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Key Points 

• Bone marrow adipocytes support AML survival.  

• AML induces adipocyte lipolysis of triglyceride to free fatty acids and 

subsequent transport by FABP4. 

 

Abstract 

Despite currently available therapies most patients diagnosed with acute myeloid 

leukemia (AML) die of their disease. Tumor-host interactions are critical for the 

survival and proliferation of cancer cells; accordingly, we hypothesise that specific 

targeting of the tumor microenvironment may constitute an alternative or additional 

strategy to conventional tumor-directed chemotherapy. Since adipocytes have been 

shown to promote breast and prostate cancer proliferation, and because the bone 

marrow adipose tissue (MAT) accounts for up to 70% of bone marrow volume in 

adult humans, we examined the adipocyte-leukaemia cell interactions to determine if 

they are essential for the growth and survival of AML. Using in-vivo and in-vitro 

models of AML we show that bone marrow adipocytes from the tumor 

microenvironment support the survival and proliferation of malignant cells from 

patients with AML. We show that AML blasts alter metabolic processes in adipocytes 

to induce phosphorylation of hormone-sensitive lipase and consequently activate 

lipolysis, which then enables the transfer of fatty acids from adipocytes to AML 

blasts.  In addition, we report that fatty acid binding protein-4 (FABP4) mRNA is up-

regulated in adipocytes and AML when in co-culture. FABP4 inhibition using FABP4 

shRNA knockdown or a small molecule inhibitor prevents AML proliferation on 

adipocytes. Moreover, knockdown of FABP4 increases survival in Hoxa9/Meis1-

driven AML model. Finally, knockdown of carnitine palmitoyltransferase IA (CPT1A) 

in an AML patient-derived xenograft model improves survival. Here we report the first 

description of AML programming bone marrow adipocytes to generate a pro-tumoral 

microenvironment.  
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Introduction 

Survival of patients with acute myeloid leukemia (AML) is poor; two-thirds of young 

adults and 90% of older adults die of their disease.1 Improved outcomes will now 

only come from novel treatment strategies derived from an improved understanding 

of the biology of the disease. 

 

All mammals generate blood within their bones and AML arises from myeloid 

progenitors within the bone marrow (BM) microenvironment. AML blasts exhibit high 

levels of spontaneous apoptosis when cultured in vitro but have a prolonged survival 

time in vivo further indicating that the tissue microenvironment plays a critical role in 

promoting and maintaining AML cell survival.2-5  In human leukemias the 

microenvironment provides a number of soluble factors whose primary functions are 

to promote survival and homing,6,7 which implies that the apoptotic defect in AML is 

not cell-autonomous but highly dependent on extrinsic signals derived from the 

cellular microenvironment. These complex cell-cell interactions between AML blasts 

and the cells that support them within the bone marrow may therefore provide an 

attractive target for novel drug therapies. 

 

The BM microenvironment is defined by cell types not directly involved in 

haematopoiesis and include: macrophages; endothelial cells; osteoclasts; 

osteoblasts; adipocytes and fibroblasts. BM adipocytes were identified over a 

century ago, and bone marrow adipose tissue (MAT) accounts for up to 70% of BM 

volume of the axial skeleton in adult humans.8-10 MAT is an energy storage organ 

and consists primarily of triglycerides which can be broken down to release free fatty 

acids (FA) which in turn can be used to generate ATP. In cancer, a recent study by 

Cawthorn et al (2014), demonstrated that BM adiposity and circulating adiponectin 

increase in cancer therapy.8 Moreover, TNF and adiponectin from the BM of patients 

with AML inhibit normal hematopoiesis.11  However, although AML blasts are highly 

proliferative and grow within an adipocyte-rich environment, to date there is limited 

knowledge regarding the specific functions of BM adipocytes in relation to the 

proliferation and survival of AML.  

 

Adipocytes, in the context of solid malignancies, support tumor survival, proliferation 

and metastasis.12-14 In a study on breast cancer and the associated adipocytes 
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therein, Dirat et al. (2011) showed that these cancer associated adipocytes are 

greatly influenced by the invasive cancer cells with which they are associated.12 This 

study supports the concept of cancer cells orchestrating an environment which 

favours their progression through complex mechanisms by obtaining adipocyte 

participation. Furthermore, studies carried out in prostate cancer have demonstrated 

lipid transport between adipocytes and prostate cancer cells.13,15 In models of bone 

metastasis following prostate cancer, Herroon et al. (2013), show functional 

evidence of BM adipocyte support of tumor growth and identify fatty acid binding 

protein-4 (FABP4) as a key protein involved in the mechanism. While this study 

investigates FABP4 expression in the cancer cells, a separate study has investigated 

FABP4 expression in ovarian cancer associated adipocytes.14 FABP4 upregulation 

has been shown in the fat-rich omental metastases compared to the primary tumor 

site and mice lacking FABP4 show significant reduction in metastatic tumor growth, 

indicating the role of FABP4 in cancer proliferation and metastasis. Taken together, 

these studies identify a functional role for adipocytes and fatty acid transporters in 

the support of solid tumor metabolism and subsequent metastatic spread.  

 

In the present study, we look to identify whether adipocytes directly support the 

proliferation of human AML. Furthermore we evaluate the mechanisms controlling 

the interaction between AML blasts and MAT, as well as the downstream metabolic 

consequences in both the adipocytes and leukemia cells. Finally, we identify key 

regulators in the AML/MAT interaction and assess AML survival following targeted 

inhibition of this interaction.  
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Materials and Methods 

Materials 

Anti-phosphorylated HSL, anti-HSL, anti-HIS and anti-FABP4 were purchased from 

Cell Signalling Technology (Cambridge, MA, USA, Cat. 4126, 4107, 2365 and 3544 

respectively). Control-IgG-FITC, control-IgG-PE, control-IgG-APC, anti-CD34-PE, 

anti-CD90-FITC, anti-CD73-PE, anti-CD105-APC, anti-CD33-APC and anti-CD45-

FITC, antibodies were from Miltenyi Biotec (Bergisch Gladbach, Germany, Cat. 

130098847, 130098845, 130092214, 130098139, 130095403, 130095182, 

130094926, 130098043, 130098864). Lineage Cell Depletion Kit (mouse) was also 

purchased from Miltenyi Biotech (Cat 130090858).  Acipomox, etomoxir and FABP4 

inhibitor were purchased from R&D Systems (Abingdon, UK, Cat. 2784 and 4539). 

Recombinant FABP4-his was purchased from Abcam (Cambridge, UK Cat. 204760). 

All other reagents were obtained from Sigma-Aldrich (St Louis, MO, USA), unless 

otherwise indicated. 

