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Abstract

Building performance simulation tools commonly of-
fer several algorithm options for most heat transfer
processes being modelled. The impact of this choice
on indoor overheating risk, assessed using the crite-
ria described in the CIBSE Technical Memorandum
59, was quantified for a naturally ventilated dwelling
archetype in two popular tools. By selecting non-
default algorithm options, the predicted overheating
risk changed from high to low for 33% of the cases in
tool A and doubled the predicted overheating hours
in certain rooms in tool B. Given these findings, mod-
ellers should carefully decide on the algorithms being
used and publish them for increased transparency.

Introduction

Indoor overheating is defined as the state at which
the occupants of a property feel uncomfortably warm
due to the indoor environment (CIBSE, 2013) and is
a growing concern amongst the building research and
industrial communities (Lomas and Porritt, 2017).
With the projected increase in the frequency and
magnitude of extreme heat episodes (Mora et al.,
2017), the ability of dwellings to maintain a ther-
mally comfortable summer environment is becoming
a major concern (Mavrogianni et al., 2016). Mod-
ellers may commonly use pre-defined criteria, often in
the form of thresholds, to decide whether their cur-
rent design needs to be improved in terms of summer
indoor thermal comfort. Technical Memorandum 59
(TM59), recently released by the Chartered Institu-
tion of Building Services Engineers (CIBSE), can aid
modellers in predicting domestic indoor overheating
risk and assessing mitigation options (CIBSE, 2017).
This method is based on the use of Building Perfor-
mance Simulation (BPS) tools.

BPS tools have found widespread applications within
the construction industry (Guarino et al., 2016). As
designers strive to optimise new and refurbished con-
structions across a number of objectives (includ-
ing energy performance and thermal comfort) and
achieve compliance with building regulations or plan-
ning requirements, BPS tools have become essential
components in the industry’s building analysis tool-

box. Similarly, such tools are now commonly used
within academia to assess the importance of various
aspects of the indoor environment and identify possi-
ble solutions to poor building performance (Symonds
et al., 2016; Mavrogianni et al., 2012).

Commonly, BPS tools are based on a series of heat
balance equations, where the individual heat and
mass transfer processes are approximations of physi-
cal laws (Crawley et al., 2008). This is due to the non-
linear nature of certain equations, their complex in-
teraction or the difficulty in analytically solving them.
Taking the example of the simplest approximation for
heat convection on a horizontal surface, the convec-
tion coefficient is a non-linear function of the position
along the surface (Hens, 2012). When considering
different air velocities and orientations, numerical ap-
proximations are hence required (Emmel et al., 2007).
This results in a single heat process being replaced by
a number of empirically based models, generated un-
der specific scenarios, with their applicability depend-
ing on the modelled building (see Mirsadeghi et al.
(2013) for a comprehensive review of exterior con-
vection coefficient models). In other cases, the mod-
elling options for a heat transfer process could repre-
sent different levels of detail which could also impact
the model’s outputs (Mantesi et al., 2018). There-
fore, a modeller should intelligently choose the algo-
rithm combination most appropriate for the building
being modelled. The significance of this lies in the
possible impact that the choice of algorithms has on
the predicted indoor environment. This work aims
to quantify this effect by predicting the indoor envi-
ronment and associated overheating risk in two BPS
tools whose algorithmic options will be varied while
the building’s physical description remains constant.
The overheating risk assessment will follow the TM59
methodology (CIBSE, 2017).

A previous study that assessed the overheating risk
prediction of nine model variations across two BPS
tools established that the choice of software can in-
fluence the assessment result (Petrou et al., 2018).
A possible consequence could be the intentional use
of the tool that overall predicted a lower overheating
risk by the modelling community. The importance
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of algorithm choice has been recognised in the pre-
vious work (Mantesi et al., 2018; Prada et al., 2014;
Mirsadeghi et al., 2013). To the authors’ knowledge,
the possible impact of such choice has not been ex-
amined in relation to threshold criteria-based assess-
ments, such as those described in TM59.

