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Immune receptors CD40 and CD86 in oral keratinocytes
and implications for oral lichen planus
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Abstract: Lichen planus (LP) is a chronic T-cell-
mediated mucocutaneous inflammatory disease that
targets stratified epithelia, including those lining the
oral cavity. The intraoral variant of LP (OLP) is associ-
ated with interferon (IFN)-y production by
infiltrating T lymphocytes; however, the role of
epithelial cells in the etiopathogenesis OLP is not
completely understood. There is however a growing
body of evidence regarding the involvement of
epithelial-derived cytokines, immune receptors, and
costimulatory molecules in the pathobiological
processes that promote and sustain OLP. In the
present study, we used a reverse transcriptase-
polymerase chain reaction assay to assess whether
CD40—a receptor found mainly on antigen
presenting cells—and the costimulatory molecule
CD86 were expressed in oral keratinocytes (three
strains of primary normal oral keratinocytes and the
H357 cell line) in the presence or absence of IFN-y.
To further characterize the involvement of CD40 in
OLP, expression and distribution of receptor and
ligand (CD40/CD154) in tissues from OLP were
evaluated by immunohistochemistry. The present
results are the first to show that both CD40 and
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CD86 are constitutively expressed at low levels in
oral keratinocytes and that their expression was
enhanced by IFN-y stimulation. The intensity of CD40
staining in OLP tissues was strong. Taken together,
the results strongly suggest that CD40 and CD86 play
a role in the pathophysiology of oral inflammatory
diseases such as OLP.

Keywords: CD40; CD86; oral lichen planus; oral
inflammation; regulatory T-cells; mucosa.

Introduction

Lichen planus (LP) is a chronic T-cell-mediated muco-
cutaneous inflammatory disease whose etiology and
pathogenesis are not completely understood. To
clarify the pathological regulatory mechanisms
associated with LP, we investigated expressions of
CD40 and CD86 in oral keratinocytes and their role in
inflammatory disease of the oral cavity.

CD40 is a 45-50 kDa phosphorylated type | integral
membrane glycoprotein that belongs to the tumor
necrosis factor receptor superfamily, which is
expressed on various hematopoietic and non-
hematopoietic cells (1-11). CD40 is involved in several
biological functions, such as cell-mediated immunity
and cell growth regulation. The ligand for CD40 is
CD154, also known as CD40 ligand (CD40L), a cell
surface molecule mainly expressed by activated T-
cells. Through interaction with its receptor, CD154 is
pivotal in T-cell-dependent humoral response and
cell-mediated immunity and
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inflammation. Thus, it is a key element in the
pathogenic process of chronic inflammatory diseases
and autoimmune disorders and has additional
implications for the many pathogenic steps of
tumorigenesis (10,12,13).

Interferon (IFN)-y increases CD40 expression in a
number of epithelial cell lines, including buccal oral
epithelium (1,7). CD40 expression increases after
proinflammatory cytokine treatment; thus, it is not
surprising that CD40 epithelium expression is
enhanced in some inflammatory conditions (4).

In oral epithelium, CD40 is involved in many aspects
of cell homeostasis, as it is constitutively expressed by
oral keratinocytes and can stimulate T lymphocytes by
reacting further with several costimulatory molecules,
including B7.2 (or CD86), one of the most important
B7 molecule family members (14). CD86 can bind to
the ligand CD28 or cytotoxic T-lymphocyte-associated
molecule-4 (CTLA-4), located on resting and activated
T-cells, thus determining respective upregulation of T-
cell stimulation and clonal expansion via multiple
cytokines stimulation, or downregulation of this
process (15,16).

Increasing evidence indicates that CD40 expression on
epithelium plays a role in immune response by stimu-
lating production of cytokines and chemokines.
Previous studies reported that these chemokines are
upregulated in oral lichen planus (OLP) and that OLP is
characterized by large numbers of activated T-cells
localized near the epithelium or infiltrating basal
epithelium (7,9).

