
PHYSICAL REVIEW C 95, 034901 (2017)

Hydrodynamic predictions for mixed harmonic correlations in 200 GeV Au+Au collisions

Fernando G. Gardim,1 Frederique Grassi,2 Matthew Luzum,2 and Jacquelyn Noronha-Hostler3

1Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, Cidade Universitária, 37715-400 Poços de Caldas, Minas Gerais, Brazil
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Recent measurements at the Large Hadron Collider involve the correlation of different azimuthal flow
harmonics vn. These new observables add constraints to theoretical models and probe aspects of the system that
are independent of traditional single-harmonic measurements such as two-particle and multiparticle cumulants
vn{m}. Many of these new observables have not yet been measured at the Relativistic Heavy Ion Collider
(RHIC), leaving an opportunity to make predictions as a test of models across energies. We make predictions
using NEXSPHERIO, a hydrodynamical model which has accurately reproduced a large set of single-harmonic
correlations in a large range of transverse momenta and centralities at RHIC. Our predictions thus provide an
important baseline for comparison to correlations of flow harmonics, which contain nontrivial information about
the initial state as well as quark-gluon plasma transport properties. We also point out significant biases that
can appear when using wide centrality bins and nontrivial event weighting, necessitating care in performing
experimental analyses and in comparing theoretical calculations to these measurements.
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I. INTRODUCTION

In the standard picture of a heavy-ion collision, after a
short period of nonequilibrium dynamics, the system expands
as a relativistic fluid. As the system cools, the quark-gluon
plasma transitions into hadrons that eventually spread apart
sufficiently so interactions cease, after which the particles are
detected.

In theory, one can understand these particles as having been
emitted according to an underlying distribution, which can be
written as a Fourier series with respect to the azimuthal angle φ,

P (φ) = 1

2π

∑
n

Vne
−inφ (1)

= 1

2π

∑
n

vne
in�ne−inφ. (2)

The parameters vn and �n are the magnitude and orientation
of the flow vectors (written compactly as the magnitude and
phase of a complex number Vn), each of which can depend on
the other two degrees of freedom—transverse momentum and
pseudorapidity. These flow vectors fluctuate significantly from
one event to the next, even within a particular centrality class.
Thus, there is not a small set of constant coefficients {vn,�n},
but instead a large set of statistical properties.

For example, the magnitude squared of each flow vector,
|Vn|2 = v2

n, has an entire event-by-event distribution that has
been measured and analyzed in [1]. Similarly, the correlation
between flow vectors at different points in pseudorapidity and
transverse momentum has been a recent topic of interest [2–8].
Recent studies have shown the neccessity of event-by-event
fluctuations at high transverse momentum as well [9].

However, there is much more information present in
the event-by-event distribution of particles. The mentioned
quantities involve only a single Fourier harmonic n. One
can also consider the alignment and correlation between flow
vectors of different harmonics, which opens the door to a

large number of additional measurements. Many of these
have now been performed by Large Hadron Collider (LHC)
collaborations [10–12], providing new constraints on theory,
and yet others have been suggested [13,14]. Most have not
yet been done at the Relativistic Heavy Ion Collider (RHIC),
leaving an opportunity to make predictions.

Similarly to how adding measurements of v3 in addition to
v2 provided significant constraints on, e.g., the initial stages
of the collision [15], these new mixed-harmonic correlations
provide nontrivial constraints on theory. Models that fit
traditional observables well can not necessarily fit these new
observables [16,17], which thus provide added insight into
both initial conditions and medium properties. For example,
combinations of these observables may be able to isolate linear
and nonlinear hydrodynamic response [18] or shed light on the
temperature dependence of η/s [16].

Our main result is a prediction for these upcoming mea-
surements at RHIC. In addition, we point out that details of
experimental analyses such as centrality binning and event
weighting can have important effects, which must be taken into
account for meaningful comparisons of theory to experiment.
In the Appendix, we also make some observations about the de-
pendence on viscosity, collision energy, and initial conditions.

