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Abstract 

The past five years have seen an enormous development in the field of fluid biomarkers for 

Alzheimer’s disease (AD) and related disorders. The molecules that constitute the foundation 

for the CSF tests for the classical AD pathologies are now being explored as potential blood-

based biomarkers, thanks to the recent implementation of ultrasensitive measurement 

technologies in academic and clinical laboratories worldwide. The current blood-derived data 

are still less clear than those obtained using CSF as the sample type but independent research 

suggests that there are biomarker signals in blood that relate to plaque and tangle pathologies 

in AD, which are relevant to explore further. Additionally, neurofilament light has emerged as 

the first robust blood-based biomarker for neurodegeneration in a broad range of central 

nervous system diseases. Here, we briefly recapitulate the first and second waves of fluid 

biomarker analysis in AD, i.e., the development and validation of established and novel CSF 

biomarkers for the disorder, respectively, followed by a focused discussion on blood-based 

biomarkers for AD, which we consider the third wave of fluid biomarker analysis that 

hopefully will gain further momentum during the coming five years.   
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Introduction 

The best established fluid biomarkers for Alzheimer’s disease (AD) are cerebrospinal fluid 

(CSF) concentrations of total tau (T-tau), phospho-tau (P-tau) and the 42 amino acid form of 

amyloid  (A42) [1]. The discovery and validation of these biomarkers and the development 

of robust tests for them may be described as the first wave of fluid biomarker analysis in AD 

research. During the past five years, it has been confirmed that CSF A42 indeed is a reliable 

marker of amyloid (senile plaque) pathology in the brain (as determined at autopsy or through 

amyloid positron emission tomography [PET] studies), especially when measured in a ratio 

with CSF A40 [2]. For CSF T-tau and P-tau, the interpretation is less clear; tau markers are 

robustly increased in AD CSF [1], but the exact mechanism remains unclear [3]. Some data 

suggest that neurons exposed to Alzheimer-associated factors such as A may increase their 

secretion of both tau proteins [4]. Neurons who respond in this way may eventually 

accumulate tangle pathology and degenerate. In spite of these uncertainties, the diagnostic 

performance and clinical utility of CSF T-tau, P-tau and A42 are undisputed: new diagnostic 

algorithms including CSF biomarkers have been formulated [5], automated routine clinical 

chemistry assays for the markers are now becoming available [6] and standardization efforts 

to harmonize assays are well underway; reference methods for A42 have been formally 

certified by the Joint Committee for Traceability in Laboratory Medicine (JCTLM database 

accession numbers C11RMP9 and C12RMP1) [7, 8] and validated against amyloid PET [9], 

and a reference material for CSF A42 is soon to be certified and released [10]. Similar work 

is ongoing for CSF tau biomarkers.  

 

During the past five years, a number of additional CSF biomarkers for AD-related 

pathological processes have become available (the second wave). These include 

neurofilament light (NF-L) as a marker of neurodegeneration [11], neurogranin (Ng) as a 

marker of synapse dysfunction and/or loss [12], and sTREM2 and YKL-40 as markers of 

microglial and astrocytic activation [13, 14]. These biomarkers have been extensively 

reviewed elsewhere [1] and updated meta-analyses regarding their association with AD can be 

found in the AlzBiomarker database (http://www.alzforum.org/alzbiomarker).  

 

Here, we will focus on what may be considered the third wave of fluid biomarker analysis in 

AD: the development of blood-based biomarkers for AD-related pathologies, which we 

believe will gain further momentum during the coming five years.  

http://www.alzforum.org/alzbiomarker
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Methodological considerations of relevance to blood-based biomarker measurements in 

neurodegeneration  

 

Blood as a biomarker matrix 

Whereas CSF is a well-established sample type for the analysis of biomarkers for 

neurodegenerative diseases (it communicates freely with the brain interstitial fluid that bathes 

the neurons and has relatively low turnover and protease activity), blood has emerged more 

recently after decades of relatively disappointing results. Blood communicates with the brain 

across the blood-brain barrier, via lymph vessels [15] and through the glymphatic system [16]. 

