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Abstract

Mobility and migration patterns, the concentration of crime and opinion dy-

namics observed on the fear of crime are all examples of social systems in

which complex patterns emerge that subsequently feed back into the overall

system. This thesis describes new methods established to analyse such

patterns which appear in social systems.

The main application area is in the field of crime science, but the meth-

ods developed here have wider applications within other social systems,

some of which are also explored in the thesis, such as migration or road ac-

cidents. Based on new assessments of data, by utilising novel techniques

of analysis and visualisation, models are also developed to determine how

the perception of security is affected by particular crimes.

The new metrics and models developed here consider different types of

situation. Firstly, for events which have low frequency and yet a high degree

of concentration; secondly, the distribution of such events which allows them

to be simulated under different conditions; and then finally, understanding

the impact of different degrees of concentration.

An individual’s fear of crime is the result of a mixture of factors which

go beyond merely the actual crime experienced by that person, such as fear

shared by others, memory of past events and of previous perceptions, crime

reported in the media and more. This thesis quantifies fear of crime in a way

that may prove useful to identify factors which increase fear of crime besides

crime itself, explain why fear of crime emerges in a population and suggests

policies for controlling fear.



Impact Statement

The research presented in this thesis develops new mathematical tech-

niques to consider various aspects of quantitative social science. The appli-

cations are in human migration, the concentration of road accidents, the dis-

tribution of crime and the fear of crime. In recent years, the use of mathemat-

ical modelling for decision making has become almost the norm, whether

this is in the use of general weather predictions, the path of hurricanes or

the spread of infectious diseases.

In the area of crime, the use of models for predicting crime hot spots is

now widely used by policing bodies. This body of work will contribute to this

domain, adding new dimensions that will allow policymakers to make better

decisions. In the case of crime and road accidents, the thesis considers a

new methodology for dealing with sparse data. It gives a simple distribution,

which is a close approximation to reality, from which rare events can be

simulated. This methodology allows us to analyse past events taking into

account their potential random aspects and so it has applications for policy

design and the methodology could be used to determine upper limits of

police intervention.

Fear of crime is a difficult and sensitive topic to analyse but quanti-

fying fear reveals significant aspects both for academic and policy design

purposes. This thesis analyses fear of crime from a regional perspective

and shows that regions with less crime than others might yet have a higher

degree of fear. Much police and political attention is given over to manag-

ing this fear. The thesis gives a mathematical framework to analyse fear of

crime and shows the emergence of a generalised fear of crime even under



Impact Statement 5

low crime (or even no crime) circumstances. The thesis also shows that

fear might drastically increase after a specific event which may then take

some time to reduce back to ‘normal’ levels. All of this has the potential

to provide impact in the policy-making domain. However, having a better

understanding of fear of crime has applications beyond crime studies as it

helps to explain why extreme opinions emerge as a result of social inter-

actions. Hence this work will have an impact more generally in the social

science arena.

Collecting tweets and analysing their contents concerning crime and

its fear, indicates differences between a quantified phenomenon, such as

crime, its fear and how comments are shared by millions of users of social

media. This thesis goes from actual crime to the fear of crime and then

expressions of that fear on social media and it gives quantitative tools to

analyse the apparent relationships between them. Hence the work may

have wider impacts on our society.
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Chapter 1
Introduction

Mathematical modelling is the procedure whereby we consider the attributes

and conditions of a system and then produce an abstraction and generalisa-

tion of them so that we can use the new model either to understand the in-

teractions of the variables better or predict future outcomes. Whether we are

considering a physical setting, in which variables might be observed or mea-

sured, or we are considering a social framework, in which variables might

be much more dif�cult to quantify, typically, the mathematical modelling pro-

cess concentrates on a speci�c phenomenon, reduces it to its more basic

causes and mechanisms, formulates a hypothesis (which means transform-

ing the system into equations), and then tests them against reality (which

requires us to collect data or observations of the phenomenon).

The key element to start this modelling process is to decide what is rel-

evant, so what variables need to be measured and what can be neglected

as irrelevant or what cannot be simply measured. A decision is made; a

higher precision might be achieved by considering more variables or a more

complex system but at the cost of having to deal with a larger number of pa-

rameters, a system of overly complicated equations or an extensive amount

of measurements and so, a simpli�cation of the reality might be much more

desirable in the context of mathematical modelling especially as this helps

our understanding. Simpli�cation is an important issue. For example, when
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drinking a cup of water, to know the temperature of the liquid, we would

rarely be interested in describing the temperature of each molecule but

probably instead, be content that the mean temperature, expressed as a

single-valued number, as a good enough approximation. In this case, more

sophisticated models, which consider convection, evaporation, the distribu-

tion of different temperatures contained in the cup or hysteresis, could pro-

vide a more detailed description of the temperature of the water contained

in the cup, but then most likely the complexity of the model would far exceed

the complexity of its use.

The dif�culties faced when modelling any phenomenon in a physical

framework are exceeded when any social setting is considered. Models

which deal with human interaction tend to simplify the microscopic, individ-

ual level in the hope to resemble the macroscopic, social behaviour. Thus,

a voter's opinion might be modelled as a binary variable, a crime might be

regarded as a point located on a map or a friendship could be considered

as a link in a network; however, these simpli�cations made within a social

context have helped us to understand the emergent patterns exhibited by

voters (Düring et al., 2009), the levels of concentration of crime and the

formation of criminal hotspots (Short et al., 2010) and the small-world phe-

nomena observed in many social networks (Watts and Strogatz, 1998). In-

dividual aspects of large and complicated systems are not necessarily the

most relevant (Galam et al., 1982). Usually, details at a microscopic level

are overlooked in favour of the macro features exhibited by the system as

a whole. The mathematical approach is usually to study the emergent col-

lective patterns when thousands or millions of people are considered with

individual behaviours rarely being studied.

1.1 Aims of the thesis

Mathematical modelling allows our current knowledge of a speci�c setting

to be challenged. In the case of social systems, mathematical modelling
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facilitates our understanding of why collective behaviours emerge and al-

lows us to construct 'what-if' scenarios and compare two different settings,

exporting the techniques and results from one setting, or discipline even, to

the other.

Mathematical modelling of social systems is the core objective of this

thesis, and therefore, it has an interdisciplinary approach although it is

based on mathematical modelling. Three speci�c aims form the core of

this thesis, which then open broader discussions on the use of models for

quantitative social sciences. Firstly, to analyse in the context of cities, the

migration patterns which emerge after observing a speci�c population (such

as a country or a continent) for a period of time. Secondly, to analyse, also

in the context of cities, what are the main reasons which cause fear of crime

in its population. Finally, to use the same modelling techniques applied in

the case of migration and fear of crime, to other social settings, such as road

accidents.

1.1.1 Migration patterns

Migration is one of the main reason why cities within the same region grow

at different rates and, according to the World Bank, migration is identi�ed as

the main driver of city changes (Lee et al., 2015). For instance, during the

past 30 years, Mexico City achieved the lowest fertility rate of the country

but, nevertheless, its population has maintained the same national growth

rate. The fact that in Mexico City people have fewer children than anywhere

else in the country but it is still growing at the same speed (meaning that

during the past 30 years Mexico City has doubled its population) can only

be explained by migration.

This observation of migration, enhancing the growth in the population

of Mexico City, is perhaps also the reason as to why Paris, London or Lagos

have become the primary cities within their countries. Migration is one of

the main drivers which has shaped cities and countries and has de�ned

many national borders. Therefore, understanding what causes a person to
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migrate, what patterns emerge when thousands of migrants are considered,

why one city is more attractive than others to migrate to or why people tend

to migrate more from one city rather than others, is a crucial aspect which

has impacts on urban studies, sustainable growth and predicting the future

trends of our cities.

Modelling and understanding migration in the US, considering cities as

the observation units and migration between cities, between the countryside

and the cities and form other countries to the cities is covered in Chapter 2.

1.1.2 Crime and fear of crime

Quantifying the fear of crime in a city, and understanding the patterns of

fear is one of the aims of this thesis. Fear of crime, and not necessarily

crime itself, is becoming more and more a serious issue around the World,

particularly in big cities. It is the primary cause why people sometimes take

expensive safety precautions, why some people might suffer from anxiety,

social segregation and the reason why millions of people have moved from

their cities looking for a safer place to live.

Understanding and measuring the dynamics of the fear of crime �rstly

requires a model of crime itself, or at least a way to represent it. The dis-

tribution of crime in a population allows different patterns in which crime

is suffered to be simulated and highlights the relevance of using adequate

tools to deal with events such as crime. One of the complicating issues

about the analysis of crime is that it is highly concentrated and has a low

frequency. Thus, the construction of the distribution of crime in a population

and a metric for the concentration of rare events is the �rst step towards the

analysis of the fear of crime and therefore, Chapter 3 is devoted to the anal-

ysis of rare events and Chapter 4 is dedicated to the study of rare events in

the context of the distribution of crime in a population.

Determining the actual relevance that suffering a speci�c crime has on

a population, the impact of crime being more or less concentrated and the

dynamics under which fear of crime is shared across a population, is then
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covered in Chapter 5.

Finally, in terms of fear of crime, different expressions collected at a

city level from social media and from victimisation surveys allows the math-

ematical models and hypothesis of fear of crime to be compared with the

observed reality. Chapter 6 is then the modelling of fear of crime at a city

level put into practice.

1.1.3 Other social settings

Constructing different metrics for the migration patterns between cities or

either the distribution of crime suffered by its population or the dynamics of

its fear, requires the detection of the relevant attributes of the event so that

characteristics which are either irrelevant, not quanti�able, not well de�ned

or not a direct consequence of the event can be neglected. For instance,

in the case of crime, the number of crimes suffered by the victims is often

considered, although identifying the victim might not be clear (who is the

victim of money laundering or corruption cases?) and counting the number

of events might not be so straightforward (should we count every interaction

between a rapist or a bully and its victim as a separate crime?).

One of the most powerful aspects of mathematical modelling is pre-

cisely that two distinct events, as different as they may be, are often mapped,

using a similar system of metrics and equations, and therefore, can be en-

visaged using the similar models. For instance, opinion dynamics has been

modelled using a similar system to that used to mimic the behaviour of an

inhomogeneous gas; a model for human migration has been considered us-

ing concepts based on Newton's gravitational laws; the retaliatory behaviour

of some gang �ghts has been well described using techniques from seismol-

ogy, among many other examples.

The �nal aim of this thesis is to transfer concepts developed here for

migration, crime and its fear, to other social scenarios. Particularly, the anal-

ysis of the concentration of crime is applied to understanding the concentra-

tion of road accidents. Chapter 7 is devoted to two special cases of social
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scenarios, where the techniques described in previous chapters are used

for different systems.

1.2 Models in social systems

Mathematical models of social systems have motivated research and ad-

vancements in mathematics and probability theory. For instance, Adolphe

Quetelet observed conviction rates in France in 1835 and used tools from

astronomy to measure the “true level of criminality” (Maltz, 1996). Following

this, Simen-Denis Poisson was looking at the number of wrongful convic-

tions during a speci�c time-interval and used the same data as Quetelet to

develop what we now know as the Poisson distribution. Social systems have

often helped in the development and advancement of mathematics and sci-

ence by either providing the speci�c challenges or simply the data to unveil

particular patterns.

There is, however, a serious challenge in the case of the mathematical

models of social systems. Measuring the heat transfer between regions of a

wire, the viscosity of a �ow or the position of a star, for instance, is perhaps

more natural and has its measuring instruments and units as opposed to

measuring human constructs such as love, friendship, power or fear. Re-

peating a physical experiment allows reproducibility, gives certainty to the

results obtained and transforms them into laws, meaning that simple, abso-

lute and universal descriptions are attained. The well known Hooke's law,

for instance, says that the force required to compress or extend a spring

scales linearly with the distance. It can be expressed in a single equation,

tested under different conditions and applied in an extensive list of physical

settings. However, modelling social systems is fundamentally different.

For instance, the �rst law of Geography (developed by Waldo Rudolph

Tobler in 1960s) states that “everything is related to everything else, but

near things are more related than distant things” (Tobler, 1970). Although it

is considered as a law, how related things are, how fast `relatedness' decays
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as distance increases, how to compare spatial and temporal distances, or

what does it even mean to be related, how is it measured and what are its

units are signi�cant questions which show that this law is far from being a

simple, absolute and universal description.

A similar law of social systems is the recent description of the law of

crime concentration at a place (published by David Weisburd in his works

between 2011 and 2015) which states that “for a de�ned measure of crime

at a speci�c microgeographic unit, the concentration of crime will fall within

a narrow bandwidth of percentages for a de�ned cumulative proportion of

crime” (Weisburd, 2015). Although highly relevant for describing the spatial

concentration of crime as an expected phenomenon when observing crime

at places, it also highlights the complexity of any social description. The law

of crime concentration assumes a de�ned measure of crime, which could be

the number of crimes on each microgeographic unit, but also, the number of

victims, the value of the stolen property, the number of casualties, the impact

on the victims, the fear caused by the crimes, the cost of security and oth-

ers. In addition, a de�ned cumulative proportion of crime could be a different

proportion of crimes (as usually is the case), so “N% of places have M% of

crimes” is reported in different studies for a wide range of values of N and

M and so comparing the concentration of crime between different places is,

in many cases, impossible (Lee et al., 2017). The fact that the concentra-

tion can only be described in terms of a “narrow bandwidth” but without any

description of how narrow the bandwidth is, shows that uncertainty is ex-

pected, that without many observations of the same concentration, perhaps

for different time periods, outliers are almost impossible to detect. Although

the concentration of crime is discussed later (Chapters 3 and 4) the law of

crime concentration shows the complexity of any mathematical description

of a social system.