II. MIXED HARMONIC CORRELATIONS

The basic building block of correlation measurements is the
general m-particle correlator [19–21],

〈m〉n1,n2,...,nm
≡ 〈〈cos(n1φ

a1 + n2φ
a2

+ · · · + nmφam )〉m particles〉 (3)

(flow)= 〈
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Here the inner average is over all possible groupings of m
particles and the outer average is over all events. Rather than
simple averages, these can be weighted averages. For example,
particles can be weighted by their transverse momentum or
pseudorapidity. Or, more relevant to measurements considered
in this work, one can weight each event based on the number
of charged hadrons in that event. Explicitly,

〈· · · 〉 ≡
∑

events W · · ·∑
events W

. (6)

A simple average has W = 1. Another possible choice [22]
is to use the number of combinations W = M!/(M − m)! �
Mm, where m is the number of particles in the correlation
(3) and M is the total number of particles. Explicitly,
for two-particle correlations and four-particle correlations,
respectively,

W〈2〉 = M(M − 1),

W〈4〉 = M(M − 1)(M − 2)(M − 3)
(7)

Events with larger multiplicity have a smaller statistical
uncertainty. As a result, biasing the average toward those
events reduces the statistical uncertainty in the measurement
(this particular choice means each pair or quadruplet of
particles has equal contribution, rather than each event). As
we will show, this bias can have a non-negligible effect,
particularly for measurements which are combinations of two-
and four-particle correlations, so it is important to take this into
account when comparing calculations to measurements done
with weights.

In Eqs. (3)–(5) the labels ai represent bins in momentum
and/or particle species, from which the ith particle is chosen.
In principle, the momentum bin of each particle can be
varied independently, and the correlator is therefore a function
of 2m degrees of freedom—the transverse momentum and
pseudorapidity of each particle. Because each collision has a
random azimuthal orientation, one can only measure rotation-
invariant quantities. Therefore, the analogous correlations
involving sine instead of cosine vanish, and nonzero correlators
must have

∑
ni = 0. In principle, this set of correlators

contains all available information about particle correlations.
In a pure hydrodynamic calculation (as well as a description

purely in terms of the Boltzmann equation) all particles
are uncorrelated, and can be understood as independent
samples of the single-particle distribution, which then contains
all possible information about any m-particle distribution.
In reality, this may not always be a good approximation,
and particles can be correlated by various processes (e.g.,
resonance decays, jet fragmentation, etc.). However, it is of
significant interest to measure properties of the single-particle
distribution, as they contain information about the properties
of the quark-gluon plasma as well as certain information
about the initial stages of the collision. Because of this,
measurements are often designed in order to suppress any
nonflow correlations and isolate statistical properties of the
flow vectors {vn,�n}.

Equations (4) and (5), then, represent the dependence on
the underlying single-particle emission probability, under the
assumption that particles are independent.

Here we concentrate on momentum-integrated measure-
ments, so that all particles are chosen from a wide range
of transverse momentum and pseudorapidity (specifically,
we will present predictions for pT > 200 MeV and |η| < 1,
to match the acceptance of the STAR experiment’s Time
Projection Chamber).

The simplest and most common measurements are two-
particle cumulants, also known as the scalar product vn [23],

vn{2} = vn{SP } = √〈2〉n,−n (8)

(flow)=
√〈

v2
n

〉
, (9)

which measures the RMS value of vn, in the absence of
nonflow correlations. In general, nonflow correlations will
not necessarily be negligible. One of the simplest ways to
suppress such correlations is to impose a rapidity gap—that is,
to choose only pairs of particles that are widely separated in
pseudorapidity. Most known sources of nonflow occur within
a short range in rapidity; thus, this can be an effective method
for selecting flow effects.