This study investigated the effect of IFN-y treatment
on CD40 mRNA expression in oral epithelial cells.
Antigen presentation by keratinocytes is believed to
have a role in OLP pathogenesis, and data on CD86
expression are inconsistent (1,17-24). Thus, we
investigated CD86 mRNA expression in oral epithelial
cells because of its crucial role in this process. In
addition, to characterize CD40-CD154 cell expression
and distribution, CD40/ CD154 were additionally
evaluated by immunohistochemistry in OLP tissue.
The results are the first to show that CD40 and the
costimulatory molecule CD86 are constitutively

expressed at low levels in oral keratinocytes and that
their expression is enhanced by IFN-y stimulation.

Materials and Methods
Patients

OLP tissue (n = 12) was collected from patients
attending the Oral Medicine Clinic of Eastman Dental
Institute or the Royal Dental Hospital of Melbourne.
In all cases, the diagnosis of OLP was confirmed by a
pathologist; patients with other systemic diseases
were excluded. Normal oral mucosa was obtained
from patients attending the Oral

Surgery Clinic of Eastman Dental Institute for routine
extraction of third molars. This study was approved by
the internal Ethical Committee of the UCL Eastman
Dental Institute and the University of Melbourne
Human Research Ethics Committee in 2008 (0827052.
1).

Cell culture techniques
Culture of normal human oral keratinocytes

Normal oral mucosal tissue was obtained from
healthy patients, and three normal human oral
keratinocyte (NHOK) strains (NHOK1-3) were isolated
by separating connective tissue from excised normal
tissue. The samples were cut into approximately 1-
mm? pieces and cultured at 37°C/5% CO2 in
keratinocyte basal medium-2 containing the
recommended growth supplements (Biowhittaker,
Wokingham, UK). The epithelial cells were then
detached using 0.25% trypsin-1 mM EDTA. The
viability of the keratinocytes was confirmed by trypan
blue exclusion.

H357 cell culture

The oral squamous cell carcinoma cell line H357 was
established by Prime et al. (25) from a primary
explant of a tongue squamous cell carcinoma. This cell
line was grown in the same medium used for NHOK.

CD40/CD86 reverse transcriptase-polymerase chain
reaction



mRNA derived from H357 cells and primary oral
epithelial cells treated with 1,000 U/mL IFN-y for 48 h
was investigated. Primers specific for human CD40
mRNA and CD86 mRNA were generated for this
reaction, namely, CD40 forward 5’-
CTGGGCTAGCGATACAGGAG-3’ and reverse 5’-
GGAATTTCTGTTGGCCAAATCCA-3’ and CD86 forward
5’-AGACGCGGCTTTTATCTTCA-3’ and reverse 5’-
AACTCCAGCTCTGCTCCGTA-3’ (Genosys-Sigma, Poole,
UK), and reverse transcriptasepolymerase chain
reaction was performed. Magnesium concentration
was optimized for each primer as follows: 1 pL of
cDNA was added to 4 uL dNTP (2.5 mM), 5 uL 10x
buffer, 0.225 puL AmpliTaqg (5.0 U/uL) (Perkin Elmer,
Wokingham, UK), 4 uL of each specific primer (5 uM),
1.5, 3.0, or 4.5 mM MgCl in each reaction and dH20,
to yield a final volume of 50 uL. The thermocycler
(Techne Genius; Cambridge, UK) parameters varied in
relation to the primers used, and the annealing
temperature of the reaction depended on the
guanidine-cytosine content of the primers. The
general parameters used were 94°C for 45 s,
annealing temperature (57 to 60°C) for 45 s, and 72°C
for 45 s, repeated for 35 cycles.

