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ABSTRACT 

Humans display anticipatory motor responses to minimize the adverse effects of predictable 

perturbations. A widely accepted explanation for this behavior relies on the notion of an inverse model 

that, learning from motor errors, anticipates corrective responses. Here, we propose and validate the 

alternative hypothesis that anticipatory control can be realized through a cascade of purely sensory 

predictions that drive the motor system, reflecting the causal sequence of the perceptual events 

preceding the error. We compare both hypotheses in a simulated anticipatory postural adjustment task. 

We observe that adaptation in the sensory domain, but not in the motor one, supports the robust and 

generalizable anticipatory control characteristic of biological systems. Our proposal unites the 

neurobiology of the cerebellum with the theory of active inference and provides a concrete 

implementation of its core tenets with great relevance both to our understanding of biological control 

systems and, possibly, to their emulation in complex artefacts. 
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1. INTRODUCTION 

Anticipatory motor actions, thought to depend on the cerebellum (1–3), are quintessential for skilled 

performance in sport, but they are also part of our everyday behavior: from walking (4,5), to grasping (6–

8) and to riding a bicycle (9). The question then arises as to how these actions are controlled? Decades of 

research in motor control support the notion that internal models are key to skillful performance (10–

12). Specifically, this research has highlighted two kinds of internal models: forward models, which map 

the efference copies of motor commands into their expected sensory consequences (13,14); and inverse 

models, which map desired sensory outcomes into their required motor commands (15,16).  

However, here we argue that offering an alternative to these interpretations is a pressing issue for the 

field of motor control as neither forward nor inverse models (in their standard formulation) can explain 

the versatile anticipatory control observed in animals. In particular, standard forward models allow for 

rapid feedback control in the presence of the long transport latencies of the nervous system (13) or action 

planning (11) but, as they exclusively predict the consequences of motor commands, they cannot 

anticipate disturbances that are not contingent upon those motor commands (17). That is, one cannot call 

upon efference-driven forward models to support behaviors that precede external events. This obvious 

limitation has led researchers to conclude that preparatory actions should result from inverse models 

that output anticipatory motor signals (18–22). The benchmark computational model for that theory is 

feedback error learning (FEL), which offers both an adaptive motor control architecture (23) and a theory 

of cerebellar function (10,16). In FEL, predictive actions are the result of anticipatory motor signals, 

learned by shifting forward in time the output of the feedback controller (18,22). However, we will show 

that inverse model schemes present some important limitations in the context of anticipatory control. For 

instance, while rapid corrections of erroneous anticipatory actions are commonly reported in biological 

systems, most notably in experiments that include catch trials (i.e. trials where a predictable disturbance 

is signaled but not delivered) (24,25), FEL has no mechanism to correct feed-forward motor responses 

once the course of events violates a prediction. In addition, FEL acquires motor commands that are tied to 

the dynamics of the plant that it controls and cannot easily be generalized to new configurations. 

However, experimental evidence suggests that in humans anticipatory responses are still effective even if 

one changes the posture and/or the effector after learning (26,27). Hence, given that standard forward 

and inverse models cannot fully account for anticipatory control, alternatives should be considered that 

both overcome the theoretical and practical limitations of these motor-centric accounts and resolve the 
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forward-inverse model dichotomy.  

Here, we advance the hypothesis that biological anticipatory control can be explained by the ability of the 

brain to advance predictions of future perceptual events (28) and use those predictions to drive the 

motor system in an anticipatory way (29). We formulate this hypothesis in computational terms by 

proposing the cerebellar-based Hierarchical Sensory Predictive Control (HSPC) architecture, in which 

internal models issue sensory predictions that facilitate anticipatory control, with motor signals (i.e. 

efference copies of motor commands) playing no role in adaptation itself. With that, HSPC challenges the 

inverse model interpretation of anticipatory control – and, indirectly, the “motor centric” forward-inverse 

model dichotomy. More precisely, we suggest that, in contrast to the FEL hypothesis, where predictive 

actions are the result of anticipatory motor signals, anticipatory actions can be controlled by predictive 

sensory signals, becoming reactions to events that are brought forward in time (30–32). Moreover, in 

HSPC the internal generation of sensory predictions can mirror the (hierarchical) causal structure of the 

sequence of perceptual events (Fig. 1). HSPC builds on the theory that motor control can be understood as 

a process that deals with sensory predictions that are only mapped onto motor commands at the latest 

stage, e.g., by reflexes (33–35). This view has been studied mostly at the theoretical level, within active 

inference, using the formalism of generative hierarchical models and focusing on the aspect of 

reformulating control as Bayesian inference (35,36). Hence, to the best of our knowledge, here we 

propose the first computational treatment of this theory in the context of anticipatory actions. To this end 

we provide a systematic comparison between HSPC and FEL by synthetizing each hypothesis into an 

architecture applied to a postural control task, minimally modeled as the stabilization of an inverted 

pendulum through a torque at its base (i.e., ankles) (Fig. 1), demonstrating how learning in the sensory 

rather than in the motor domain can account for the robustness and generalization capabilities of 

biological control systems. In summary, the present study presents an approach to motor control that 

could provide an alternative interpretation of the physiology of anticipatory control and contribute to the 

theory of cerebellar learning. 