Finally, the law of migration (Ravenstein, 1885), �rst published by Ernst

Georg Ravenstein in 1885, was developed by looking at migration at a
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county level from and to the UK, Ireland and Scotland and states, among

many vital issues, that the majority of migrants move a short distance; mi-

grants who move longer distances tend to choose big-city destinations; ur-

ban residents are often less migratory than inhabitants of rural areas; and

large towns grow by migration rather than natural population growth. The

law of migration offers a valuable insight into the patterns formed by mi-

grants, although again, far from being a universal description of human

migration, with reproducible results which are tested under different con-

ditions, it has serious issues to consider: how long or short are the journeys

of the migrants, how big is the city chosen by long-distance migrants or how

less migratory are urban inhabitants as opposed to rural inhabitants. Fur-

thermore, the law of migration was developed looking only at the migration

process from a very narrow time-interval and only in a very restricted set

of countries, and so, how applicable are the results in other regions of the

world, how has the law changed over the past decades, how are migration

patterns affected by con�icts or disasters and how can migration �uctua-

tions be explained, are relevant challenges not fully answered by the law of

migration.

Every human feeling, every interaction with others and every social con-

struct is so unique that the idea of measuring and modelling human or so-

cial behaviour with the objective to obtain a generalisation or an abstraction

which applies beyond the observed individuals is the �rst challenge of social

modelling.

Social models are inevitably incomplete and inaccurate, because of sci-

enti�c limitations and a lack of data (Hunt et al., 2012), because it is often

impossible to conduct experiments on the large-scale (Johnson, 2010a) and

because conventional scienti�c approaches cannot be applied to many of

the problems faced by our society (Johnson, 2000), but models of human

behaviour have gained interest as the need for them grows, their results get

more and more applied in policy and decision-making and their implications
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are spread throughout more widely.

1.2.1 Mathematical modelling

Modelling of social systems brings forth three challenges. The �rst has to

do with the actual information and data of events in a social setting. Any

theory within the social framework, whether it is in the context of crime and

the way it is suffered, the fear of crime and the way it is shared by the indi-

viduals, school bullying and more, has the risk of being nothing more than a

hypothesis if it is not compared with reality using observed data, contrasted

against other theories or even simulated with agents (Johnson and Groff,

2014). Therefore, an important, and highly sensitive part of models of so-

cial systems is the data availability, as it often limits their validation (Pepys,

2016). Modelling goes hand in hand with the availability and use of the data

(San Miguel et al., 2012). To understand the fear of crime, for instance, it

would be ideal to trace the perception of security that a person has before

and after suffering a crime, and before and after reading about a crime in the

newspaper, and to compare the two effects, but most of the data available in

this context comes from observational studies, with perhaps yearly updates

and other issues regarding the samples, the types of questions and the way

the answers are recorded and more. Therefore, using actual data in the

social framework becomes sometimes the largest challenge of the study.

Secondly, models of social systems are often challenging from a tech-

nical perspective. For instance, a dynamic model used for the spatial distri-

bution of crime uses nonlinear partial differential equations to analyse crime

pattern formation (Short et al., 2010); the study of the evolution of the dis-

tribution of opinions has been modelled using the Fokker–Planck equation

(Düring et al., 2009; Düring and Wolfram, 2015); and a stochastic model

has been used to describe human migration (Simini et al., 2012; McGinnis,

1968; Myers et al., 1967) are just a few of the examples in which advanced

mathematics is needed. Often, social models have a component which re-

quires mathematical techniques to obtain results, but also, other resources
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such as statistics, network science, computation, big data, machine learning

and spatial statistics (San Miguel et al., 2012) and beyond the quantitative

aspects of the models, social models require an interdisciplinary approach.

For some social models, simulation is the natural way of investigating their

future states (Johnson, 2000).

Constructing, for example, a metric of happiness expressed in social

media required storing and processing 46 billion words on 4.6 billion ex-

pressions (Dodds et al., 2011); models of human mobility, require process-

ing large amounts of data, usually with a reference to a point in a map, for

which the computational power required to deal with such large amounts of

data is a new �eld of study in its own right (Pappalardo et al., 2015b).

From the computational perspective, a few years ago it was inconceiv-

able to model more than just a few aspects of the individuals, but today we

are capable of simulating large human systems (Bonabeau, 2002). Com-

puters have changed the paradigm of modelling human behaviour allowing

us now to deal with more complex interactions between its members and its

environment (Pan et al., 2007); to understand the emergence of crowd be-

haviour in different situations; to challenge and, in some cases, to measure,

some of the theories which were frequently used for crime pattern formation

(Johnson and Groff, 2014), for instance, and in the context of other human

behaviour and the design of policies (Johnson, 2000).

Finally, models of social systems are challenging because their out-

comes might not be socially acceptable, desirable or popular. For instance,

a model for the 2011 London riots showed the relevance of delivering police

to scenes of disorder before control is lost (Davies et al., 2013) and rioters

often select locations to engage in disorder in which previous demonstra-

tions took place (Baudains et al., 2013); increasing the concentration of

crime, letting fewer victims suffer more crime, improves the perception of

security of a place (Prieto Curiel and Bishop, 2017); individual choice can

lead to racial, gender or income segregation (Schelling, 1971); false infor-
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mation might gain acceptance and once adopted by an individual, are highly

resistant to correction and lead to the proliferation of fake news (Del Vicario

et al., 2016); an individual from a larger city tends to have a higher income

but at the same time is more likely to suffer serious crime or get AIDS (Bet-

tencourt et al., 2007). Often, the outcomes of a model of a social system

seem to challenge principles such as equity, liberty, dignity or freedom of

speech, freedom of protest, and others. Modelling our society and its prob-

lems might give light to unpopular solutions.

In models of social behaviour, there might be dif�culties in measuring

its variables, the models involve complicated interactions requiring detailed

techniques to deal them and they might provide challenging insights into

the society. However, even if the process of modelling social phenomena

has many critical components, multidisciplinary approaches and the use of

newly available large amounts of data to work alongside increased com-

putational processing power to deal with them is drastically changing the

traditional boundaries of science.

1.2.2 Modelling human mobility and migration

Our understanding of human mobility has drastically changed over the

past few decades. Data from social media (Noulas et al., 2012), mobile

phone users (Lambiotte et al., 2008), where banknotes move during subse-

quent transactions (Brockmann et al., 2006), census (Levy, 2010), landlines

(Schläpfer et al., 2014) and others (Pappalardo et al., 2015b; Rinzivillo et al.,

2014; Pappalardo et al., 2016) have recently provided us with information

about where humans move, the paths they follow and the patterns which

emerge when looking at millions of people moving. The use of different

sources of information, which work as a proxy to understand human mobility,

has been successfully applied to understand social relationships in Belgium

(Lambiotte et al., 2008), county-to-county migration in Kenya (Wesolowski

et al., 2013) and others (Gonzalez et al., 2008; Schläpfer et al., 2014).

By looking at the trajectory of mobile phone users, for instance, a bursty
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pattern was detected (Gonzalez et al., 2008) showing that usually two types

of movements are observed (Rhee et al., 2011): a set of more regular, daily

movements which are small, which represent the day-to-day life, and a set

of less frequent and usually long-distance movements (Levy, 2010) which

represent travelling, movers and other special long-distance journeys.

It is important to be able to model and hence predict both types of

movements. Understanding the relatively short daily movements provides

insight into why traf�c jams form, for instance, allowing us to plan a more

ef�cient public transport system, the impact of massive events (Giulianotti

et al., 2015), helps to explain why some parts of a city have prosperous

shopping centres whilst others are lagging behind in the consumers' atten-

tion and many more studies of urban dynamics. For example, understanding

human movement within metropolitan cities and by using data from the so-

cial network Foursquare, allowed a law for human mobility to be formulated

(Noulas et al., 2012), which says that variations in the human movements

are predominantly due to different distributions of places across different

urban environments.

Understanding the movement of humans over larger distances, on the

other hand, allows us to detect the dynamics of speci�c types of migration:

international migration (Lewer and Van den Berg, 2008; Karemera et al.,

2000), migration from rural to urban areas (Todaro, 1969; Harris and To-

daro, 1970), individual human mobility (Pappalardo et al., 2015b; Rinzivillo

et al., 2014; Pappalardo et al., 2016), disaster-, climate change- or con�ict-

induced migration (Paul, 2005; Myers et al., 2008; Reuveny, 2007; Laczko

et al., 2009; Naude, 2008; Ibáñez and Vélez, 2008). In the US, for example,

data (of Commerce, 2015) shows that a person from the US moves on av-

erage 11.7 times during their lifetime, and typically moves a large distance

(Levy, 2010) and also, between 2010 and 2014, for every person moving

from the countryside to any city, there was roughly one person moving from

a city to the countryside and �ve people moving between different cities. The
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movement of people between different cities is the main dynamic observed

in the metropolitan areas in the US.

Except perhaps for speci�c communities (such as an online gaming

group or an academic research group) long-distance social links are ex-

plained partly by migration (Lambiotte et al., 2008) and it has been shown,

by using nearly one billion phone calls in Belgium and in a second experi-

ment, using data from social media, that the probability of having a social

contact at a distance k decreases with k2 (Lambiotte et al., 2008; Levy and

Goldenberg, 2014).

Migration is a key component of the population dynamics and it is the

main driver of city changes and the observed variation in city growth around

the World (Lee et al., 2015). Micro decisions collectively determine the

macro behaviour (Mansury and Shin, 2015) and therefore, different models

of human migration, which consider various aspects of the phenomenon,

are also a primary tool for the design of policies (Gnisci, 2008; WFP, 2017;

Naude, 2008). The analysis of migration has changed over the past cen-

tury, from being mostly focused in migration from rural to urban regions, to

the analysis of movers from country to country, to a city-to-city and to con-

�ict and disaster-induced migration, understanding why individuals decide

whether or not to move, their path and their destination has been, and still

is, a crucial question that is asked.

It is important to understand human mobility patterns at every spatial

dimension. On a microscopic level, patterns of human mobility lead to road

traf�c, the concentration of crime in certain areas and is one of the causes

of social segregation (Schelling, 1971), whilst at a macroscopic level, hu-

man mobility is the main reason why diseases are transmitted from far away

regions, it helps to explain why some cities grow faster than others and it

gives valuable information in terms of migration and international migration.
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1.2.3 Modelling crime

Crime itself is a complex phenomenon since we observe unexpected social

behaviours which are dif�cult to understand, control and, sometimes, even

to quantify (D'Orsogna and Perc, 2015; Helbing et al., 2015). For instance, it

is natural to assume that by enforcing longer prison sentences, harsher pun-

ishments or by increasing �nes, less crime would be observed, but this is

not usually true (Becker, 1968). It is perhaps expected that allocating more

police reduces crime via deterrence, but this also might not be true (Kleck

and Barnes, 2014), and in the case of fear of crime, it is frequently assumed

that a city with fewer crimes experiences less fear, but again, results are

often contradictory. Mathematical models of crime, thus, become powerful

tools which help explain why this counter-intuitive behaviour emerges. For

instance, a mathematical model for the spatial concentration of crime was

used to describe the emergence of criminal hotspot patterns (Short et al.,

2010); another model showed that when there are signi�cantly high levels

of crime, the probability of being arrested goes down and so criminals cre-

ate a safer environment for themselves to commit more crimes (Glaeser

et al., 1995); while another model showed the importance of delivering po-

lice to scenes of riots before control is lost (Davies et al., 2013). A use-

ful review which shows some of the weaknesses frequently encountered

with traditional economic and statistical models can be found in the work of

Mirta Gordon (Gordon, 2010) and a valuable review of some of the powerful

mathematical models in crime science can be found in the work by Maria

D'Orsogna and Matja �z Perc (D'Orsogna and Perc, 2015).

In the case of crime, for example, assuming that every criminal has the

same motivation to commit a crime might lead to an oversimpli�cation of re-

ality, leading to perhaps useless results which might even cause a potential

hazard if they were to be extended to reality and used in a political context.

But then, as in the example of the cup of water, how complex should a so-

cial model be? How many variables should be introduced and how many
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parameters considered?

Assuming that a person experiencing social deprivation has a greater

propensity to commit a crime, for instance, might be a reasonable assump-

tion when considering the number of robberies in a certain region, but might

be completely unrelated if we are considering other types of crime, such as

rapes, gun crimes, gang �ghts or street violence. Thus, details of the indi-

viduals considered and their interactions, even at a microscopic level, might

have an impact on the outcomes of the model.

From a policy design perspective, the set of measurements and models

which accurately re�ect the crime conditions within a region should be con-

sidered before any decision is made: improvements in what is not measured

can be conjectured but not easily be veri�ed. However, are the traditional

measurements of crime precise enough and do they re�ect the phenomena

that we wish to quantify accurately? It has been identi�ed, for example, that

a small portion of the population usually suffers a disproportionate amount

of crime (Grove et al., 2012), however, how much of the total crime is com-

mitted against repeated victims? Could this observed pattern be the result

of criminals targeting random people and therefore simply bad luck for the

victims? If a policy prevents a victim from suffering any subsequent crimes,

is the expected result a genuine reduction of the crime in that region or is the

policy creating crime displacement (Johnson et al., 2014), which creates, as

a result, possibly even more victims?