The products were separated on a 2% agarose
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(GibcoBRL Life Technologies, Paisley, UK) gel and
visualized by ethidium bromide (Sigma, Poole, UK)
staining. Specific bands were visualized by ultraviolet
transillumination in a Multilmage Light Cabinet (Alpha
Innotech Corp., Cannock, UK), and digital images were
acquired and stored using Alphalmager Software
(Alpha Innotech Corp.). The primers used for the
study of housekeeping expression encoded a region
of 18S ribosomal RNA (5’-TTTCGGAACTGAGGCCATGA-
3’, 5’"-GCATGCCAGAGTCTCGTTCG-3').

IFN-y cell treatment assay

In a modification of the method described by
Altenburg et al. (26), the primary oral epithelial cells
and H357 cell line (at the second or third passage)
were seeded at 8 x 10* cells/well in a Falcon 6-well
plate (Becton Dickinson, Oxford, UK) with 3 mL of
KBM-2 medium containing no hydrocortisone. The
cells were incubated for at least 3-5 days until the cell
culture was 60 to 80% confluent. We used dose-
response curves from preliminary experiments to
determine the optimal experimental conditions.
Medium containing 1,000 U/mL IFN-y was added to
three wells, and control cell culture medium only was
added to the remaining three wells. The cells were
incubated for 48 h or for 3, 6, 9, 24, 48, or 72 h for the
H357 time course. The supernatant was extracted,
centrifuged, and stored at -70°C. The adherent cells
were washed with phosphate-buffered saline (Gibco
Life Technologies, Paisley, UK) before the addition of
0.5 mL of TriReagent (Sigma). The suspension was
then removed and stored at -70°C.

Immunohistochemical methods
Paraffin section preparation

Archival paraffin-embedded formalin-fixed (PEFF) OLP
specimens were used. Normal non-diseased skin (leg)
sections and oral mucosa (tonsil) sections were used
as positive and negative control samples. A
microtome was used to cut the paraffin blocks to a
thickness of 4 um, and the specimens were mounted
on Superfrost Plus slides (Thermo Scientific, Paisley,
UK).
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Antigen retrieval methods

Sections were dewaxed with a xylene wash (BDH,
Poole, England) followed by ethanol washes. The
CD154 sections were boiled in citric acid on a hot
plate for 20 min and cooled at room temperature for
20 min; the CD40 sections were boiled in citric acid on
hot plate for 10 min and cooled at room temperature
for 20 min. Then the sections were washed in PBS,
and the endogenous peroxidase was quenched with
3% w202 in methanol for

5 min.
Antibodies for immunohistochemistry

The primary antibodies were purified anti-human
CD154 (C-20) antibody (sc-978, rabbit polyclonal IgG,
Santa Cruz Biotechnology Inc., Dallas, TX, USA; diluted
1:50 in PBS) and purified anti-human CD40TNFRSF5
antibody (PA5-32325, rabbit polyclonal IgG, Thermo
Fisher, Paisley, UK) diluted 1:50 in PBS. The secondary
antibody was Biotinylated Universal (PK-6200, anti-
mouse IgG/rabbit I1gG) antibody (Vectastain Universal,
Elite, ABC kit, Vector Laboratories, Inc, Burlingame,
CA, USA).

3’, 3’-diaminobenzide staining and image acquisition
The study slides containing OLP sections and positive
control were incubated with the primary antibody for
30 min at room temperature. The negative control
was incubated with no primary antibody (PBS only)
for the same time at room temperature. The slides
were then washed in PBS three times and incubated
with the secondary antibody for 30 min at room
temperature. The slides were then incubated with
Avidin DH/horse biotinylated horseradish peroxidase
solution (Vectastain Universal, Elite, ABC kit, Vector
Laboratories, Inc). The slides were washed three
times with PBS, and 3’, 3’-diaminobenzide (DAB; Dako
Australia Pty. Ltd, North Sydney, Australia) was
applied for 5 min. After this, the slides were washed
with PBS, counterstained in Mayer’s Hematoxylin
(Amber Scientific, Midvale, Australia), and mounted.
Consecutive sections of the same samples were also
stained with hematoxylin and eosin without
immunohistochemistry. Images were obtained by
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using an Aperio CS2 Digital Pathology Slide Scanner CD40/CD86 production in oral mucosal keratinocytes
(Leica Biosystems, Mount Waverley, Australia). was first assessed over time in preliminary
experiments using the keratinocyte cell line H357 (Fig.
Statistical analysis 1). After 3 h of IFN-y treatment, very low levels of
CD40 mRNA and CD86 mRNA were detectable in