 

--- FIGURE 1 --- 
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2. METHODS 

In order to compare the behavior of a control strategy based on motor anticipation (FEL) with one based 

on sensory prediction (HSPC) we synthesize these hypotheses into two architectures that control an 

inverted pendulum (a common model for bipedal postural control– see (37) for review) (Fig. 2-B, 2-C and 

S1) engaged in an anticipatory postural adjustment (APA) task. This task, in line with experimental 

psychology paradigms (2,38) (Fig. 2-A), requires the agent to learn an appropriate combination of 

anticipatory and compensatory responses to minimize the effect of a disturbance (i.e. loss of balance) 

signaled by a cue.  

 

2.1 Model of the agent 

The inverted pendulum actuated by a torque (𝜏) at its base is modeled as follows:  

    𝑚ℎ2𝜃̈ = 𝑚𝑔ℎ sin(𝜃) + 𝜏 + 𝐹ℎ cos(𝜃)      (1) 

The pendulum has a mass (𝑚) of 67 Kg and a height of its center of mass (ℎ) equal to (0.85 m). 𝜃 

measures the angular deviation from the vertical position. The disturbance is introduced as a force (F) 

parallel to the ground applied to the center of mass. 

 

2.2 Control Architectures 

The APA task involves three different sensory modalities: distal (perceiving a cue that precedes the 

collision), proximal or proprioceptive (sensing the magnitude of the impact on the body) and vestibular 

(sensing the postural effects of the impact, that is, the inclination).  Each modality enables a different type 

of response: distal sensing allows for preparatory responses, proximal sensing for fast compensation and 

vestibular for compensation through feedback control (6,30,39–41) (Fig. 2-A). Note that a similar 

distinction between distal and proximal sensory modalities can be found in (34,35) to account for sensory 

predictions within extrinsic and intrinsic frames of reference, respectively. 

 

2.2.1 Feedback controller. The agent is stabilized by a torque generated through Proportional-Derivative 

(PD) feedback controller as follows: 

    𝜏𝑓𝑏(𝑡) = −𝑘𝑝𝜃(𝑡 − 𝛿𝑠) − 𝑘𝑑𝜃̇(𝑡 − 𝛿𝑠)                                               (2)  
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Note that in the error term we use the angle and angular velocity values delayed by 𝛿𝑠 (= 100 ms. ) to 

account for the latency of the error feedback.  

 

--- FIGURE 2 --- 

 

2.2.2 Adaptive feed-forward modules. In addition to a feedback controller, both architectures include the 

same adaptive feed-forward modules to process the proximal and distal cues. That adaptive feed-forward 

module (i.e., inversion of a forward or generative model) is implemented as an adaptive filter extended 

with an eligibility trace mechanism (42–44).  Each feed-forward module receives a single sensory input 

signal that is expanded into N (=20) different signals or bases. Each basis corresponds to the convolution 

of the (sensory) input with an alpha signal that can be formulated as two serially linked leaky integrators 

with identical time constants. For a particular basis, its output value is generated as follows: 

                                                                    zj(𝑡 + 𝛥𝑡) = γjzj(𝑡) + 𝜁𝑗x(𝑡)                                                            (4)        

                                                                    pj(𝑡 + 𝛥𝑡) = γjpj(𝑡) + zj(𝑡)                                                                             (5) 

where 𝛥𝑡 (= 0.01 𝑠) is the simulation time step and γj = e−τjΔt  is the j-th basis decay factor, derived from 

a relaxation time constant τj. 𝜁𝑗  is a scaling factor that equalizes the power of all bases. At this point, an 

expansion of the original signal x(t) into a series of bases or transients with different temporal profiles is 

obtained. The second processing step consists in mixing those bases according to a weight vector 𝒘(𝑡) to 

generate an output signal (𝑓𝑓(𝑡)): 

                                                                               𝑓𝑓(𝑡) = 𝒘(𝑡)𝑇𝒑(𝑡)                                                                                   (6)  

where 𝒑(𝑡) = [𝑝1(𝑡), … , 𝑝𝑁(𝑡)]T is the vector of the bases. The weight vector is adaptively set by means of 

an LMS or Widrow-Hoff update rule (45) extended with an eligibility trace: 

                                                               𝑤(𝑡 + 𝛥𝑡) = 𝑤(𝑡) + 𝛽𝜖(𝑡)𝑝(𝑡 − 𝛿𝑥)                                                                (7) 