A common practice is to take into account the average number of crimes

suffered by the victims, which in general, is greater than one, meaning that

a person who has suffered a crime is potentially victimised more than once.

It is considered to be a proxy for the level of concentration of crime and

a number that re�ects whether crime is suffered by more or fewer people.

Clearly, summarising an issue as complex and multidimensional as crime

and its degree of concentration into a single number is desirable since it is

simple, but there might be some issues with its mathematical construction.
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There are multiple (and perhaps extremely different) scenarios that provide

the same numeric result, and so using the average number of crimes blindly

used as a metric might not precisely quantify the concentration of crime and

it might not re�ect the crime conditions from a region and therefore it should

be used with care.

1.2.4 Modelling opinions

Going beyond crime itself, a relevant issue to consider is the fear that it

causes. Statistically speaking crime is a rare event: even in highly victimised

areas, the chances of suffering a crime are relatively low; however, it is not

uncommon to be afraid of becoming the victim of a crime. The perception

of being insecure is usually much more frequent than crime itself (Grogger

and Weatherford, 1995), it has been associated with negative effects on

quality of life (Jackson and Gray, 2010) and health (Ruijsbroek et al., 2015)

and it has a strong social and political impact and causes prejudice against

certain population groups. Hence the relevance of asking what is the impact

of crime on the perception of security? Is fear of crime the result of other

factors, such as the age of the person (Kershaw and Tseloni, 2005), their

�nancial position (Tseloni, 2007), media coverage of certain types of crime

(Chadee and Ditton, 2005), falsely conceived ideas about crime (Gilchrist

et al., 1998) and fear to the unknown? Is the fear of crime even related to

crime?

Having a fear of crime might not necessarily be wrong. A certain level

of the fear of crime might even cause healthy precautions in the population

(Jackson and Gray, 2010), and so understanding its causes, its dynamics

and the way it is shared by individuals is relevant from the perspective of

crime analysis and from a policy design perspective.

The perception of security or insecurity that an individual has of a region

can be considered as an opinion and, as such, it might be quanti�ed and

modelled in the context of opinion dynamics, where in this case, extreme

opinions represent whether a place is considered secure or insecure. Opin-
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ion formation has been studied from many angles and different techniques,

from agent-based models, to mean �eld theory and to kinetic models of

opinion formation (Düring et al., 2009), where the individual opinion is usu-

ally modelled as a single-valued number contained in some closed interval

which represents the extreme opinions, for example, the level of production

of an employee in a plant (Galam et al., 1982) or left-right leaning voters

(Düring and Wolfram, 2015) and individuals are considered to update their

own beliefs due to two main reasons: interaction with others and a process

of self-thinking. In the context of perception of security, other factors might

have an impact on a microscopic level, such as crime itself and its degree

of concentration, and therefore play a relevant part of the global behaviour.

The emergence of crowd behaviour, in the context of the perception of se-

curity, might be highly sensitive to speci�c parameters of the model, such as

the crime rates, any past experiences with crime, the topology of the social

network considered and many others.

1.2.5 Modelling other social systems

Advances in crime science have moved at a fast pace recently. Some of

the techniques developed, including key �ndings, might be applicable to the

study of other social phenomena, such as the study of migration, school bul-

lying or road accidents. For example, the fact that crime is usually suffered

by repeat victims encourages a policy designed for people who already suf-

fered a crime, since that is a good indication of a high risk of suffering future

crimes. It is possible then to export that knowledge to other branches of so-

cial studies, such as the study of road accidents and accidents in general,

where the occurrence of a road accident might work as an indicator of a

high risk of future accidents. Insurers certainly think so as premiums go up

once a claim has been made.



Chapter 2
Human migration

With more than half of the world's population living in an urban environment,

it is crucial to understand the complex relationships, loops and feedbacks

which emerge between a person and the city in which they live. Less than

10% of the world live in a metropolitan area with more than 10 million inhab-

itants, whilst most of the population live in secondary towns and, according

to the World Bank, there are more than one billion people living in irregu-

lar settlements and slums around the world. Thus, modern urban dynam-

ics face the disproportionate growth of large metropolises, but at the same

time, the emergence and expansion of irregular settlements, the growth of

the stagnant secondary towns and more complex urban dynamics.

This chapter introduces a mathematical modelling of human mobility

and migration patterns, analysed from the context of urban dynamics. It is

based on published research (Prieto Curiel et al., 2018b).

2.1 Modelling migration patterns

Humans have been migrating for millennia. From the �rst crossing of the

Bering Strait to the Spanish conquest, from British and French colonial ex-

pansion to the in�ux of students to London today or the �ow of skilled work-

ers to Silicon Valley, migration has always been a central feature of human

life.
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Human migration is a sensitive topic which is easily politicised. It is

often thought about in the context of international or illegal migration, most

frequently from developing countries to developed ones and particularly, as

something that needs to be stopped. The debate around migration would

surely bene�t from more data and mathematical modelling, and from fewer

sensationalist media reports that often presents a distorted reality.

According to the International Organization for Migration, a migrant is

considered as an individual who is moving or has moved from one location

to another (so not considering movements within the same urban area),

regardless of their legal status, the causes and without positive or negative

connotation.

Modelling any social behaviour is complicated for many reasons. Firstly,

it is impossible to observe all of the people involved or consider all of the rea-

sons why they behave in the way that they do, which means that it is nearly

possible to recognise only emerging patterns that arise from collective be-

haviour. Secondly, there will always be outliers. For example, evidence

shows that a person who smokes 20 cigarettes a day is 26 times more

likely to develop lung cancer than a person who does not smoke, but clearly,

there will always be heavy smokers who remain cancer-free. Observing

these `lucky' smokers does not mean that evidence against smoking should

be dismissed, but when social patterns are analysed, the general case is

considered, that will not always apply to each and every single person.

2.1.1 Mathematical models of human migration

Today, human migration is one of the most debated concerns of the gen-

eral public, governments and international agencies, due to the importance

of integration policies, socioeconomic development and well-being. On the

one hand, migrants contribute to the prosperity of their destination, to which

they provide new skills, norms and community activities, as well as easing

the pressures of an ageing population (World Bank; International Monetary

Fund, 2015) and can enhance conditions in their place of origin by either re-
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ducing unemployment, improving conditions by sending remittances and in-

creases the resilience in the case of disasters (Nathan, 2014; Benach et al.,

2011). On the other hand, human migration creates the political challenge of

designing integration policies to allow newcomers to settle in unfamiliar envi-

ronments, as well as prompting the need for improvement of social support

systems (Taylor et al., 2016; Dustmann et al., 2008). Modelling, predicting

and therefore understanding human migration is thus of fundamental impor-

tance for the formulation, planning and implementation of balanced policy

programmes.

It is therefore not surprising that the study of human migration has at-

tracted the interest of scientists from many disciplines. Some studies in-

vestigate the dynamics of speci�c types of migration, such as international

migration (Lewer and Van den Berg, 2008; Karemera et al., 2000), migration

from rural to urban areas (Todaro, 1969; Harris and Todaro, 1970), mobility

in urban areas (Pappalardo et al., 2015b; Rinzivillo et al., 2014; Pappalardo

et al., 2016), or disaster-, climate change- and con�ict-induced migration

(Paul, 2005; Myers et al., 2008; Reuveny, 2007; Laczko et al., 2009; Naude,

2008; Ibáñez and Vélez, 2008). Other studies focus on different models of

migration, such as models based on a Markov process (Henry et al., 1971;

Kelley and Weiss, 1969; Constant and Zimmermann, 2012) or the cumula-

tive inertia model, according to which an individual is less likely to migrate if

they spend more time in the same place (McGinnis, 1968) which was later

validated with actual data (Myers et al., 1967). Two prominent migration

models are the gravity model, which considers both the population size of

the places of origin and destination and the distance between them (Ander-

son, 2010; Lewer and Van den Berg, 2008), and the radiation model, which

additionally takes into account job opportunities in the vicinity of the place

of origin (Simini et al., 2012).

There are many models of migration, each of which aims to capture a

different aspect of the phenomenon. It depends on the purpose of the model
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(the question being considered) and the data that is available. Although

mathematical models cannot give a perfect description of the complex pat-

tern that is observed in reality, they can help understanding the reasons why

more people might migrate to or from speci�c locations, help explaining the

impact of the distance between the origin and the place where the migrant

moves to or certain policies on migration statistics and can be used to fore-

cast, for example, the number of people who will migrate following a natural

disaster.

Migration between cities, as well as from the countryside to the cities,

has attracted particular interest in recent years. Internal migration is the

main reason for urban growth (World Bank; International Monetary Fund,

2015) and the reason why most of the world's population now live in ur-

ban areas. A city's population size strongly affects the well-being of its

inhabitants (Bettencourt et al., 2010; Pappalardo et al., 2015a, 2016), as

large cities provide more ef�cient resources for their inhabitants (Bettencourt

et al., 2007), who tend to develop more social contacts (Schläpfer et al.,

2014), move in a more diversi�ed way (Pappalardo et al., 2016, 2015a) and

create more patents and bank deposits (Bettencourt et al., 2007). On the

negative side, however, large cities suffer more infectious diseases (Betten-

court et al., 2007) as well as more crime (Glaeser and Sacerdote, 1996;

Cullen and Levitt, 1999). Migration is the main driver of city changes (Lee

et al., 2015) and the reason why some cities grow faster than others, pro-

viding a positive feedback leading to even more changes and further pop-

ulation growth (Prieto Curiel et al., 2017b). An important challenge is to

understand, quantify and predict the impact of city size on human migration:

are individuals in large cities more likely to migrate than individuals who live

in small towns? Are individuals more likely to migrate to a city larger than

their current one, or does population size not matter? How to quantify the

attractiveness of a city for internal and international migrants based on its

population size?
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Here, human migration is analysed in the context of cities and its popu-

lation (Batty, 2007). Migration dynamics are examined considering individu-

als as the inhabitants of a city or potential movers to them (Batty, 2013) but

ignoring other individual aspects, such as age, income, education or gender.

Starting from of�cial census data, the migration �uxes from and to US cities

are analysed and how these �uxes are in�uenced by the cities' population

size is investigated.

The main �nding is that migrants preserve city size, i.e., they prefer

to migrate to cities with a similar size to the city of their origin. Moreover, a

phase transition is observed, where the exponent in the new model changes

from sublinear to superlinear at a speci�c population size. Building upon

these �ndings, a data-driven scaling model is developed, which describes

human migration as a two-step decision process, demonstrating that it can

partially explain migration �uxes only on the basis of city size. The impact of

distance on a gravity-scaling model of human migration is then considered,

showing that it performs better than both the scaling and gravity models of

human migration.

2.1.2 Migration data

The data source is a census which stores the number of migrants from

one metropolitan area to another in the US (of Commerce, 2015), where

a metropolitan area or city is considered here as a high population density

area with strong economic ties and with a population larger than 50,000 in-

habitants (based on the metropolitan statistical areas MSAs de�ned by the

U.S. Department of Commerce). This gives 385 cities for which the inter-

nal migration process is quanti�able. Note that the area of Los Angeles

was merged from the original data source with other three metropolitan ar-

eas (Riverside-San Bernardino, Oxnard-Thousand Oaks-Ventura and Bak-

ers�eld). These cities are collectively formed by approximately 268 million

inhabitants, so more than 80% of the US population. The population size of

individual US cities varies broadly from just above 50,000 inhabitants (e.g.,
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Carson City) to nearly 20 million inhabitants (New York City and Los An-

geles) while individuals living in towns or rural areas with less than 50,000

inhabitants are considered to be part of the countryside.

Using the available data, the following aspects of migration are anal-

ysed:

1. the probability that an individual chooses to migrate;

2. the destination picked by migrants according to the size of their city of

origin;

3. the probability that an individual moves to the countryside;

4. the destination picked by international migrants.

2.2 Scaling of migration

It is assumed that there are n cities and in the following, Xi j is de�ned as

the number of individuals migrating from city i to city j ; Xi� is de�ned as

the (total) out�ow migration from i and X� j as the (total) in�ow migration to

j , such that å j Xi j = Xi� ; and å i Xi j = X� j and Pi denotes the size of the

population living in city i, with i and j = 1;2; : : : ;n.

2.2.1 To migrate or not

The probability of an individual deciding to migrate from city i is estimated

by Xi� =Pi , which is the frequency of a resident leaving city i. This probability

might depend on city size and it is detected by �tting a power law equation:

Xi� = a Pb
i ; (2.1)

where a and b are parameters to be determined from the data (and then

expressed as â and b̂ respectively).

Equation 2.1 is a functional form that does not assume that the proba-

bility of migrating either increase or decrease with city size. Instead, this is
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a data-driven model so that the data provide evidence supporting whether

the probability of migrating increases with city size, if b̂ > 1, referred to as

superlinear (Bettencourt et al., 2010), decreases, if b̂ < 1, referred to as

sublinear, or if it is independent, if b̂ is close to one.

The exponent b̂ is adjusted from the entire dataset and a sublinear be-

haviour is detected of the probability of migrating, with b̂ = 0:8829� 0:0147,

i.e., the probability that a person moves away from their city decreases as

the size of the city increases. Moreover, the coef�cient of â = 0:1676, indi-

cating that the probability of migrating from a city ranges between 0:023(as

for New York City or Los Angeles) and 0:047(for instance, in Carson City in

Nevada or Victoria in Texas).