This paper aims to quantify the effect of BPS algo-
rithm choice on indoor overheating risk prediction for
two BPS tools using the TM 59 methodology (CIBSE,
2017). More specifically, the objectives are:

1. to quantify the discrepancies resulting from algo-
rithm choice in the modelled indoor temperatures,

2. to translate these into the TM59 overheating risk
metrics, and

3. to determine which modelling input factors are
the most influential on the indoor temperature.

Building performance simulation uncertainty

Tian et al. (2018) classified BPS uncertainties into
two broad categories: (a) Model form and (b) pa-
rameter uncertainties. Empirical validation work has
demonstrated how the combination of both types
could lead to significant discrepancies in the model
and actual indoor environment (Strachan et al., 2016;
Mateus et al., 2014). This work will focus on the mag-
nitude of possible parameter uncertainties associated
with the modellers’ algorithm choice.

Imam et al. (2017) questioned the modelling literacy
of design teams and its potential influence on the per-
formance gap. 108 modellers were asked to rank the
importance of 21 BPS input variables relating to the
building’s physical characteristics, with a quarter of
them performing worse than a person choosing at ran-
dom. Although the approach chosen by Imam et al.
(2017) can be disputed, where an incorrect ranking of
a list of variables that interact in a complex manner is
not evidence of poor modelling capabilities, the ques-
tion whether poor modelling judgement is widespread
within the industry can be raised. The ability of mod-
ellers to differentiate and select algorithms could also
contribute to the performance gap but was not inves-
tigated by Imam et al. (2017).

Mirsadeghi et al. (2013) presented a detailed com-
parison of the external convection coefficients used
within a number of BPS tools and determined that
their applicability depends on the modelled building’s
individual characteristics. For a simple cubic office
modelled, deviations of up to 30% in the predicted
yearly cooling energy demand compared to the av-
erage were observed due to the choice of convection
coefficients alone (Mirsadeghi et al., 2013). Prada
et al. (2014) compared the heat loss for two meth-
ods of modelling conduction. For a gaussian distri-
bution of inputs (thermal conductivity, specific mass,
specific heat and wall layer thickness) the maximum
discrepancy in the expectation value of heat loss was
5%. However, the differences in the variance of the
predicted outputs reached up to 60%. Mantesi et al.

(2018) looked at the level of disagreement between
two tools when the default and the most similar simu-
lation options were used for each. This was performed
for three types of thermal mass. The greatest levels of
disagreement for the default options decreased from a
normalised root mean square error of 26% for annual
heating to less than 3%. It was further discovered
that the type of thermal mass significantly influenced
the discrepancy between tools. An interesting point
raised by Mantesi et al. (2018) is that modellers will
tend to rely on the default options of each tool. Based
on the discrepancies observed, Mantesi et al. (2018)
has called for modellers to make informed decisions
on during the model design phase.

Indoor overheating assessment

Buildings can be considered to have a modifying ef-
fect on the external environment and may potentially
lead to indoor thermal discomfort and poor air qual-
ity if not designed appropriately (Taylor et al., 2016).
With TM59, CIBSE provides guidance on the assess-
ment of overheating risk of new dwellings during the
design phase (CIBSE, 2017). TM59 includes detailed
recommendations on modelling input internal loads,
occupancy, window and door operation to encourage
consistency in industry and research practice of build-
ing overheating risk assessment. A high level of over-
heating risk is predicted if there is failure to meet any
of the two following criteria (CIBSE, 2017).

1. Between May to September, the percentage of oc-
cupied hours during which ∆T = Top − Tmax is
greater or equal to 1 ◦C should be less than 3%.

2. Annually, the threshold of 26 ◦C should not be
exceeded by the bedroom operative temperature
between 22:00-07:00 for more than 32 hours.

The operative temperature (Top) is the weighted aver-
age of the room’s radiant and air temperature, while
the Tmax is the maximum temperature predicted
by the model of adaptive thermal comfort (CIBSE,
2013). CIBSE acknowledges that thermal discomfort
is subjective. However, given that evidence suggests
an increase in extreme heat episodes (Mora et al.,
2017), a structured method of comparing overheat-
ing interventions could be deemed necessary.
As TM59 does not specify the BPS tool or algorithms
to be used, it allows for a useful assessment of the im-
portance of modelling choice. Given the widespread
reach of CIBSE, TM59 may be widely adopted within
the modelling community and any significant findings
could apply to numerous modellers. Furthermore,
the clear specification of building input parameters,
occupancy-related schedules and a widely available
weather file allows for the reproducibility of this work.

