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Abstract 

Temporal lobe epilepsy (TLE) is a common form of epilepsy and is frequently 

associated with memory and learning impairments. Medically intractable and 

lesion-based TLE occurs in 20-30% of the patients, in which case a surgical 

intervention is proposed. However, there is a clear gap in knowledge about pre-

operative memory status in children undergoing surgery and post-operative 

memory outcome. It is unclear whether paediatric patients show material-specific 

memory impairments associated with side of pathology and whether specific 

memory processes are affected more than others, i.e. learning, recall and 

recognition. Lastly, as opposed to language lateralisation, the neural 

representation of memory is unknown and memory fMRI has never been 

explored in paediatric TLE.  

The aim of this project is therefore to investigate the hippocampal-neocortical 

network that is at risk of compromise given learning and recall deficits in 

paediatric TLE at the pre-operative level in order to contribute to the prediction of 

outcome after surgery. I developed a neuropsychological protocol and a 

neuroimaging protocol for the investigation of pre-operative memory functions. 

The neuropsychological protocol is a tablet-based version of a paired-associate 

learning paradigm that allows comparisons between verbal and non-verbal 

memory. I validated this protocol in normally-developing children (N=130, 8-18 

years). The neuroimaging protocol is a combined language and memory fMRI 

task that allows the investigation of the interaction between the two networks 

within one scanning session. This protocol was also validated in normally-

developing children (N=28, 8-18 years). The feasibility of these protocols for 

clinical assessments was explored in a representative sample of children with 

TLE who were being considered for surgery (N=6, 12-18 years).  

These protocols add value to the diagnosis of memory impairments associated 

with paediatric TLE and provide a better understanding of pre-operative memory 

profile at the individual level. The findings also contribute towards the use of 

memory fMRI in the surgical decision-making process. Combining information 

from these protocols could provide prognostic indicators of outcome after 

surgery. 
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Chapter 1 

Introduction 

 

This chapter provides an overview of the theoretical framework leading up to the 

current research project. I will first describe the taxonomy of long-term memory 

and the progressive development of episodic memory. The second part will focus 

on the effects of early-acquired brain pathology, and more specifically temporal 

lobe epilepsy, on the development of episodic memory. Neurocognitive 

impairments and changes in neural representation as a function of brain plasticity 

will be discussed. 
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1 Long-Term Memory 

“Memory is a gift of nature, the ability of living organisms to retain and to utilise 

acquired information or knowledge” (Tulving, 1995). Advances have been made 

over the last hundred years to understand the mechanism of memory and the 

distinction between multiple memory systems. It is now well understood that 

memory is not a unitary system and instead is composed of multiple subsystems. 

Much of the evidence comes from patients with brain damage who exhibit 

selective memory impairment. The taxonomy of long-term memory (Squire, 1987) 

is displayed in Figure 1.1. 

 

Figure 1.1 Taxonomy of long-term memory (Squire et al., 1987). 

1.1 Declarative versus Non-Declarative Memory 

A major distinction is between declarative and non-declarative memory (Cohen & 

Squire, 1980). Declarative memory relates to conscious recollection about facts 

and events, whereas non-declarative is expressed through performance rather 

than recollection and occurs as unconscious modification of the performance 

system, such as skill learning.  

Evidence from patients with brain pathology has shed light on the fundamental 

distinction between distinct memory systems. The first evidence came from the 

famous case of patient H.M. Patient H.M. underwent bilateral removal of the 

medial temporal lobes to relieve epilepsy after which he exhibited profound 
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amnesia in the context of preserved intellectual and perceptual abilities (Scoville 

& Milner, 1957). In addition, Milner demonstrated that patient H.M. was able to 

learn mirror drawing (a hand-eye coordination skill) in the absence of recollection 

of having practiced the task (Milner, 1962). This seminal research demonstrated 

dissociation between procedural (non-declarative) and declarative memory 

systems. Subsequently, other relevant work emerged on patients with amnesia 

who exhibit intact priming in the absence of conscious memory (Hamann & 

Squire, 1997; Stark & Squire, 2000). Priming reflects the facilitation in processing 

of a stimulus due to its prior encounter and is devoid of intentional and conscious 

recollection (Graf & Schacter, 1985). As such, priming is a form of non-

declarative memory and is not affected in amnesia, contrary to declarative 

memory. Together, these patient studies shed light on the mechanisms of 

memory and on the dissociations between declarative and non-declarative 

memory systems. 

1.2 Semantic versus Episodic Memory 

Tulving’s theory of memory draws a distinction between two forms of declarative 

memory: episodic and semantic memory (Tulving, E, 1972); see Squire & Zola, 

1998 for an alternative view). Semantic memory refers to knowledge of facts 

about the world (e.g. the capital of Belgium is Brussels). It allows the acquisition 

of factual information that are essential for cognitive operations beyond 

immediate perception and this form of memory is necessary for the use of 

language (Tulving, 1984). Episodic memory relates to the ability to remember 

personal past experiences (e.g. my 28th birthday in the park with my colleagues), 

through conscious awareness of recollection of the past. 

Evidence from patient studies demonstrates the division of memory systems in 

the healthy brain. Vargha-Khadem and colleagues described several patients 

who became amnesic as a result of neonatal hypoxia/ischaemia that produced 

selective bilateral hippocampal pathology. These patients show great difficulty 

recalling personal past experiences, but are nonetheless able to acquire large 

amounts of semantic knowledge (Vargha-Khadem et al., 1997). Evidence from 
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patients with developmental amnesia therefore demonstrates the distinction 

between episodic and semantic memory systems. 

According to the hierarchical organisation of memory posited by Tulving (1995), 

cognitive memory (i.e. declarative memory) is hierarchically organised into four 

systems (perceptual memory, semantic memory, working/short-term memory and 

episodic memory; Table 1.1). Tulving posited that these systems are organised in 

a hierarchical manner, whereby each system is supported by the operation of the 

previous systems. As such, episodic memory is dependent on, and support by, 

the operation of the semantic memory system, whereas semantic memory can 

operate independently of episodic memory. Tulving’s model suggests that despite 

the fact that these forms of memory are distinct, they are interdependent and 

relations between and among these cognitive memory systems exist. 

Table 1.1 Major categories of human learning and memory (Tulving, 1995). 