Here, 𝜖(𝑡) is an appropriated error signal that is used to update the weights. The eligibility trace is 

implicit in the use of a delayed copy of the bases activity 𝑝(𝑡 − 𝛿𝑥) for the update, with x indexing the type 

of stimulus processed: proprioceptive (p) or distal (d). In short, to update the weights the current error is 

associated with an activity on the basis signals 𝛿𝑥 seconds ago. With that, we assume that activity at time 

𝑡 − 𝛿𝑥 is the one that should have been used to trigger a reaction with sufficient anticipation to cancel the 
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current error at time t. In general, we set both 𝛿𝑑 and 𝛿𝑝 greater than the error feedback delay (𝛿𝑠), 

implying that the extent of the anticipation goes beyond the transport (or error feedback) delay. 

 

2.2.3 Configuration of the FEL and HSPC architectures. Both control architectures include the feedback 

controller and two feed-forward modules (distal and proximal) wired according to the heuristic of either 

predicting motor commands from sensory signals (FEL architecture), or predicting sensory signals from 

sensory signals (HSPC architecture).  

 

In FEL, feed-forward modules act upon the plant and are supervised by the feedback reaction to the error 

in posture (Fig. 2-B and Fig. S1-A).  In particular, the proximal module issues a feed-forward action in 

response to the impact learned by shifting the reactive action earlier in time, while the distal module 

similarly acquires a response that is triggered by the distal stimulus, and thus can precede the impact 

itself.  

Let 𝑓𝑓𝑝(𝑡) and 𝑓𝑓𝑑(𝑡) be the outputs of the proximal and distal feed-forward modules; 𝑥𝑝(𝑡) and 𝑥𝑑(𝑡), 

their respective input signals; and 𝜖𝑝(𝑡) and 𝜖𝑑(𝑡) their respective teaching signals. The structure of the 

FEL architecture is determined by the following equations: 

      𝑥𝑑(𝑡) =  𝑖𝑑(𝑡)                                                                                          (8) 

      𝑥𝑝(𝑡) = 𝑖𝑝(𝑡)                                                                                          (9) 

                           𝜖𝑑(𝑡) = 𝜖𝑝(𝑡) = 𝑢𝑓𝑏(𝑡)                                                                               (10) 

where 𝑖𝑑(𝑡) and 𝑖𝑝(𝑡) represent the cue (distal) and impact (proximal) signals, respectively, and 𝑢𝑓𝑏 is the 

output of the feedback controller. As a final step, the output of all modules are added up to generate the 

control signal ( 𝑢𝑓𝑒𝑙(𝑡)): 

                                                                  𝑢𝑓𝑒𝑙(𝑡) = 𝑢𝑓𝑏(𝑡) + 𝑓𝑓𝑝(𝑡) + 𝑓𝑓𝑑(𝑡)                     (11) 

 

In HSPC, upstream modules drive and learn from the input of downstream modules (Fig. 2-C and Fig. S1-

B). That is, the proximal module learns counterfactual errors (29) contingent to the impact so that the 

feedback controller reacts to the expected error before the actual one occurs. While the distal module 

learns to predict the collision signal contingent to the cue and triggers the proximal module ahead of the 
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impact. Note that, by necessity, the HSPC architecture includes an internal comparator that computes the 

prediction errors associated with the collision signal. 

In keeping with the above notational conventions, the equations determining the distal feed-forward 

module inputs and error signals in HSPC are: 

                                                                                𝑥𝑑(𝑡) = 𝑖𝑑(𝑡)                                                                                    (12) 

                                                                   𝜖𝑑(𝑡) = 𝑖𝑝(𝑡) − 𝑓𝑓𝑑(𝑡 − 𝛿𝑑)                                                              (13) 

Note that the error signal that controls learning in the distal feed-forward module is a prediction error, 

coding the difference between a past prediction, 𝑓𝑓𝑑(𝑡 − 𝛿𝑑), and the actual stimulus, 𝑖𝑝(𝑡), where 𝛿𝑑 is 

the anticipatory delay of the distal module. The proximal feed-forward module is integrated within the 

control architecture as follows: 

                                                                           𝑥𝑝(𝑡) = 𝜖𝑑(𝑡) + 𝑓𝑓𝑑(𝑡)                                                          (14) 

                                                                               𝜖𝑝(𝑡) = −𝜃(𝑡 − 𝛿𝑠)                                                                (15) 

In brief, the sensory prediction error, 𝜖𝑑(𝑡), and the prediction signal, 𝑓𝑓𝑑(𝑡), related to the collision drive 

the proximal module, which is supervised by the error in angle (measured with a delay of 𝛿𝑠 seconds). 