This interchange, however, is less direct than for CSF and there are several challenges, both 

biological and technical, with the measurement of central nervous system (CNS)-related 

biomarkers in blood. First, a biomarker that has its origin in the CNS has to cross the blood-

brain barrier in order to be detected in the periphery and, if the concentration is low in CSF, it 

will be even lower in the blood due to the blood:CSF volume ratio causing a substantial 

dilution of the analyte. Second, if the biomarker is not specific for the CNS but also expressed 

in peripheral tissues, the contribution from CNS will potentially drown in the high biological 

background caused by non-CNS sources (a good tool to assess the risk for this is the publicly 

available web-based Human Protein Atlas, http://www.proteinatlas.org/, which presents 

mRNA and protein expression in 44 different human tissues of close to 20,000 proteins) [17]. 

Third, the huge amount of other proteins in blood (e.g., albumin, immunoglobulins, 

antitrypsin, transferrin, haptoglobin and fibrinogen) introduces analytical challenges due to 

possible interference [18]. Fourth, heterophilic antibodies may be present in blood, which may 

interfere in immunoassays [19]. Fifth, the analyte of interest may undergo proteolytic 

degradation in plasma and clearance in the liver or by the kidneys that may introduce 

variation [20]. Finally, there may be additional pre-analytical factors that may be more 

relevant for blood- than CSF-based biomarkers, including diurnal variation and influences of, 

e.g., food intake and medication.  

 

Ultrasensitive measurement techniques  

Many, but not all, of the challenges reviewed above may be overcome with more sensitive 

assays with adequate blocking of heterophilic antibodies and improved pre-analytical 

standardization. Most biomarker assays of relevance to AD are immunochemical, i.e., utilize 
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antibodies to quantify a substance in a sample. The most common assay format is the 

sandwich enzyme-linked immunosorbent assay (ELISA) in which the target analyte is 

captured between two antibodies in a complex and one of the antibodies carries a signal 

generator, i.e., an enzyme that converts a substrate into a detectable form (coloured, 

fluorescent or luminescent), which, in combination with a calibrator curve (derived from 

artificial samples with known analyte concentrations), allows for quantification of the analyte 

of interest. ELISA is a theme with many variations, such as the choice of signal generator 

where the enzyme can be replaced by, e.g., a fluorophore or a DNA-based detection system.  

 

The technical issues are mainly a question of antibody sensitivity and specificity. In theory, if 

the time for the enzyme reaction is simply extended, this should increase the sensitivity of the 

assay. However, the substrates used are inherently unstable and therefore produce signal even 

in the absence of enzyme. This leads to a technical background signal that can mask the signal 

generated by the sandwich complex, making quantification difficult at low concentrations. In 

the end, the ability of the sandwich complex to correctly represent the concentration of the 

biomarker in a sample strongly depends on the quality of the antibodies used. If the antibodies 

cross-react with other substances, a signal can be measured even in the absence of the target 

analyte. Since the blood is much denser in protein content than is CSF, the risk for this is 

higher in the former, where even minor (e.g., 0.1%) cross-reactivity against proteins present at 

one million times higher concentrations will have a large impact on the measured 

concentration.  

 

Most of the ultrasensitive technologies rely on antibody-based detection of the target 

molecule, but in Single molecule array (Simoa), the detection reaction is compartmentalized 

into a small volume (50 femtolitres), so that the reporter molecule accumulates at a very high 

concentration [21], in Single molecule counting (SMC), the labelled detection antibodies, 

specifically captured by the target molecule/capture antibody complex, are released and 

counted one by one in a small detection cell, which allows for a single molecule read-out [22], 

and in proximity extension assay (PEA), partly overlapping complementary DNA strands are 

attached to the different antibodies allowing the strands to form a polymerase chain reaction-

amplifiable template if immobilised close to each other on the same molecule [23]. These 

variations in signal generation/detection may result in assays that can be 10- to a 1000-fold as 

sensitive as the corresponding regular ELISA using the same antibody pair.  
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Mass spectrometry (MS)-based assays are increasingly important in clinical laboratory 

medicine, mostly to measure small molecules, such as drugs, amino acids, hormones and 

vitamins in an antibody-independent manner [24]. Mass spectrometers are also used in 

explorative proteomics studies to identify new biomarker candidates. However, explorative 

proteomics has so far failed to generate validated AD biomarkers and, in general, MS-based 

standardised quantification of peptides and proteins for routine diagnostic use remains rare 