 

Tulving’s hierarchical organisation of memory maps onto the neural-based model 

of memory proposed by Mishkin (Mishkin et al., 1997). According to this model, 

the hippocampus sits at the top of the hierarchy, supporting episodic but not 

semantic memory, whereas surrounding cortical areas contribute to both (Figure 

1.2). As such, selective damage to the hippocampus compromises episodic 

memory, sparing semantic memory, as shown in patients with developmental 

amnesia. The model of hierarchical organisation of memory, supported by 
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neuroanatomical and neurobehavioural studies, suggests distinct neural 

mechanism supporting episodic and semantic memory systems. 

 

Figure 1.2 Connections of the hippocampal system illustrating its hierarchical 

organisation, adapted from Mishkin et al. (1997). 

  

2 Episodic Memory 

2.1 Stages of Memory 

Episodic memory involves the ability to encode, consolidate and retrieve an event 

with its contextual details. The present thesis focuses on memory acquisition and 

retention, but not on remote memory or the semanticisation of episodic memory 

with time. 

2.1.1 Encoding 

The first stage of memory is encoding, whereby the information is perceived and 

transformed into a mental representation. According to the encoding specificity 

principle suggested by Tulving and Thomson, specific encoding operations 

determine what is stored and influence effective retrieval (Tulving & Thomson, 

1973). Craik and Lockhart studied effective encoding operations and 

Episodic 

memory 

Semantic 

memory 
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demonstrated that depth of processing at encoding influences subsequent 

retrieval of information (Craik & Lockhart, 1972). According to this levels-of-

processing effect, deep processing of information (e.g. encoding the meaning of 

the item) leads to better subsequent retrieval than shallow processing (e.g. 

encoding the perceptual features of the item). The underlying mechanisms of the 

superiority of deep over shallow encoding for memory are not fully understood. 

Generally, studies converge towards the observation that shallow encoding is 

associated with weaker activation in similar brain regions than deep encoding. 

Otten and colleagues, for example, showed activation related to deep-encoding 

in bilateral inferior frontal gyrus and left anterior and posterior hippocampus, 

whereas shallow encoding was associated with activation in the anterior 

hippocampus only and in the left inferior frontal gyrus (Otten & Rugg, 2001). 

Thus, encoding strategies are likely to have an impact on normative memory 

performance in childhood. 

2.1.2 Storage/Consolidation 

After the information has been processed and encoded, it is stored for 

subsequent retrieval through a process of memory consolidation, whereby 

memory traces are strengthened and stabilised (McGaugh, 2000). New memory 

traces consolidate slowly over time (Müller & Pilzecker, 1900) and become less 

vulnerable to interference (Davis & Squire, 1984).  

2.1.3 Retrieval 

Retrieval is the process by which information that is stored in memory is re-

accessed. Tulving first described two processes that accompany retrieval of 

information: recollection and familiarity (Tulving, 1985). Recollection refers to the 

reliving of episodes with vivid and detailed retrieval of memories, whereas 

familiarity is associated with a sense that an item was previously encountered but 

is devoid of its contextual details. Recollection and familiarity are functionally 

separate, in that when a person does not remember an event, they may still know 

something about it (Yonelinas, 1997). It is possible that familiarity and recollection 

are dependent on different encoding strategies. For example, normal aging is 

associated with recollection, but not familiarity difficulty, which is related to 
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diminished use of elaborative and associative encoding strategies (Yonelinas, 

2002). 

On a neuropsychological perspective, it is difficult to tap into the processes of 

recollection and familiarity, and instead neurocognitive tools provide measures of 

recall and recognition to assess these processes, respectively. Recall is 

necessary for recollection tests, while for recognition, familiarity is sufficient even 

if recall can occur.  

2.2 Psychological Processes of Learning and Memory 

Despite clear understanding of the different phases involved in episodic memory, 

from a neuropsychological perspective it is difficult to tease apart each phase, 

and instead, cognitive tools often measure the processes learning, recall and 

recognition. Whereas neuropsychological tools are intrinsically not episodic in 

nature, they tap into the features of episodic memory by assessing the mnemonic 

processes involved. 

2.2.1 Learning 

Learning is the improvement of performance with practice (Woodrow, 1946). The 

question of how we learn has been speculated on for a long time, with Hull and 

Ebbinghaus as some of the pioneers in the quest for a better understanding. Hull 

postulated that learning is the acquisition of knowledge through the strengthening 

of associations (Hull, 1943), and similarly, one basic assumption for Ebbinghaus 

is that repetition is essential for learning (Ebbinghaus, 1964). Repetition improves 

memory whereby repeated presentation of information leads to strengthening of 

its memory trace and allows the participant to recall the information. This is 

shown in research experiments, with improvement in performance across 

learning trials, demonstrating a strengthening of the memory traces with 

repetition of presentation (e.g. Roediger & Nestojko, 2015).  

2.2.1.1 The Testing Effect 

Memory tests assess the level of learning but also improve later retention, a 

phenomenon known as the testing effect. This effect is observed even when tests 
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do not involve feedback and thus is not simply a product of re-exposure. In an 

experiment conducted by Roediger & Karpicke (2006), students who were able to 

re-study the materials, but who were not being tested, showed poor long-term 

retention compared to students who were tested (Roediger & Karpicke, 2006b). 

Such testing effect is thought to be related to practice of the skills that are 

required for retrieval and thus enhances long-term retention. Whereas re-

studying allows re-exposure to the material, testing allows the practice of the 

skills during learning. As such, according to McDaniel & Fisher, testing improves 

learning by strengthening the mnemonic traces (McDaniel & Fisher, 1991). In 

addition, testing can also influence subsequent learning through metacognitive 

awareness (Yang & Shanks, 2017) whereby participants pay more attention and 

commit more effort to encoding new information (see Yang et al., 2018 for a 

review). Together, these studies indicate that retrieval practice clearly influences 

learning. 

2.2.1.2 Paired-Associate Learning 

In the experimental and clinical settings, the ability to learn arbitrary associations 

is often assessed. Associate learning reflects the ability to form new associations 

between items and bind features into an integrated percept, which is essential to 

the acquisition of knowledge in children. Moreover, paired-associate learning is 

involved in everyday ecological scenarios and is representative of the type of 

learning children face on a daily basis. Associative learning is related to children’s 

experiences of learning, and more specifically to their reading-related skills 

through the ability to establish links between written and spoken features of 

information (Mourgues et al., 2016). As such, paired-associate learning, and 

more specifically, cross-modal association of auditory and visual (and/or spatial) 

information, is implicated in the binding of disparate elements of classroom 

teaching/learning and has a role as predictor of learning ability in the educational 

setting.  