Simulation
To determine the importance of algorithm choice on
predicted indoor temperatures and the potential ex-
ceedance of TM59 thresholds, a free-running and nat-
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Table 1: Description of the model’s physical properties.

Property Description
Floor Level Top floor at a height of 11.2 m.
Orientation South-facing
Aspect Single-Aspect
Construction Lightweight: Timber frame, external brick layer and internal plasterboard.
U-values (W/m2K) Wall: 0.17, window: 1.28, floor: 0.18, roof: 0.13, doors: 3.00.
Solar Heat Gain Rate 0.5
Glazing Fraction 0.3
Infiltration Constant air permeability of 5.0 m3/(h m2) due to the building envelope, with addi-

tional 46.8 m3 h−1 for the kitchen and 28.8 m3 h−1 for the bathroom (exhaust fans).

Table 2: Summary of the number of simulation algo-
rithm options assessed for each software. F.D refers
to the finite differences method.

No. of options
Process Tool A Tool B
Conduction 2 1
F.D. Discretisation 2 1
Exterior Convection 5 2
Interior Convection 4 4
Ext. Longwave Radiation 1 2
Int. Air Emissivity 1 2
Solar Rad. Distribution 5 2
Air Heat Balance 3 1

Total 1200 64

urally ventilated dwelling model was simulated in
two BPS tools. The model is based on a top-floor
purpose-built flat archetype, representative of a typ-
ical London flat in the 1960-1979 age band, designed
by Oikonomou et al. (2012). The model’s layout is vi-
sualised in figure 1. The building’s fabric and window
thermal properties are summarised in table 1. Room
doors were fully open between 08:00-23:00. Windows
were fully open between 00:00-24:00 for the bedroom
and 08:00-23:00 for the other rooms if the internal
air temperature exceeded 22 ◦C and was lower than
the external dry-bulb temperature. The Design Sum-
mer Year 1 (2020) weather file, with London Weather
Centre location, was used (CIBSE, 2014). The in-
ternal gains recommended for a two-person, double
bedroom flat by TM59 were used (CIBSE, 2017).

The algorithm options selected are summarised in ta-
ble 2. A full-factorial analysis was performed where
every possible algorithm combination was simulated
while the building’s physical characteristics remained
unchanged. Such method covers the entire input
space for the options selected, resulting in a detailed
study of interaction effects between different simula-
tion options. Since the options for each algorithm are
not ordinal, with non-linear relationships being possi-
ble, any form of sampling could have hidden possible
interactions. The options were chosen based on the
algorithm options identified by the literature or sus-
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Figure 1: Layout of the model. The model’s height is
2.8 m and the window’s height is 1.6 m.

pected by the authors to be influential on the indoor
environment but may be overlooked by modellers.
For this experiment, the simulation options were
treated as categorical nominal variables which may
be responsible (explanatory) for any observed changes
to the response variables. The response variables in-
cluded the hourly indoor operative temperature, the
average daily maximum temperature (Tmax

d,room[◦C])
across the summer period and the number of pre-
dicted overheating hours. Tmax

d,room was estimated for
every day (d) over the length of the summer pe-
riod (D) using the hourly (h) temperature predictions
(Ti,h [◦C]) of each day (24h) as:

Tmax
d,room =

∑D
d=i maxh∈24h(Ti,h)

D
(1)

A similar metric has been used previously to indicate
a level of overheating risk (Symonds et al., 2016).
Multi-factor Analysis of Variance (ANOVA) was used
to statistically determine whether the choice between
the different algorithm options (levels) of each heat
transfer process (explanatory variable or factor) can
impact the indoor environment. The metric of choice
was the Tmax

d,room for the bedroom. Although, this is
not a metric included within TM59, it was deemed
more appropriate to be used for multi-factor ANOVA
compared to the number of recorded overheating
hours because it is not threshold-dependent.
The null hypothesis explored was that for any heat
transfer process, the mean Tmax

d,room across the mod-
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Figure 2: Line chart of the indoor bedroom temperatures predicted by both tools during the hottest period. The
shaded areas indicate the range and inter-quartile range (IQR) of the distribution of predicted hourly indoor
operative temperatures due to the choice of simulation options.