[25]. However, this is changing and for example A can be reliably quantified in plasma 

using immunoprecipitation and matrix-assisted-laser-desorption/ionization time-of-

flight/time-of-flight mass spectrometry [26, 27].  

 

 

Blood-based biomarkers for AD-associated pathophysiological processes 

 

Blood-based biomarkers for amyloid pathology 

It has been difficult to establish robust blood biomarkers for A pathology in AD. A proteins 

can be measured in plasma but historically the correlation with AD and/or cerebral -

amyloidosis has been absent or weak (statistically significant but clinically meaningless) [1]. 

Plasma A concentrations have been interpreted as potentially influenced by production in 

platelets and other extra-cerebral tissues and the measurements have been confounded by 

matrix effects from plasma proteins [28]. However, this view is now starting to change. 

Recent mass spectrometric studies suggest that a ratio of a certain amyloid precursor protein 

(APP) fragment (APP669-711) to A42 or A42/A40 identifies A-positive individuals 

with high sensitivity and specificity [26, 29]. The latter result is in line with earlier data 

obtained using ultrasensitive Simoa technology by which the sample can be diluted to remove 

confounding matrix effects in the A measurement [30]. Pilot data suggest associations of the 

concentrations of a number of plasma proteins (e.g., pancreatic polypeptide Y, IgM, 

chemokine ligand 13, interleukin 17, vascular cell adhesion protein 1, 2-macroglobulin, 

apolipoprotein A1 and complement proteins) with amyloid burden in the brain [31-33]. 

However, these data should be interpreted with some caution, as they are derived from multi-

marker panels and as a mechanistic understanding of the associations is currently lacking.  

 

Blood-based biomarkers for tangle pathology 
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There are so far no validated blood biomarkers for neurofibrillary tangle pathology, although 

there is an emerging literature on P-tau concentrations in neuronally derived blood exosomes 

with varying results in regards to the association with AD [34, 35]. A recent study employed 

Simoa technology to measure P-tau phosphorylated at amino acid 181 in plasma (without 

exosomal enrichment) from AD patients (n=28), individuals with Down’s syndrome (DS, 

n=20) and matched controls (n=15) [36]. The mean plasma P-tau concentration was about 3-

4-fold higher in AD patients and DS individuals than in controls, but the variation and the 

numbers in each group were too small to determine the diagnostic accuracy of the test with 

certainty (pilot receiver operating characteristics curves suggested optimal sensitivity and 

specificity of 60% and 86%, respectively, for the AD-control comparison). Importantly, 

however, plasma P-tau correlated with CSF P-tau concentrations in a sub-cohort composed of 

8 AD patients and 3 patients with other neurological diseases. In another recent paper, plasma 

P-tau (phosphorylated at amino acid 231) was measured in patients with traumatic brain 

injury (TBI) using a fiber optics technique in which antibody-based detection was combined 

with rolling circle amplification to increase the analytical sensitivity so that P-tau could be 

quantified in most samples [37]. Increased concentrations of plasma P-tau in TBI patients 

were reported but no data on AD were presented. Taken together, plasma P-tau is a hot topic 

in AD biomarker research and it will be interesting to follow how it develops during the 

coming five years.  