H357 cells. After

Statistical significance was determined with the
unpaired t-test.

6 h, expressions of CD40 mRNA and CD86 mRNA
were slightly higher in cells treated with IFN-y than in
Time course study of CD40/CD86 expression in H357 the control cells. Interestingly, CD40 and CD86 mRNA
cells treated with IFN-y

Con IFN-y
hrs 36 9244872 - 3 6 9 244872 - +
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Fig. 1 CD40/CD86 mRNA expression in H357 (time course). Fig. 2 a) Expression of 18S, CD40, and CD86 mRNA
in three

different normal human oral keratinocyte (NHOK; shown as 1, 2, and 3) lines after IFN-y treatment (IFN-y 1-3) for
48 h and in untreated (CON 1-3) and negative controls (--). b) Values were normalized against 185 mRNA
expression used as housekeeping. c) Triplicate average with standard deviation and statistical significance. **P <

Fig. 3 CD40 localisation in OLP tissue after peroxidase

staining. Intense staining was associated with
subepithelial band-like infiltrate. Epithelial cells within OLP lesions exhibit mild to moderate staining
(magnification 4x and 20x). Negative control sections

show no staining. Normal control and typical HE staining of OLP Fig. 4 CD40 localisation associated with
inflammatory infiltrate
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are shown in Supplementary Fig. 1. in OLP tissue. Staining is mostly present within dense inflamma-

tory infiltrate and on cells near and infiltrating the epithelial layer (magnification 40x).



expression was virtually undetectable in control cells
at 9 h. IFN-y-treated cells had detectable CD86 mRNA
levels up to 72 h, whereas CD86 mRNA transcripts
were present for up to 48 h in control cells. Taken
together, these finding indicate that CD40 and CD86
expressions in H357 cells are enhanced by IFN-y
stimulation.

Costimulatory molecule expression in oral
epithelium in vitro

CD40 was expressed constitutively in three primary
oral epithelial cell lines but was increased by IFN-y
treatment in vitro (Fig. 2a, b). Statistical analysis
revealed that mMRNA expression was significantly
higher (P < 0.001) in the IFN-y group (0.853 + 0.025)
than in the control group (0.419 + 0.0134) (Fig. 2c).
The pattern was similar

for the costimulatory molecule CD86 on the same cell
lines. Constitutive CD86 expression was very low but
increased after IFN-y treatment, although the
difference was not statistically significant (Fig. 2c).

CD40/CD154 expression in OLP tissue

In sections of OLP lesional tissue, concentrated CD40
staining was associated with cells within OLP
infiltrate, although staining of individual cells near the
epithelium were visible, as was moderate epithelial
staining (Fig. 3). Staining was particularly intense
within band-like inflammatory infiltrate (Fig. 4). Cells
in the basal area had relatively high expressions,
although positive cells were also seen in the
suprabasal area. Certain focal areas of the basal
epithelium had particularly high expression

Fig. 5 CD154 expression in oral lichen planus tissue
(magnification 10x and 40x). Infiltrating cells near the
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basal epithelium exhibit anti-CD154-positive staining;
the epithelium exhibits weak or no staining.

levels. CD154 was expressed on infiltrating cells in
OLP lesions but not within the epithelial layers (Fig. 5).
Positive cells tended to be located near epithelial cells
at the epithelial-connective tissue junction, especially
in focal areas of cell damage.