els with the same option would be equal to the mean
Tmax
d,room across all other options of that process at a

significance level of 5%. For instance, it is expected
that the mean Tmax

d,room predicted by the simulations
performed using Tool A and conduction process (a)
will be the same as those predicted by the group
which used conduction process (b), with a significance
level of 5%. Since the choice of algorithms within
tools may influence the compliance assessment, the
tools and their algorithms will be kept anonymous to
prevent the misuse of the results.

Results analysis

The time-series plot in figure 2 displays the mean and
spread (due to algorithm differences) of hourly pre-
dicted indoor operative temperatures over the hottest
six-day period included within the weather file. The
maximum hourly spread fluctuates over this period
between 0.5–1.7 ◦C for tool A and 0.4–1.5 ◦C for tool
B. The spread is greatest when the operative tem-
perature plateaus while it diminishes when the rate
of temperature change is high. The greatest hourly
temperature range predicted by tool A over the sum-
mer period was 2.5 ◦C while for tool B it was 2.1 ◦C.
Similar patterns of indoor temperature were observed
for the other rooms as well. The possible implications
of such levels of spread on the predicted overheating
risk, can be observed within figure 2 where in at least
three out of the six days, the Criterion 1 threshold
lies within the spread of predicted indoor tempera-
tures for both tools. In such cases it may be possible
that the choice of algorithms could influence whether
an overheating hour is recorded.

The full impact of this effect on this model over the

entire summer period has been quantified and visu-
alised in figures 3 and 4. The distribution of pre-
dicted overheating hours are comprised of the in-
dividual output of each combination of algorithms.
The spread in overheating hours for tool A is visibly
greater, especially for the living room with a range
of 2.6% compared to 0.7% for the living room in tool
B. The red lines shown in figures 3 and 4 represent
the level of overheating risk predicted by the default
options. For tool A, these predictions are near or
above the upper quartile of the simulation results for
this tool. Comparing the generated results to the
criterion thresholds and by taking the default combi-
nation as the reference point, 65% of the simulation
combinations would change the end result from a high
overheating risk to a low for the living room and 33%
for the kitchen. For Criterion 2, as seen in fig. 4, the
default options result in a predicted risk near the up-
per quartile and approximately 10% of the predictions
are below the threshold line. For tool B, the entire
distribution of overheating risk lies below the thresh-
old. Notably, the default options result in the lowest
overheating risk predictions, with all other simulation
options predicting an equal or higher overheating risk.

To determine which of the algorithms assessed are in-
fluencing the predicted indoor temperatures and over-
heating risk, an analysis of variance for the main ef-
fects was performed with results summarised in ta-
ble 3. For tool A, the choice of conduction or dis-
cretisation appear to have no influence on the aver-
age maximum daily temperature. Every other pa-
rameter of Tool A has a p-value < 0.001 suggesting
a statistically significant result. Therefore, there is
enough evidence to suggest that mean average daily
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Figure 3: Distributions of the percentage of occupied hours that the CIBSE TM59 Criterion 1 was exceeded.
Each box plot is comprised of the individual predictions resulting from every combination of simulation options
of each tool (1200 for Tool A, 64 for Tool B). The red lines indicate the prediction of the default options.

maximum temperature of each group differs at the
5% significance level. For tool B, there is not enough
evidence to reject the null hypothesis for the exterior
convection coefficient or the solar radiation distribu-
tion. The contrary is true for the interior convection,
exterior longwave radiation and interior air emissiv-
ity models, with p-values < 0.001 providing enough
support for the rejection of the null. The above sta-
tistical analysis has not accounted for any interaction
effects. These are visualised for a small set of sta-
tistically significant options in figure 5. The interac-
tion between the algorithm options specified by each
plot’s x-axis and heading results in distributions of
predicted Tmax

d,room with differing means. The spread is
due to the algorithm options that have not been spec-
ified and its non-constant value indicates that heat
transfer processes may interact in a complex manner.