In the last stage, the output of the proximal feed-forward module is added to the error in velocity driving 

the feedback controller. We formulate that operation by introducing 𝜖𝜃(𝑡) = −𝜃(𝑡 − 𝛿𝑠) + 𝑓𝑓𝑝(𝑡) and 

then rewriting the first equation of the feedback controller: 

                                                                         𝑢𝑓𝑏(𝑡) = 𝑘𝑝𝜖𝜃(𝑡) + 𝑘𝑑𝜖𝜃̇(𝑡)                                                               (16) 

Finally, the motor control signal generated by the HSPC architecture is simply the output of the feedback 

controller, 𝑢ℎ𝑠𝑝𝑐(𝑡) = 𝑢𝑓𝑏(𝑡).  

 

The code used for the simulations can be found at the following Dryad Digital Repository: 

http://dx.doi.org/10.5061/dryad.1vs77 . 

 

3. RESULTS 

Below we report on the performance of both control schemes during three experimental conditions: 

standard acquisition trials, robustness (catch) trials in which the disturbance is cued but not delivered, 

and generalization trials in which we provide both cued and non-cued trials, and change the weight of the 

agent during training. 

http://dx.doi.org/10.5061/dryad.1vs77
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--- FIGURE 3 --- 

 

 3.1 Acquisition. We start by analyzing the performance of the two adaptive control architectures in the 

acquisition of an anticipatory postural adjustment (APA) trained in a trial-by-trial manner. We use a 

simulated self-balancing system that at each trial receives an impact, preceded by a distal cue by a fixed 

interval of 400 ms, and resulting in a disturbance force (100 N during 300 ms). The force, applied to the 

pendulum, produces an angular displacement that, in the naive system, is uniquely counteracted by the 

reactive controller introducing oscillations in the angular position (Fig. 3-A, gray line). After learning, 

acquired motor responses evoked by the two predictive stimuli (cue and collision) substantially reduce 

the angular error (Fig. 3-A, red and cyan). Note that despite implementing different adaptive strategies, 

we could configure both architectures to exhibit similar learning curves (Fig. 3-B).  

After learning, in FEL the reactive controller is only marginally engaged as the errors in behavior that 

drove it initially are almost cancelled (Fig. S1-A). Note that in this architecture, only the cue-evoked 

command contributes to preparatory behavior (before the collision) but both cue- and collision-evoked 

commands contribute to the fast feed-forward compensation that takes place after the collision (Fig. S1-

A).  

Conversely, in HSPC the proximal adaptive module that associates the collision signal with inertial errors 

steers the feedback controller both during anticipation and fast compensation (Fig. S1-B). Still, after 

learning, the proximal module is fed with a mixture of actual and anticipated collision signals, where the 

former is sensed and the latter provided by the distal module (Fig. S1-B). Importantly, the distal module 

predicts the collision signal from the cue and issues an anticipated impact signal preceding the actual 

impact by 100 ms (the extent of the anticipation, 𝛿𝑑, is a design parameter (see Methods)). Hence, the 

anticipatory part of the response, despite being evoked only by the cue stimulus, results from a cascade of 

predictions that involves both adaptive feed-forward modules and the feedback controller. 

In sum, despite the marked differences in the processing, both architectures converged to similar motor 

commands and behavior, indicating that both motor anticipation- (FEL) and sensory prediction-based 

(HSPC) strategies can be equally successful in acquiring APAs.  

 

3.2 Robustness. Next we assess the reaction of both architectures to violations in the sequence of 

predicted events that was learned during training. To that end, after 100 acquisition trials, we run 50 
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trials within which we randomly intersperse a 10% catch trials in which we present the cue but omit the 

disturbance.  During catch trials the agent initiates an anticipatory motor response that later, due to the 

lack of disturbance, results in a performance error (7,18,25). Here, we use such error to quantify how 

responsive FEL and HSPC are in recovering from erroneous predictions (25).  

 

Prior to the expected impact time, both architectures introduce a slight anticipatory angular error (Fig. 3, 

C) by issuing the preparatory part of the response (Fig. S2-A). However, once the impact fails to occur, 

HSPC promptly corrects the initial error while in FEL the error keeps increasing. In terms of performance, 

the error in a catch trial incurred by HSPC (median of the RMSE) is approximately half of the error 

introduced by FEL (0.3 vs 0.6 in normalized RMSE) (Fig. 3-D). The errors seen in catch trials are the same 

ones observed at the onset of extinction training. Both architectures greatly suppress these errors (also 

called aftereffects) after 50 extinction trials (Fig. 3-D). 

The reasons behind the difference in performance in catch trials are the following: FEL reacts to the 

absence of the impact by omitting the collision-evoked command, but maintains the whole cue-evoked 

command even after the lack of the expected collision has shown it to be unnecessary. In contrast, HSPC 

rapidly aborts the (feed-forward) action once the proximal module receives the sensory prediction error 

triggered by the missed collision (Fig S2-B).   

In summary the HSPC architecture outperforms the FEL in that, due to the computation of sensory 

prediction-errors, it can react on-line to violations in the course of expected events (i.e., to sensory 

prediction errors).  