The results indicate that individuals from the smallest cities (say, with

less than 100,000 inhabitants) are twice as likely to migrate than individuals

from cities with more than 10 million inhabitants.

Patterns of human migration are quite variable among cities of differ-

ent sizes and so noise is a relevant issue. The scaling equation detects

a generalised pattern but it does not mean that all individuals from smaller

cities have a higher probability of migrating than individuals from large cities.

When equation 2.1 is �tted, the adjusted R2 is 0.9033, meaning that there

are other aspects which determine the individual probability of migrating (for

instance, age) which in turn determine the collective frequency of migrating

from each city. However, a general pattern in which individuals from smaller

cities are more likely to migrate is, nonetheless, detected.

2.2.2 Migration to and from other cities

Having decided whether or not to migrate, the decision to migrate to a par-

ticular city of a given size is also affected by the population size of the ori-

gin city. For instance, if only individuals who used to live in a small city

are selected (say with 50;000� Pi � 200;000) and �t equation 2.1 looking

at the size of the cities to which they migrated, a sublinear behaviour with

b̂ = 0:8060� 0:0263and adjusted R2 = 0:7101 is encountered. A similar
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sublinear behaviour is found when using a different “small city” threshold,

for instance, for individuals who used to live in a city with less than 500,000

inhabitants (b̂ = 0:8224� 0:0206with adjusted R2 = 0:8061), less than one

million inhabitants (b̂ = 0:8363� 0:0175with adjusted R2 = 0:8554) or other

thresholds within that range (see the Appendix, Table B.1).

In contrast, a superlinear behaviour is found (b > 1) when �tting equa-

tion 2.1 but considering only the destination of individuals who used to

live in “large cities” and decided to move, that is, if selecting only people

who used to live in cities with a population larger than a certain thresh-

old. For instance, for Pi � 5 million, a slight superlinear behaviour is found,

as b̂ = 1:0499� 0:0337, with adjusted R2 = 0:7163. This behaviour gets

more pronounced with a larger threshold, so that b̂ = 1:1688� 0:0506(with

adjusted R2 = 0:5814) with Pi � 8 million and b̂ = 1:2984� 0:0619(with ad-

justed R2 = 0:5327) with Pi � 10 million (see the Appendix, Table B.1). This

means that an individual who used to live in a large city (i.e., Pi > 5 million)

is more likely to move to an equally large city than to move to a small city.

Thus, individuals tend to preserve city size when deciding to migrate: an

individual from a city with several million people is almost twice more likely

to move to a city with several million people as compared to an individual

from a small city and similarly, individuals from the smaller cities are more

likely to move to equally small cities.

Migration patterns can also be analysed in terms of the in�ux of popu-

lation into a city, interpreted as the arrival of people per 1,000 inhabitants.

Although we have found that individuals who live in large cities are more

likely to move to a large city the next year, that does not necessarily mean

that the in�ux of people who arrive into a large city come from equally large

cities since it depends on the distribution of city size. Thus, by �tting the

power law equation

X� j = a Pb
j (2.2)

the in�ow of people who move to city j is now considered.
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Again, taking into account only the in�ux of people who move to a city

with population in the range 50;000� Pi � 200;000 (i.e., a “small city”), a

sublinear behaviour is observed, with b̂ = 0:7997� 0:0299 (with adjusted

R2 = 0:6492) and a similar sublinear behaviour when using a different pop-

ulation range, for instance, for the in�ux of people who move to a city of less

than 500,000 inhabitants (b̂ = 0:8159� 0:0245with adjusted R2 = 0:7429).

In general, the impact of the sublinear behaviour gets more pronounced

(that is, b̂ gets much smaller than one) for intervals with smaller cities (see

the Appendix, Table B.2).

In contrast, a superlinear behaviour is found when looking at the in�ux

of people who move to a “large city”. For instance, the analysis of the in�ux

of people who moved to a city with more than 8 million people, shows a

superlinear behaviour with b̂ = 1:1180� 0:0460(with adjusted R2 = 0:6053)

and similarly looking at the in�ux of people who moved to a city with more

than 10 million inhabitants with b̂ = 1:2539� 0:0574 (with adjusted R2 =

0:5538). Roughly speaking, 1:7 people in every 1;000 inhabitants of a city

with millions of people (such as Los Angeles) will have lived in a small city

during the previous year, but nearly 20 people in every 1,000 in a small city

will have lived in a different small city the previous year.

2.2.3 Migration to and from the countryside

A person who lives in a city might decide to migrate to the countryside, and

this decision is affected by the size of the origin city. By �tting a power law

equation (equation 2.1) it is found that a person who currently lives in a city

might decide to move to the countryside and, according to the data, the

probability of moving has a sublinear behaviour, with (b̂ = 0:6846� 0:0273,

â = 0:7214� 0:3464and with adjusted R2 = 0:6199). Thus, results show

that a person who lives in a city with less than 200,000 people is four times

more likely to move to the countryside than a person who lives in a city with

20 million inhabitants, such as Los Angeles or New York City.

Also, a person who currently lives in the countryside might decide to
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move to a city and a scaling pattern for the size of their destination follows

a sublinear behaviour (b̂ = 0:5971� 0:0342, â = 0:4299� 0:4331and with

adjusted R2 = 0:4421). Thus, a person who currently lives in the countryside

is six times more likely to move to a city with 200,000 inhabitants or less than

to a city with 20 million people.

2.2.4 Migration to cities from another country

The destination of international migrants is also affected by the city size of

the destination. An individual who arrives in the US from another coun-

try is more likely to move to a large city, that is, international migration also

exhibits a superlinear behaviour. Larger cities in the US increase their popu-

lation diversity, measured simply as the proportion of people who previously

lived outside the US (Page, 2010), three times faster than smaller cities,

(b̂ = 1:1884� 0:0339, with adjusted R2 = 0:7610) with an even more pro-

nounced pattern for people from Africa (b̂ = 1:5794� 0:0728, with adjusted

R2 = 0:5500) and Americas outside the US (b̂ = 1:2808� 0:0424, with ad-

justed R2 = 0:7036).

The in�ow of international migrants for every 1,000 inhabitants varies

according to the size of their destination. Thus, comparing the whole range

of city size, it is observed that large cities with millions of people are in-

creasing their percentage of the population from Africa and from Americas

outside the US, 32 times and 5 times faster respectively than the smallest

cities (results available in the Appendix, Table B.1 for the results divided by

continent of origin).

2.2.5 Migration patterns

Fitting a scaling equation and considering the destination of people who

lived in small cities results in a sublinear scaling pattern in terms of their

probability of moving and their destination, whether it is considered “small”

to be cities with less than 200,000 inhabitants or even less than 1 million.

Similarly, considering only people from the “large cities”, where the term



2.2. Scaling of migration 41

“large” can be cities with more than 6 million people or more, gives a super-

linear result in terms of the destination picked by its migrants. Thus, there is

a phase transition between a sublinear behaviour for small cities to a super-

linear behaviour in the case of large cities and, in general, this pattern tends

to get more pronounced at the extreme values of city size, that is, b̂ gets

smaller for the smallest cities and more substantial for the largest cities.

Additionally, by considering the in�ow of migrants, we observe a sub-

linear pattern for small cities and a superlinear pattern for the large cities.

Thus, there is also a transition for the in�ux of migrants into a city.

Migration patterns, either the decision to move to another city, move to

a small city given that the person lives in an equally small city, the in�ow

of people who move from another city or from another country are all in�u-

enced by city size, either the size of the origin or the destination city and

some of the patterns presented here are sublinear and some superlinear

(Figure 2.1).

The observed phase transition occurs roughly for cities between 1 and

5 million inhabitants. Below that, cities follow a sublinear pattern and above

that, cities follow a superlinear pattern in terms of the destination picked by

migrants.

Detecting a sublinear pattern in the destination picked by migrants re-

quired grouping cities with a population smaller than a certain threshold

and to analyse the observed pattern from the whole group. Thus, it is by

grouping cities with a similar population size that we are able to detect an

emergent pattern.

To analyse the migration data, not just for “small” or “large” cities, an

algorithm was executed, which takes a ranked list of the cities according

to their size, using a logarithmic scale, and creates non-overlapping parti-

tions using a moving window of various ranges and with a random starting

point. This gives groups of similar cities in terms of their population size but

varying what it is considered to be similar. The cities were then partitioned
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Figure 2.1: Selected scaling relationships �tted to the data. The dots represent
data on each of the 385 cities in the US with its size on the horizontal
axis and its corresponding �gures for migration given on the vertical
axis given in different units (as a probability or as the in�ow of migrants
per 1,000 inhabitants). Also plotted on the same diagrams are the re-
sults of the scaling relationship �tted to the data with the coef�cient b̂
given in each case. Top panel: three sublinear relationships. Bottom
Panel: three superlinear relationships. A coef�cient b̂ � 1, as estab-
lished in the diagram on the left in the bottom panel (for the in�ow from
a city larger than 5 million), means that city size has a negligible impact
on that �ux. This establishes the approximate city size where a phase
transition occurs.

1,000 times, each time considering a partition with a different starting point

and a different width, such that on each partition, cities are grouped based

on slightly different criteria. For instance, one partition might consider an

interval I1 = 270;000� Pi � 355;000while another time cities might be par-

titioned in such a way as to create an interval I2 = 290;000� Pi � 390;000.

Thus, on each run of the partitioning process, particular cities might be

grouped in different ways. Then, taking into account the destination picked

by migrants from the different cities within each interval, we obtain the scal-



2.2. Scaling of migration 43

ing coef�cient b̂ by �tting equation 2.1 for each interval of cities. Intervals

with no cities inside are ignored.

Figure 2.2: Probability of migrating conditional on city size, from a city of a given
size (horizontal axis) to a city of a given size (vertical axis). The �tted
values of b̂ according to the city size (plotted in the lower panel) indi-
cates if the probability of migrating to a destination with a given size
follows a sublinear (b̂ < 1, in blue) or superlinear (b̂ > 1, in orange)
behaviour.

The result after grouping 1,000 times the cities was roughly 33,000 in-

tervals, and so the scaling equation was �tted this number of times; then,

for each point in the population range, its corresponding values of b̂ were

averaged. Finally, for each point in the whole population range, an esti-

mated value of the b̂ is obtained, which smooths out any possible decision
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of considering different ranges of city size. The results of the b̂ for each

population range gives a stable and consistent way of estimating the scaling

pattern observed for the cities in the US (Figure 2.2).

For example, if the city of origin is larger than 4 million inhabitants (Fig-

ure 2.2), then the probability of migration follows a superlinear behaviour. In

contrast, a strong sublinear behaviour is observed for small cities, particu-

larly if the city has less than 100,000 inhabitants.

The size of the destination, picked by a person who chooses to migrate,

depends on the size of the origin city. For example, the probability that an

individual from a city with less than 100,000 inhabitants moves to a city with

less than 100,000 inhabitants is 44 times larger than the probability that

they will migrate to a city with 10 million inhabitants or more. The resulting

relationship is thus given by a b̂ coef�cient which captures the probability of

moving to a city with any size according to the size of the origin (Figure 2.2).

2.3 Models for the dynamics of human migra-

tion

2.3.1 Scaling model

City size plays a strong role in determining the patterns of migration: from

the decision of whether to migrate or not (sublinear), whether to migrate to

the countryside (sublinear), move to a small city (sublinear), move to a large

city (superlinear) and in the destination for international migration (super-

linear). Equation 2.1 determines the estimated probability that an individual

living in a city with population Pi migrates from one year to the next (given by

a Pb� 1
i ). Figure 2.2 shows the relationship between the city size and the fre-

quency of migration by considering the probability of each destination, given

that an individual actually migrates. These two relations fully determine the

dynamics of migration between different cities.

To take people from the countryside (51 million people) into account
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within the model, it is considered that with a probability p̂ = 0:0322 an

individual will migrate from the countryside to a city from one year to the

next and their destination city follows a sublinear behaviour (b̂ = 0:5971�

0:0342). Also, an individual who currently lives in a city might decide to

move to the countryside with a sublinear probability (b̂ = 0:6846� 0:0273).

These relationships fully determine the dynamics of migration between the

countryside and the different cities.

A two-step process is considered, by the simulation of the dynamics of

internal migration observed in the US with people moving between different

cities or between the countryside and the various cities. The Markov prop-

erty is assumed, so that an individual's choice to migrate, as well as their

destination, are based only on the current location (that is, the size of their

city for people who live in a city or the fact that they live in the countryside).

In the �rst step, it is simulated, for each individual, whether they migrate or

not, while in the second step, the destination of the ones who have cho-

sen to move is determined. Since both steps are affected by the observed

scaling laws, migration is modelled as a decision problem (Schwartz, 1973).

Assuming no deaths or births and ignoring international migration (both ar-

riving and leaving the US) the population dynamics is fully determined.

The impact of city size in the migration pattern is summarised in Figure

2.3. A person from the countryside decides to migrate to a city (with proba-

bility p̂ = 0:0322) and its destination is picked following a sublinear pattern.

A person from a city might migrate to the countryside (with a probability that

decreases sublinearly with city size) or might decide to move to another city

(with a probability that decreases sublinearly with city size too) although in

that case, the destination is picked according to the city size of the origin and

destination (Figure 2.2). Finally, a person who arrives from another country

picks their destination following a superlinear pattern according to city size.