Discussion
This work investigated whether the choice of algo-
rithms within BPS tools can influence the predicted
indoor temperatures and the associated overheating
risk, using the threshold method described by CIBSE
TM59. Subsequently, the work looked at which of the
heat transfer process examined could have a statisti-
cally significant impact on the predicted bedroom’s
mean average daily maximum temperature.
It was determined that the choice of algorithms
within BPS tools could appreciably impact the pre-
dicted indoor temperatures, as could be hypothesised
from previous work (Mirsadeghi et al., 2013). The
algorithm combinations resulted in a distribution of
predicted hourly indoor temperatures for both tools,
whose spread fluctuated and possibly related to the
rate of temperature change. Therefore, a change in
algorithms is not likely to cause a linear shift in the
predicted indoor temperatures but may instead have
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Figure 4: Distributions of the overheating hours pre-
dicted by the algorithm combinations of each tool, ac-
cording to Criterion 2 of CIBSE TM59. The red lines
indicate the prediction of the default options.

a dynamic effect. Note that for any single hour, the
distribution of predicted indoor temperatures within
each tool is not representative of the distribution
of indoor temperatures that would be observed if a
group of modellers tried to model the pre-defined
dwelling using the TM59 criteria1. Instead, the dis-
tribution is most probably being influenced by (a)
the default options (as suggested by Mantesi et al.
(2018)), (b) the most accurate choice of options or
(c) the options that ensure compliance based on as-
sessment criteria. Here lies the importance of the use
of range as a measure of spread. It quantifies the max-
imum influence on the hourly bedroom temperature
that a modeller may have on this specific modelling
exercise if they were to consciously or unconsciously
alter the choice of algorithms.
The predicted temperature spreads for this model
were sufficient to influence the overheating risk as-

1This would only be true, if a great number of modellers
were to randomly allocate the algorithms within a BPS tool.
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Figure 5: Crossbar plots displaying the interaction effects of the exterior with the interior convection for tool A
(part a) and the interior convection with the air emissivity for tool B (part b). Each distribution results from
the variation in all the algorithm options besides the two specified by the plot’s x-axis value and heading.

sessment in both tools, leading to a distribution of ex-
ceedance hours. For tool A, it was possible to change
the compliance result without altering the building’s
physical design. Although this was not the case for
tool B, this was an outcome of the overall lower indoor
temperatures. Nevertheless, the choice of algorithms
led to doubling of the predicted overheating risk for
Criterion 1 in tool B. Strikingly, the predictions of de-
fault options led to a greater discrepancy between the
two tools than most other algorithm combinations,
reinforcing the doubts surrounding the frequent use
of default options (Mantesi et al., 2018).

Table 3: Statistical results (p-values) of the Analysis
of Variance, testing the hypothesis of similar mean
Tmax
d,room for each option of a heat transfer process.

P-values
Process Tool A Tool B
Conduction 1 -
Discretisation 1 -
Exterior Convection <0.001 0.104
Interior Convection <0.001 <0.001
Ext. Longwave Radiation - <0.001
Int. Air Emissivity - <0.001
Solar Rad. Distribution <0.001 0.724
Air Heat Balance <0.001 -

Finally, the statistically significant options were iden-
tified and some of their interaction effects were visu-
alised. Given the deterministic nature of BPS tools,
the relations discovered can be used to pursue a spe-
cific outcome. As a demonstration, choosing option
b for interior convection in tool A would yield lower
temperature than any other option for this model. If
this choice is supplemented with option a for exterior
convection, the predicted temperatures are the low-
est that can be achieved due to only adjusting these
two algorithms. To instead obtain maximum average
daily maximum indoor temperatures over the summer
period using tool B, the air emissivity option should
be set to a whilst using algorithm a for interior con-
vection. These relations hold true for the building
fabric used for this investigation, however, other in-
teractions may appear for different building designs.
(Mantesi et al., 2018; Prada et al., 2014).