 

3.3 Generalization. In a final set of simulations, we test how both architectures respond to changes in the 

plant dynamics and task contingencies. We run an additional set of 60 trials after acquisition. During the 

first 10 extra trials we measure the performance of the feed-forward compensatory layer in isolation, 

omitting the cue. At trial 11 the plant is made heavier (+10% - light-to-heavy condition) (note a similar 

manipulation in behavioral postural control studies (46)) and the agent receives additional non-cued 

collisions (40 trials). Afterwards, we reintroduce the cue for 10 more trials. In a separate set of 

simulation, we train initially the heavier agent and afterwards remove the weight (-10% - heavy-to-light 

condition). 
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In FEL, any change in the task decreases performance (removing or reinstating the cue), irrespectively of 

whether the plant has increased or decreased its weight (Fig. 3-E,F and Fig. S3-C). In HSPC, the 

performance deteriorates, albeit to a lesser extent, after removing the cue. However, once the cue is 

reintroduced after having retrained the compensatory module, we observe a gain in performance in both 

cases, greater when transitioning to the lighter plant (Fig. 3-E,G and Fig. S3-C).   

The difference in performance stems from the different ways in which both architectures combine the 

two stimuli. FEL deals with the cue and impact as independent stimuli. Initially, both contribute to the 

response, but once the cue is removed a part of the response is removed as well, damaging performance 

(Fig. S3-A). Further training makes FEL able to trigger appropriate compensatory responses just with the 

proximal stimulus, but then, reinstating the cue superposes a motor command partly redundant, 

damaging performance again (Fig. 3-F). Notably, if one would consider that cue and impact form a 

compound stimulus in regular trials, one could explain the interference between the cue and the impact 

stimuli with the Rescorla-Wagner model (47). On the contrary, in HSPC the distal module learns to predict 

the impact from the cue, and uses that prediction to trigger (a part of) the compensatory action in 

anticipation (Fig. S3-B). That implies that even after changing the properties of the plant, anticipating an 

appropriate compensatory action can result in an improvement in performance (Fig. 3-G). 

In summary, in face of perturbations to the plant dynamics or changes in the task contingencies, a control 

strategy learning a cascade of sensory predictions allows for better generalization than one that treats the 

different stimuli independently.  

 

4. DISCUSSION 

Even though it is clearly established that skilled motor behavior relies on internal models, their nature is 

still under debate. The two prevailing views are that internal models can either be inverse models, 

mapping the desired sensory consequences into their required motor commands, or forward models, 

mapping motor commands into their predicted consequences. Here, we have challenged this dichotomy 

and advanced an alternative proposal that reformulates anticipatory motor control as a sensory-sensory 

learning problem (Hierarchical Sensory Prediction Control). On this view, the predicted consequences of 

responses to (distal or proprioceptive) cues prescribe action or motor commands (that are mediated – or 

realised – by reflexes). This simplification and generalisation of the ‘standard model’ appeal to active 

inference, with an emphasis on estimating and predicting states of the world and the self. In order to test 
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this hypothesis, we designed two control architectures that adopted either a motor anticipation- or a 

sensory prediction-based approach. We based the motor-anticipation architecture on the well-

established Feedback Error Learning (FEL) model (15,16,23) whereas Hierarchical Sensory Predictive 

Control (HSPC) provided the sensory prediction-based architecture. 

 

We compared both architectures in a simulated anticipatory postural adjustment (APA) task (6,7,38). 

Despite differences in the processing, both architectures acquired an APA equally well (Fig. 3-A,B). 

However, as soon as we extended the basic APA protocol with either the introduction of catch trials or by 

perturbing the plant, the sensory-prediction strategy outperformed motor-anticipation. Below, we will 

argue that the reasons for that superior performance are grounded in two specific consequences of the 

sensory-prediction strategy: its reliance on sensory prediction errors, and second, that HSPC affords a 

hierarchical processing architecture that encapsulates learning at different levels. In other words, in line 

with active inference, placing a hierarchical model on top of reflexive sensorimotor control equips 

behaviour with a context-sensitivity and intentional aspects that are precluded in ‘standard’ formulations. 

 

4.1 Origin of the robustness and generalization capabilities in HSPC   

The hierarchical structure of the HSPC explains its superior generalization ability. The FEL architecture 

has a flat structure as far as controlling behavior is concerned: all modules send motor commands in 

parallel to the plant. This means that after a perturbation of the plant, the output of all modules has to be 

retrained to the new plant dynamics. In HSPC, its hierarchical structure entails that all modules are only 

concerned with driving and learning from the module immediately below in the hierarchy. Hence, HSPC 

solves the control problem by partitioning it into two smaller sub-problems: predicting the collision from 

the cue and predicting the postural errors from the collision. As a consequence, changing the mass of the 

agent only changes the sensory consequences of the collision, hence, once a new feed-forward reaction to 

the collision is acquired, a gain in performance can still be obtained by correctly anticipating the collision 

(thereby, bringing the trained reaction forward in time).  