In addition, whereas paired-associate learning of semantic items (e.g. words and 

objects) allows semantic linking that facilitates learning, items that are devoid of 

semantic knowledge (e.g. pseudowords and abstract shapes) require the 

formation of new representations and hence push the limits of new learning. In 
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this respect, paired-associate learning of non-semantic items may be more 

closely related to academic achievement. In fact, performance on such test is 

related to reading skill in school-age children, especially in those with reading 

difficulties (Li et al., 2009; Warmington & Hulme, 2012). Such paired-associate 

learning test may be particularly useful in predicting academic achievement in 

children with learning difficulties, and warrants further investigation.  

2.2.2 Recall and Recognition 

Information that has been learnt and stored in memory is accessible for later 

retrieval and children generally exhibit resilience to forgetting (Gordon et al., 

2016). After learning has taken place, maintenance of representation occurs as a 

function of elapsed time (short and long delay) and consolidation. “Episodic” 

information about the event might be lost at short delays (Ebbinghaus, 1880; 

Hardt et al., 2013), whereas the “gist” of learnt information (i.e. the semantic 

content) may improve through consolidation and integration into the semantic 

network (Darby & Sloutsky, 2016; Newell et al., 2009).  

Retrieving information from memory can occur through the processes of recall 

and recognition. Recall refers to the ability to bring back to mind consolidated 

representations whereas recognition reflects the ability to identify presented items 

as familiar. Recognition is generally easier than recall, and items that are 

recallable are intrinsically recognisable (Watkins & Todres, 1978). According to 

the strength theory, recognition is superior than recall because recalling an item 

requires stronger memory traces than recognising it (Postman, 963). Similarly, 

the generate-recognise theory suggests that recall is more difficult because it 

requires the retrieval of candidate items from memory through recollection 

followed by a familarity decision, whereas recognition memory only requires the 

familiarity decision (Hollingworth, 1913).  

From an experimental perspective, one can assess the amount of information 

that is available to recall and to recognition, a short delay after learning. When 

recall fails, the ability to recognise information may shed light on the mechanism 

of retrieval, whereby the information is not accessible (recall fails) but is available 

(the information is recognised). In such event, information is recognisable in the 

absence of recall. The memory processes of recall and recognition are related 
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(Watkins & Todres, 1978) although independent, and as such, can be impaired 

independently of one another (see section 3.3.2, page 15) providing evidence 

that memory is not a unitary process and is instead composed of multiple 

memory processes.  

2.3 Neural Substrates Subserving Learning and Memory 

As mentioned above, memory is not a unitary process and instead comprises of 

different sub-processes, namely learning, recall and recognition. Episodic 

memory is supported by a distributed network involving the medial temporal lobe 

(MTL), but the subregions of the MTL are thought to subserve distinct memory 

processes. The MTL is composed of the hippocampus, and perirhinal, entorhinal, 

and parahippocampal cortices (Figure 1.3). 

 

Figure 1.3 MTL regions supporting learning and memory. Image created by Dr Andrew 

Doherty, Centre for Synaptic Plasticity, University of Bristol, Bristol, UK. 

 

It is well recognised that the hippocampus is critical for the binding of information 

into a representation for later retrieval, as required in paired-associate learning 

tasks (Brown & Aggleton, 2001; Davachi, 2006; Diana et al., 2007; Eichenbaum 

et al., 1994; Hannula et al., 2006; Manns & Eichenbaum, 2006). Patient studies 

have demonstrated that the effects of lesion to the hippocampus are selective to 

specific forms of learning/memory, and are apparent on tasks of arbitrary paired-

associates (Scoville & Milner, 1957), in which association between the items of a 

pair is necessary for successful performance. More specifically, the hippocampus 
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plays a critical role in encoding trial-unique events by binding spatial and 

temporal features of an episode to form an integrated representation. In this 

respect, it is involved in forming and retrieving novel associations (Konkel & 

Cohen, 2009) and allows new memory traces to be processed and consolidated 

for long-term storage. 

2.3.1 Learning – Complementary Learning Systems 

According to the complementary learrning systems theory, there are separate 

and complementary cortical and hippocampal learning systems (McClelland et 

al., 1995). The cortex is involved in a slow learning system and requires multiple 

exposures whereby memories gradually integrate in the cortex through repeated 

encodings, whereas the hippocampal learning system is involved in rapid 

integration of arbitrary new information. The hippocampal learning system has 

been demonstrated in animal studies showing the involvment of the hippocampus 

in rapid encoding of single trials (Bast et al., 2005; Steele & Morris, 1999).  

These complementary learning systems are responsible for long-term storage of 

information in the neocortex through neocortical-hippocampal interaction. 

Information is initially stored in the hippocampal memory system at the time of 

initial memory formation and is gradually integrated in the neocortical system 

through the process of consolidation (Squire, 1992). As such, consolidation 

occurs as a result of strengthening of memory traces in the hippocampus (Hardt 

et al., 2013) and of interaction between information presented in the 

hippocampus and the neocortex (McClelland et al., 1995; Nadel et al., 2012). 

Temporally-graded retrograde amnesia in patients with hippocampal damage 

shows evidence of a temporary circumscribed role of the hippocampus in 

memory retrieval, whereby memory for recent events is worse than for older 

events (Squire et al., 1975; Sutherland et al., 1987). Representations of events 

stored in the neocortical system consist in widely distributed patterns of neural 

activity, and newly acquired information is transferred between the hippocampal 

system and the neocortical system, promoting learning.  
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2.3.2 Recall and Recognition 

During recall, a fragment of the pattern representing the event from the 

neocortical system triggers the retrieval of the whole representation via pattern 

completion supported by the hippocampal system (Rolls, 2016). The 

hippocampus is therefore also involved in memory reactivation until the 

representation is fully established in the neocortical system, through repetitive 

learning (Wickelgren, 1979). In order to recall an event (to bring back to mind a 

specific past episode), the different features of the event must be processed and 

bound together. Successful recall therefore requires the use of associative 

mechanisms, which depend on the hippocampus. 