Discussion

The intensity of CD40 staining in OLP was strong,
particularly on cells within infiltrate, which may be
CD40-positive Langerhans cells. In addition, CD40
expression was seen in oral epithelial cells. CD40
expression has been reported in other epithelial cell
types in vivo and appears to increase during other
inflammatory disorders. Furthermore, CD40
expression was increased on primary oral
keratinocytes after IFN-y incubation in the present
study, which is consistent with the findings of other
studies (1). This cytokine may thus be important in
the stimulation and inflammation of oral epithelium.
Furthermore, CD86 mRNA expression was enhanced
after IFN-y treatment of oral keratinocytes, and the
implications of this expression in oral inflammatory
disease may be of great importance, as discussed
below.

Past and present findings suggest that CD40/CD86
ligation is involved in inflammatory enhancement. In
OLP, T-cells appear to be activated and thus are likely
to express CD154 (27), the ligand for CD40. The
proximity of infiltrating T-cells and epithelium in OLP,
which sometimes facilitates interactions between T-
cells and epithelium, suggests CD40 and CD154
ligation in OLP. This ligation induces or enhances
multiple effects in epithelial cells, including increasing
the production of proinflammatory cytokines (5,28)
and chemokines (5,29-31). Increased production of
these molecules in the epithelial area in OLP likely
increases inflammation. Specifically, increased
expression of CXC-ELR-chemokines in OLP is due in
part to ligation of CD40 on oral epithelial cells, as was
shown previously in cervical carcinoma cells (26).
Furthermore, increased production of RANTES by



keratinocytes in OLP (32) might be influenced by CD40
ligation (29,33).

IFN-y may also be important in inflammation of oral
epithelium, as it can increase CD40 expression on
epithelial cells and induce expression of chemokines
such as CXCL10 (Marshall et al., manuscript in
preparation). These mechanisms presumably promote
migration into the area of activated T-cells, which may
interact with epithelial cells and bind CD40. These
effects would synergize to produce more chemokines
and exacerbate the inflammatory status of conditions
such as OLP (34-36).

Induction of B7 molecules on keratinocytes increases
immunogenicity to antigenic stimulants, which results
in a large influx of stimulated T-cells. An increase in
the delayed-type hypersensitivity response to
reencountered antigens in B7 transgenic mice has
many similarities to the pathogenic mechanisms of
OLP, including the large T-cell influx visible in OLP and
the chronic nature of the disease. CD86 is upregulated
on oral epithelium by IFN-y in vitro, and there are
many features suggestive of IFN-y stimulation on
keratinocytes in OLP. These findings suggest that this
molecule is expressed on cells involved in increased
immunogenicity to antigens, including common oral
commensals such as Candida. Furthermore, CD86
expression on oral epithelium may be relevant to cell
migration, as CD28 ligation of CD4+ cells can alter
chemokine receptor expression (37).

Although we have shown that CD86 is induced on oral
epithelium in vitro, its expression in OLP is unknown.
Simon et al. (38) investigated the expression of CD28
and B7 in cutaneous LP lesions and found that the B7-
1 molecule was focally expressed on keratinocytes
within the lesion. However, the antibody for B7-1 was
also detected in the major histocompatibility complex
(MHC) molecule (39), and we suspect that it was this
molecule that was detected in LP.

CTLA-4 and CD28 binding affect Th1/Th2 differen-
tiation but would appear to have a larger effect on
naive cells than on memory cell interactions (40),
which occur in OLP.
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Because of the increase in costimulatory molecules in
epithelium after inflammatory signals, including oral
epithelial cells (as shown in this study), such
molecules may act as nonprofessional antigen-
presenting cells in OLP (41). Keratinocytes have the
genes necessary for antigen presentation (42);
however, if oral keratinocytes were capable of
antigen presentation, it would likely have to be
immunogenic antigen presentation in OLP, to cause



the observed reaction. However, it has proven
difficult to identify the factors that provide even
professional antigen-presenting cells with tolerogenic
or activating signals to T-cells in the periphery (43).