 

On the other hand, sensory prediction errors (SPEs) enable fast reaction to erroneous predictions. As FEL 

only learns to react to stimuli, but not to predict them, it cannot (at least naturally) incorporate SPEs. On 

the contrary, HSPC relies on SPEs both for improving prediction accuracy and to preclude reaction to 
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predicted stimuli at the time of their actual occurrence (13). That is, SPEs are intrinsic to the design 

principle behind HSPC. In catch trials, as no collision occurs, the prediction of the distal module fails, 

generating a negative SPE that interrupts the ongoing response of the proximal module initiated by the 

distal module, thereby enabling a fast recovery (in addition to readjustment –learning– as the absence of 

the collision may imply a lasting change in task contingencies). 

 

4.2 Environmental forward models and inverted sensory-sensory forward models 

The distal module in HSPC is a forward model of the environment that solves the problem of predicting 

one stimulus (a collision) given another stimulus (a cue), i.e. a task contingency. In general, forward 

models of the environment have been acknowledged (48), but usually not considered specifically in the 

context of physiological motor control except, recently, within the domain of active inference 

(33,35,36,49). However, the forward model in HSPC is not generically predicting one stimulus from 

another; it is anticipating a stimulus with the objective of driving a behavioral response that minimizes a 

defined error. For that, it must take into account not only sensorimotor latencies, but also the dynamics of 

the plant (e.g., musculo-skeletal system). Hence, the environmental forward model in HSPC affords action-

aware sensory predictions in that they are made having knowledge about the dynamics of the action that 

they will drive. In contrast, standard forward models do not require knowledge of the dynamics of the 

feedback action itself, as they only need to be tuned to the afferent and efferent delays (13). 

 

On the other hand, the internal model dealing with the collision signal acts as an inverse model. Even 

though it is supervised by a postural error signal, its goal is not to learn to predict postural errors, but to 

steer its downstream feedback controller to avoid these errors. We have earlier called this approach 

counterfactual predictive control (CFPC) (29). The goal of CFPC is acquiring counterfactual error signals 

that, even though they do not code any forthcoming errors derived from the interaction with the physical 

world, they are processed by a feedback controller as if they were real errors. In practice, this leads the 

adaptive model within the HSPC architecture to acquire an inverse model of the closed-loop system that 

reflects jointly the dynamics of the plant and the controller (29).  That is, a model is said to be inverse 

because it reverses a causal relationship: from the desired effects (i.e. avoiding errors in performance) to 

inferring the right causes (i.e. the motor commands that will avoid those errors). The module processing 

proximal events within HSPC shares the same goal as the standard inverse model just mentioned. The 
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only difference is that it outputs a predicted sensory signal that signifies an error rather than a motor 

command. This signal must be considered counterfactual. This demonstrates how a learning process that 

depends on sensory errors (in contrast to motor errors) is not automatically building a forward model 

(for another example, see (50)).  

 

4.3 Related research in experimental psychology and predictions of the HSPC hypothesis 

Experimental APA protocols include standing human participants receiving the impact of an object 

attached to a pendulum (38,39). As expected, those experiments show that faced with the incoming 

pendulum, participants rely on distal sensing  (vision) to issue the anticipatory responses (38,39), i.e.: no 

anticipatory responses were observed when participants closed their eyes. Regarding the interplay 

between proprioceptive and vestibular information, separate studies in compensatory postural control 

have shown that humans with compromised proprioception display compensatory responses delayed 

with respect to healthy controls (51) as well as animals with Pyridoxine-induced loss of peripheral 

sensory efferents have delayed compensatory responses and increased postural sway (52). This suggests 

that, despite some simplifications, the design of the task and the adaptive interplay between sensory 

modalities and responses in our simulated APA task is in close agreement with well-studied properties of 

biological control. We note however that in humans and animals, anticipatory and compensatory 

strategies often act synergistically across different sets of muscle synergies, reflecting different demands 

(i.e. upper extremities respond with higher degree of anticipation compared to lower ones) (53). 

However, those findings do not discriminate between the sensory prediction and motor anticipation 

hypotheses. An exception comes from experiments showing that altered proprioceptive information at 

the level of the Achilles tendon delays anticipatory postural responses (39). Note that FEL would predict 

that decreasing the information in the proprioceptive channel would have no effect in the preparatory 

actions, which are motor commands triggered by the visual stimulus. However, in the HSPC hypothesis, 

anticipatory actions are elicited by generating proprioceptive predictions. Hence, one could expect that a 

manipulation that alters the processing of real proprioceptive information would also affect the mapping 

of predicted proprioception into action. 