The observed scaling laws of human migration are used for modelling

the migration process by considering the distribution of US population living
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Figure 2.3: Model of the migration dynamics.

in different cities (83% of the US population) and the population living in the

countryside (17% of the US population) and to consider the corresponding

urban dynamics (Batty, 2007).

2.3.2 Impact of distance and the gravity-scaling model

Undoubtedly, physical distance has an impact on human migration

(Schwartz, 1973) which is not considered in the scaling model, so far. Thus,

using only city size as a variable to determine the probability of migrating

and the destination picked by those who actually move, it is expected, for

instance, roughly the same number of people moving to Los Angeles from

Stockton-Lodi (a city in California with 684,000 inhabitants, located 500 kilo-

metres away from Los Angeles) as those from Charleston (a city in South

Carolina with 680,000 inhabitants, located 3,500 kilometres away from Los
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Angeles) simply because both, Stockton-Lodi and Charleston have (almost)

the same population. However, data shows that 7.5 more people moved

from Stockton-Lodi to Los Angeles than from Charleston. Physical distance

is indeed relevant.

The law of migration, developed looking at migration at county level

from and to the UK, Ireland and Scotland states, among many key issues

(Ravenstein, 1885), that the majority of migrants move a short distance. For

more than a century there has been quantitative evidence that distance is

one of the key aspects of migration and, in general, migration is inversely

proportional to the distance between two locations.

As a consequence, one of the most commonly used models of human

migration is called the gravity model (due to the similarity with the concept

of physical gravity, in which objects are attracted to each other with a force

directly proportional to their mass and inversely proportional to the distance

between them) (Anderson, 2010; Lewer and Van den Berg, 2008). The

gravity model predicts the �ux of migrants Fi j between locations i and j as

Fi j =
aPiPj

db
i j

; (2.3)

where a is a constant which needs to be estimated from the data, b is a

constant which takes into account the impact of distance and di j is the geo-

graphic distance between the two locations, which in the current study, are

cities in the US, although the model has been used to estimate the �ux of

migrants between countries, as for instance (Westerlund and Wilhelmsson,

2011; Karemera et al., 2000). Although the gravity model provides a valu-

able starting point for the analysis of migration, it has several drawbacks,

for instance, it predicts the same �ux from i to j as it predicts from j to i;

it assumes a linear impact of the population of each location on the �ux;

in some cases it predicts more people leaving a location than the number

of people in the location and other issues (Simini et al., 2012). There are
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some modi�ed versions of the gravity model which remove the linearity or

the symmetry of the �ux (Burger et al., 2009) but one of the main issues to

consider when using the gravity model is that it ignores any scaling factor

and so all modi�ed versions of the gravity model assume that individuals

from small and large cities behave the same and have the same probability

of migrating, as opposed to the results demonstrated earlier based on data.

To rectify both models, the scaling model which considers the sublin-

ear and superlinear properties, and the gravity model which considers the

impact of distance, a modi�ed scaling model, a gravity-scaling model for

human migration is constructed by modifying the destination picked by mi-

grants. It takes into account the impact of distance and it also considers the

scaling factor observed in the probability of migrating and the preferential

destination picked by those who actually move.

Consider a person from city i, with population Pi who has decided to

migrate. According to the scaling model (Figure 2.3) the probability that the

person moves to city j , say pi j , follows a scaling pattern with some b (which

could either be greater than one, if i is a large city, smaller than one if i is

a small city or close to one if i is near the phase transition, according to

Figure 2.2). The modi�ed probability of moving from city i to city j , p0
i j is

considered as

p0
i j = C

pi j

di j
; (2.4)

where di j is the geographic distance between cities i and j , and C > 0 is

a number which makes the set of probabilities p0
i j sum to one. Although

other expressions of the gravity model of migration consider the impact of

the distance squared, or other functions of the distance, not necessarily lin-

ear (Burger et al., 2009; Westerlund and Wilhelmsson, 2011; Simini et al.,

2012), here it is assumed that the probability that the person will migrate be-

tween two cities decreases as the distance between them increases. Note

that the fact that it is a set of probabilities (i.e., they have to sum to one)

means that the distance causes a non-linear impact.
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The gravity-scaling model takes into account the observed scaling prob-

ability that a person will decide to migrate and takes into account the pref-

erential migration observed between people from small or large cities and

it also takes into consideration the impact that the physical distance has on

the migration patterns. The gravity-scaling model gives the same results as

the scaling model for the migration to and from the countryside and for the

in�ow of international migrants as the distance between a speci�c city and

the countryside or a continent is not well de�ned.

2.4 Results of the new migration models

The �t of the power law equation (equation 2.1) is, in most cases, good (see

the Appendix), as expressed by the high adjusted R2 obtained from the data.

To determine the validity of the results of the scaling and the gravity-

scaling model (as measured by how well it �ts the observed data), the re-

sults are compared against the commonly used gravity model of human

migration. The two parameters of the gravity model (â = 2:59� 10� 6 and

b̂ = 0:753) were estimated by minimising the mean square error of the

model. The results of the scaling model and of the gravity-scaling model are

obtained by simulating the model dynamics 100 times, considering 53.2 mil-

lion people at each time (20% of the total urban population) who �rst decide

whether or not to migrate and then choose the destination, both according

to their city size. The median of the 100 simulations is reported.

Under the scaling model dynamics, 3.1% of the metropolitan population

of the US migrates each year. Also, a random person from the cities in the

US lives in a city with 4.92 million people, but after migration, it is expected

that they will live in a city with 4.81 million people. Ignoring births and deaths

and international migration, 80.5% of the movers went to a city with less

population than their origin.

The observed migration between every pair of cities is compared and

the predicted migration by the gravity, scaling and gravity-scaling models
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and report the mean square error and the maximum error in absolute value

in Table 2.1. Ignoring the impact of distance (as in the scaling model) shows

large departures from the observed migration �ows, but also, ignoring the

scaling factor on migration (as in the gravity model) yields on large errors.

The gravity-scaling model has the best results in terms of the �t of the mi-

gration �ux (see Table 2.1).

model mean square error max error
scaling 102,112.4 15,547
gravity 82,278.8 25,929

gravity-scaling 58,288.8 9,592

Table 2.1: Results of the scaling, gravity, and gravity-scaling models. Mean square
error and maximum error comparing the migration �ow considering all
pairs of cities as origin and destination. The smallest mean square error
and the smallest maximum square error (in absolute value) are provided
by the gravity-scaling model.

Also, the out�ow and in�ow of migrants from each city provided by the

three migration models are compared. Results show (see Figure 2.4) that

the gravity model, as opposed to the scaling model, has a systematic bias

and underestimates the out�ow of migrants for the smaller cities (those with

the smallest out�ow of migrants), as it ignores the fact that people from small

cities are more likely to migrate, as described by equation 2.1. The gravity

model also underestimates the in�ow of migrants to small cities and this is

mainly because the gravity model also underestimates the out�ow of people

from small cities which have preferential migration to equally small cities. In

general, the gravity model has a systemic issue related to small cities, which

is corrected by the scaling model. The gravity-scaling model, similar to the

scaling model, takes into account the fact that people from small cities are

more likely to migrate and so it does not present any systematic bias as the

gravity model does.

When determining the validity of the scaling and the gravity-scaling

model, note that internal migration from and to the countryside and inter-

national migration should be also taken into account. The scaling model
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Figure 2.4: Observed out�ow and in�ow of migrants from each city against the pre-
dicted values of the models. The horizontal axis is the observed out�ow
or in�ow of migrants from each city and the vertical axis is the predic-
tion. The yellow line represents the identity (where the predicted value
of the out�ow or in�ow of migrants from each city match the observed
values, so there is a perfect match), so that observations closer to that
line have a better �t.

predicts that roughly 1.51 million people will move from the cities to the

countryside and they will more frequently be from the smaller cities, whilst

1.64 million people will move from the countryside to a city and they are

more likely to move to smaller cities. The destination picked by people who
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move from the countryside to a city has a sublinear behaviour: the scaling

model predicts that less than 109,000 people from the countryside moving

to the four largest cities of the US, simply because people from the coun-

tryside are more likely to move to small cities than large cities. Similarly,

considering people who used to live in the countryside who then moved to

the smallest 100 cities of the US, the gravity model predicts less than 67,000

movers, when in fact there were nearly 190,000 people moving. In this case,

the scaling model predicts 156,000 movers, which is a much better �t.

The comparison of the three models reveals that ignoring the distance

between cities (as it is done by the scaling model) does not provide a better

�t in terms of the mean square error. However, a relevant issue is that the

scaling model does take into account that people from small and large cities

behave differently and therefore, does not have a bias, as opposed to the

gravity model.

International migration is also affected by city size. Although it is not

possible to determine the impact of the size of the origin city and it is not

possible either to compare against the gravity model, the data does allow us

to measure the scaling of international migration based on the destination.

According to the scaling model, nearly 1% of the population of the largest

cities lived in a different country the previous year, thus, increasing the di-

versity and multiculturalism of cities like New York, Los Angeles or Chicago.

Large cities are increasing their diversity three times faster than small cities.

The scaling model is based on a set of observations in which noise

is a relevant issue, so that a generalised pattern is detected (for instance,

people from small cities have a higher probability of migrating) but it does

not mean that all individuals from all small cities have a higher probability of

migrating. The scaling model and the gravity-scaling model do not provide

deterministic results. By simulating several times under the same dynamics,

both models provide natural departures which could be observed under the

same dynamics. For instance, between Houston and Dallas, there were
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14,666 migrants and results from the 100 simulations of the gravity-scaling

model show that a migration �ux between 14,485 and 15,745 is expected

under the same dynamics.

The power law correctly describes many aspects of the human activ-

ity, from the frequency of family names, the wealth of the richest people

(Newman, 2005), the sizes of town and cities (Pumain and Guerois, 2004),

the distribution of travelled distances (Wang et al., 2014; Brockmann et al.,

2006) and now, the probability of migrating from a city, the probability of mov-

ing to the countryside, the probability that a person from a small city moves

to a small city (and the other relationships indicated in Figure 2.2) and also

the size of the city picked as the destination for international migrants are

part of the list. Scaling laws play a fundamental role in the dynamics of

migration.

2.5 Remarks

Internal migration is far more frequent than it is often assumed, and it is

much more complicated than simply people from the countryside moving to

the larger cities. Internal migration is highly in�uenced by economic activ-

ity and other environmental factors (Mansury and Shin, 2015; Garcia et al.,

2015). People often leave the large cities to move to smaller ones or to

the countryside. The destination picked by migrants is in�uenced by many

factors, from the distance between the origin and the destination, to the eco-

nomic activity, the employment rates and even unfavourable weather condi-

tions (Henry et al., 2003).

Whilst migration is a topic which generates strong public opinions and

signi�cant media interest, it is frequently portrayed without much evidence

and data to support the arguments. There is an urgent need for the debate

about migration and, in particular, international migration, to be based on

facts and for policies to be designed based on the observed phenomena

rather than on the misguided opinions and news related to migration.
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This points out the relevance of considering different levels of migration

since they contribute towards strategic economic planning and development

(Garcia et al., 2015). Indeed, the majority of the migrants move only short

distances (Ravenstein, 1885) and `gravity' is indeed a concept which roughly

explains some parts of the migration patterns (Anderson, 2010).

2.5.1 An improved model of human migration

The initial scaling model examined human migration without considering the

physical distance between cities, that is, only considering the city size. This

stance is supported by the data which indicates that people from large cities

are more likely to move to other large cities, despite the fact that large cities

can be far away from each other and relatively scarce. The gravity-scaling

model considers also the impact of distance and so it could be considered a

modi�ed version of the gravity model. The gravity-scaling model has a better

�t to the observed data, is not symmetric, does not have a systematic bias

(as can be observed in the gravity model) and takes into account scaling

(from the probability of migrating to the preferential destination picked by

migrants).

By considering scaling on migration patterns, the commonly used grav-

ity model is considerably improved, highlighting the relevance of city size. A

valuable aspect of both, the scaling and the gravity-scaling models is that

rather than providing a deterministic number for the �ux between two cities,

they give a procedure to simulate migration providing intervals which could

be observed under the same circumstances. Both models begin by taking

into account the number of inhabitants of a city and simulate whether indi-

viduals move and, if so, where do they move to and therefore, there is a

natural upper limit to the estimated number of people who leave that city,

as opposed to the gravity model which might, under certain circumstances,

estimate more people leaving actually live there.
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2.5.2 A data-driven model of human migration

The scaling and the gravity-scaling models are based on current observa-

tions of migration but it does not mean that the same pattern has been ob-

served previously, nor does it mean that the same pattern will be observed

in the future. However, the methodology presented here allows scaling to

be taken into account from and to the countryside, between cities and from

international migrants and it goes beyond a static result observed only for a

speci�c time interval and a particular region of the world. It highlights that

in the studies of migration patterns, scaling might occur, it does so without

assuming that scaling happens. In the case in which the exponent b � 1

the scaling might be negligible.

2.5.3 A large city versus a small town

Living in a large city may mean an improved access to education, job op-

portunities and income, among other “bene�ts”, but on average and it does

not mean a better education or income to all; however, the costs of living

in a large city is experienced by all its inhabitants. The population living in

Kibera, for instance (a slum in Nairobi, Kenya, with approx 1.2 million slum

dwellers) or Rocinha (the largest favela of Rio de Janeiro) enjoy a limited

number of the bene�ts of living in a large city but they pay the price for

longer commuting distances, a higher price for the food and services, pol-

lution, crime rates and more. Thus, although large cities provide certain

bene�ts, more people moving into large cities does not necessarily trans-

late to people enjoying a better standard of living, but might, unfortunately,

translate into greater inequality and severe socio-economic problems within

the cities.