 

Primary cell culture and differentiation 

Primary AML blasts and non-malignant CD34+ cells were obtained from patient bone 

marrow or blood following informed consent and under approval from the UK 

National Research Ethics Service (LRECref07/H0310/146). Cell isolation was carried 

out by density gradient centrifugation using Histopaque (Sigma-Aldrich, Cat. 1077) 

and cell type was confirmed by flow cytometry. All cells were grown in normal media 

(Dulbecco’s Modified Eagle’s Medium (DMEM) (ThermoFisher, Cat. 21885-025) 

supplemented with 20% foetal bovine serum (FBS) (ThermoFisher, Cat.10082139)) 

with or without the addition of cytokines purchased from Peprotech, UK, 100 ng/ml 

SCF (300-07), 50 ng/ml FLT3L (300-19), 20 ng/ml IL-3 (200-03) and 20 ng/ml G-CSF 

(300-23). Bone marrow stromal cells (BMSC) were isolated from AML bone marrow 

samples by adherence to tissue culture plastic and were then expanded in DMEM 

containing 20% FBS and supplemented with 1% penicillin-streptomycin 

(ThermoFisher, Cat 15140122). BMSC markers were confirmed using flow cytometry 

for expression of CD90+, CD73+, CD105+ and CD45-. 16 To induce adipocyte 

differentiation of BMSC (passage 2-4), a cocktail of dexamethasone (1μM), 

indomethacin (0.2mM), insulin (100nM) and 3-isobutyl-1-methylxanthine (0.5mM) 

(Cat. D4902, 17378, I9278 and I7018) in DMEM containing 10% FBS was prepared. 

The differentiation of BMSC to adipocytes was between 75%-95% as measured by 
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neutral lipid specific BODIPY® 493/503 dye (supplementary figure 1A and 

supplementary table 1). After differentiation, adipocytes and control BMSC were 

analysed for markers of adipocytes (adiponectin, FABP4 and CEBPa). Figure 3A 

and Supplementary figure 1B shows that differentiated adipocytes express higher 

levels of adiponectin, FABP4 and CEBPa than BMSC.  

 

Flow cytometry 

For this study we used the Accuri C6 (Bectin Deckinson, Oxford, UK) and the 

CyFlow Cube 6 (Sysmex, Milton Keynes, UK) for flow cytometry analysis. Cells were 

incubated for 5 minutes with the FCR receptor blocker (Miltenyi Biotec, Cat. 130-

059-901) and then stained with isotype controls or test antibodies (Miltenyi Biotec). 

Gates were set to the appropriate isotype control.  

 

Co-culture assay 

BMSC were seeded at 3 x104 cells per well of a 12 well plate and 1x104 for a 24 well 

plate in normal growth media. Cells were left to adhere and proliferate until maximum 

confluency. Growth media was replaced with differentiation media which was 

replaced every four days until day 21. Differentiated adipocytes were washed twice 

with normal growth media and then placed in normal growth media until co-culture 

experiment. For co-culture experiments AML cells were placed on the adipocytes at 

5x105 (per well of 12 well plate) and 1x105 (per well of a 24 well plate) in normal 

growth media.  Adipocyte/AML co-cultures were then incubated for indicated time 

points and Supplementary Table 2 shows the combination of different samples used 

for each experiment. All co-cultures were from different patients, at no point were 

autologous co-cultures performed. To isolate adipocytes from co-culture 

experiments, all suspension cells were removed by gentle pipetting and washing with 

PBS. This was then followed by light trypsinisation where diluted typsin with PBS 

(1:1) for 40 seconds followed by gentle tapping. All suspension cells where removed 

and adhered adipocytes were washed with PBS and then lysed using RNA or protein 

lysis buffer. 

 

Lentiviral knockdown 

MISSION pLKO.1-puro Control Vector, catalogue number SHC001 was used as the 

lentivirus control (Control shRNA). Plasmids containing MISSION® shRNA 
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TRCN0000418254 (human FABP4 shRNA), TRCN0000105185 (mouse FABP4 

shRNA), TRCN0000036279 (human CPT1A shRNA), TRCN and were purchased 

from Sigma-Aldrich and viruses were produced as previously described.17 Lentiviral 

stocks were concentrated using Amicon® Ultra centrifugal filters (Cat. UFC910024) 

and titres were determined using Lenti-X™ qRT-PCR titration kit (CloneTech Cat. 

631235). Stromal cells were plated at a density of 3x104/well in a 12 well plate, 

expanded and differentiated into adipocytes. Adipocytes were then infected with 

FABP4 shRNA lentiviral stock at an MOI of 20. Human and mouse AML cells were 

infected with respective lentiviral stocks at an MOI of 20 in the presence of polybrene 

(10µg/ml final). Infected cells were analysed using real-time PCR (Roche) and 

Western blotting. 

 

Patient-derived AML xenograft 

For this study the NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) from The Jackson 

Laboratory, Bar Harbour, ME, USA were used. The NSG mice were maintained 

under specific pathogen-free conditions in the research animal facility of The 

Disease Modelling Unit, The University of East Anglia, Norwich, UK. All animal 

experiments were performed in accordance with UK Home Office regulations.  

 

Engraftment of primary AML cells in NSG mice 

6-8x106 isolated AML blasts were grown in mono culture and 2x106 isolated AML 

blasts grown on adipocytes for 6 days, 2x106 viable AML cells were washed and 

subsequently resuspended in PBS. Cells were then injected into the tail vein of non-

irradiated 6-8 week old female NSG mice. When clinical signs of illness became 

apparent (rough fur, hunchback, or reduced motility) or if 12 weeks post injection 

was reached, mice were sacrificed by exposure to CO2. BM and spleen were 

harvested and analysed for human CD33 and CD45. If more than 1% of human 

CD45/CD33 cells were detected in the BM or spleen, the AML sample was said to be 

engrafted.  For AML grown in cytokine supplemented media, 2x106 viable AML 

grown in normal media with the addition of cytokines (100 ng/ml SCF (Peprotech 

300-07), 50 ng/ml FLT3L (Peprotech 300-19), 20 ng/ml IL-3 (Peprotech 200-03) and 

20 ng/ml G-CSF (Peprotech 300-23). 
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For the CPT1-KD experiment, isolated primary AML were grown on adipocytes for 6 

days. The AML cells were removed from the adipoyctes and then infected with a 

control-shRNA or  CPT1-shRNA lentivirus and after 96 hours cells were expanded 

on the adipocytes and 2x106 primary AML cells were then injected into the tail vein of 

non-irradiated 6-8 week old female NSG mice.  