 

HSPC further predicts that in catch trials, subjects will correct erroneous anticipatory actions with a 

latency equal to the time needed to detect sensory prediction errors. In contrast, as FEL makes no use of 
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sensory prediction errors, it has no mechanism that could detect and process such a sharp change in 

behavior at the expected time of the disturbance. Note that errors observed in catch trials, or aftereffects, 

which provide a means to quantify learned motor responses, are a hallmark of adaptive motor behavior. 

Hence, as HSPC greatly diminishes those aftereffects, it may seem that we are advancing a control scheme 

whose performance is non-biological. However, this is not the case, first, because HSPC reduces 

aftereffects but it does not suppress them but rather they are subject to extinction, or washout (Fig. 3 C-

D). Secondly, HSPC curtails erroneous feed-forward responses as soon as sensory prediction errors can 

be detected. Experimentally, the fast correction in catch trials that we demonstrate with HSPC has also 

been observed using a grip-force modulation paradigm where participants learned to anticipate an 

artificially delayed (but self-generated) disturbance (25). However, to the best of our knowledge, this 

kind of catch trials has not been studied in the context of the anticipatory control of balance. For an APA 

task as the one we have modeled, providing catch trials will likely require a virtual reality setup allowing 

to decouple the distal and proximal cues; i.e. showing a virtual looming object that in paired trials 

coincides with an actual object hitting the participant but that in catch trials does not.  

 

In addition, generalization of adaptive motor responses has been found in limb (26,54) and postural 

control (27). Subjects trained to catch a ball with one arm, perform equally good when they switch arm 

(54), a result that cannot be explained in terms of inverse models (by definition, effector-specific). 

Moreover, subjects that learned to counter a force-field perturbation in a sitting position correctly 

anticipated the postural disturbances that compensating for the force field would introduce in an upright 

posture (27). This result argues in favor of an architecture composed of a forward internal representation 

of the dynamics of the environment coupled with an internal model of the postural dynamics, where the 

former is effector independent and the latter is already fine-tuned by experience; a proposal consistent 

with the hierarchical structure of HSPC.  

 

Put together, these three sources of evidence (generalization of acquired responses across limbs and 

postures, rapid reversal of the erroneous response in catch trials, and anticipatory responses affected by 

altered proprioception) support a hierarchical control architecture that acquires forward models of the 

environment, exploits sensory prediction errors, and shows a dependency between anticipatory and 

compensatory responses. All these features are embodied in HSPC but are difficult to reconcile with an 
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inverse model-based architecture such as FEL. 

 

Finally, APAs are also observed in response to voluntary actions that trigger self-generated perturbations 

(e.g. extending an arm, loading a weight) (4,8). Even though we focused on externally generated 

perturbations, HSPC could account for self-initiated perturbations by replacing the distal sensory input 

with an internally generated signal encoding the initiation of a motor plan (55), which would trigger a 

similar cascade of sensory predictions. 

 

4.5 Implications for cerebellar physiology 

HSPC advances a hypothesis of cerebellar function in the domain of anticipatory control. It has its origins 

in a model of the cerebellum (29,42) as is the case for FEL (16). In both architectures, adaptive modules 

are implemented as adaptive-filters, a widely used computational model of cerebellar function (56,57). 

Moreover, here we have demonstrated HSPC in a task that depends on the cerebellum (2,3,58). The 

distinctive trait of our implementation of the cerebellar algorithm is the use of a delayed eligibility trace 

(Methods - Eq. 1) (42). Taking into account that in the cerebellum contextual information reaches 

Purkinje cells through the parallel fibers whereas specific error signals arrive via the climbing fibers, in 

terms of cerebellar physiology, the eligibility trace mechanism predicts a plasticity rule in the synapses 

between parallel fibers to Purkinje cells that modifies synaptic weights whenever activity in the parallel 

fibers precedes climbing fiber input by a certain time interval. Both in HSPC and FEL, we set that interval 

according the behavioral constraints of the agent/task (29), a requirement that seems to apply also in the 

cerebellum, where the timing of the plasticity rule of cerebellar Purkinje cells is matched to behavioral 

function (59).  

From a system level perspective, our proposal emphasizes the computations that could be achieved by 

organizing cerebellar modules in a hierarchical fashion. At the level of anatomy, such a functional 

hierarchy should require cerebellar microcircuits to be serially connected. That is, the output from one 

microcircuit should provide an input to the next one (or ones) in the hierarchy. This should be realized as 

non-reciprocal nucleo-cortical connections by which a particular area of the cerebellar nucleus could feed 

a cerebellar cortical microzone projecting to a separate region of the cerebellar nucleus. This 

arrangement is in agreement with the descriptions of the organization of the nucleo-cortical projections 

between the nucleus interpositus posterior (NIP) and the nucleus interpositus anterior (NIA) already 
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present in the literature (60). Namely, it has been shown that a proportion of nucleo-cortical projections 

originating in NIP target NIA, whereas the opposite is not the case. This would imply that activity on NIP 

could modulate, after one step of cerebellar cortical processing, activity on the NIA. On a more speculative 

note, from the perspective of HSPC, we would expect NIA to be more directly involved in motor control 

tasks (i.e., targeting motor nuclei) (61) whereas NIP would be more linked to sensory processing areas. 