Implications

Within the industry, modellers should carefully se-
lect the algorithms most suitable for the building be-
ing modelled. Conscious or unconscious erroneous2

choice of algorithms may contribute to the perfor-

2Such as the use of a convection algorithm developed in the
case of high levels of forced air when this is not true for the
building being modelled.
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mance gap. Default options should not be considered
the optimum choice of each tool and the community
could possibly benefit by eliminating them and asking
users to choose each option. The developers of such
tools are responsible to provide detailed information
on the algorithms used within their packages, some-
thing which is often not the case. To ensure an ade-
quate level of knowledge within the industry, it may
also be valuable to develop BPS training courses on
the appropriate use of such tools. In the case that the
“correct” choice is not clear, an argument for predict-
ing the worst case scenario can be made in order to
minimise the risk on the occupant’s health and well-
being. As discussed by Raslan and Davies (2010),
although there are clear benefits in pass/fail assess-
ments, the variability in outputs between and within
tools hinders their usefulness. Therefore, it may be
beneficial for assessments to move away from binary
results unless the level of such uncertainties can be
quantified. Importantly, for increased levels of trans-
parency modellers should publish the algorithms and
BPS tools used for any assessment.

Academia could contribute directly to the improve-
ment of BPS tools. Research in empirical valida-
tion should clearly state the BPS tool and algorithms
used. For any model, different algorithm combina-
tions could be tested to determine how that influences
their predictive ability. Academia should also try to
refine the current set of algorithms within BPS tools
and expand the available options where necessary.

To maximise the utility of BPS tools in informing pol-
icy, there is a need for increased accuracy and trans-
parency. All of the aforementioned suggestions could
improve the trust on such tools and their outcomes.

Limitations

The use of a single model with constant physical pa-
rameters limits the generalisability of the detected ef-
fects. As the literature has demonstrated, the choice
of algorithms along with the variation in a model’s
physical design can have a synergistic effect (Mantesi
et al., 2018; Prada et al., 2014). Thus, although this
work allowed for the discovery of interaction effects,
their magnitude in terms of changes to the indoor
temperature could vary depending on the physical
characteristics of the building.

Finally, an indoor temperature based metric which
was not included in TM59 had to be used for the
analysis of variance. This is due to the nature of the
assessment. Significant changes in the indoor opera-
tive temperature (Top) may exist due to the choice of
algorithms, however, if they are not near the maxi-
mum temperature threshold (Tmax), they will not be
detected. Although ∆T is not threshold-related, the
combination of positive and negative values prevented
it from being a useful metric for statistical analysis.

Conclusion

This paper investigated the importance of algo-
rithm options within building performance simula-
tion (BPS) tools on predicted indoor temperatures.
A purpose-built, naturally ventilated, top-floor flat
was modelled in two BPS tools. Within each tool, the
algorithm options were varied in a full-factorial anal-
ysis resulting in 1,200 simulations for tool A and 64
simulations for tool B. The different algorithm com-
binations led to a spread in the predicted hourly tem-
perature for both tools, reaching a maximum of 2.5 ◦C
for tool A and 2.1 ◦C for tool B. These discrepancies
were translated into overheating risk prediction, fol-
lowing the guidance in the CIBSE Technical Mem-
orandum 59. The choice of options was shown to
impact the number of predicted overheating hours in
either tool. The effects were most pronounced for tool
A, where the predicted overheating risk changed from
high (default options) to low for 33% of the algorithm
combinations. It was also discovered that the default
options resulted in greater discrepancies between the
tools than most other combinations. The individual
algorithms which had a statistically significant im-
pact on the indoor temperature were identified and
their potential to provide a specific bias on the pre-
dictions was demonstrated. In light of the results, the
choice of algorithms could also be contributing to the
performance gap, especially in the case of threshold-
based assessments. Increased transparency through
the publishing of tools and algorithms used could be
the first action taken against this problem.

Future work

Future work will include a number of physical model
variations, exploring the relationship of the observed
differences and interaction effects to the model’s phys-
ical design. In addition, the effect of algorithm selec-
tion on other metrics or thresholds will be examined.
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