Like bronchial and intestinal epithelium, oral epithe-
lium is capable of antigen presentation, although by
other mechanisms (3,44-46). In particular, an increase
in the expression of costimulatory molecules, e.g.,
during inflammation, is required for oral epithelial
antigen presentation. It is possible that the antigens
present at high doses—and thus more likely to elicit
an effective T-cell response (16)—are those with
persistently high levels in oral mucosa, such as betel
nut antigens in chronic users and amalgam antigens
of patients with these fittings. If these antigens were
combined with inflammatory signals, active antigen
presentation of these antigens might yield an
immunogenic rather than tolerogenic response.

Proposed activation/tolerance theories regarding
dendritic cells—i.e., that stimulatory function is either
enhanced by toll-like receptors on dendritic cells
recognizing microbial products and upregulating
costimulatory molecules (47) or that damage in other
cells and production of molecules such as heat shock
proteins act as “danger signals” (48) that activate
dendritic cells—may also be true for epithelial cells
(49-52).

Induction of costimulatory molecules on the
epithelium does not result in T-cell activation, as
these molecules may actually bind to CTLA-4, which is
thought to be important in providing tolerance (53).
In fact, dysregulation of CTLA-4 in OLP patients may
be responsible for a breakdown in tolerance for oral
keratinocyte antigens (54). Although CTLA-4 cells
were clearly expressed in most samples of cutaneous
LP tissue, there was no such expression in a variety of
other skin inflammatory disorders (55). The
implications of this finding are unclear; however, the
fact that many infiltrating T-cells in LP express CD28
(38) suggests that these cells interact with CD86-
expressing keratinocytes, thereby leading to specific
clonal activation of these cells (56).
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A subset of CD4+ T-cells that express CD25 represents
regulatory T-cells that might be involved in the
suppression of autoimmunity (57-59). Interestingly,
CD25+ cells are upregulated in OLP (58). However,
these cells are also thought to involved in infection
persistence, perhaps in order to permit long-term
immunity (57). Therefore, these cells might be
important in disease chronicity in persons with low-
level (or undetectable) infection. OLP chronicity and
the presence of CD25+ cells may therefore be related.

If oral keratinocytes are capable of antigen presenta-
tion, it would be nonprofessional antigen
presentation, i.e., the cells would be unable to
migrate to lymph nodes to stimulate naive T-cells.
This suggests that it is predominately memory cells
that are activated in this manner. In fact, memory T-
cells are activated by a range of different antigen-
presenting cells and require less costimulatory
function than do naive cells (60). Interestingly, most
infiltrating cells in OLP lesions are memory T-cells.
Furthermore, the possible increase in chemokine
production by T-cell ligation of keratinocytes in OLP
would likely promote further migration of memory
cells into this area. This suggests that Langerhans cells
are important in initiating naive T-cell responses,
whereas, in secondary response, keratinocytes may
play a role in reactivating memory T-cell responses.
However, resident tissue APCs are implicated in
presenting self-antigen to Th1l cells in autoimmune
conditions (61); thus, keratinocytes may also play a
role in initiating the presentation process to Th1l cells.

The reaction against oral keratinocytes in OLP
suggests a failure in tolerance to self-antigens of oral
epithelial cells. A number of mechanisms could affect
this potential breakdown of self-tolerance in oral
mucosa, including molecular mimicry (62) and epitope
spreading (63).

Because of the number of agents associated with OLP
onset and chronicity, which may be caused by the
different shift of epitopes detected in the disease,
epitope spreading is a possible pathogenetic
mechanism of this disease. Furthermore, CD80/86
blockade (64) or CD40-CD154 blockade (65) inhibits



epitope spreading and eases ongoing autoimmunity in
animal models. The fact that CTLA-4+ve cells enable
epitope spreading (54) suggests that CD25+ cells
observed in OLP may down-regulate immune
reaction. However, further epitope changes might
promote a wave of inflammatory T-cells. Epitope
spreading is implicated in chronic diseases like
multiple sclerosis, which exhibit relapse and
remission. Therefore, this pathogenicpattern might be
present in OLP.