An alternative is to consider correlations between more
than two particles, in a way that correlations between small
numbers of particles are suppressed, and true many-particle
correlations can be measured. The standard measurements of
this type are m-particle cumulants vn{m} [24]; the lowest has
m = 4 [25]:

− vn{4}4 ≡ 〈4〉n,n,−n,−n − 2〈2〉2
n,−n (10)

(flow)= 〈
v2

n

〉 − 2
〈
v2

n

〉2
. (11)

Besides suppressing nonflow correlations of order less than
m, each of these measures a different moment of the event-by-
event distribution of the magnitude squared of the flow vector
v2

n, and contains independent information about hydrodynamic
initial conditions and/or medium properties.

While these observables only contain information about
a single Fourier harmonic, n, similar measurements can be
made involving more than one harmonic. In the same spirit
of the suppression of low-order nonflow correlations, it was
proposed to measure mixed harmonic observables based on
four-particle correlations, SC(n,m), or symmetric cumulants
(originally “standard candles”) [21],

SC(n,m) ≡ 〈4〉n,m,−n,−m − 〈2〉n,−n〈2〉m,−m (12)

(flow)= 〈
v2

nv
2
m

〉 − 〈
v2

n

〉〈
v2

m

〉
. (13)

These cumulants are defined only for n �= m, in which case
the factor 2 disappears from Eq. (10).

Since the information about the overall magnitude of
vn is contained in previous conventional measurements, the
independent information can best be viewed with a normalized
version of the correlation,

NSC(n,m) ≡ SC(n,m)

〈2〉n,−n〈2〉m,−m

(14)

(flow)=
〈
v2

nv
2
m

〉 − 〈
v2

n

〉〈
v2

m

〉
〈
v2

n

〉〈
v2

m

〉 . (15)

These momentum-integrated measurements are only sen-
sitive to the magnitude squared of the flow vector, v2

n. In
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order to gain information about the correlations of the entire
momentum-integrated flow vector Vn, including its direction,
one must consider other correlations.

The ATLAS Collaboration has measured a large set of such
correlations [10], a few of which are listed as follows:

〈cos 4(�2 − �4)〉{SP} ≡ 〈3〉2,2,−4√〈4〉2,2,−2,−2〈2〉4,−4
(16)

(flow)=
〈
V 2

2 V ∗
4

〉
√

〈|V2|4〉〈|V4|2〉
(17)

(flow)=
〈
v2

2v4 cos 4(�2 − �4)
〉

√〈
v4

2

〉〈
v2

4

〉 , (18)

〈cos 6(�2 − �3)〉{SP} ≡ 〈5〉2,2,2,−3,−3√〈6〉2,2,2,−2,−2,−2〈4〉3,3,−3,−3

(19)

(flow)=
〈
V 3

2 V ∗2
3

〉
√

〈|V2|6〉〈|V3|4〉
(20)

(flow)=
〈
v3
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2
3 cos 6(�2 − �3)

〉
√〈

v6
2

〉〈
v4

4

〉 , (21)

〈cos(2�2 + 3�3 − 5�5)〉{SP}
≡ 〈3〉2,3,−5√〈2〉2,−2〈2〉3,−3〈2〉5,−5

(22)

(flow)= 〈V2V3V
∗

5 〉√
〈|V2|2〉〈|V3|2〉〈|V5|2〉

(23)

(flow)= 〈v2v3v5 cos(2�2 + 3�3 − 5�5)〉√〈
v2

2

〉〈
v2

3

〉〈
v2

5

〉 . (24)

Once again, the lower expressions represent the dependence
on hydrodynamic quantities, in the absence of nonflow
correlations.

However, unlike the case of cumulant measurements (both
traditional and symmetric), nonflow correlations here are not
naturally suppressed, and one instead must maintain a gap in
pseudorapidity between particles with a plus sign and particles
with a minus sign in both the the numerator and denominator of
the correlation definition. The naive procedure of calculating
such correlations with nested loops is computationally pro-
hibitive, and so imposing such a gap on the basis of each group
of m particles is unfeasible. Instead, one uses a “scalar product”
(SP) procedure, where only one pass through the data is
required. In this case, rapidity gaps are ensured by segmenting
the detector, such that each of the m particles comes only from
a particular segment. In this way, the former group of particles
can always be separated from the latter. We note that, while
ATLAS used three separate segments to measure “three-plane”
quantities such as 〈cos (2�2 + 3�3 − 5�)〉{SP}, only two are
necessary to suppress short-range correlations [26], similar to
how 〈cos 6(�2 − �3)〉{SP} can be measured with only two
segments, despite involving a five-particle correlation.