As mentioned above, the dual-process models of memory posit that two distinct 

processes support memory retrieval, namely recollection and familiarity 

(Yonelinas, 2002). These processes are anatomically distinct and are supported 

by different regions in the medial temporal lobe (see Yonelinas, 2002, for a 

review). Whereas the hippocampus is involved in recollection processes, it is 

thought that familiarity processes rely on other medial and inferior temporal 

regions such as the perirhinal and parahippocampal cortices (Eichenbaum et al., 

2007; Davachi et al., 2003; Diana et al., 2007).  

Studies on patients with focal brain damage demonstrate selective impairment in 

separate domains, providing evidence of structural and functional dissociation. 

Patients with developmental amnesia who sustained selective early onset 

bilateral hippocampal pathology (Vargha-Khadem et al., 1997) exhibit severe and 

selective impairment in recall memory, in the context of relatively well-preserved 

recognition memory (Adlam et al., 2009; Baddeley et al., 2001; Patai et al., 2015). 

The distinction between these memory processes has also been documented in 

neuroimaging studies, whereby familiarity is associated with parahippocampal 

activation, and recollection with activity in the hippocampus (e.g. Daselaar et al., 

2006; Ranganath et al., 2003). These studies therefore document the role of the 

hippocampus for recall and the involvement of parahippocampal and perirhinal 

cortices for recognition.  
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3 Development of Episodic Memory 

3.1 Infantile Amnesia 

Infantile amnesia, first identified by Freud, refers to the inability to remember 

personal experiences that occurred during infancy and early childhood (Hayne, 

2004; Pressley & Schneider, 1997). As such, young children have very little 

explicit memory before the age of 2 years. During the second to third year of life, 

infants begin to encode information at a higher speed thereby creating richer 

mnemonic representations (Rovee-Collier et al., 1989). In addition, the encoded 

information decays at a slower rate and remains available for retrieval for a 

longer period of time (Hartshorn et al., 1998; Herbert & Hayne, 2000). It is 

thought that during infancy, mnemonic traces decay within days or weeks, 

whereas older children are able to retrieve memory representations over longer 

delays. The phenomenon of infantile amnesia raises questions regarding the 

emergence and the developmental trajectory of episodic memory across the 

lifespan.  

Whereas the neural substrates supporting episodic memory are formed 

perinatally, they still undergo protracted structural maturation, and particularly, 

the hippocampus undergoes protracted postnatal structural development 

(Josselyn & Frankland, 2012). During infancy, these structures therefore lack 

functional competence until early childhood (Dumas & Rudy, 2010; Nelson, 

2000), leading to infantile amnesia. Patient studies provide evidence of late 

emergence of declarative memory. For example, patients with developmental 

amnesia sustain hippocampal pathology perinatally but the severe recollection 

impairments only become apparent in early childhood (Gadian et al., 2000). In 

typically-developing infants, the structure is formed but the function emerges 

later. As such, the functionality of explicit memory emerges with experience later 

in life and becomes superimposed on the neural structure. 
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3.2 Emergence of Declarative Memory 

Tulving proposed a cognitive model to describe the ontogenic development of 

memory (Table 1.1, page 4) with the emergence of separate forms of memory at 

different stages of life (Tulving, 1995). According to this model, the cognitive 

action system (i.e. the procedural memory system) evolves first in early infancy 

followed by cognitive representation system with episodic memory evolving last 

and developing in later childhood. More specifically, the ontogenic development 

of semantic memory precedes development of episodic memory.  

Within the episodic memory system, distinct emergence of specific memory 

processes is observed. Whereas visual recognition memory is evident from early 

infancy (Rose et al., 2004), young children around the age of 2 years begin to 

form and verbally recall declarative memory which gradually emerges as a 

function of maturation and experience (Eisenberg, 1985; Hudson, 1991; 

Peterson, 2002). However, at this stage, these memories remain inaccessible for 

retrieval at adulthood. The ability to form stable and enduring memories gradually 

emerges across the preschool years (see Peterson, 2002 for a review), through 

the development of autobiographical memory. Autobiographical memory refers to 

the explicit memory of a personal event within the temporal and spatial context 

(Tulving, 2002) and contributes to one’s personal life story, contrary to other 

episodic memory. Whereas young children show evidence of episodic memory, 

they do not yet have autobiographical memory.  

The gradual emergence of autobiographical memory is related to the skills 

through the ability to tell others about their experiences thereby reinforcing these 

mnemonic traces. Language provides an organisational structure in narrative 

form of personal experiences. This representational function of language appears 

towards late pre-school years (Nelson, 1993) and contributes to the 

establishment of autobiographical memory. In the first instant, it is the 

engagement of parents in talking about the past, or even in talking during the 

ongoing experience, that contributes to autobiographical memory by aiding the 

child to organise the representation (see Nelson, 1993 for a review). Another way 

language contributes to memory is through the effects of reinstatement, which 

refer to the preservation of memory through re-experiencing parts of the context 
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within a given period of time. Overall, it is understood that language contributes to 

the emergence and development of autobiographical memory, by sharing and 

retaining the memory for personal events.  

3.3 Age-Related Changes in Episodic Memory 

After the emergence of episodic memory, the function is not fully established and 

instead developmental changes persist throughout childhood and adolescence.  

3.3.1 Learning 

Associative learning is fundamental to the acquisition of knowledge in children 

and has an important role in the educational setting. The ability to learn 

information over repetitive trials undergoes developmental changes, possibly 

reflecting the extension of the semantic system with age and the maturation of 

hippocampal-neocortical interactions. In addition, it is thought that age-related 

improvement is related to the development of executive functions and working 

memory through increased efficiency in information encoding (Baddeley & Hitch, 

1974; Baddeley, 2000; Baddeley et al., 2011; Harel et al., 2014).  