 

Retroviral AML transplantation mouse model 

C57BL/6J mice were obtained from Janvier-Labs (Le Genest-Saint-Isle, France). All 

animal experiments were performed according to national and international 

standards and had been approved. Bone marrow cells were harvested from mice, 

and lineage-negative cells were obtained by negative selection using the Lineage 

Cell Depletion Kit (mouse) as recommended by the manufacturer. Lineage-negative 

cells derived from C57BL/6J were retrovirally infected by co-culture with GP+E86 

cells in the presence of polybrene (10 µg/ml, Sigma-Aldrich, Munich, Germany). Co-

culture with GP+E86 packaging MSCV-Hoxa9-PGK-neo was performed for 3 days 

followed by co-incubation with GP+E86 MSCV-Meis1-IRES-YFP for 1 day. Hoxa9 

cells were selected with 0.6 mg/ml G418 (Sigma-Aldrich) for at least 5 days. After 

selection, cells were sorted with a FACS BD Aria III cell sorter. Lentiviral 

transductions of cultured cells with vectors encoding FABP4-specific shRNA and 

control shRNA were performed as described previously.18 8x104 cells were 

transplanted together with 2x105 support cells by injection into the tail vein of lethally 

irradiated (9.5 Gy) recipient mice (C57BL/6J). Support cells were isolated from 

C57BL/6J mice and purified on a Ficoll gradient. To perform in vitro assays with 

Hoxa9/Meis1 expressing cells, cells were cultured in DMEM supplemented with 20% 

FBS and supplemented with the following cytokines murine SCF (cat. 250-03; 

100ng/ml final), IL-6 (cat. 200-06; 10ng/ml final) and IL-3 (cat.213-13; 10ng/ml final).  

 

Immunocytochemistry 

AML-adipocyte niches formed in the BM were isolated from patient samples and 

grown on chambered tissue culture treated slides (12 well chamber, removable – 

Ibidi cat. 81201). Niches were then fixed with 4% PFA, permeabilised with 0.01% 

Triton and blocked with goat serum. Cells were stained with neutral lipid specific 

BODIPY® 493/503 (4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-

Indacene) dye, CD90 and DAPI. AML blasts were removed and stained with neutral 
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lipid specific BODIPY® 493/503 and CD34 antibody. Images were visualised with 

secondary Alexa Flour 568 or 488 conjugate immunoglobulin G (Invitrogen). Nuclei 

were stained with 4’6-diamidino-2-phenylindole before samples were mounted with 

Fluoromount aqueous mounting medium (Sigma Cat. F4680). Cells were imaged by 

an AxioCam ICm1 monochrome CCD camera attached to the Apotome.2 Imaging 

System and confocal microscopy (Zeiss LSM 800 with Airyscan) using Axiovision 

4.8.2 software (Carl Zeiss). Image staining intensities were analysed with ImageJ 

software. 

 

Proliferation, cell cycle and death assays 

Treated primary AML blasts were incubated with 5-bromo-2’–deoxyuridine (BrdU 

staining kit, eBioscience, Cat. 8811-6600) and CD34 antibody. The proliferation 

percentage of cycling AML blasts were analysed using flow cytometry. Cell cycle 

analysis of AMLs from monoculture and co-culture was carried out by ethanol 

fixation and propidium iodide staining and quantified using flow cytometry. AML 

apoptosis was measured using PI/AnnexinV (eBiosciences, Cat. 88-8005-72) and 

was also quantified using flow cytometry. 

  

Free fatty acid and glycerol detection 

Free fatty acid and glycerol detection was performed using a lipolysis assay kit for 

detection of both free glycerol and fatty acids (Zenbio, Research Triangle, NC, Cat. 

LIP-2-NC). AMLs were cultured with adipocytes in LIP2/3 assay buffer and incubated 

for 24 hours at 37C. Media was assayed to detect free fatty acid and glycerol 

according to manufacturer’s specifications. 

 

Free fatty acid uptake assay 

For lipid visualisation and transfer, adipocytes were incubated with dodecanoic acid 

fluorescent fatty acid analogue (DAA) (QBTTM Fatty acid uptake assay kit, Molecular 

Devices, Cat. R6138) for 3 hours and washed three times in PBS. Primary AML 

blasts were then cultured alone or with labelled adipocytes for 24 hours. AML blasts 

were then removed and fluorescence was subsequently measured by flow cytometry 

to indicate transfer of fluorescent labelled fatty acid from adipocytes to AML.  

 

Real-time PCR 
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Total RNA was extracted from co-cultured BMSC, adipocytes and AMLs and from 

monoculture of the same using Nucleic Acid PrepStation from Applied Biosystems 

(Cat. 6100). RNA PCR core kit was used for reverse transcription. SYBR green I dye 

(Roche, Cat. 04887352001) was used for real-time quantitative PCR using human 

FABP4 (F: CCACCATAAAGAGAAAACGAG, R: AGTTGCTTGCTAAATCATGG), 

human GAPDH (F: CTTTTGCGTCGCCAG, R:TTGATGGCAACAATATCCAC),  

human CPT1 (F:TGGATCTGCTGTATATCCTTC, R: AATTGGTTTGATTTCCTCCC), 

Mouse FABP4 ( F: GTAAATGGGGATTTGGTCAC, R: 

TATGATGCTCTTCACCTTCC). Mouse GAPDH (F: AAGGTCATCCCAGAGCTGAA, 

R: CTGCTTCACCACCTTCTTGA) primers.  

 

Western immunoblotting 

Western analyses following SDS-PAGE were carried out as described. Whole cell 

lysates were extracted from AML/adipocyte co-culture and monocultures by using 

radioimmunoprecipitation assay buffer (RIPA) containing 1% NP-40 (Sigma-Aldrich, 

Gillingham, UK), 50 mmol/L Tris, 10% glycerol, 0.02% NaN3, 150 mmol/L NaCl, and 

a cocktail of phosphatase and protease inhibitors (Sigma-Aldrich, Gillingham, UK). 

SDS-Page was performed as previously described. 17,19  

 

Bioinformatic analysis 

Publicly available RNA sequencing data were downloaded for a panel of 43 AML 

patients, which comprised 22 AML samples obtained from peripheral blood and 21 

AML samples obtained from bone marrow aspirate and for 17 non-malignant CD34+ 

from 17 non-pooled individuals (Gene Expression Omnibus Accession ID: 

GSE49642 and GSE48846).20 Data were available as Reads Per Kilobase per 

Million mapped reads (RPKM). RPKM data for FABP4 were extracted and processed 

further by first replacing zero-valued entries with one followed by logarithmic 

transformation to the base 2.21 FABP4 RPKM values for blood, bone marrow 

samples and non-malignant CD34+ cells were compared with a Wilcoxon rank-sum 

test. 

 

Clonogeneic methylcellulose assay 
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Primary AML blasts from adipocyte co-culture and monoculture were plated in 

methylcellulose medium (R&D Systems) at a density of 1 x 104 in all experiments. 

Colonies were visualised and counted after 14 days. 

