Precision psychiatry

Karl Friston

The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, UK

Address for correspondence

The Wellcome Trust Centre for Neuroimaging,

Institute of Neurology, UCL

Queen Square

London, UK WC1N 3BG.

Email: k.friston@ucl.ac.uk

Main text: 1,480 words

Number of tables: 1

Number of figures: 0

Disclosures: Dr. Friston reported no biomedical financial interests or potential conflicts of interest.
It is a pleasure to comment upon O’Callaghan et al’s work on hallucinations in Parkinson’s disease (1). Not only was this a compelling piece of neuroscientific psychiatry, it also serves as a vehicle to briefly review developments in computational psychiatry over the last decade (2). O’Callaghan et al characterized sensory processing during perceptual decision making in Parkinson’s disease patients with and without hallucinations. Using a normative (drift-diffusion) model (DDM) they quantified the rate at which participants accumulated sensory evidence. Their results indicate slower rates of evidence accumulation in patients with hallucinations; speaking to “inefficient and less flexible sensory evidence accumulation” as a unique feature of hallucinators. They then make an important move and relate the normative (descriptive) characterization of perceptual inference to hierarchical predictive coding formulations of perception that now predominate in the cognitive neurosciences (3). There are many reasons that this exemplary application of computational neuroscience to psychopathology could be applauded. I will focus on three.

First, it illustrates the potential of computational psychiatry – a movement that is gaining increasing traction as a way to formalize, quantify and phenotype neuropsychiatric syndromes. In particular, linking an established normative model (DDM) to a process theory – such as predictive coding – shows that psychophysics and computational phenotyping can be meaningfully interpreted in terms of both brain function and physiology. This provides a mechanistic entree into the pathophysiology that may underlie many psychiatric symptoms and signs. So why did the authors focus on evidence accumulation and predictive coding?

The second theme highlighted by O’Callaghan et al is, I think, fundamental. In the search for a functionalist framework – within which to understand phenomena such as hallucinations and delusions – one has to confront the question: “what sort of failures do these phenomena belie?” If the answer is “failures of decision making and perceptual inference”, then we know immediately the right sort of theoretical framework must explain things like perceptual inference, belief-updating and evidence accumulation. This then leads to the key notion of false inference as the single most important psychopathology that underlies most psychiatric conditions – and many neurological syndromes. This is why the Bayesian brain and predictive coding have proved such a useful point of reference when trying to understand psychopathology. So how can inference go awry?
The third theme – that I want to pick up on – is the central role of encoding uncertainty or precision in the brain. In what follows, I will try to explain the notion of precision and how it provides an explanation for psychopathology at a purely functional level while, at the same time, connecting to synaptic and molecular levels of explanation; ranging from synucleinopathies through to neurotransmitter theories of schizophrenia. The precision story in (computational) psychiatry emerged, over the past decade, hand-in-hand with the paradigm shift in cognitive neuroscience from sandwich models of brain function to predictive coding and active inference.

For me, this story starts 12 years ago when writing another commentary on Collerton et al's treatment of complex visual hallucinations (4). How could one account for hallucinations and hallucinosis in organic psychosyndromes (e.g., Lewy body disease), in terms of aberrant perceptual inference? The answer on offer at that time was an improper evaluation of the relative uncertainty or precision of sensory evidence, in relation to prior beliefs about the causes of sensations. This may sound a bit abstract but is basically saying that you will make some very odd inferences if you cannot estimate the standard error necessary for statistical hypothesis testing. A failure to properly encode the precision – that should be afforded sensory evidence – would therefore lead to a pernicious form of false inference; with ample opportunity for false positives (e.g., hallucinations and delusions) and false negatives (e.g., agnosia and neglect). For those people who have not come across precision before, it is probably best understood in the context of predictive coding:

Predictive coding is a process theory (of how the brain might implement hierarchical inference) that appeals to long-standing notions of brain function that can be traced back to Kant, through Helmholtz's notion of unconscious inference through to Gregory's ideas about perception as hypothesis testing (5).

1 Precision is a statistical quantity that is the complement of variance, dispersion or entropy. Because entropy is the mathematical measure of uncertainty, a high precision corresponds to low uncertainty.

2 The sandwich model assumes three stages of information processing: perception, cognition and action that follow each other in a sequential fashion. This (classical) model has now been superseded by a more constructivist and enactivist view of brain function that entails recurrent neuronal processing – and a circular causality among processing stages (and the world).
In brief, predictive coding rests upon the formation of prediction errors. These are the differences between top-down or descending predictions of sensory input and the sensations we actually sample. The resulting prediction errors and then passed to higher levels of the cortical hierarchy to update neuronally encoded expectations or representations of how those sensations were caused. This recurrent form of belief-updating or propagation thereby entails the reciprocal exchange of ascending prediction errors and descending predictions that ultimately lead to hierarchical inference to the best explanation for the sensed (lived) world (6).