3.3.2 Recall and Recognition 

There are distinct developmental trajectories for distinct sub-processes of 

memory retrieval, namely recall and recognition. Several studies have 

demonstrated that familiarity judgement is age-invariant after the age of eight 

onward (e.g. Naus et al., 1977, although see Davidson & Hoe, 1993; Newcombe 

et al., 1977). On the other hand, recollection shows more developmental changes 

throughout childhood and adolescence (e.g. Bjorklund et al., 2009; Ghetti & 

Angelini, 2008; Jabes & Nelson, 2015), with age-related improvements in recall of 

contextual details (e.g. Ghetti & Angelini, 2008; Ghetti et al., 2011). The 

maturation of the recollection process is thought to be intrisically related to the 

development of the ability to bind features of a representation, known to be 

dependent on the hippocampal system. 
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3.4 Neural Development of Structures supporting 

Episodic Memory  

Despite early structural maturation of neural substrates, their functional 

specialisation develops as a function of age and experience, paralleling the 

protracted developmental trajectory of learning and memory.  

The neural basis supporting memory undergoes structural and functional 

development mediating the development of episodic memory (Sowell et al., 

2001). Developmental studies have shown cortical maturation to support 

learning, and more specifically, cortical thickness across the temporal lobe 

undergoes protracted changes, with increases then decreases until adolescence 

(Gogtay et al., 2004; Sussman et al., 2016). In addition, the MTL develops with 

age, but it is thought that subregions within the MTL develop at different rates 

(Bachevalier, 2014). Structural differences of the hippocampus are observed until 

the age of 25 years (Gogtay et al., 2006), however, some substructures of the 

hippocampus (e.g. the CA1) are mature by the age of 2 years. These studies 

document protracted development of the structure supporting learning and 

memory until adolescence and adulthood. 

The extended trajectory of these neural changes is intrinsically linked to the 

development of learning and memory in children. For example, Riggins et al. 

(2015) showed that episodic memory is related to hippocampal volume in 

normally developing 6-year old children, but not in 4 year olds, suggesting that 

changes in hippocampal structure may contribute to age-related episodic memory 

ability (Riggins et al., 2015). In addition, Ghetti et al. (2010) showed stronger 

correlation between activity in the hippocampus and memory performance in 

older compared to younger children (Ghetti et al., 2010). Regions of the prefrontal 

cortex (PFC) also have a particular role in episodic memory (Khul et al., 2008), 

through the implementation of mnemonic strategies at encoding and retrieval 

(Blumenfeld & Ranganath, 2007). Structural and functional development in the 

PFC account for episodic memory improvement (Newcombe et al., 2007), 

through improvements in strategic processes that support episodic memory 

(Bjorklund et al., 2009). Together, structural and functional development of these 
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regions may mediate the development and maturation of episodic memory across 

childhood and adolescence. 

4 Paediatric Temporal Lobe Epilepsy 

Temporal lobe epilepsy (TLE) is the most frequent form of focal onset epilepsy, 

with medial TLE being more prevalent than neocortical TLE (Williamson et al., 

Epilepsy: a comprehensive textbook). The overall incidence of epilepsy in 

children ranges between 33 to 82 per 100,000 children per year (Blom et al., 

1978; Wirrell et al., 2011), although the incidence of TLE specifically is not clear.  

4.1 Aetiology 

Paediatric TLE is relatively less clinically and pathologically homogeneous than 

the syndromes observed in adult TLE, and, for example, mesial pathology is 

often accompanied with cortical pathology (Bocti et al., 2003; Lee et al., 2010). In 

children, the most frequent aetiology of TLE are malformation of cortical 

development (e.g. cortical dysplasia), hippocampal sclerosis, and low-grade 

tumours (Franzon & Guerreriro, 2006). Hippocampal sclerosis affects 10 to 20% 

of children with TLE and is considered the most frequent lesion in children with 

refractory TLE (Bourgeois, 1998; Grattan-Smith et al., 1993; Mizrahi et al., 1990). 

However, other authors claim that focal cortical dysplasia in the temporal lobe is 

the most common cause of refractory childhood TLE (Bocti et al., 2003; 

Duchowny et al., 1992). 

4.2 Neurocognitive Impairments 

The most important cognitive comorbidity of TLE is impairment in episodic 

memory. Given that the hippocampus plays a major role in the generation and 

spread of temporal lobe seizures (McIntyre & Racine, 1986) and it is also a 

critical structure serving long-term memory, including episodic memory (Squire & 

Zola-Morgan, 1991), impairments in memory and learning are frequently reported 

in TLE patients. In adults, approximately 70 to 80% of TLE patients exhibit 

episodic memory deficits related to temporal lobe pathology. In childhood TLE, 
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episodic memory impairments are also documented (Jambaque et al., 1993), 

however, studies are lacking. These impairments impede on quality of life of 

these children and impact daily functioning (Smith & Lah, 2011) and are 

particularly vulnerable in cases of mesial pathology, such as hippocampal 

sclerosis, compared to lateral temporal lesions, such as cortical dysplasia 

(Cormack et al., 2012). The effects of unilateral pathology on lateralisation of 

memory impairments will be discussed in section 5.2.2.1 (page 31). 

Although semantic memory has been poorly studied in childhood TLE, several 

studies demonstrate that children with TLE are at risk of semantic memory 

deficits (Cormack et al., 2012; Rzezak et al., 2011; Smith & Lah, 2011). In adults, 

semantic memory deficits are associated with poor integrity of lateral temporal 

structures (Koylu et al., 2006) and hippocampal integrity (Davies et al., 1998; 

Messas et al., 2008), suggesting a role of hippocampal-neocortical interactions 

for the retrieval of semantic information stored in cortical structures. Impairments 

in semantic memory include difficulty in category fluency, object naming, word 

definition, and sentence repetition, some of which may also be associated with 

language deficits. Language difficulty is sometimes documented in children with 

TLE, particularly in those with left-side pathology. These difficulties include 

naming difficulties, limited vocabulary and reading abilities (Jambaque, 2001).  

Overall, greater cognitive impairments are documented than in adult TLE 

(Hermann et al., 2002) and intractable seizures in the developing brain are often 

associated with neurocognitive impairments beyond the temporal lobe functions. 

For example, executive dysfunction is also documented in childhood TLE, which 

may also contribute to memory impairment (Rzezak et al., 2012). These cognitive 

difficulties contribute to academic underachievement and learning difficulties 

(Fastenau et al., 2004; Schouten et al., 2002). 