 

Fatty acid oxidation 

β-oxidation of fatty acids was assessed using the Seahorse XFp Analyzer and the 

Seahorse XF Palmitate-BSA FAO Substrate kit (Agilent Seahorse Bioscience) 

according to manufacturer’s specifications. Briefly, AML blasts or non-malignant 

CD34+ cells were cultured with or without adipocytes and then removed from co-

culture and placed in substrate limited media (supplemented with 0.5mM glucose, 

0.5mM carnitine, 1mM glutamine and 1% FBS) for 4 hours before assaying. AML 

blasts were then plated in poly-D-lysine (Sigma) coated assay wells at a density of 

2x105 per well in base media containing 2.5mM glucose, 0.5mM carnitine and 5mM 

HEPES and adjusted to pH7.4 with 1N NaOH. ETX (40µM) or BSA and 

Palmitate:BSA where added into the injection ports. The experimental template was 

designed using Wave software for desktop from Seahorse Bioscience. 

 

Statistical analysis 

We used the Mann-Whitney U test to compare results between groups unless 

otherwise stated in the legends. Results with P < 0.05 were considered statistically 

significant (denoted by *). Results represent the mean ± Standard Deviation of 4 or 

more independent experiments. For Western blotting, data are representative 

images of 3 independent experiments. We generated statistics with Graphpad Prism 

5 software (Graphpad, San Diego, CA, USA). 
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Results 

BM Adipocytes support the survival and proliferation of primary AML. 

Cellular proliferation is a highly energy-intensive process. Since adipocytes store 

energy in the form of triglycerides, we hypothesised that adipocytes provide energy 

in the form of fatty acids (FA) to AML blasts to support rapid growth. Initially, to 

determine the presence of lipids in AML we examined freshly isolated AML cells for 

lipid stores using the neutral lipid dye (BODIPY® 493/503) and find that freshly 

isolated AML cells (CD34+) contain abundant lipids (figure 1A). Figure 1B and 1C 

shows that lipid stores using the neutral lipid dye are depleted in AML and non-

malignant CD34+ cells when cultured in vitro.  Supplementary Figure 2 show that 

AML lose lipid content even when co-cultured with BMSC. As primary AML cells 

undergo spontaneous apoptosis when cultured in vitro to determine if adipocytes can 

support the survival of primary AML we cultured primary AML blasts, either alone or 

in co-culture with adipocytes derived from BM mesenchymal progenitor cells. Figure 

1D and Supplementary Figure 3A show that primary AML blasts co-cultured with 

adipocytes (n=11) are protected from undergoing apoptosis for up to 6 days when 

compared to AML blasts cultured alone.   

 

Next we wanted to determine if BM adipocytes can support the proliferation of 

primary AML blasts. Primary AML blasts increase in number when co-cultured with 

BM adipocytes for 6 days, compared to AML monoculture and AML cultured on 

BMSC (n=12) (figure 1E). Figure 1F shows that adipocytes also support non-

malignant CD34+ cell survival. Supplementary Figure 3B and 3C show that 

adipocytes support AML proliferation as measured by BrdU incorporation.  

Supplementary figure 4 shows AML blasts on BMSC and adipocytes from the same 

patient. In AML blast colony forming cell (CFC) assays, adipocyte co-culture 

promoted CFC growth when compared to AML mono-culture (Figure 1G). Finally we 

showed that primary AML blasts from patient samples (n=4) which had been cultured 

on BM derived adipocytes for 6 days reliably engrafted NSG mice (Figure 1H). The 

same AML cells cultured in isolation did not engraft NSG mice after 12 weeks. AML 

were stained for CD33 and CD45 to confirm cell identity.16,22  We also examined the 

effect of cytokines on AML survival compared to co-culture with adipocytes. 

Supplementary Figure 5A shows that there is a significant increase in survival of 

AML when cultured on adipocytes compared to with a media supplemented with 
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cytokines. Supplementary Figure 5B shows that adipocytes support the engraftment 

of AML blasts compared to AML grown with cytokines. Taken together, these results 

show that adipocytes maintain AML progenitor cells. 

 

AML blasts induce adipocyte lipolysis.  

Our results indicate that adipocytes confer a proliferative advantage to primary AML. 

We hypothesized that this could be due to transfer of FA from the adipocytes to 

AML. Therefore, to understand the effect AML cells have on adipocytes we assessed 

FA and glycerol release.  Co-culture of AML with adipocytes increases FA and 

glycerol release compared to adipocyte and AML alone. (Figure 2A). Moreover, non-

malignant CD34+ cells could also induce lipolysis of adipocytes, albeit at a much 

reduced quantity compared to AML (Figure 2A). Supplementary figure 6A shows that 

conditioned media from AML can also induce adipocyte lipolysis.  Moreover, Figure 

2B shows that when we culture AML blasts with the FA, oleate, this supports the 

survival of AML. Lipolytic activation of adipocytes results from the phosphorylation of 

hormone sensitive lipase (HSL).  Figure 2C shows that AML induced phosphorylated 

HSL (pHSL) in adipocytes. Conversely, acipomox (which is known to inhibit lipolysis, 

by inactivation of AMP activated protein kinase and downstream pHSL) inhibited 

AML proliferation when cultured on adipocytes but not alone or on BMSC (Figure 

2D). Supplementary Figure 7 shows that adipocytes have significantly more HSL 

mRNA expression compared to BMSC and AML. To determine if lipids detected in 

the tumor cells after co-culture were derived from adipocytes, we cultured primary 

AML blasts with either adipocytes or BMSC that had previously been loaded with a 

fluorescent lipid dye (DAA). Supplementary Figure 8 shows loading of DAA into both 

BMSC and adipocytes. During co-culture we observed that lipids were transferred 

from adipocytes to AML (Fig. 2E, 2F and Supplementary Figure 9), moreover this 

transfer was inhibited by acipomox, thus supporting a model in which adipocytes 

provide lipids to support tumor growth.  

 

 

FABP4 is important for the transfer of lipids from adipocytes to AML  

FABP4 is a carrier protein for FA expressed in adipocytes,23 and supports the 

movement of long chain fatty acids generated by lipolysis to the extracellular 

membrane and beyond.24,25 Additionally, increased FABP4 has been shown to be 
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involved in the transfer of FA from adipocytes to breast and ovarian cancer cells.12,14 

We therefore examined the expression of FABP4 in human adipocytes and BMSC 

cultured with AML blasts or non-malignant CD34+ cells. RNA expression data shows 

that FABP4 levels are increased in adipocytes but not BMSC when cultured with 

AML, moreover non-malignant CD34+ cells had no effect on adipocyte FABP4 

mRNA expression (Figure 3A). We also found that AML conditioned media could 

induced FABP4 up regulation in adipocytes (Supplementary Figure 10A). Next we 

examined if other genes associated with lipolysis were also induced in adipocytes 

when cultured with AML. Supplementary Figure 11A shows that ATLG and MGLL 

mRNA expression are not changed in adipocytes when cultured with AML. In an 

apparent paradox, when the expression of FABP4 protein was examined, a 

reduction was observed in adipocytes cultured with AML compared to adipocytes 

alone (Figure 3B).  FABP4 is known to be released from adipocytes as they transport 

the FA,26 therefore FABP4 expression in the culture media was measured by a 

FABP4 specific ELISA. Figure 3C shows that culturing AML with adipocytes induces 

a release of FABP4 into the culture media. To determine if the FABP4 released by 

the adipocyte is taken up by the AML we used a recombinant FABP4 tagged to a His 

sequence. AML were cultured with and without the recombinant FABP4 for 4 hours. 