We also note that, despite the original notation chosen by
ATLAS, and the name that is often used to describe these

measurements (“event plane correlations”), these observables
do not in fact measure correlations between event planes �n,
but rather the entire flow vector Vn, which is not constrained
to fluctuate in angle only, as is apparent from the expressions
above.

For a recent review of mixed harmonic correlations, see
Ref. [27]

Finally, we note that the lower-energy collisions at RHIC
have a smaller multiplicity, and the STAR and PHENIX
detectors have smaller coverage than ATLAS (or CMS). As a
result, the statistical uncertainty on all of these measurements
is significantly larger, and not all of the measurements made
at the LHC are possible at RHIC. Because of this, we display
here only selected results, in anticipation of those that we
expect to be easiest to measure. However, a much larger set has
been calculated and is available. Note also that there is some
arbitrariness in the denominator of the event plane correlations
(e.g., using 〈v4

n〉 vs 〈v2
n〉2). Results using other definitions are

also available.

III. CALCULATIONS

NEXUS initial conditions for Au+Au collisions are gener-
ated using a parton-based Gribov-Regge picture of nucleus-
nucleus collisions in which hard partons are treated using
perturbative QCD while soft partons are included using the
string picture. Details can be found in Ref. [28]. 2000 events are
used for each 10% centrality bin. Centrality is selected by the
the number of participant nucleons in the initial state [29,30].

The resulting energy and momentum distribution in each
event is then used as an initial condition for 3+1 dimen-
sional ideal hydrodynamic evolution, using the NEXSPHERIO
hydrodynamic code [29]. The equation of state is inspired
by lattice QCD results, with a crossover transition at low
baryon density [31]. Freeze-out happens at a fixed temperature
which varies with centrality, ranging from 128 to 144 MeV,
chosen to fit measured spectra [29]. Particles are sampled
discretely from the freeze-out surface and allowed to decay.
The Monte Carlo sampling is performed many times to reduce
statistical uncertainty, so that we can perform the analysis
using approximately 6 × 105 particles per event.

This setup has been tested extensively and shown to
provide a reasonable description of data at top RHIC en-
ergy: rapidity and transverse momentum spectra [32], elliptic
flow [33,34], standard directed flow [35] and rapidity-even
directed flow at midrapidity [36], Hanbury Brown–Twiss radii
[37], anisotropic flow Fourier coefficients [38], long-range
structures observed in two-particle correlations [39] and their
trigger-angle dependence [40]. In this work we use the
same simulations that were previously shown to agree with
measurements of v2, v3, and v4, across a wide range of
centrality and transverse momentum [38].

Since NEXSPHERIO has thus far shown good agreement
with all observables to which it has been compared at
RHIC, it provides an ideal baseline prediction for new RHIC
measurements. Any deviation from these predictions will
provide valuable and nontrivial information regarding the
initial stage of a heavy-ion collision and/or properties of the
medium.
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centrality (%)

FIG. 1. εSC(3,2) (26) and NSC(3,2) (14) from NEXSPHERIO.
Points are shifted horizontally for readability. Note that neither
centrality rebinning nor nontrivial event weights were used here, as
discussed in the following section, and as used in our final prediction.
Errors are statistical, obtained via jackknife resampling.