On this view, prediction errors can be regarded as newsworthy information that has yet to be explained – information that is assimilated or accumulated via a process of Bayesian belief updating. Crucially, there are many sorts of prediction errors – in many modalities – and the brain has to decide which predictions to attend to. This is where precision comes in. In a Bayesian brain, prediction errors that convey precise, reliable, high-quality information are afforded greater precision or weight, such that they have a greater influence on perception. Psychologically, this is nothing more than attending to the right sort of newsworthy information and attenuating imprecise or ‘fake’ news. Physiologically, this precision engineered selection – of the right sort of prediction errors – is thought to be mediated by the synaptic gain mechanisms associated with attentional gain (7). These come in a variety of flavors; ranging from classical neuromodulatory synaptic mechanisms, through to excitation-inhibition balance and related mechanisms based upon synchronous gain (i.e., the dynamical selection of prediction errors through fast synchronized population activity that is orchestrated by inhibitory interneurons). It is this mechanistic bridge between a fundamental computational imperative to properly balance sensory evidence against (hierarchical) prior expectations and plausible neurobiological mechanisms that links psychopathology and pathophysiology. This is particularly pertinent in conditions like Parkinson's disease, where not only do we have an abnormality of classical neuromodulatory (i.e. dopamine) neurotransmission but also selective loss of the neuronal infrastructure that maintains cortical excitability and the gain control required for dynamic sensory attention and attenuation. One can see how such a ubiquitous computational mechanism (i.e., the evaluation and deployment of precision) could be the target of pathophysiology – from failures of neuromodulation to neurodegeneration. Furthermore, the domain specificity of these failures has exactly the same latitude as functional specialization in the brain per se. This follows because every system – from the visual to the visceral –
Commentary on: Visual Hallucinations Are Characterized by Impaired Sensory Evidence Accumulation: Insights From Hierarchical Drift Diffusion Modeling in Parkinson’s Disease by Claire O’Callaghan et al

will be equipped with its own precision control mechanisms.

The precision story has unfolded at an enormous pace. Shortly after its inception to explain hallucinations and delusions; e.g., (8), it fostered a research paradigm in autism that can be succinctly summarized as a failure to attenuate sensory precision (9). Exactly the same theme has now been applied to nearly every psychiatric syndrome and symptom (see Table 1). For example, it has been pursued in the context of schizophrenia, depression, hysteria, fatigue, stress, thought insertion etc. The common theme is a failure to balance sensory evidence against prior beliefs, due to aberrant precision control. This aberrant precision transcends the actual content of the beliefs (or evidence). In other words, it speaks to a second order failure to properly evaluate and respond to uncertainty in a capricious world. There are many intriguing lines of argument that one could pursue here; however, I will close with a strategic observation and direct interested readers to the (selected) papers in Table 1.

It is tempting to make much wordplay with ‘precision’ (10); for example, the precision engineering of neuronal circuits above. Another obvious wordplay would be in relation to precision psychiatry – in the sense of precision medicine (that rests upon individualized therapeutic regimes informed by high-dimensional biometric data). However, in the current setting, precision psychiatry could take a different meaning that calls on the computational and neurophysiological constructs above. I mention this because there may be an interesting connection between the two meanings. This rests upon a mathematical theorem called the complete class theorem. This says that, for any (Bayesian) decision or behavior and a given loss function, there exists prior beliefs that render the behavior Bayes optimal. At first glance, this may appear to subvert Bayesian formulations of false inference in psychiatry – because it means one can tell a ‘just so’ story about any abnormal behavior. However, a deeper analysis suggests that Bayesian formulations of psychopathology must, by the complete class theorem, exist. Furthermore, any behavior can be uniquely characterized in terms of prior beliefs. This means that every patient is uniquely characterized by her prior beliefs that can be quantified using the sorts of procedures described in O’Callaghan et al. If we equip this quantification with a plausible process theory, we have a formal framework in place to phenotype and understand false inference in psychiatry, even if it has yet to be specified precisely (sic).
Commentary on: Visual Hallucinations Are Characterized by Impaired Sensory Evidence Accumulation: Insights From Hierarchical Drift Diffusion Modeling in Parkinson’s Disease by Claire O’Callaghan et al

Acknowledgments: KJF is a Wellcome Principal Research Fellow (Ref: 088130/Z/09/Z).

Table 1: a selection of recent papers dealing with predictive coding, hallucinations and psychiatry (selected from a PubMed search for predictive coding AND psychiatric syndromes).

<table>
<thead>
<tr>
<th>Syndrome or symptom</th>
<th>selected papers</th>
</tr>
</thead>
</table>
Commentary on: Visual Hallucinations Are Characterized by Impaired Sensory Evidence Accumulation: Insights From Hierarchical Drift Diffusion Modeling in Parkinson’s Disease by Claire O’Callaghan et al.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>22: Ford JM, Palzes VA, Roach BJ, Mathalon DH. Did I do that? Abnormal predictive processes in schizophrenia when button pressing to deliver a tone. Schizophr Bull. 2014 Jul;34(4):8072-82.</td>
<td></td>
</tr>
<tr>
<td>26: Strelnikov K. Can mismatch negativity be linked to synaptic processes? A glutamatergic approach to deviance detection. Brain Cogn. 2007 Dec;65(3):244-51.</td>
<td></td>
</tr>
</tbody>
</table>

Precision, predictive coding and Bayesian inference in autism and autistic spectrum disorder

Precision, predictive coding and Bayesian inference in depression, stress and schizophrenia

2: Seth AK, Friston KJ. **Active interoceptive inference and the emotional brain.** Philos
Commentary on: Visual Hallucinations Are Characterized by Impaired Sensory Evidence Accumulation: Insights From Hierarchical Drift Diffusion Modeling in Parkinson’s Disease by Claire O’Callaghan et al

anxiety

Precision, predictive coding and Bayesian inference in hallucinations and hallucinosis

References

Drift Diffusion Modeling in Parkinson’s Disease. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging*. XX:XX.