Figure 3D shows that no recombinant FABP4 was detected in AML. Next we 

examined if we could prevent the increase of lipids in AML blast by knockdown of 

FABP4 in the adipocyte. Figure 3E shows the knockdown FABP4 protein in 

adipocytes and figure 3F demonstrates that knockdown of adipocyte FABP4 

inhibited the transfer of lipids to AML. Furthermore, FABP4 chemical inhibitor 

(BMS309403) inhibits AML blast survival but had no effect on non-malignant CD34+ 

cells (Figure 3G). Finally, FABP4 lentiviral knockdown in adipocytes (Figure 3H) 

inhibits AML blast survival. Together these results demonstrate that FABP4 is critical 

for the transfer of FA from adipocytes to AML blasts. 

 

As Herroon and colleagues have shown that FABP4 in prostate cancer cells is 

upregulated in response to culture with adipocytes,15 we next examined whether 

FABP4 expression levels were elevated in AML cells extracted from bone marrow as 

compared to AML cells extracted from peripheral blood or non-malignant CD34+ 

cells. We found FABP4 expression to be significantly higher in AML bone marrow 

samples than in AML from peripheral blood or non-malignant CD34+ cells (P < 
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0.001, Wilcoxon rank-sum test) (Figure 4A). To confirm that this upregulation of 

FABP4 was a result of AML interacting with adipocytes rather than BMSC we 

examined FABP4 expression in AML cultured alone, with adipocytes or BMSC. 

Supplementary figure 12 shows the purity of AML after separation from adipocytes 

co-culture.  Figure 4B shows that FABP4 RNA is upregulated in AML in response to 

co-culture with adipocytes but not BMSC. We determined whether knockdown of 

FABP4 in AML cells could reduce survival when cultured on adipocytes. Figure 4C 

shows that FABP4-KD AML cells have reduced viability when co-cultured with 

adipocytes compared to co-culture with BMSC. Furthermore knockdown of AML 

FABP4 inhibited the transfer of lipids from adipocytes to AML (figure 4D).   

 

Next, we sought to determine the functional role of FABP4 in an AML mouse model. 

To do this we used a retroviral AML transplantation model where Hoxa9 and Meis1 

are used to transform myeloid progenitor cells as described by Kroon et al (1998).27 

Initially we determined if Hoxa9/Meis1-expressing cells could proliferate on 

adipocytes compared to BMSC or monoculture or monoculture without cytokine 

supplements. Figure 4E shows that Hoxa9/Meis1-expressing cells proliferate on 

adipocytes and BMSC. Next we knocked down FABP4 in Hoxa9/Meis1-expressing 

cells (figure 4F) and found that FABP4 KD reduced AML survival when cultured with 

adipocytes compared to media supplemented with cytokines or BMSC (Figure 4G). 

Moreover, knockdown of FABP4 in Hoxa9/Meis1-expressing cells also reduces FA 

uptake, quantified by DAA fluorescence, when tumor cells were cultured on 

adipocytes (Figure 4H). Finally we show in vivo that FABP4-KD in Hoxa9/Meis1 

expressing blasts significantly increases animal survival (Figure 4I). Taken together 

these results demonstrate that FABP4 in AML is essential for FA transport and tumor 

proliferation in the BM microenvironment.   

 

Co-culture of AML with adipocytes activates β-oxidation in AML blasts 

In order to study the reliance of AML blasts on adipocytes for their energy we first 

measured the cellular oxygen consumption rate (OCR) in AML blasts to determine 

levels of fatty acid oxidation (FAO). To confirm that AML blasts can use oxidation of 

exogenous fatty acid we assessed FAO by monitoring OCR upon addition of 

palmitate (FAO substrate) followed by addition of etomoxir (FAO inhibitor - ETX). 

Figure 5A shows that primary AML have increased OCR in the presence of palmitate 
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which is inhibited by ETX this is compared to non-malignant CD34+ cells. Oxidation 

of exogenous fatty acid can be measured by examining OCR of AML blasts and non-

malignant CD34+ cells in response to ETX. Figure 5B and Supplementary Figure 13 

shows that AML blasts cultured with adipocytes have increased FAO compared to 

AML blasts cultured alone or with BMSC and non-malignant CD34+ cells. In addition, 

we observed that AML blasts cultured on adipocytes had greater basal OCR 

compared to AML cultured alone or on BMSC (Figure 5C).  OCR was reduced in 

AML co-cultured on adipocytes compared to BMSC with FABP4 knocked down 

compared to control KD cells (Figure 5D). Moreover, because of the nature of the 

OCR experiment in which AML were serum starved for 4 h prior to being loaded onto 

the Seahorse Bioanalyser we show that AML FABP4 mRNA levels were stable 

compared to non serum starved AML cells (Supplementary Figure 10B). In addition, 

the FAO inhibitor ETX reduced AML blast survival when grown on adipocytes but not 

on BMSC (figure 5E). 

 

ETX is a selective inhibitor of carnitine palmitoyltransferase-1 (CPT1A), which 

transports fatty acyl chains from the cytosol into the mitochondria, a process 

essential for the production of ATP from fatty acid oxidation.28  We therefore 

examined the expression of various genes including CPT1A in AML when cultured 

with adipocytes.  Supplementary Figure 11B shows that CPT1A, CPT2 and ACADL 

are all up-regulated in AML when cultured with adipocytes. Accordingly, we knocked-

down CPT1A in AML blasts. Figure 5F shows a reduction in CPT1A mRNA and 

protein in human AML cells after infection with CPT1A shRNA lentivirus. Following 

successful knockdown of CPT1A in AML cells we found that CPT1A-KD AML cells 

have reduced viability when cultured with adipocytes compared to cells cultured on 

BMSC (Figure 5G). Finally, we tested the effect of CPT1A-KD in an AML patient 

derived xenograft model. Figure 5H shows that NSG mice engrafted with CPT1A-KD 

AML blasts from 2 patient samples have increased survival compared to control-KD 

NSG mice (n=4). Supplementary Figure 14 shows the bone marrow and spleen 

engraftment data for Figure 5H. 