In order to probe what information can be obtained from
these measurements and to better understand the underlying
physics, we also perform a small number of exploratory
calculations. We use a number of models to calculate the spatial
eccentricities εn of the initial state. Since it has been shown
to a good approximation that v2 ∝ ε2 and v3 ∝ ε3 in each
event [41,42] at least for nonperipheral collisions [43], we can
efficiently do high-statistics studies of v2 and v3 correlations.
Specifically, in this work we use the models MC-Glauber,
MC-KLN [44], rcBK-MC [45], and IP-Glasma [46].

More precisely, if we define the standard eccentricities of
the initial entropy density ρ as

εn ≡
∣∣∣∣
∫

d2r rneinφρ(r,φ)∫
d2r rnρ(r,φ)

∣∣∣∣, (25)

and note the event-by-event relation vn ∝ εn for n � 3, then the
following symmetric cumulant should be approximately equal
to the normalized NSC(3,2) after hydrodynamic evolution:

εSC(3,2) ≡
〈
ε2

3ε
2
2

〉 − 〈
ε2

3

〉〈
ε2

2

〉
〈
ε2

3

〉〈
ε2

2

〉 . (26)

In Fig. 1 we show explicitly that there is a small, if
any, difference between εSC(3,2) and NSC(3,2), using our
NEXSPHERIO results. This confirms recent results from
Ref. [47]. Thus, we can study the dependence of NSC(3,2)
on various factors without needing to run computationally in-
tensive hydrodynamic simulations. This allows us to generate
more statistics, as well as to vary models and parameters.

For the MC-Glauber model, we also evolve the initial
conditions through a 2+1 dimensional viscous hydrodynamic
code, to study vn for n > 3 and the effects of viscosity. We do
the same for MC-KLN initial conditions at LHC energy. For
details, see Refs. [48–50]

These ancillary results can be found in the Appendix.

IV. RESULTS

We begin by noting that details of the experimental analysis
can have a significant effect on measurements and calculations.

centrality (%)

FIG. 2. εSC(3,2) from the MC-KLN model [44], calculated with
various centrality bin sizes. Large centrality bins have a positive
contribution from intrabin centrality fluctuations and the monotonic
dependence of v2 and v3 on centrality. Events are weighted equally.
Errors are statistical, obtained via jackknife resampling (only visible
in the results for 1% centrality bins).

One detail is the centrality binning, which can change
measurements of symmetric cumulants. This is mainly due
to the following effect: on average, more peripheral collisions
have larger vn for all n, while more central collisions have
smaller vn. If one measures NSC(n,m) using events in a
large range of centrality, the impact parameter will fluctuate
significantly within the bin. This trivial effect will generate a
spurious positive correlation, compared to the value obtained
when using narrow centrality bins. Since the dependence of vn

on centrality is strongest in central collisions, this effect is most
important there. We illustrate this in Fig. 2, where εSC(3,2)
is calculated using various bin sizes. [Note that in Fig. 2 each
event has equal weight as opposed to multiplicity-dependent
weights Eq. (7), as discussed below.]

Since this effect does not represent interesting unknown
physics, it is preferable to use small centrality bins. This may
be a particular concern for RHIC measurements, since limited
statistics will likely demand large centrality bins. However, one
can always do the analysis in smaller bins, and then recombine
them to improve statistics.

In all of the following, we perform the analysis in 1%
centrality bins, which are then recombined into 10% bins
whenever necessary for reducing statistical uncertainty.

The second important detail of the experimental analyses
that have been done of the symmetric cumulants NSC(n,m)
[11] is the nonunity event weight used in the analysis [see
Eqs. (6) and (7)]. The addition of this multiplicity dependent
weight when taking the event average has a non-negligible
effect, as shown in Fig. 3. Since the multiplicity weighing
of the four-particle correlation is different than that of the
two-particle correlation in Eq. (14), the former term is biased
toward a larger multiplicity and, therefore, a lower vn. As a
result, measurements in larger centrality bins now are lower
than those with smaller centrality bins. Thus, calculations
intended to make direct comparison to experimental data must
take multiplicity weighing into account. Just as in the case
with unit weights, small bins are preferable, to reduce this
bias. When using small centrality bins, the weighting scheme
has a negligible effect (see the 1% curves in Fig. 3). In all of the
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centrality (%)