The same applies to people from smaller cities. Take, for instance, the

case of Carson City, one of the smallest cities in the US, where nearly twice

the amount of people moved to Redding than to Sacramento (both in Califor-

nia), even though Sacramento is nearly 100 kilometres closer to Carson City

than Redding is and Sacramento is 12 times larger in terms of population
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size. According to the gravity model, 20 times more people moving to Sacra-

mento than to Redding would be expected since it is larger and closer, but

twice the amount of people moved to Redding than to Sacramento; scaling

affects migration. Perhaps this is because Redding is a rural environment

more similar to Carson City than Sacramento is, although this also warrants

further explanation.

The observed patterns might change and migration to large cities might

be consequently affected. For instance, fear of crime and fear of terrorism

might discourage people from small cities to move to large cities, but at the

same time, might encourage people from large cities to move to smaller

cities, which may be perceived to be safer. The current main drivers of

migration might be replaced by others, such as technology, an ageing pop-

ulation, jobs being lost due to automation, climate change or disasters, to

name but a few. However, the methodology presented allows different scal-

ing patterns to be traced through different time intervals, to be applied to

international migration or migration from and to the countryside and the de-

tection of quantitative and qualitative changes in human migration.

2.5.4 The role of distance in human migration

Although distance does play a crucial role in migration, either because of the

mental cost of being far from the origin, the lack of information about distant

places (Schwartz, 1973) or the actual monetary cost of moving, our results

indicate that distance could also be expressed in terms of the lifestyle of the

individual and not only in terms of physical distance. For example, the four

most frequent destinations for an individual who used to live in New York City

are Philadelphia, Miami, Washington and Los Angeles, which are 1,800 and

3,900 kilometres away from New York City in the second and fourth case,

respectively. Modern communications and rapid transportation mean that

the impact of physical distance is reduced so that in terms of migration,

distance is becoming less relevant, while the differences in lifestyle between

large cities and small cities or countryside are gaining prominence. There
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are several reasons why the scaling laws affect migration patterns. Findings

suggest that a relevant cause is that an individual chooses between the

lifestyle of a large city or the lifestyle of a small one.

2.5.5 The scaling of international migration

There are still open questions regarding the scaling phenomenon in the case

of international migration. Is a person from a large city more likely to move

to another country, despite the fact that people from large cities are less

likely to migrate? Is the relationship found here, where a person from a

small city is more likely to move to equally small cities, also observed for

international migration? Unfortunately, there is little information about the

origin of international migrants who arrive in the US. However, in terms of

their destination, a strong impact of the city size is found, which is even more

prominent for people who previously lived in Africa or America but outside

the US. An individual is less likely to move to a city in which they have less

information (Schwartz, 1973), which might be the reason why people from

other countries are more likely to move to a large city.

2.5.6 The scaling of migration in other parts of the world

Although the results obtained here are based on data for migration to and

from cities in the US, a similar scaling pattern is expected in other coun-

tries, so that we predict that an individual from Paris is less likely to move

to the countryside than a person from Tours, a smaller French city; a per-

son from Guangzhou is more likely to move to Beijing or Shanghai since

both cities have millions of inhabitants, even though they are at 1,200 and

1,900 kilometres away respectively; and Sidney, Melbourne and Brisbane

are increasing their international population at a faster rate than the rest of

Australia. Scaling should be relevant for other types of migration and in other

regions of the world, although there might be other drivers, for instance, lan-

guage, weather, con�icts or government-controlled migration policies and

scaling might have a different magnitude.
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So far, it has been noted that cities affect the decision that an individual

takes in terms of migration. Whether it increases the probability that they

will migrate, their destination, the in�ow or international migrants or others,

cities play a key role on migration patterns.

2.5.7 Challenges of migration

Migration might be very positive for both, the sending and the receiving loca-

tion (Konseiga, 2006). Firstly, it can help adjusting to demographic changes,

might ease the pressure of unemployment and lack of opportunities at the

origin, but might also help by counteracting the decline of ageing in the re-

ceiving countries. Many countries are facing the effects of population age-

ing, most severely in the EU, where without migration, the number of people

in the working age is expected to decrease by millions, but is also expected

to increase slightly due to the in�ow of migrants from other regions (World

Bank; International Monetary Fund, 2015). Migrants construct and encour-

age a resilient network in case of disasters, providing relief and assistance

to their affected communities of origin when needed (Laczko et al., 2009).

According to the World Bank, there are several challenges in terms

of migration, which go from fostering and promoting legal migration �ows

(World Bank; International Monetary Fund, 2015), reducing the impact of

the brain drain in the sending countries, protecting the rights and preventing

the abuse of migrants, lowering the remittance costs and bureaucratic bar-

riers among many. Thus, understanding the whole migration �ow, from the

small-distance movements of people near the large metropolis, to the inter-

nal migration and to the long distance international migration gives a whole

perspective on the challenges, but also on the opportunities that migration

provides.



Chapter 3
Rare events and their concentration

Many social (and non-social) aspects tend to be highly concentrated, such

as wealth, the population of cities and even citations of scienti�c papers

(Newman, 2005). The high concentration of certain social elements is a

pattern which repeats and for which many tools have been developed to

quantify its degree of concentration. However, when events are not only

concentrated but also have a low frequency, such as the number of terrorist

attacks on a city, the number of crimes suffered by individuals and others,

the most common metrics tend to fail as measuring tools.

This chapter explains the complexity of rare events and develops a pro-

cedure to estimate the distribution and hence, the degree of concentration

of rare events. It is based on published research (Prieto Curiel and Bishop,

2016a).

3.1 Events with low frequency

In many different practical contexts, being able to determine a measure of

the degree of concentration of a variable is particularly useful. For instance,

in the case of wealth distribution, the Gini coef�cient has been used in many

studies in Economic and Political Sciences. The Gini coef�cient is a single-

valued number which works as a summary for the whole distribution and it

helps us to determine whether a country is moving into a more egalitarian
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distribution of income or if its disparity is increasing, thus in a way it is a

summary statistic which helps us compare different regions and over differ-

ent time periods.

Similar comparisons are desirable in alternative contexts, for example,

is crime more or less concentrated in speci�c regions after the introduction

of surveillance systems in a city? Are road accidents more spatially disperse

in Paris compared to Frankfurt? Are the number of claims that an insurance

company receives from their customers being more concentrated this year?

The data for these type of question has two characteristics which make it

hard to deal with: it is both rare and also highly concentrated. In all these

examples, the majority of the observations are equal to zero, but then, if

a particular observation is not zero, then it is likely that the actual number

is not small; so for instance, many accidents happen at the same place,

leading to an accident black spot.

This phenomenon has been studied in different settings; in the case of

crime, for example, although a high number of people or houses, in fact,

suffer no crimes, those who suffer crime have an increased risk of suffering

subsequent crimes (Grove et al., 2012) and as a result, the majority of the

observations are equal to zero but then, some observations are far away

from being zero (Johnson, 2010b). Another example comes from the study

of human mobility patterns, where it has been studied by tracing the con-

secutive sightings of nearly half-a-million bank notes and also, by following

100,000 mobile users, that most of the individuals travel only over short dis-

tances (Gonzalez et al., 2008), which means that an individual is likely to be

found only in a handful of different places and, if a threshold was placed on

travel, most journeys would fall below the threshold.

Having a measure of the degree of concentration or dispersion of such

events is useful since sometimes interventions (such as a policing strategy

in the case of crime, or a road intervention in the case of road accidents)

might result in the displacement of such events, rather than a genuine re-
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duction, thus, resulting in a change of their level of concentration. However,

traditional measures of the concentration of a variable (such as the Gini co-

ef�cient or the entropy), fail to work as a tool to compare different levels of

the concentration or to track structural changes in the way that these events

happen, due to their extremely small frequency and their high levels of con-

centration.

3.2 Data and distribution of a counting process

Here, the focus is placed on a counting process, that is, a variable that re-

�ects the number of events with a certain property is observed, for instance,

the number of emails that a person receives during a given day. Let Xi be the

number of events that occurred over a �xed time interval, counted over some

set i = 1;2; : : : ;N, referred to as individuals. This could be, for example, the

number of burglaries suffered by the i-th household during the period of one

year, say, or the number of insurance claims from the i-th customer or post-

code. Assuming that having one unit of these events does not affect future

probabilities of having any additional units, the number Xi follows a Poisson

distribution with rate l i � 0. Under this assumption, the number Xi becomes

one observation from a Poisson distribution, which means that if Xi is small

or even zero, it could be the result of a small rate, but it could also be (with

small probability perhaps) the result of a large rate and it was just good luck,

or vice-versa in the case that Xi is large. If a person suffered zero crimes

last year, it does not mean that their rate is zero and they will never suffer

crime.

It is also assumed that Xi is independent to Xj for i 6= j , which might

be a strong assumption for the particular context under consideration and

needs to be fully examined before moving to the following step. In the case

of crime, for example, the assumption of independence is perhaps valid

only for large populations, but it will be explored later in this thesis. Now,

it is assumed that there is a way in which the N individuals may be col-
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lected into k � 1 distinct groups, where group j say, has Q j individuals (or

equivalently, has a relative size q j = Q j=N), which have the same rate l j ,

with j = 1;2; : : : ;k. Each one of the N individuals of the whole population

belongs to one and only one group, so that Q1 + Q2 + � � � + Qk = N (or

written in terms of the relative size q1 + q2 + � � � + qk = 1). To avoid am-

biguous de�nitions, the groups are ordered by their rate in increasing order,

so l 1 < l 2 < � � � < l k. This type of model is known as a mixture model

(Böhning, 1998).

The distribution of a random individual, Xi , might be expressed as

q1Pois(l 1) + q2Pois(l 2) + � � � + qkPois(l k); (3.1)

which means that the individual is allocated into the j-th group (with prob-

ability q j ) and then has a Poisson distribution with the corresponding rate

l j .

The number of groups k is crucial for the mixture model. An easy (but

useless) solution is to assign each individual to a different group, however,

solutions with larger numbers of groups are less useful since for each addi-

tional group, its size and its rate need to be estimated, so this increases the

number of parameters of the model. The (non-parametric) maximum like-

lihood estimator (mle or npmle) helps to compare between models with a

different number of groups, k, and to pick the best (in some sense) amongst

them (Böhning et al., 1998) since in this case, no prior information on the

number of groups is taken into account (McLachlan and Peel, 2004). Other

techniques to estimate the number of groups, using bootstrapping, for exam-

ple, are also available (Schlattmann, 2005). The model can be easily �tted

using the statistical package CAMAN (Computer Assisted Analysis of Mix-

tures) (Schlattmann et al., 2015) in R (R Core Team, 2014) by considering

the observed Xi , with i = 1;2; : : : ;N (Böhning et al., 1992).

The results obtained are: an estimate of the number of population

groups k̂, the corresponding rate for each group l̂ j , so that the collection
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of the rate of each group can be viewed as a vector l̂ , and the relative size

of each population group q̂ j , also expressed as a vector as q̂. A goodness

of �t test can help accepting or rejecting the distribution obtained (B öhning

et al., 1992). A similar procedure using a mixture model has been used in

different scenarios (Böhning, 1998), such as road accidents, mapping hep-

atitis B in Berlin (Schlattmann and Böhning, 1993) and many more examples

in epidemiology (Böhning et al., 1998).

Two special cases are interesting from the mixture model. First, if k̂ = 1

then this means that the best way to explain the observations is simply as

a Poisson process with rate l̂ 1, which is a homogeneous distribution over

the whole population. The second case is when k̂ = 2 and l̂ 1 = 0, which

means that the population can be divided into two groups, the �rst group

has a rate equal to zero while the other group has a non-zero rate, which

is a model known also as a Zero-In�ated Poisson Model (B öhning, 1998).

Both scenarios, the homogeneous distribution and the Zero-In�ated Poisson

Model, might be the result obtained from the mixture model.

The distribution of the rates (q̂; l̂ ) is powerful by itself since it can be

used to simulate different observations under that distribution so that the

natural departures from the distribution can be understood. In general, the

distribution of the rates is called the pro�le , so for example, for the number

of crimes suffered by individuals it is the victimisation pro�le ; for the number

of crimes committed by every person it is the criminality pro�le and so on.

3.2.1 A concentration metric

The Rare Event Concentration Coef�cient ( RECC) works as a summary

statistic and it is de�ned in terms of the distribution of the rates (q̂; l̂ ) given

by

RECC=
1

2å k̂
i= 1 l̂ iq̂i

k̂

å
i= 1

k̂

å
j= 1

q̂iq̂ j j l̂ i � l̂ j j; (3.2)

which is the Gini coef�cient applied to the distribution of the rates. The

Lorenz curve (Marsh and Elliott, 2008) and the Gini coef�cient (Dorfman,
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1979) of a distribution are often used as a measure of the concentration or

dispersion of a variable, and so here they are applied to the mixture model.

It is important to note that it is not the Gini coef�cient computed directly from

the observations Xi , but rather the Gini coef�cient of the distribution of the

rates (q̂; l̂ ). A value of the Gini coef�cient closer to zero is interpreted as

the process being more homogeneously distributed across the population,

and a value closer to one means that the process is more concentrated in

some population groups.