 

Blood-based biomarkers for neurodegeneration 

CSF assays for T-tau and NF-L were recently developed into ultrasensitive blood tests using 

Simoa technology [38]. Serum or plasma NF-L concentration (either sample matrix works 

well) correlates with CSF (correlation coefficients of 0.75 to 0.97) and most CSF findings 

(increased NF-L concentrations in AD, FTD, VaD and atypical parkinsonian disorders) have 

been replicated in blood [11]. Recent data show that serum NfL effectively identifies onset of 

neurodegeneration in familial AD [39] and Huntington’s disease [40]. Plasma NF-L 

concentration is increased in patients with Charcot-Marie-Tooth disease (CMT) and correlates 

with disease severity, suggesting that peripheral nerves may also release NF-L [41]. This 

could potentially smudge the association of plasma NF-L with central axonal degeneration, 

but the robust association of plasma/serum NF-L with CSF NF-L suggests that most of the 

NF-L signal in blood is CNS-derived [42-44], at least in the absence of significant peripheral 

nerve disease.  
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For tau, the situation is promising but less clear. Firstly, for unknown reasons, tau 

concentrations are higher in plasma than in serum (unpublished observation). Secondly, the 

correlation with the corresponding CSF concentration is absent [45] or weak [46]. Plasma T-

tau concentration in AD is increased but the effect size is smaller than in CSF and there is no 

detectable increase in the MCI stage of the disease [45, 46]. In a recent paper, Mielke and 

colleagues examined the relationship of plasma T-tau concentration, determined by Simoa, 

with cognitive decline in 458 participants from the Mayo Clinic Study on Aging [47]. 

Included subjects were cognitively normal at baseline and followed for up to 4 years. Plasma 

T-tau correlated with cognitive decline in the sense that higher plasma levels in both the 

cognitively normal and MCI groups predicted steeper drops in global cognition, memory, 

attention and visuospatial ability over three years. During follow-up, 67 of 335 cognitively 

normal people developed MCI. Those in the highest and middle tertiles of plasma t-tau were 

likelier to progress than those in the lowest. Over that same period, 28 of 123 people with 

MCI progressed to dementia, however, plasma T-tau did not predict who would. Altogether, 

the published studies on plasma T-tau as an AD biomarker so far point toward the feasibility 

of finding a predictive tau signal in blood. However, the lack of correlation of plasma with 

CSF T-tau suggests that researchers should look for additional tau biomarkers in plasma, e.g., 

degradation end-products that may be more stable and potentially reflect CNS tau better. It 

will also be important to examine if there are forms of tau that could separate tau produced in 

the CNS from tau produced in peripheral tissues, e.g., kidney and muscle 

(https://www.proteinatlas.org/ENSG00000186868-MAPT/tissue).  

 

In regards to synaptic degeneration in AD, CSF neurogranin has emerged as the most 

promising fluid marker [48-53]. However, when examined in plasma, neurogranin is 

unchanged in AD and there is no correlation with CSF, most likely due to expression in 

peripheral tissues [54].  

 

Blood-based biomarkers for microglial activation 

Recent reports suggest that the CSF concentration of the secreted ectodomain of triggering 

receptor expressed on myeloid cells 2 (Trem2), a molecule that is selectively expressed on 

microglia in the CNS [55, 56] and genetically linked to AD [57, 58], is increased in AD in a 

disease-specific manner and correlates with CSF T-tau and P-tau [59-61]. These results are 

backed by an abundant literature showing increased CSF concentrations of several other 

microglia- and/or macrophage-derived proteins, including chitotriosidase [62, 63], CD14 [64] 

https://www.proteinatlas.org/ENSG00000186868-MAPT/tissue
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and YKL-40 [65, 66]. Another microglial marker, the C-C chemokine receptor 2, is expressed 

on monocytes and one of its ligands, C-C chemokine ligand 2 (CCL2), that can be produced 

by microglia, is present at increased concentration in AD CSF [67-69]. Most studies suggest 

that these increases are modest with large overlaps between cases and controls, if compared to 

the more prominent changes seen in traditional neuroinflammatory conditions, such as 

multiple sclerosis [70] or HIV-associated neurocognitive dysfunction [71]. When measured in 

plasma or serum, the concentrations of most of the microglia-related proteins mentioned 

above are higher than in CSF and probably reflect release from monocytes and macrophages 

in peripheral blood rather than CNS-related changes. However, a few studies suggest a 

slightly increased plasma concentration of YKL-40 in blood from AD patients [1].  