FIG. 3. εSC(3,2) from the rcBK-MC model [44], calculated with
and without event weights, Eqs. (7) (where M is taken to be the
gluon multiplicity), and with both 1% and 5% centrality bin widths.
The 1% bin results have been recombined into 10% windows to
reduce statistical errors, which have been calculated via jackknife
resampling.

following we use the same weights the ALICE Collaboration
used (7), in addition to 1% centrality binning that is reaveraged
into 10% bins to improve statistics.

centrality (%)

FIG. 4. Predictions for NSC(n,m) (14) and mixed harmonic
correlations (16), (19), and (22) in 200 GeV Au+Au collisions from
NEXSPHERIO for pT > 200 MeV and |η| < 1. See text for details.
Points are shifted horizontally for readability. Errors are statistical,
obtained via jackknife resampling.

Such a recombination can involve a simple average, or one
can give a nontrivial weight to each sub-bin. A common choice
for four-particle cumulants is to use the average of W〈4〉 as the
weight of each sub-bin [see Eq. (7)], which we also use in all
of the following. Explicitly,

NSC10% =
∑10

c=1 NSC1%
∑

events W〈4〉∑10
c=1

∑
events W〈4〉

, (27)

where the first sum is over the 1% centrality sub-bins, labeled
by c, and the second sum is over events within a sub-bin.

Note that experiments typically select centrality in a differ-
ent region of pseudorapidity from the main measurement that
defines the event’s multiplicity. Because of this, multiplicity
fluctuations in these measurements are even larger than in
our calculation, in which the same multiplicity is used for
centrality selection and for weighting, and so the effect may
be even larger in experiment.

A discussion of these effects in existing LHC measurements
and the comparison to calculations can be found in the
Appendix.

Our final predictions for mixed-harmonic correlations in
200 GeV Au+Au collisions, with STAR kinematic cuts,
are presented in Fig. 4. We remark that the general size
and centrality dependence of each observable are similar to
available measurements at the LHC [10,11] (though typically
the RHIC magnitude is smaller). As such, we do not expect
any drastic change in the RHIC measurement.

Nevertheless, a precise quantitative comparison to measure-
ments at RHIC will provide needed guidance to discriminate
between different theoretical models.

V. SUMMARY AND CONCLUSIONS

We have presented predictions for a host of mixed har-
monic correlation measurements in 200 GaV Au+Au, using
NEXSPHERIO, a hydrodynamic model that gives an excellent
description of existing data. Therefore, it is an ideal benchmark
by which to compare upcoming measurements.

In addition, we showed that details of centrality binning
and event weighting—which typically have a negligible affect
on results—can make a significant difference in the case of
symmetric cumulants, and care must be taken when comparing
theory to experiment.

Finally, in an Appendix, we present a brief investigation
of symmetric cumulants and their dependence on viscosity,
collision energy, and initial conditions, which gives an idea of
the kinds of things that can be learned from a comparison of
these predictions to forthcoming measurements.
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APPENDIX: DEPENDENCE OF NSC(3,2) ON VISCOSITY,
COLLISION ENERGY, AND INITIAL CONDITIONS

AND EFFECT OF CENTRALITY BINNING ON LHC DATA

In Fig. 5, we show a calculation of εSC(3,2) from various
models for initial conditions. The normalized symmetric
cumulant does not appear to vary by a large amount, despite
the fact that each of these models is quite different.

The dependence of NSC(3,2) on collision energy is very
small, as illustrated in Fig. 6 for MC-KLN initial conditions.
We have verified that this is true for all of the models
considered here.

In Fig. 7, we show calculations of NSC(3,2) and NSC(4,2)
using MC-Glauber initial conditions, with zero shear viscosity
and a nonzero temperature-dependent shear viscosity (from
Refs. [51–53]). In general, the dependence on viscosity is not
large.