The Lorenz curve and the corresponding Gini coef�cient of the distri-

bution of the individual rates are comparable between different time periods

and over different regions, even in the case in which the number of individ-

uals changes from one region to the other, or the total number of events of

the process changes. With this simple tool, it is possible to compare the

rates of processes in which there is randomness involved, and determine a

useful metric for the concentration of events which are rare and tend to be

highly concentrated.

3.2.2 Two scenarios from rare events

Two special cases might be obtained from the RECC. The �rst scenario,

if the RECC= 0 then this means that the process is homogeneously dis-

tributed across the entire population so that every individual has the same

rate l̂ 1. This scenario might happen even when the individuals have dif-

ferent observations Xi since here, the distribution of the rates is considered

and not the actual numbers Xi .

The second scenario is the case when from data obtained is a Zero-

In�ated Poisson Model ( k̂ = 2 and l̂ 1 = 0). In such a case, the Rare Event

Concentration Coef�cient gives RECC= q̂1, the relative size of the group

which has a zero rate.
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3.3 Con�dence intervals and estimates of un-

certainty

This section summarises the steps followed to construct intervals for the

distribution of the rates. The algorithm is easily executed using R (R Core

Team, 2014) using two packages (Schlattmann et al., 2015; Zeileis, 2014)

which are available online.

1. From the observed numbers Xi , run the CAMAN algorithm to obtain

the estimated number of groups k̂, the distribution of rates (q̂; l̂ ) and

its corresponding ˆRECC.

2. Assume that the estimated distribution is the true distribution, from

which the N individuals can be simulated, with N being the population

size and a mixture model

q1Pois(l 1) + q2Pois(l 2) + � � � + qkPois(l k); (3.3)

so that �rst, the group of each individual is simulated and then its ob-

served Xi , following a Poisson distribution with the corresponding indi-

vidual rate l i .

3. Run the CAMAN algorithm on the simulated number of Xi to obtain

n
ksim; q

sim
; l sim; RECCsim

o

The simulated ksim;q
sim

; l sim and RECCsim, provide departures which

could be observed by having exactly the same distribution of the Xi (the

assumed true distribution) but having different observations. By running

the same procedure enough times (frequently 100 times) departures from

what could be observed are obtained, so intervals for the ksim;q
sim

; l sim and

RECCsim are easily determined.



3.3. Con�dence intervals and estimates of uncertainty 66

3.3.1 Rationale for a homogeneous mixture model

Assuming that there exists only a few homogeneous groups is quite a sim-

pli�cation and depending on the type of event, other assumptions made

might be problematic. However, results are given in terms of only a few pa-

rameters and so results are easier to manipulate, but more importantly, the

interest here is to obtain a global metric for the concentration of rare events.

Indeed models which consider unit dependence might be more appropri-

ate for modelling speci�c cases, such as the number of crimes which are

committed in a region or a segment of a street or as a retaliatory process

between gangs in Los Angeles (Mohler et al., 2012). Thus, the outcome of

models which consider an inhomogeneous rate for each unit of observation

is a rate l X which might depend on the time, place, individuals and/or gangs

considered and indeed, if there is enough information to �nd a more detailed

model instead of a constant rate for each group, the individual model might

be much more precise.

The objective is to construct a global metric for the concentration of rare

events and therefore, assuming a constant rate for each individual is maybe

the best that can be done with the data available, and then, assuming a

homogeneous rate for each group gives the best possible metric considering

the restrictions mentioned above.

The distribution of the rates (q; l ) gives a simple description of the

distribution of events so that a global metric for the concentration can be

computed, but this should not be used at an individual level. The best way

to model, for instance, the crime suffered by an individual during different

times of the day, for example, is not by a Poisson distribution with a constant

rate; the probability of suffering a robbery of a person whilst commuting

back from work is higher than when sleeping or working and this would not

be captured by a model with a constant rate.
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3.4 Applications of the mixture model and the

rare event approach

3.4.1 Volcanic Eruptions

An application of the RECChas been completed via the study of volcanic

eruptions. Information about the location the 1,532 different volcanoes in

the world and their eruptions is available (Global Volcanism Program, 2013)

and here, the number of con�rmed eruptions for each volcano between 1966

and 2015 is considered (50 years of con�rmed eruptions), giving a total of

1,746 eruptions.

Are volcanic eruptions a rare and concentrated event? In this context,

out of the 1,532 different volcanoes, only 315 (around 21%) had an eruption

in the last 50 years, yet, those volcanoes which had an eruption in the past

50 years, had on average 5.5 eruptions, meaning that volcanic eruptions are

relatively rare and highly concentrated (see Table 3.1).

Eruptions 0 1 to 8 9 to 16 17 to 24 25+
Volcanoes 1,217 249 39 20 7

(%) 79.4 16.3 2.5 1.3 0.5

Table 3.1: Number of volcanic eruptions per volcano in the world between 1966
and 2015.

Results of the mixture model applied to the volcanic eruptions gives a

total of k̂ = 6 groups, so that the 1,532 volcanoes are grouped in an optimal

way into 6 groups; the �rst one has an eruption rate of l̂ 1 = 0 and a relative

size q̂1 = 49:9%, so that nearly half of the volcanoes are not expected to

have an eruption (Figure 3.1). The second group has an eruption rate of

l̂ 2 = 0:17and a relative size q̂2 = 34:2%, which means that nearly one-third

of the volcanoes expect to have an eruption every 287 years. The group with

the highest eruption rate has an eruption rate of l̂ 6 = 36:2 with a relative size

of q̂6 = 0:3%, meaning that volcanoes within that group expect to have an

eruption every 16.6 months. For volcanic eruptions, the RECC= 0:883.
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Figure 3.1: Volcanic eruptions pro�le between 1966 and 2015. The pro�le shows
that a small part of the volcanoes concentrate the largest part of the
eruptions between 1966 and 2015, however, more than half of the vol-
canoes are expected to have some eruption, with l i > 0.

The distribution of volcanoes throughout the world is highly similar to

the positioning of the major tectonic belts and so many of the major volca-

noes are clustered (Peterson, 1986). For example, the three most active

volcanoes during the past 50 years were Etna (with 43 eruptions), in Sicily,

Italy; Bezymianny (with 37 eruptions) and Klyuchevskoy (also with 37 erup-

tions), both in Kamchatka, Russia (see Figure 3.2). Additionally, volcanoes

include a variety of cones and craters and some features are destroyed by

continuing eruptions (Global Volcanism Program, 2013), which raises the

question of how to deal with observations that might be highly correlated?

For example, Bezymianny and Klyuchevskoy are 9.7 kilometres apart and

so in that small region, there was a total of 74 volcanic eruptions in the past

50 years.

Clustering volcanoes which are at a distance smaller than 10 kilometres

apart into volcanic regions allows the problem of correlated observations to

be dealt with. By considering volcanic regions, so that Bezymianny and

Klyuchevskoy in Kamchatka fall into a single region, instead of the 1,532
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Figure 3.2: Distribution of volcanic eruptions between 1966 and 2015. The size of
the disc represents the number of eruptions. Figure made with Natu-
ral Earth, free vector and raster map data naturalearthdata.com
downloaded in August 2015, data from the Global Volcanism Program
(Peterson, 1986) downloaded in June 2016 and R (R Core Team, 2014;
Hijmans, 2016; Loecher and Ropkins, 2015).

volcanoes, 1,439 regions are obtained, and by taking into account the num-

ber of eruptions from each region, the mixture model and the corresponding

RECCcan be computed. By following this procedure, the number of re-

gions changes, the largest Xi changes (from 43 eruptions of Mount Etna to

74 eruptions in the Kamchatka region) and the mixture model also changes.

However, when the 10-kilometre regions are considered, the RECCchanges

from 0.883 to 0.879 and even to a value of 0.870 when clustering volcanoes

into the considerably large regions with a radius of 20 kilometres.

By grouping observations which have a potential statistical dependence

based on a physical attribute, such as nearby volcanoes or crimes separated

in space within 200 metres (Mohler et al., 2012), groups/regions for which

the assumption of independence is fairly reasonable is obtained. Thus, the

RECCis relatively stable when correlated observations are grouped based

on a physical attribute.
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3.4.2 Human Mobility Patterns

Another area in which the RECCmight be useful is in the study of human

mobility patterns. It has been suggested that the way that individuals move

might follow a Lévy �ight (Gonzalez et al., 2008) which is a heavy-tailed

distribution which might capture longer but less frequent journeys. Different

research scenarios have been used, for example by following a large num-

ber of mobile users and by recording their position each time they interact

with their mobile or by periodically recording their position. The phone tow-

ers divide the region into a Voronoi lattice (Okabe et al., 2009) and the data

set provides the closest tower to a user so that the location is only recorded

by the nearest tower which provides the communication service.

The number of times that a particular mobile user is recorded inside a

tower vicinity gives an ideal setting for the study. It is reported (Gonzalez

et al., 2008), for example, that from 186 measurements taken from a user,

he or she was found to be only in the vicinity of 12 different tower vicini-

ties. Moreover, the pattern of that person shows that nearly 90% of their

time is spent in two locations and their neighbouring regions, most likely

their house and their of�ce. From the 186 measurements, 96 (51.6%) and

67 (36.0%) occasions happened in the two most preferred locations. In a

similar study, some users were found to visit a much higher number of differ-

ent vicinities (Song et al., 2010), and so the frequency in which users move

through different vicinities allows the concentration of mobility patterns to be

determined.

By counting the number of times that a user is recorded in different

tower vicinities, produces different mobility patterns that users might have

(Pappalardo et al., 2015b). The RECCof the tower vicinities counts of dif-

ferent users gives a way to compare their levels of mobility and, for example,

a smaller RECCimplies that a user has a higher degree of mobility than a

person who has a larger RECC. A larger RECC indicates that the person

tends to move on a day-to-day basis only through a small number of neigh-
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bours of their home city. In terms of human mobility, the RECCtakes into

account the (potentially) highly concentrated nature of the regions in which a

person moves, but also a random component which might motivate a person

to visit places which they do not regularly attend.

3.5 Remarks

The Rare Event Concentration Coef�cient RECC based on the mixture

model helps to compare the concentration rate of events which are not fre-

quent and tend to be highly concentrated by taking into account the random

nature of such events. Other measurements which are traditionally used for

the concentration/dispersion are meaningless since they do not detect struc-

tural changes in the process, or they cannot be used to compare different

regions or time intervals.

The Rare Event Concentration Coef�cient RECC is easy to compute

and provides a summary statistic which is comparable and helps detecting

structural changes in the dispersion of rare and highly-concentrated events,

such as crime, road accidents or human mobility.

The RECCis designed for rare events, so, in general, many zeros are

observed, which do not ensure that the rate of the individuals is zero, so if

a person, for example, suffered zero crimes last year it does not mean that

their rate is equal to zero. The simplest possible model, which is a mixture

model based on a Poisson distribution, might frequently have observations

equal to zero with a rate being greater than zero.

3.5.1 A new tool for measuring the concentration of rare

events

Considering events which have a low frequency, such as the number of

crimes suffered by individuals or the number of terrorist events on cities, and

constructing the pro�le of such events (the victimisation pro�le, in the case

of crime) gives two valuable results. Firstly, a precise but simple description

of the distribution of the events out of which it is possible to simulate and to
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observe the expected departures from the distribution. Things might have

a random element which is often ignored, but with the distribution and by

simulating events, the probabilistic approach is a natural part of the event.

A typical approach to determine the concentration/dispersion of a vari-

able (for example, using the Gini coef�cient) fails to work as a measure

of the concentration of road accidents due to their low frequency and their

high level of spatial concentration. The methodology presented here, con-

sidering the distribution of the rates and the RECC, helps to overcome the

low frequency of events, taking into consideration their random component

and to obtain a distribution from which simulations can be easily computed.

From the simulations, expected departures from the observed number of

accidents can be detected, including outliers.

3.5.2 Extensions of the concentration coef�cient

If events are not as rare, then it is possible to estimate the individual rates

using a different technique than the mixture model and that tries to mimic the

underlying pattern. For example, consider the rates at which underground

stations serve their users, which is best modelled taking into account the

hour and the day of the week; for instance, the number of mobile users

within the nearest routeing tower vicinity, which might be modelled taking

into account the time and space. More sophisticated models for a counting

process can also be considered, for example, gang shootings may incite

retaliation from rival gangs, and an earthquake increases the chances of a

second earthquake, causing, in both cases, a self-exciting process (Mohler

et al., 2012). In the latter case, estimating the individual rates, either as

a function of time, space and/or past events, gives a much better approxi-

mation to reality. Thus, the Event Concentration Coef�cient ( ECC) can be

constructed simply by computing the Gini coef�cient of the individual rates,

even in the case in which they were estimated using a different model. The

resulting metric provides, as in the case of the RECC, a number between

zero and one which re�ects the level of concentration of such events.



Chapter 4
The distribution and concentration of

road accidents

Road accidents are one of the main causes of death in the world but yet,

road accidents have a low frequency and they tend to be highly concentrated

when their spatial distribution is considered. Thus, road accident data is

challenging to deal with and poses serious challenges for policy-making.

Here, the distribution of road accidents is modelled as a rare event and

the accident pro�le of a city and of motorways is constructed. As a result,

a distribution for simulating road accidents and a metric for the concentra-

tion is obtained which in turn, gives valuable insights for decision-making in

terms of urban and motorways accidents. It is based on published research

(Prieto Curiel et al., 2018a).