  

For personal use only.on January 6, 2017. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


17 

 

Discussion 

Here we report that bone marrow adipocytes support the survival and proliferation of 

AML blasts. We find that AML induces lipolysis of triglyceride stored within BM 

derived adipocytes. Subsequently the FA released by triglyceride lipolysis within 

adipocytes is transported out of the adipocyte in a process dependent on the 

chaperone protein FABP4. Proximity to adipocytes also results in up-regulation of 

the same chaperone protein, FABP4, within the blasts, which is then used to 

transport adipocyte derived FA to the mitochondria within the tumor cells. The AML 

mitochondria use the FA as a substrate for B-oxidation generating the energy 

required for leukemic growth and proliferation.  

AML arises from malignant transformation and proliferation of hematopoietic 

progenitor cells in the BM microenvironment. AML is co-located with BM adipose 

tissue (MAT), which is a biologically active energy storage and endocrine organ and 

accounts for approximately 70% of bone marrow volume in adult humans.8,29 Like 

the prevalence of AML, BM adipocytes are known to increase with age and 

furthermore are not merely passive occupants of the bone marrow but are now 

appreciated to be actively involved in processes linked to bone metabolism, 

osteoporosis, inflammation and regulation of the hematopoietic niche.30 Moreover, 

adipocytes have been shown to support the proliferation of solid tumor cells in 

studies of breast, ovarian and prostate cancer metastases.12,14,15 Here we describe 

the pro-tumoral function of bone marrow derived adipocytes in AML.  

We report that leukemia cells cause functional changes in non-malignant adipocytes, 

which ultimately leads to the transfer of free fatty acids from adipocytes to the AML 

blast. This is a FABP4 dependent process. FABP4 has intracellular functions in 

adipocytes but is also known to be actively secreted by adipocytes where it can exert 

specific biological functions in tissues other than it’s origin.31 Co-culture of AML and 

adipocytes results in transcriptional up-regulation of FABP4, in both in the adipocyte 

and the leukemic blast. Curiously however, we found that despite this transcriptional 

increase of FABP4 in the adipocytes, the intra-adipocyte protein level of FABP4 is 

decreased upon co-culture with AML. This led us to hypothesise that either (1) 

adipocyte FABP4 rapidly chaperones the FA from the adipocyte into the 

microenvironment (2) adipocyte FABP4 rapidly chaperones the FA from the 
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adipocyte into the AML cells or (3) excess intracellular FABP4 is simply degraded 

within the adipocyte. To consider this further we investigated the levels of FABP4 in 

the media of AML adipocyte co-cultures and confirmed FABP4 was released into the 

medium. In models of prostate cancer recombinant FABP4 is taken up by the 

malignant cells.32 In our studies we also conducted experiments using recombinant 

FABP4 to determine if AML blasts actively take up this protein. We showed that no 

recombinant FABP4 was detected in AML after 4 hours of culture. These data 

suggest that unlike prostate cancer FA/FABP4 is not directly transferred from 

adipocyte to the AML cell but may be involved in an extracellular-to-membrane 

transport whereby it is degraded after functionality outside of the cell. Further studies 

would need to be conducted to confirm this hypothesis. 

Maintenance of AML appears to depend on both the adipocyte and the leukemic 

blast being able to generate FABP4. Pharmacological inhibition or lentiviral-

knockdown of FABP4 in the adipocytes showed a significant inhibitory effect on AML 

survival in co-culture experiments. Fatty acid binding proteins bind free FA, which 

otherwise in their free form are relatively insoluble and potentially toxic. Furthermore, 

FABP4 binds and donates its fatty acid ligand via collisional interactions with 

membranes and is actively secreted from adipocytes.31,33 We suggest that the 

reduced AML survival on FABP4 KD adipocytes is due to the inability of FA to be 

secreted from the adipocytes in the absence of FABP4 protein. In addition we 

observed that FABP4 knock down in the AML cells improved survival in our in-vivo 

models (although was unable to ultimately prevent leukemic engraftment). We also 

compared FABP4 transcript levels between AML blasts taken from the bone marrow 

and the peripheral blood, and found that FABP4 was enriched in AML cells collected 

from the adipose rich environment of the BM, indicating that FABP4 expression in 

AML blasts requires an external BM derived signal. Taken together we propose that 

in AML, FA is transported in the BM adipocyte by adipocyte derived FABP4, then 

secreted and taken up by the AML and transported within the AML by AML derived 

FABP4. We conclude that delivery and intracellular transport of FA to and in AML 

blasts is dependent on the presence of functional bone marrow adipocytes.  

When we compare our in vitro FABP4 knock down experiments in primary human 

AML cells and HoxA9/Meis1 cells, the effect in the HoxA9/Meis1 experiments is 
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comparatively modest. However, in contrast when FABP4 was knocked down in 

HoxA9/Meis1 cells, which were then injected into mice, we observed a more 

demonstrable anti-tumor effect. In addition we also found that our AML blasts 

maintained on adipocytes appeared to engraft (range 4-6 weeks) earlier than 

expected when compared to other reports in which primary AML blasts had not been 

previously cultured on adipocytes.34-36  We have not investigated this observation 

formally but postulate that adipocytes may support the maintenance of primary 

leukemic progenitor cells. Overall, we suggest that our in-vivo model more closely 

recapitulates the complexity of a tumor growing within a patient than the in-vitro 

assays and also propose that adipocytes may improve efficiency of ex-vivo culture 

systems for primary human AML. 

Blocking lipolysis using Acipomox or inhibiting transfer of free fatty acids using a 

FABP4 inhibitor only decreased AML viability between 40–60%. This could in part be 

due to the efficiency of the drug to inhibit its target. Alternatively perhaps this implies 

that adipocytes contribute other pro-AML survival factors in addition to free fatty 

acids. Adipocytes have been shown to secrete pro-inflammatory cytokines in the 

presence of malignant cells which may have an impact on tumor cell migration and 

survival.37 This has specifically been shown in the context of leukemias by Ye and 

colleagues, who report that bone marrow and gonadal adipose tissues show high 

levels of tumor associated pro-inflammatory cytokine secretion, several of which had 

previously been implicated in tumor cell migration.37-39 Therefore, it is likely that BM 

adipocytes provide more than just FA to AML to facilitate the proliferative capacity of 

this disease.  

We found that the OCR of AML cells increased in adipocyte co-culture experiments 

and that inhibition of CPT1A in the leukemic cells then significantly reduced AML 

OCR and survival. CPT1A is essential for the transfer of FA to the inner 

mitochondrial membrane for acetyl-CoA generation via B-oxidation,40  and these 

data indicate that the BM adipocytes are a source for the FA necessary for AML 

metabolism. Our observations are also consistent with the work of others who have 

previously reported the importance of β-oxidation in AML survival and 

proliferation.41,42 Conversely, in control experiments, non-malignant CD34 positive 

cells did not appear to significantly decrease their OCR upon treatment with the 
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CPT1A inhibitor, etomoxir, indicating that this FA oxidation signature is particularly 

associated with leukemic progenitors.  