Note that the same events are used for the ideal and viscous
calculations. As such, the statistical errors are strongly cor-
related. We have checked that there is statistically significant
dependence of NSC(4,2) on viscosity, but not NSC(3,2), when
one does the calculation in a typical way with wide (10%)
centrality bins, and equal event weighting. Viscosity tends to
increase the magnitude of the correlation between v2

2 and v2
4.

However, using multiplicity weights and 1% recombined
centrality bins removes any statistically significant dependence
of NSC(4,2) on viscosity. Therefore, even investigations of
viscosity dependence can be affected by analysis details, which
should be taken into account.

We note in particular that NSC(3,2) seems to depend little
on the model of initial conditions, viscosity, and collision

centrality (%)

FIG. 5. εSC(3,2) from various models for hydrodynamic initial
conditions: MC-Glauber, MC-KLN [44], rcBK-MC with and with-
out negative binomial fluctuations [45], and IP-Glasma [46]. The
cumulant is calculated in 1% bins, which are recombined into 10%
bins, to eliminate spurious correlation. See text for details. Points are
shifted horizontally for readability. Errors are statistical, obtained via
jackknife resampling.

centrality (%)

FIG. 6. εSC(3,2) from in the MC-KLN model for 200 GeV
Au+Au collisions compared to 2.76 TeV Pb+Pb collisions. Points
are shifted horizontally for readability. Errors are statistical, obtained
via jackknife resampling.

energy. This makes it a very interesting observable, as a robust
test of our current hydrodynamic paradigm, and which is
independent of what we believe to be our most important
uncertainties.

Further study of the dependence on viscosity and initial
conditions can now found in Ref. [47].

Next, we note the effect of centrality binning (plus
multiplicity-dependent event weighting) on the NSC mea-
surements done by ALICE. In Fig. 8, we show a hydro
calculation of NSC(3,2) and NSC(4,2) with the analysis done
the same way as ALICE (a mix of 5% and 10% centrality

centrality (%)

FIG. 7. NSC(n,m) from hydrodynamic calculations using
Glauber initial conditions and zero shear viscosity, compared to
the temperature-dependent shear viscosity from Refs. [51–53]. The
results in the upper panel are calculated with 10% centrality bins and
unit event weights, while the bottom panel uses multiplicity weights
and 1% recombined centrality bins. Points are shifted horizontally for
readability. Errors are statistical, obtained via jackknife resampling.
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centrality (%)

FIG. 8. NSC(n,m) for 2.76 TeV Pb+Pb collisions from hydro-
dynamic calculations using MC-KLN initial conditions, with two
different centrality binning schemes, with and without multiplicity
weights (7), compared to measurements from the ALICE Collabo-
ration [11]. Points are shifted horizontally for readability. Errors are
statistical, obtained via jackknife resampling.

centrality (%)

FIG. 9. εSC(3,2) (26) and NSC(3,2) (14) from NEXSPHERIO.
Similar to Fig. 1 except the analysis was done with 1% centrality
bins and multiplicity weights Eq. (7). Points are shifted horizon-
tally for readability. Errors are statistical, obtained via jackknife
resampling.

bins with multiplicity weights) [11], compared to an improved
analysis with 1% bins, recombined into 10% windows, as well
as a calculation with the wider ALICE binning but without
multiplicity weights. We note that agreement with NSC(3,2)
data is significantly improved when the experimental analysis
is mimicked, and the switching of binning explains some of
the seeming discontinuity at 10% centrality. Agreement with
NSC(4,2), on the other hand, appears to get worse with the
corrected analysis, at least in this calculation. In any case, it
is clear that any precise comparison to the ALICE data must
take into account the correct event weighting.

Finally, in Fig. 9, we repeat Fig. 1, except using multi-
plicity weights and 1% centrality bins. In this case, there is
a statistically significant difference between NSC(3,2) and
εSC(3,2), showing again that analysis details can be important,
and illustrating that the proportionality between vn and εn is
not perfect.
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