4.1 Road accidents

According to the World Health Organization, during 2013, more than 1.2

million people died around the world due to a road accident1, one of the

most frequent causes of death, 2.8 times the mortality due to Malaria and

3.3 times the mortality due to violence. Whilst the number of road accidents

is now a global concern, it is, however, possible to either reduce their fre-

1Data from the World Health Organization, available at the Global Health Observatory
data repository https://bit.ly/2L89d9g
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quency or their impact: in the UK, for example, the number of road fatalities

decreased from an average of more than 3,400 each year between the year

2000 and the year 2004 to an average just above 1,800 fatalities each year

between 2010 and 20132. This dramatic decrease in the number of fatalities

in the UK indicates that accidents do not simply just occur and that through

sensible policies, thousands of deaths around the world could be avoided.

Broadly speaking, road accidents have three potential causes: �rstly, it

could have something to do with the driver. It was shown that the chances

of a driver having an accident are many times higher if he or she consumes

high levels of alcohol (Horwood and Fergusson, 2000) or is fatigued (Sag-

berg, 1999) and accidents are considerably more likely to lead to a fatality if

the driver exceeds the speed limit3. Secondly, accidents might have some-

thing to do with the local environment, for example, due to reduced visibility,

the weather conditions, poorly designed junction, a poorly enforced speed

limit, faulty traf�c signals and more. Finally, an accident might occur simply

due to (bad) luck, for example, a non-preventable failure in the car and so

on. The �rst and second causes, attributed to the driver and to the envi-

ronment, can and should be reduced to a minimum, both in terms of their

frequency and their impact.

How to distinguish whether a certain region has an increased probability

of accounting for an accident? Clearly, the road geometry, road obstacles

and the level of traf�c have an impact on the distribution of road accidents,

but these tend to remain unchanged for long periods of time and are speci�c

to a certain area so it makes any comparison between different cities, or

even areas of a city, quite complicated.

If, for example, data shows a speci�c junction with several accidents,

would that be enough to suggest that it is necessary to reduce the speed

limit or put in a road intervention scheme? Is there a threshold as to the

2Data from the Department for Transport in the UK, available at https://bit.ly/
1JjD4iJ

3Report from the Royal Society for the Prevention of Accidents https://bit.ly/
2aZioDQ
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acceptable number of accidents that a street or a road could experience

and yet still be considered safe?

4.1.1 Heat maps and the random location of accidents

Numerous studies have been conducted to identify the spatial patterns of

road traf�c accidents and develop techniques to identify crash-prone loca-

tions. A frequently used tool to analyse the location of road accidents (as

well as other spatially-distributed events, such as the location of crimes or

gang �ghts) is a heat map (Anderson, 2009; Erdogan et al., 2008; Prasan-

nakumar et al., 2011; Steenberghen et al., 2010; Anderson, 2007). This tool

provides a graphical description of the location of a point process, which

highlights areas or junctions more prone to accidents.

There are, however, two technical aspects with respect to heat maps

which are often ignored: when a location is considered to be “hot”, what

is it compared with? and to what degree is the observed heat map the

result of randomness? The relevance of randomness, in terms of its spatial

distribution, is that every point process, no matter how it is generated and

whatever the underlying distribution, will result in a set of observations being

relatively close to each other, thus, even random points (where the term

`random' is used here for a uniform distribution) might be interpreted as

having a “hot region” (Figure 4.1).

Although a heat map offers a visual tool for representing road accidents,

it might actually result in misleading conclusions when the random element

of the location of road accidents is not considered. The crucial difference

between a point process that is generated by a uniform distribution and a

point process with a different distribution, is frequently undetectable based

on a simple visual inspection. A similar situation occurs when a single road

is considered, an apparent concentration of accidents will appear, no matter

how random or concentrated road accidents are. A formal statistical test

against Complete Spatial Randomness can be constructed by considering

the distance to the nearest neighbour of each point and compare this against
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Figure 4.1: Heat map of a simulated point process that follows a uniform distribu-
tion. The underlying uniform distribution has the property that every
region is expected to contain a number of points proportional to its
area, thus, any apparent concentration observed in the map and any
region with a higher, or fewer, points is only the result of randomness
and not the result of a higher probability of observing a point in that
region.

a uniform distribution (Diggle, 2014) and only orient efforts at a speci�c lo-

cation when spatial randomness is rejected.

4.1.2 Concentration of road accidents

Road accidents might happen due to a mixture of environmental elements,

for example, an obstructed visibility, excessive speed of road users, the cur-

vature or quality of the roads, the street lighting and more. These conditions
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perhaps repeat, almost under the exact same conditions, day after day and

so it is expected to observe particular road junctions or segments with a

much higher number of accidents than others if the environment is the main

cause. However, accidents might also happen because of factors related to

the driver or simply because of `luck', and the chances are that interventions

oriented to the road rather than the driver would not reduce this type of ac-

cident. A natural way to detect whether road accidents might be attributed

to elements on the road rather than the driver is through its concentration.

If there is an element which increases risk related to the environment, then

more accidents would occur in this speci�c location than elsewhere and

therefore a high concentration should be observed.

The degree of concentration of events has been shown to play a crucial

role in other aspects, such as wealth (Lorenz, 1905; Yntema, 1933), the pop-

ulation of cities, the size of a forest �re (Newman, 2005) or crime. By consid-

ering the victims who suffer crime (O et al., 2017; Hope and Norris, 2013),

the offenders who commit them (Wolfgang et al., 1987; Wolfgang, 1983;

Martinez et al., 2017) and the places in which crime is executed (Weisburd,

2015; Lee et al., 2017), it has also been shown that crime is highly concen-

trated. In the speci�c case of the places in which crime is executed, a “law of

crime concentration” has recently been developed (Weisburd, 2015) which

provides a relevant reference in the study of crime at places.

Although crime and road accidents are fundamentally different events,

they both share a low frequency, a high degree of concentration and the

fact that both are, to a certain extent, unpredictable. Thus, both areas of

research can utilise the tools developed to deal with their low-frequency but

highly-concentrated type of events.

Statistically speaking, one of the things that make road accidents (as

well as crime) hard to analyse is their low frequency. In London, for exam-

ple, the road junction with the highest number of accidents has (just over)

one accident every month, which makes them highly unpredictable and sta-
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tistically hard to deal with. No relevant pattern concerning the day of the

week or the time of the day of road accidents, can realistically be observed

when the frequency of such events is so low. Moreover, since road ac-

cidents are low-frequency events, it is observed that the majority of road

segments (or intersections) suffered no accidents within the period of the

analysis. Hence, the Gini coef�cient G, which is a popular measure of the

degree of concentration (Dorfman, 1979), based on the count of accidents in

each road segment, will reveal a high concentration of accidents, even when

they are uniformly distributed amongst the segments in which accidents oc-

curred. In other words, the Gini coef�cient obtained directly from the count

data does not take into consideration the fact that these events are rare, and

will naturally regard the data as having a high degree of concentration. As

a consequence, the Gini coef�cient of low-frequency events might easily be

misinterpreted and might make it dif�cult to compare the concentration of

road accidents between cities or different motorways.

4.2 Spatial counts of the road accidents

Two sources of information and two types of analysis are used here to com-

pare the concentration of road accidents. Firstly, data available from the

Transport for London (TFL) website4 allows the spatial concentration of road

accidents within a city to be measured. Secondly, data available from the

Ministry of Transportation from Mexico5 allows the concentration of road ac-

cidents on motorways to be measured. The type of road accident and data

from an urban environment is very different from that taken on motorways

and therefore, two kinds of analysis are presented, based on a different dis-

cretisation of the observed road accidents.

Road accident data has, in general, two issues. A considerable number

of non-fatal injury accidents are not reported to the police and are there-

fore not included in the available data, however, issues of under-reported

4Available at https://bit.ly/295vkak
5Available in Spanish at http://www.sct.gob.mx/carreteras/
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accidents are considered minimal in the case of more severe accidents

(Savolainen et al., 2011). Also, there might be a lack of precision related

to the location of the road accidents, especially in the case of accidents

on motorways, as there are fewer reference points. However, no systematic

bias on the location of the road accidents should be observed and therefore,

concentration metrics give reliable information about the underlying pattern.

4.2.1 Urban data - London

The data from the Transport for London contains information on road traf-

�c collisions that involve personal injury occurring on public highways which

have been reported to the police. Data is collected by the police at the

scene of an accident or, in some cases, reported by a member of the public

at a police station, then processed and passed on to Transport for Lon-

don. The data, taken between 2005 and 2014, includes 242,782 unique

collisions, with x;y space coordinates available. Accidents are subdivided

into three categories: fatal, where death occurs in less than 30 days as a

result of the collision, serious, if there are fractures or injuries requiring hos-

pital treatment, and slight injury, where the accidents do not require medical

treatment. Table 4.1 contains the reported frequencies between 2005 and

2014.

Category fatal serious slight total
frequency 1,670 27,788 213,324 242,782

% 0.7 11.4 87.9 100

Table 4.1: Observed frequencies of collisions in Greater London between 2005 -
2014

For the purpose of taking into account only the urbanest parts of the

city, only the central area of London is considered here, which accounts for

70% of the road accidents registered by TFL occur.
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4.2.2 Motorway data - Mexico

The motorway data considered here contains road traf�c collisions regis-

tered on motorways in Mexico. The data is divided for each motorway and

considers, for each accident registered by the police, the distance from the

starting point of the highway. Unfortunately, the data does not include in

which direction of the road the accident occurred.

The motorways analysed have Mexico City as their starting point, con-

necting the capital of Mexico with �ve large cities: Cuernavaca, Toluca,

Pachuca, Puebla and Querétaro (Figure 4.2). There are two types of motor-

ways, Federal Roads (free of charge) and Toll Roads and each city has both,

a Federal Road and a Toll Road connecting them to Mexico City, except for

the case of Querétaro for which the Federal Road �rst passes through an-

other city (Toluca) and so it is not considered. In total, 9 motorways are

considered for the study.

The length of the motorway and the vehicle �ow rate is different for

each of the 9 motorways considered. Both of these factors become relevant

when it comes to studying road accidents. Longer roads or those with a

higher number of vehicles are expected to have more accidents even if the

risk for a driver is the same as compared to a shorter or less used road.

Therefore, the �ow, measured in vehicle kilometre per year units, makes the

risk on each road comparable.

Taking into account the length of the road and the number of cars using

it, allows a comparison of different roads to be made. For instance, in Table

4.2 it is possible to observe that the Toll Road between Mexico City and

Querétaro has the highest number of accidents between 2015 and 2016,

yet, is also the longest road among the 9 considered and has a considerably

high vehicle �ow. The Federal Road between Mexico City and Cuernavaca,

on the other hand, has a higher accident risk and is more lethal (meaning

that a driver is more likely to suffer an accident and it is more likely that the

accident will result in a fatality) than in any other of the roads considered, but
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Figure 4.2: Main roads connecting Mexico City. Schematic representation of the
nine roads which connect Mexico City and the �ve main cities in its
peripheral region.

it is a short road with a reduced traf�c �ow and so it does not have as many

accidents as the other roads. Thus, comparing the accident risk between

different roads has to be based on the length of the road and the number of

vehicles that use it or its �ow.

The accident risk (number of accidents per vehicle kilometres of travel)

and how lethal the accidents are, varies considerably between different

roads. The road with the highest accident risk (the Federal Road between

Mexico City and Cuernavaca) is actually 12.5 times more prone to accidents

and 9.9 times more likely to have lethal accidents than the safest road (the

Federal Road between Mexico City and Puebla).

4.3 Methodology for a spatial point process

It is important to determine when two accidents have occurred at the same

location. Different levels of data aggregation have been used in previous
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Destination length �ow accidents victims fatal
Cuernavaca Federal 60.5 467.9 105 159 22

Cuernavaca Toll 70.7 1204.7 106 128 23
Toluca Federal 55 764.5 117 90 20

Toluca Toll 55 1589.4 46 45 15
Pachuca Federal 62.5 1761.3 162 161 29

Pachuca Toll 62.5 1083.3 62 99 20
Puebla Federal 121 2736.3 49 63 13

Puebla Toll 121 2725.7 162 309 46
Querétaro Toll 164 1548.8 293 362 64

Table 4.2: Observed frequencies of collisions on the nine motorways which have
Mexico City as origin between 2015 and 2016. The length of the road is
measured in kilometres and �ow in of vehicles is measured in millions
of vehicle kilometres per year.

studies, from countries, provinces, counties, road segments, a point pat-

tern process, road junctions and segments of a road with various lengths

(Thomas, 1996).

The hypothesis that road accidents are homogeneously distributed

(known as Complete Spatial Randomness or CSR) is easily rejected (Bad-

deley, 2010) by measuring the nearest neighbour distance for every road

accident (Diggle, 2014). A map of where the accidents occurred during the

past ten years, in the case of the London data (Figure 4.3), shows a very

speci�c pattern, highlighting main roads and congested junctions.

4.3.1 Discretisation of the data

4.3.1.1 Urban environment

In the case of the urban space, a tessellation of the region of analysis is con-

sidered, that is, the city is divided into nearly 30,000 non-overlapping, regu-

lar hexagons, and the number of accidents within each hexagon is counted.

A hexagonal tessellation is frequently used in cartography since it offers

advantages in terms of the visualisation (Birch et al., 2007) and it offers

equal-area units and minimal correlation with regularly spaced features, as

opposed to a square grid (Carr et al., 1992). Hexagons of side length 40

metres provide a useful level of re�nement for our analysis dividing the re-
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