In summary, although adipocytes in the non-malignant setting appear to be negative 

regulators of hematopoietic microenvironment.43 in the context of disease, 

adipocytes like other cells, can undergo distinct pathologic changes.44 Here we 

report that in the setting of AML, BM derived adipocytes support tumor proliferation 

and survival. Specifically, AML blasts modulate intra-cellular adipocyte metabolism 

into a lipolytic state resulting in the release of FA into the microenvironment. 

Ultimately, this free fatty acid is metabolically beneficial to the leukemia. Accordingly, 

we hypothesise that identification of this pro-tumoral interaction will open up potential 

novel therapeutic strategies in the treatment of human AML.  
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Table 1. AML patient sample information used in this study. This table defines 
the nature of the AML disease including WHO diagnosis and cytogenetics.   

Number Age Sex WHO diagnosis Cytogenetics % blasts 
      

AML#1 69 M AML NOS N/A 60 
AML#2 66 F AML without maturation Trisomy 9 90 
AML#3 41 F AML with t(6;9)(p23;q34); 

DEK-NUP214 
t(6;9) 95 

AML#4 62 M AML with maturation complex 55 
AML#5 70 M AML with maturation Normal 80 
AML#6 70 M AML without maturation Complex 95 
AML#7 91 F AML NOS N/A 60 
AML#8 55 F AML Not avaiable 70 
AML#9 59 F AML with t(8;21)(q22;q22) 

RUNX1-RUNX1T1 
t(8;21) 80 

AML#10 78 F AML without maturation Normal 95 
AML#11 58 F AML with maturation Normal 80 
AML#12 65 M AML with maturation Trisomy 13 30 
AML#13 73 F AML without maturation Normal 95 
AML#14 49 M AML with myelodysplasia 

related changes 
N/A 55 

AML#15 64 F AML with myelodysplasia 
related changes 

Normal 45 

AML#16 65 M AML with minimal 
differentiation 

Normal 95 

AML#17 23 F AML without maturation t(5;12) 95 
AML#18 37 M AML without maturation Normal 90 
AML#19 59 M AML with t(8;21)(q22;q22) 

RUNX1-RUNX1T1 
t(8;21) 60 

AML#20 65 M AML with maturation Not available 70 
AML#21 68 M Therapy related AML Not available 40 
AML#22 63 M AML with myelodysplasia 

related changes 
Not available 30 

AML#23 76 M AML without maturation Not available 95 
AML#24 75 M AML with maturation Complex 55 
AML#25 88 M AML with maturation Trisomy 8 30 
AML#26 35 M AML without maturation 46 XY 80 
AML#27 72 M AML with myelodysplasia  

related changes 
46,XY,isochrome 

(17)(q10) 
90 
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Figures Legends 

 

Figure 1. BM adipocytes support the survival and proliferation of primary AML. 

(A) Immunofluorescence of primary AML blasts stained for CD34+ (red) and neutral 

lipids (green) using BODIPY® 493/503. All images are representative of 6 AML 

patient samples. Scale bar = 10 micron (B) Freshly isolated AML, AML cultured for 1 

day and AML cultured for 2 days stained with the neutral lipid BODIPY® 493/503 dye 

and analysed by flow cytometry. Data represented as mean ± standard deviation. (C) 

Freshly isolated non-malignant CD34+ cells and freshly isolated AML samples 

stained with the neutral lipid BODIPY® 493/503 dye and analysed by flow cytometry.  

(D) AML patients samples in monoculture and co-cultured with bone marrow-derived 

adipocytes for 6 days and then stained with PI/Annexin V. The line through the data 

indicates the median. (E) AML blasts incubated alone or with adipocytes or BMSC 

for 6 days and AML blasts counted using flow cytometry and trypan blue exclusion 

(n=12). The line through the data indicates the median (F) Non-malignant CD34+ 

cells cultured alone or in co-culture with BMSC or adipocytes and CD34+ cell 

counted using flow cytometry and trypan blue exclusion (n=5). The line through the 

data indicates the median (G) AML blasts from 3 different patients were cultured 

alone or with adipocytes or BMSC for 6 days and then placed in a colony forming cell 

(CFC) assay for 15 days. Colonies were then counted.  Data represented as mean ± 

standard deviation (H) 2x106 primary AML cells (4 individual patient AML) cultured 

on BM adipocytes or cultured alone and then 2x106 viable cells were injected into 

NSG mice. Engraftment was measured using human CD33 and human CD45. 

Shown in the flow figure are the characteristics of AML#12 engraftment into BM and 

spleen. In the dot plot each AML engraftment into NSG mice is shown for bone 

marrow and spleen, the engraftment of the AML cultured alone is shown by a 

shaded circle. The line through the data indicates the median. 

 

Figure 2. AML blasts induce adipocyte lipolysis. (A) Primary AML blasts or non-

malignant CD34+ cells were cultured alone or in co-culture with adipocytes for 24h, 

media was removed and used to detect free fatty acid and glycerol. Data 

represented as mean ± standard deviation (B) AML blasts incubated with media 

supplemented with BSA or media supplemented with 100µM of oleate-BSA 

conjugate for 2 days and AML blasts counted using flow cytometry and trypan blue 
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exclusion (n=4). The line through the data indicates the median (C) Immunoblot for 

pHSL from adipocytes cultured with and without AML blasts (n=4). Blots were 

repobed for total HSL and β-actin to show equal sample loading (D) Primary AML 

blasts in monoculture or cultured with adipocytes or BMSC with and without 

treatment with acipomox (APX) (10 μM) for 72 hours. AML blasts were counted using 

flow cytometry and trypan blue exclusion (n=4). The Mann-Whitney U test was used 

to determine statistical significance between treatment groups. Data represented as 

mean ± standard deviation (E) and (F) AML blasts cultured on adipocytes (with and 

without acipomox (10 μM)) or BMSC that had been pre-incubated with fluorescent 

dodecanoic acid analogue (DDA) for 24 h (n=4). Blasts were analysed for uptake of 

the fluorescent dodecanoic acid analogue by flow cytometry. Data represented as 

mean ± standard deviation. In panel (E) the red line is AML cultured on BMSC; the 

black, AML cultured on adipocytes and the blue, AML cultured on adipocytes treated 

with acipomox.  

 

Figure 3. FABP4 controls the transfer of lipids from adipocytes to AML. (A) 

AML blasts were cultured alone or with adipocytes or BMSC for 48h and then the 

adipocytes and BMSC were assessed for FABP4 mRNA expression using real-time 

PCR (n=6). non-malignant CD34+ cells were co-cultured alone or with adipocytes 

and FABP4 mRNA expression was measured. Data represented as mean ± 

standard deviation (B) Immunoblot for FABP4 from adipocytes cultured with and 

without AML blasts. Blots were reprobed for β-actin to show equal sample loading. 