 

Blood-based biomarkers for AD-associated protein accumulations other than tau and A 

α-Synuclein is the major component of Lewy bodies that are characteristic inclusions of 

Parkinson’s disease (PD) and DLB [72] but often also seen in AD [73]. In PD and other 

synucleinopathies, CSF -synuclein concentrations are typically lower than in controls [74, 

75], whilst in AD and CJD, the concentrations are increased and correlate with T-tau, 

suggesting that -synuclein may also be an non-specific marker of neurodegeneration [75-79]. 

This has been reported not only in AD and CJD, but also in DLB, where there may be a 

competition between aggregation of -synuclein into Lewy bodies and release of the protein 

from degenerating synapses, making the data complex to interpret [80]. Currently available 

assays for -synuclein measure total amounts of the protein and not Lewy body-specific 

isoforms; sensitive and specific assays for the latter would resolve this issue. However, there 

are some preliminary reports on increased CSF concentrations of -synuclein oligomers in 

CSF from PD patients [81, 82] and recently sensitive assays that detect and amplify the 

biochemical signal of what appears to be -synuclein seeds in CSF have been published [83, 

84]. α-Synuclein is highly expressed in red blood cells, a reason why blood contamination 

during CSF collection may limit the diagnostic value [85, 86]. For the very same reason, 

blood tests for -synuclein pathology in the brain may prove hard to develop. Nevertheless, as 

peripheral Lewy body pathology, e.g., in the salivary gland and gut, has been reported in PD 

[87], blood or salivary tests for -synuclein seeds may be something to explore in the future.  

 

Another pathology that commonly co-occurs with classical AD pathology is inclusions of 

hyperphosphorylated transactive response DNA-binding protein 43 (TDP-43) [88], 
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traditionally linked to frontotemporal dementia. TDP-43 can be measured in CSF but, 

unfortunately, most of the protein appears to be blood-derived and its CSF concentration does 

not reflect TDP-43 pathology and is unaltered in FTD [89]. Similarly, no reliable blood test 

for TDP-43 pathology in the CNS exists to date, but intense research efforts are ongoing.  

 

Miscellaneous 

There is vibrant research activity on other biomarker categories, such as exosomes and micro-

RNA, lipid and metabolite profiles, using both CSF and blood as sample types in explorative 

studies to identify novel AD biomarkers. These fields are still in their infancy but may well 

represent an emerging fourth wave of AD biomarkers within the coming five years.   

 

 

Concluding remarks 

The past five years have seen an enormous development in analytical tools for ultrasensitive 

biomarker quantification in the context of neurodegenerative diseases. The development in 

the field has been much faster than we ever could have imagined. Assays that are 100-1000-

fold as sensitive as standard ELISA or mass spectrometry-based techniques have opened up a 

new biomarker window in the CSF and made it possible to quantify the traditional CSF 

biomarkers in blood. NF-L is the only CSF biomarker for which the transition from CSF to 

blood has been relatively uncomplicated but for tau and A biomarkers there is a signal also 

in blood, albeit with a smaller effect size than what can be obtained using the corresponding 

CSF measure. We believe that new ultrasensitive techniques will allow for the development 

of assays for the quantification of fragments or protein subforms that are more stable in blood 

and/or more specific to CNS pathologies. This will hopefully lead to more robust blood-based 

assays that eventually could be used as diagnostic and/or screening tools also in primary care. 

During the coming years, it will be important to continue to build biobanks from deeply 

phenotyped cohorts with access to both CSF and blood samples, as well as data on advanced 

neuroimaging, genetics and clinical follow-up. This will hopefully facilitate the development 

of even better tests. This will be particularly useful the day we have the first disease-

modifying treatment. At present, we do not think blood-based analysis will substitute CSF 

analysis, but perhaps sequential testing, starting with blood analysis followed by referral for 

CSF analysis and additional examinations at expert centers in the case of results that point 

towards the need of refined diagnostic work-up, will be the future.  
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