Indeed, tracing studies showed that NIP sends its outputs to the ventro-lateral and ventro–posterior 

nuclei of the thalamus (62), main relays to somatosensory cortical areas crucial for the computation of 

sensory prediction errors (63), and to frontal cognitive areas (64,65).  

 

4.6 Summary 

We have shown how a hierarchical control architecture based on sensory predictions enables the 

acquisition of responsive and generalizable APAs better than one based on sensory-motor associations 

alone. In doing so, we went beyond the standard inverse-forward model dichotomy by showing how (the 

inversion of) forward models that acquire sensory-sensory associations can contribute to motor behavior 

with action-aware sensory predictions. Our results read as a validation of key principles behind the active 

inference theory of motor behavior. In future work we shall study how this anatomically-constrained 

theory of anticipatory motor control could be extended to address the questions of optimality that arise 

when one takes effort-error trade-offs or the modulation of task irrelevant vs. task relevant variability 

into account (66). At this point, however, we expect the HSPC architecture to allow for the advancement 

of our understanding of the mechanisms underlying physiological anticipatory motor control, which we 

propose can now be treated in a framework related to active inference, while also contributing to the 

development of robust control architectures for artificial systems. 
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Fig 1. – Conceptualization of the HSPC hypothesis. A predictable displacement caused by a soccer ball directed to 

the chest elicits an anticipatory response that minimizes the loss of balance before it is perceived. In HSPC the 

anticipatory response is the result of a hierarchy of descending sensory predictions from distal (visual detection) to 

proprioceptive (impact) to vestibular (loss of balance) modalities, where each modality advances in time the 

expected consequences on the next modality until the predicted error in balance triggers a reflexive action in a feed-

forward manner.  The minimal model for this behavior is an inverted pendulum of mass (m) and height (h), whose 

error in angle (theta) is minimized by generating a torque (τ) at the ankles that counteracts the disturbance (F). 
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Fig. 2 – Motor anticipation (FEL) vs. Sensory Prediction (HSPC) strategies. A. Different responses are elicited 

by different sensory modalities. Left: a corrective reaction is triggered by the perceived postural error. Center: a 

fast compensatory corrective action is triggered by the perceived impact (proximal stimulus). Right: an anticipatory 

action is triggered by the distance to the obstacle (distal stimulus). B. Motor anticipation strategy (FEL). Left: a 

postural error is converted into a reflexive action by a feedback controller (R). Center: a feedforward compensatory 

action associated to the impact signal is acquired by the proximal adaptive module (FFp) on the basis of the feedback 

response to the error. Right: a feedforward anticipatory action associated to the distal cue is acquired by the 

cerebellar distal module (FFd) on the basis of the same feedback response. C. Sensory prediction strategy (HSPC). 

Left: reflexive action elicited as in FEL. Center: feedforward compensatory action: triggered by the proximal cue and 

learned from the closed-loop error, a counter-factual error is issued by the proximal module (FFp) in response to the 

proximal cue driving the feedback controller. Right: anticipatory action: evoked by the cue, a prediction of the 

expected impact issued by the distal module (FFd) triggers the compensatory response in an anticipatory manner. 
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Fig. 3 – Experimental results. Acquisition. A. Mean angular position during the disturbance rejection task for 

feedback-control condition (gray – 10 trials), trained FEL architecture (red - trials 90-100) and trained HSPC 

architecture (cyan - trials 90-100). Disturbance is delivered at t=0 (dashed line).  B. Root mean square error (RMSE) 

in angular position over trials during acquisition phase for FEL (red) and HSPC (cyan) architectures normalized by 

the maximum error in the naive system (feedback-control only). Robustness. C. Mean angular position of FEL (red) 

and HSPC (cyan) during catch (N=10 – solid) and regular perturbed trials (N=10 – dashed). D. Root mean square 

error (RMSE) in angular position during regular trained perturbed trials (FEL,HSPC, N=10), catch trials (FEL-C, HSPC-

C, N=10) and extinction trials (FEL-E, HSPC-E, N=10). Generalization. E. Root mean square error (RMSE) in angular 

position during light-to-heavy generalization phases for FEL (red) and HSPC (cyan). “Light plant” denotes the phase 

before plant perturbation. “Heavy plant” denotes the phase after plant perturbation. F. FEL mean angular position 

after plant perturbation (heavy plant - N=10) without (dashed) and with the cue (solid) and after regular training 

with heavy plant (solid magenta). G. same description as in F for HSPC.  

 

 

 

 

 

 

 