(C) ELISA to detect FABP4 in media from adipocytes cultured alone or with AML 

blasts. Data represented as mean ± standard deviation. (D) AML blasts were 

cultured alone or with the addition of 2ug/ml of recombinant FABP4 (his-tagged) for 4 

h. Immunoblots were performed for FABP4 and His. Blots were reprobed for β-actin 

to show equal sample loading.  (E) Adipocytes were infected with FABP4-targeted 

shRNA or control shRNA lentivirus and after 72h analysed for FABP4 protein 

expression using Western Blotting. Blots were reprobed for β-actin to show equal 

sample loading. (F) Adipocytes were infected with FABP4-targeted shRNA or control 

shRNA lentivirus and after 72h preloaded with dodecanoic acid fluorescent fatty acid 

analogue and incubated with AML for 24h. AML blasts were analysed for 

fluorescence using flow cytometry (n=4). (G) Primary AML blasts or non-malignant 

CD34+ cells were cultured alone or co-cultured with adipocytes or BMSC with and 
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without treatment with FABP4 inhibitor for 72h. AML blasts were counted using flow 

cytometry and trypan blue exclusion (n=4).  Data represented as mean ± standard 

deviation. (H) Adipocytes were infected with FABP4 targeted shRNA or control 

shRNA lentivirus and after 72h were incubated with AML for 72h. AML blasts and 

non-malignant CD34+ cells were counted using flow cytometry and trypan blue 

exclusion (n=4). Data represented as mean ± standard deviation. 

 

Figure 4. AML derived FABP4 is crucial for blast survival in vivo. (A) FABP4 

gene expression (expressed in log2 RPKM values) was obtained from GSE49642 

and GSE48846 for non-malignant CD34+ cells, 22 blood AML and 21 bone marrow 

AML patient samples. P-value was obtained by Wilcoxon rank-sum test. Middle band 

denotes the median value with lower and upper bands denoting the first and third 

quartiles, respectively. (B) AML blasts were cultured alone or with adipocytes or 

BMSC for 48h before the AML were assessed for FABP4 mRNA expression using 

real-time PCR (n=6). Data represented as mean ± standard deviation. (C) Primary 

AML blasts were infected with FABP4 shRNA1 and shRNA2 and control shRNA and 

after 96h were subsequently cultured on adipocytes or BMSC for a further 72h. AML 

blasts counted using flow cytometry and trypan blue exclusion (n=4). Data 

represented as mean ± standard deviation. (D) Primary AML were infected with 

FABP4-targeted shRNA1 or control shRNA lentivirus and after 96h were cultured 

with adipocytes pre-loaded with dodecanoic acid fluorescent fatty acid analogue for 

24h. AML blasts were analysed for fluorescence using flow cytometry. (E) 

Hoxa9/Meis1 transformed cells (1x105/ml) were cultured normal media or normal 

media with IL-3, IL-6 and SCF supplemented or co-cultured on BMSC with normal 

media or on adipocytes with normal media.  Hoxa9/Meis1 expressing cells were 

counted using flow cytometry and trypan blue exclusion (n=4). Data represented as 

mean ± standard deviation. (F) Hoxa9/Meis1 expressing cells were infected with 

mouse FABP4 shRNA or control shRNA and after 72h analysed for FABP4 protein 

expression using Western Blotting. Blots were reprobed for β-actin to show equal 

sample loading.  (G) Hoxa9/Meis1 expressing cells were infected with FABP4 

targeted shRNA or control shRNA and after 72h incubated either alone, with 

cytokines, with BMSC or with adipocytes. Hoxa9/Meis1 expressing cells counted 

using flow cytometry and trypan blue exclusion (n=4). Data represented as mean ± 

standard deviation. (H) Hoxa9/Meis1 expressing cells were infected with FABP4 
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targeted shRNA or control shRNA lentivirus and after 72h incubated for 24h with 

adipocytes preloaded with dodecanoic acid fluorescent fatty acid analogue. 

Hoxa9/Meis1 expressing cells were analysed for fluorescence using flow cytometry 

(n=4). (I) Kaplan-Meier survival curves for C57BL/6 mice injected with Hoxa9/Meis1 

FABP4-KD cells or Hoxa9/Meis1 AML control-KD cells.  

 

Figure 5. Co-culture of AML with adipocytes activates β-oxidation in AML cells. 

(A) Primary AML blasts or non-malignant CD34+ cells were cultured on adipocytes 

for 3 days and then starved for 4h before measuring OCR (pMoles/min) using the 

Seahorse XFp Analyzer, at baseline and then after injection of palmitate (18 mins) 

and ETX (36 mins). Circles represent ETX (40μM) treatment and squares represent 

no ETX treatment. (B) Primary AML blasts or non-malignant CD34+ cells were 

cultured alone for 3 days and AML blasts cultured on adipocytes for 3 days and then 

starved for 4h. AML blasts were then treated with ETX (40μM) and OCR was 

measured as above (n=4). Data represented as mean ± standard deviation. (C) 

Primary AML blasts cultured alone for 3 days and AML blasts cultured on adipocytes 

or BMSC for 3 days and then starved for 4h. Data represented as mean ± standard 

deviation. (D) AML were infected with FABP4 targeted shRNA or control shRNA 

lentivirus and after 72h incubated with adipocytes or BMSC for 24h and OCR was 

measured in the AML (n=4). Data represented as mean ± standard deviation. (E) 

Primary AML blasts were in monoculture or co-cultured on adipocytes or BMSC with 

and without treatment with ETX for 72 hours. AML blasts were counted using flow 

cytometry and trypan blue exclusion (n=4). Data represented as mean ± standard 

deviation. (F) AML blasts were infected with CPT1A shRNA or control shRNA 

lentivirus and after 72 hours analysed for CPT1A mRNA and protein expression 

using RT-PCR and Western Blotting. Blots were reprobed for β-actin to show equal 

sample loading. Data represented as mean ± standard deviation. (G) AML were 

infected with CPT1A shRNA or control shRNA lentivirus and then co-cultured on 

BMSC or adipocytes. AML blasts were counted using flow cytometry and trypan blue 

exclusion (n=4). Data represented as mean ± standard deviation. (H)  2 Primary AML 

samples were infected with CPT1A shRNA or control shRNA lentivirus and after 96 

hours were then grown on adipocytes for 48 hours and subsequently 2x106 primary 

AML cells (n=4) were i.v. injected into NSG mice. Survival of the NSG mice is 
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represented by a Kaplan–Meier plot. P=0.025 for mice injected with AML CPT1-KD 

compared to AML control-KD mice. 
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