4.3 Neurosurgical Intervention for Drug-Resistant 

Epilepsy 

Medically intractable, and lesion-based TLE occurs in 20-30% of the patients 

(Engel, 1998), in which case a surgical intervention is proposed for the resection 

of the temporal lobe lesion and the epileptogenic zone which usually encroaches 
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on the hippocampus (Clusmann, 2008; Radhakrishnan et al., 1998). The purpose 

of neurosurgical intervention for epilepsy is two-fold: 1) alleviate seizures, and 2) 

halt cognitive decline associated with ongoing seizures. In paediatric TLE, early 

surgery is particularly encouraged to halt the cognitive decline over time (Wyllie 

et al., 1993). Neurosurgical intervention yields seizure freedom in 73 to 100% of 

children one-year post-surgery (Blume, 1997), and in about 62% of the cases, 5 

years post-surgery (Tellez-Zenteno et al., 2005). However, despite favourable 

impact on seizure control (Clusmann et al., 2004), surgical procedure carries a 

risk of cognitive deterioration.  

4.4 Post-Operative Cognitive Outcome 

4.4.1 Cognitive Decline 

In adults, left-sided temporal surgery is typically associated with decline in verbal 

memory (Shermann et al., 2011), as well as in naming (Hermann et al., 1994) 

and semantic memory (Lambon et al., 2012), whereas right-sided surgery is more 

frequently associated with non-verbal memory deficits (Vaz, 2004). High inter-

individual variability in post-operative memory outcome are documented 

(Sherman et al., 2011). Greater memory decline is associated with older age at 

time of surgery, older age at seizure onset (Andersson-Roswall et al., 2010), left-

sided surgery, extensive resections (Helmstaedter  et al., 2002), ipsilesional 

memory and language dominance (Binder et al., 2008), and higher pre-operative 

functions (Gleissner et al., 2002; Miranda & Smith, 2001; Rausch et al., 2003; 

Szabo et al., 1998; Westerveld et al., 2000). 

In children, the effects of temporal lobe surgery on cognitive outcome are less 

extensively studied. Several studies have documented vulnerability of verbal 

memory after left temporal resections (Jambaque et al., 2007; Lah, 2004; Szabo 

et al., 1998), but not others (Gonzalez et al., 2012; Helmstaedter & Elger, 1998; 

Mabbott & Smith, 2003). It is therefore of great importance to examine cognitive 

impairments associated with unilateral pathology, as well as the effects of 

temporal lobe resection on cognitive functions. 
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4.4.1.1 Functional Reserve and Functional Adequacy 

Two models of memory function aim to account for post-surgical cognitive 

deterioration. According to the functional reserve model, memory loss is a 

function of the capacity of the contralateral temporal lobe to support memory after 

surgery. The functional adequacy model posits that post-surgical memory loss is 

dependent on the functional integrity of the resected tissue, whereby more 

deterioration is observed if the resection encroaches on functional tissues. 

Both models are supported by neuropsychological findings. However, Chelune 

posited that the functional adequacy model has a greater role in predicting post-

operative memory loss compared to the functional reserve model (Chelune, 

1995). Greater cognitive deterioration after surgery is observed in patients with 

more neurocognitive and structural adequacy prior to surgery than those whose 

hippocampi are less functional.  

4.4.2 Cognitive Recovery 

After surgical intervention, seizure cessation and medication reduction can lead 

to cognitive improvement. Greater functional recovery after temporal lobe surgery 

is documented in childhood TLE than in adult TLE (Gleissner et al., 2005). After 

an initial post-operative decline, paediatric patients are reported to recover from 

their memory deficits and reach pre-operative performance standards by one 

year after surgery (Gleissner et al., 2005). There is however a big variability in 

verbal memory outcome, which is related to the integrity of the left temporal lobe.  

It appears that recovery in cognitive functions may not be apparent before 

several years after surgical intervention. Skirrow et al. (2011) demonstrated 

improvement in intellectual functioning 10 years following surgery in children with 

TLE, with a gain of about 10 IQ points in 41% of surgical patients compared to 

relatively unchanged scores in non-surgical patients (Skirrow et al., 2011). This 

cognitive improvement was associated with seizure cessation and was only seen 

6 years after surgery, suggesting a prolonged period for cognitive recovery after 

temporal lobe surgery.  

Subsequently, Skirrow et al. (2015) also reported recovery of memory functions 

after surgery in the temporal lobes in the same patient cohort as reported in 
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2011. Interestingly, the improvement was observed in the memory functions 

subserved by the un-operated temporal lobe, with improvements in visual 

memory after left-sided resections and improvement in verbal memory after right-

sided resections. This phenomenon, known as the “release effect”, relates to the 

release of cognitive functions which were suppressed by seizures (Helmstaedter 

et al., 2003). This release effect was observed as a function of post-operative 

seizure freedom, shorter duration of seizures, and less extensive resections. The 

former indicates that post-operative recovery is limited by the integrity of the 

ipsilesionnal temporal lobe which continues to support memory functions (Bonelli 

et al., 2013). These findings suggest the importance of tailored resection of the 

temporal lobes and leaving intact critical brain structures that contribute to post-

operative recovery of memory functions. 

4.5 Assessing Memory for Pre-Surgical Decision-Making  

Assessment of cognitive abilities is important for surgical decision-making to 

predict the potential surgical risks. Such assessment is typically done through a 

combination of behavioural and neuroimaging investigations and requires specific 

and developmentally-adapted protocols. 

4.5.1 Behavioural Investigation 

Neuropsychological assessment includes age-appropriate standardised tests and 

assesses multiple cognitive domains, including intelligence, language, memory, 

attention, problem-solving/executive function, visuospatial, and academic skills. 

These assessments identify relevant cognitive strengths and weaknesses of an 

individual, provide indication on the lateralisation of language and memory 

functions, and provide guidance for the prediction of cognitive deficits after 

surgical intervention.   