Despite the large number of CD4+ cells present in
lesions, CD8+ cells are localized near the epithelial
area in OLP. This suggests the presence of MHC class |
restricted presentation within OLP lesions. However,
it may be that prior class Il presentation by
keratinocytes assists in initiating a cytotoxic T
lymphocyte reaction. Interestingly, CD40 ligation of
antigen-presenting cells is important in the
generation of cytotoxic T lymphocytes (66, 67).
Therefore, if keratinocytes are presenting antigen
through the MHC class Il pathway, ligation of CD40,
which is classically associated with antibody-mediated
reactions, may amplify inflammation in the area and
facilitate induction of specific cytotoxic T
lymphocytes.
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A group of CD8+ effector memory cells is preferen-
tially located in non-lymphoid tissue. These cells
rapidly expand after activation (68) and thus may not
require further T helper cells. Furthermore, CD8+
memory cells have a limited requirement for B7
costimulatory signals. However, because autoreactive
CD4+ and CD8+ T-cells often have a weaker affinity to
antigen, they may require B7 stimulation (40). Thus,
expression on oral epithelium may still be relevant.

The process of cross-tolerance (69) is thought to be
important in acquiring self-tolerance to apoptotic
cells. In fact, there is a subset of intestinal dendritic
cells that transports apoptotic epithelial cells to lymph
nodes (70), a process thought to provide exposure
and induction of tolerance to “self” antigen.
Furthermore, Langerhans cells are capable of
phagocytosis of vaginal apoptotic epithelial cells (71).
These findings are of particular interest, as it is
thought that apoptotic keratinocytes are present in
OLP (9). Transport of antigen from these cells to
lymph nodes may induce an immunogenic response
to these antigens instead of a tolerizing effect (72).

This process might produce T-cells autoreactive to
keratinocytes. Additionally, ligation of CD40 on
epithelial cells causes growth inhibition and increases
apoptosis of cells in ovarian carcinoma cell lines (5).
This finding is of interest because of increased
apoptosis of this cell type in OLP (in conjunction with
associated CD40 expression). This may induce
transport of apoptotic cells to lymph nodes for cross-
presentation, a process that was found to be age-
related (73).

Molecular mimicry and epitope spreading is thought
to occur in class | restricted antigens and in class Il
antigens, so it may have an effect on direct MHC class
| presentation, thereby exerting a cytotoxic effect in
OLP.

Accumulating evidence regarding the presence of
molecules on epithelial cells suggests that they may
sometimes be capable of antigen presentation.
Whether this antigen presentation produces a
tolerogenic or immunogenic response is unknown,
although the presence of MHC-1l and CD40, potential
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CD86 expression on oral epithelial cells, and CD28 in
T-cell infiltrate of OLP suggests that “activating”
antigen presentation might occur. Antigen
presentation may take the form of “sampling”
antigens on oral mucosa, such as bacterial antigens.
The implications for antigen presentation may be very
important in conditions such as OLP, as there appears
to be a breakdown in tolerance for “self” keratinocyte
antigens. This breakdown could be caused by a
number of mechanisms, including molecular mimicry
or epitope spreading. However, CD8+ cells appear to
be acting cytotoxically in OLP; therefore, the class |
pathway may be more important in the disease
process. The presence of inflammatory signals during
cross-presentation of apoptotic keratinocytes might
cause normal tolerogenic CD8+ cells to become
autoreactive for these cells. Interestingly, ligation of
CD40 on keratinocytes (which is expressed in OLP) is
thought to cause apoptosis of this cell type.
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