularly we focus on the aspects of this approach that explicitly involve the representation of inhabitants in urban-scale energy modeling. In this regard, the potential to recover lost dynamic diversity (e.g., in computation of temporal load patterns) due to the deployed reductive sampling is explored. Parametric runs based on stochastic variations of underlying building use profiles facilitate the generation of highly realistic load patterns despite the small number of buildings selected to represent the simulation domain. We illustrate the utility of the proposed urban energy modeling approach to address queries concerning the energy efficiency potential of behaviorally effective instruments. The feasibility of the envisioned scenarios concerning inhabitants and their behavior (high-resolution temporal load prediction, assessment of behavioral variation) is presented in detail via specific instances of district-level energy modeling for the city of Vienna, Austria.

Type: Article
Title: Harnessing buildings' operational diversity in a computational framework for high-resolution urban energy modeling
Open access status: An open access version is available from UCL Discovery
DOI: 10.1007/s12273-017-0356-1
Publisher version: http://dx.doi.org/10.1007/s12273-017-0356-1
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Science & Technology, Physical Sciences, Technology, Thermodynamics, Construction & Building Technology, urban energy modeling, GIS, bottom-up engineering model, building stock, occupant behavior, building performance simulation, RESIDENTIAL SECTOR, CONSUMPTION, STOCK, SCALE, TOOL
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment > Bartlett School Env, Energy and Resources
URI: https://discovery.ucl.ac.uk/id/eprint/10058666
Downloads since deposit
63Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item