Neuropsychological evaluation contributes to surgical decision-making in 

paediatric TLE in several ways. First, it allows characterising the status of 

memory and learning in relation to different aspects of cognitive function to 

identify the selectivity of impairment versus a global pattern of cognitive 

dysfunction, including intellectual disability. Second, it establishes the pattern of 
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lateralisation of function vis-à-vis the focus of seizures and/or locus of lesion. A 

common interest amongst researchers and clinicians relates to the lateralisation 

of memory. Clinicians investigate a patient’s performance depending on the 

nature of the material to be learned and memorised. This approach aims to 

compare how well a patient encodes and retrieves verbal material compared to 

visual material, and to identify material-specific impairment. Third, the 

assessment relates selective deficits in learning and memory to the neural 

systems subserving the mnemonic functions. The association of cognitive 

domains to specific brain correlates provides indication of the cause of observed 

cognitive impairments and allows clinicians and researchers to relate cognitive 

symptoms to underlying brain pathology. Fourth, it permits to identify risks to 

memory and learning in the presence of unilateral versus bilateral disease. In the 

case of unilateral pathology, neuropsychological assessment provides indication 

on the functionality of the hemisphere contralateral to the lesion, and can detect 

possible dysfunction contralateral to the primary seizure focus (Jones-Gotman et 

al., 2000). Fifth, the assessment predicts learning and memory outcome post-

surgery. In addition to contributing to surgical decision-making, early 

neuropsychological assessment can guide neurocognitive rehabilitation. 

4.5.2 Neuroimaging Investigation 

Pre-surgical investigation of a patient’s functional anatomy surrounding the brain 

lesion is critical for the surgical approach. As a result of brain pathology, an 

individual’s functional organisation may be atypical and can therefore not be 

inferred on the basis of typical functional organisation observed in healthy 

individuals. Brain mapping at the individual-level is therefore critical (Bates et al., 

2003; Duffau, 2005). 

Intracarotid sodium amobarbital testing (also known as the Wada test) has been 

used for many years to determine hemispheric dominance for language and 

verbal memory and to predict post-operative outcome (Wada & Rasmussen, 

1960). The Wada test involves injecting amobarbital into the internal carotid 

artery ipsilateral to the seizure focus to anesthetise one brain hemisphere. After 

the injection, cognitive functions of both hemispheres are tested to lateralise 
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functions. This procedure requires full cooperation and causes stress, particularly 

for children (de Ribaupierre et al., 2012).  

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive alterative 

approach to examine hemispheric dominance (Binder, 2011). Task-based fMRI 

techniques measure changes in Blood Oxygenated-Level Dependent (BOLD) 

signal induced by a specific cognitive task. In 1993, it was estimated that over 

95% of epilepsy surgery centres were performing the Wada test (Rausch et al., 

1993), whereas centres have started to replace this technique with fMRI for the 

past 20 years (Baxendale et al., 2008). The aim of fMRI is to determine the 

territories of eloquent tissue that serve the critical functions of memory and 

language prior to surgical intervention to guide surgical decision-making 

(Lindquist, 2008).  

4.5.2.1 Strengths of fMRI for pre-surgical assessment 

In addition to being non-invasive, fMRI holds several strengths for pre-surgical 

assessment. In contrast to the Wada test, which only provides indication on 

functional lateralisation, fMRI investigation also provides information regarding 

intra-hemispheric localisation of critical language and memory sites, and thus 

identifies all brain regions associated with the performance of a specific task.  

For language lateralisation, there are strong correlations between results 

obtained with the Wada test and fMRI (Binder, 2011). Several studies have 

demonstrated that fMRI is reliable for language lateralisation, with high sensitivity 

and specificity, in patients with typical (Bauer et al., 2014) and atypical (Dym et 

al., 2011) language lateralisation. Detre et al (1998) showed 100% concordance 

between fMRI and the Wada test in nine patients (Detre et al., 1998). Janececk et 

al. (2013) showed that when the results is not concordant, fMRI is superior for the 

prediction of language outcome (Janecek et al., 2013). These findings suggest 

that fMRI is superior to invasive gold-standard brain mapping techniques.  

fMRI is a useful pre-surgical diagnostic tool that can help predict post-operative 

cognitive outcome. Several studies support the functional adequacy model which 

suggests that patients with greater ipsilateral than contralateral mesial temporal 

activation are at greater risk of memory decline after temporal surgery (Binder et 
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al., 2008; Bonelli et al., 2010; Dupont et al., 2010; Powell et al., 2008). Moreover, 

when fMRI is conducted, the Wada test does not provide additional predictive 

value (Binder et al., 2008). As such, the prognostic accuracy of fMRI for the 

prediction of cognitive outcome is better than with the Wada test (Limotai & 

Mirsattari, 2012).  

4.5.2.2 Limitations of fMRI for pre-surgical assessment 

Despite great advances in the technique, fMRI faces several limitations. fMRI 

detects changes in neural signal which can be as small as 1-5%. Data quality can 

therefore be reduced due to  high levels of “noise” (Parrish et al., 2000)   which 

may depend on several factors including paradigm design and task selection, 

data acquisition and analysis. In addition, decreases in Signal-to-noise ratio 

(SNR) are observed as a result of susceptibility artefact which is particularly 

prominent in the inferior temporal and inferior medial frontal regions (Ojemann et 

al., 1997). Moreover, fMRI is susceptible to motion artefact as a result of long 

acquisition time. fMRI detects signal changes in an image over time (i.e. changes 

in neural activity), but head motion can be misinterpreted as relevant change. It 

has been shown that patients (Seto et al., 2001) and children (Afacan et al., 

2016) have particular difficulty remaining still inside the scanner, for whom motion 

artefacts are therefore particularly susceptible.  

As mentioned above, fMRI identifies all brain regions associated with a specific 

task. However, it is unable to distinguish between essential and participating 

areas, of which the former are the most important to preserve during surgery. 

Surgical removal of essential areas, but not necessarily participating areas, will 

lead to neurological impairments. Limitations related to memory fMRI specifically 

relate to the lack of robust paradigms with high sensitivity and specificity, and as 

such, brain activation can vary depending on the nature of the memory task and 

other cognitive demands related to the task. 

fMRI brain mapping is therefore limited by several factors which alter 

interpretation of fMRI findings. However, in spite of the limitations, fMRI is 

increasingly used as a clinical tool for the pre-surgical assessment of cognitive 

functions to locate eloquent tissues and predict outcome. In addition, careful 



Chapter 1: Introduction 
 

 

 

Buck         25 
 

considerations related to data acquisition and data processing can be 

implemented to reduce or counteract these limitations.  

4.5.3 Identifying Functionality of the Contralateral Temporal Lobe 

Global amnesia is documented in a small number of patients after temporal lobe 

surgery and is associated with undetected contralateral damage to the 

hippocampus. In those cases, surgical removal of the damaged hippocampus 

produces bilateral hippocampal damage, therefore causing amnesia.  

Pre-surgical assessment of memory is therefore particularly critical to identify 

covert pathology, for example in the hemisphere contralateral to the seizure 

focus. Evidence of cognitive impairment may indicate covert pathology that can 

be related to the neural systems subserving the functions, and in turn provide 

evidence of the underlying neuropathology. Cases where the assessment points 

to a locus of pathology that is different from the locus of surgery run a higher risk 

of suffering from amnesia post-surgery. This observation points to the value of 

pre-operative neuropsychological assessment to guide identification of locus of 

pathology and predict outcome after surgery.  

fMRI can also provide indication on the functionality of the contralateral temporal 

lobe by showing evidence of brain activation in the hemisphere contralateral to 

the structures subserving the function. It is possible, for example, that patients 

showing greater evidence of functional reorganisation of memory may be at 

lesser risk of memory impairment after surgery. In this respect, hemispheric 

specialisation should be investigated. 

5 Hemispheric Specialisation 

Since Brenda Milner’s seminal study in 1971, it is understood that verbal and 

visual memory depend on left and right temporal lobe regions, respectively 

(Milner, 1971). This division of labour leads to material-specific impairments after 

unilateral pathology, with verbal and visual memory dysfunction after left and right 

temporal lobe pathology, respectively. However, in childhood TLE, the 

lateralisation of memory impairments is not as clear, which may be understood 

with respect to the emergence of hemispheric specialisation. 
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Hemispheric specialisation has been recognised for over a century and consists 

in the functional specialisation of the left and right hemisphere to subserve verbal 

and visual functions, respectively. Evidence of such hemispheric specialisation 

resides in complementary impairments resulting from unilateral brain damage in 

the mature brain, with drastic impairments in speech and language following left 

hemisphere damage surrounding the perisylvian areas, and visuospatial 

dysfunction arising after right-sided damage. However, the emergence of this 

hemispheric specialisation is not fully understood. 

There is evidence to suggest that such hemispheric specialisation is not present 

from birth and does not appear before the age of 5 years (Vargha-Khadem et al., 

2000). Whereas the left hemisphere may be predisposed to subserve language 

skills, this specialisation is not apparent at birth and instead develops with age, 

providing evidence of ontogenetic rather than early specialisation (Vargha-

Khadem et al., 1994). Ontogenetic specialisation suggests gradual emergence of 

hemispheric specialisation during development. With this view, language is 

represented bilaterally in the infant brain, and progressively lateralises to the left 

with reduced contribution from the right hemisphere.  

The emergence of visuospatial abilities, however, may follow a different 

trajectory. Gingras et al., (2018) demonstrated that prenatal unilateral cortical 

lesion to the right hemisphere consistently and robustly led to lower visuospatial 

compared to verbal abilities, suggesting that visuospatial abilities may be 

prenatally right-lateralised (Gingras & Braun, 2018). The asymmetry in the 

emergence of hemispheric specialisation for verbal and visuospatial functions 

possibly resides in the ontogenetic development. As such, infant and young 

children rely on visuospatial processing in the absence of speech, whereas 

language develops and matures with experience. 

5.1 Factors affecting Hemispheric Specialisation  

5.1.1 Brain Plasticity – Functional Reorganisation  

With sufficient neural plasticity, additional neural resources in other brain regions, 

for example in the contralateral hemisphere, will allow the brain to sustain the 
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compromised functions. Such functional reorganisation is related to greater 

potential for plasticity following an injury in younger patients. Earlier onsets of 

seizures can result in the compensatory reorganisation of functions, thereby 

impeding the normal hemispheric lateralisation process.  

According to Lashley (1922), and in accordance with the equipotentiality theory, 

one hemisphere can compensate for damage in the other regarding specific 

skills; for example, the right hemisphere can mediate language functions in the 

event of left hemisphere damage (Lashley, 1922). Similarly, early lesion to the left 

hemisphere can result in the reorganisation of verbal memory to the right 

hemisphere at the expense of other cognitive functions. This can result in verbal 

and visual memory being mediated by a common brain network, thereby causing 

crowding of functions within the right hemisphere (Lansdell, 1969; Lidzba et al., 

2006; Strauss et al., 1990; Teuber, 1967) and in turn resulting in poor 

performance for both verbal and visual memory. 

5.1.2 Effects of Age at Injury  

When pathology arises before the age of 5 years, the predisposed hemispheric 

specialisation will be overridden by extensive lesion and high levels of brain 

plasticity. Division of labour is therefore not observed, and the damaged brain 

aims to preserve the functions that are most essential for social and 

environmental demand, i.e. language skills. Early onset pathology and efficient 

neural plasticity therefore result in a non-specialised hemispheric organisation, 

and instead, a diffuse representation of cognitive functions (Vargha-Khadem et 

al., 2000).  

5.1.3 Stage of Development at the Time of Pathology  

Similar to the effects of age at injury, the stage of functional development that has 

been reached at the time of pathology plays a role in the pattern of cognitive 

dysfunction. If a child has already reached a level of hemispheric specialisation 

once the brain pathology occurs (with verbal and visual memory lateralised to the 

left and right temporal lobes, respectively), the profile will be lateralised 

impairment based on the side of pathology. On the other hand, if the pathology 

occurs prior to the normal emergence of hemispheric specialisation, this will 
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result in widespread impairment. Early brain insult therefore overrides 

hemispheric specialisation, depending on the stage of development when the 

pathology is acquired. 

5.1.4 Extent of Neuropathology 

TLE is a network disease and epileptogenic activity may affect both sides of the 

temporal lobe. As such, unilateral mesial TLE is often associated with additional 

pathology in the contralateral hippocampus (Quigg et al., 1997), and the 

aetiology of TLE can be seen as manifestation of bilateral disease even in the 

presence of focal signs restricted to one temporal lobe (Babb, 1991; Halasz, 

2016; Quigg et al., 1997).  

Moreover, greater extent of neuropathology may be observed in childhood 

compared to adult TLE. The absence of clear lateralised memory dysfunction in 

childhood TLE could reflect more extensive neuropathology caused by seizures 

during early brain development. Grey matter abnormality is in fact observed in 

extra-hippocampal regions bilaterally in paediatric patients with hippocampal 

sclerosis and TLE (Cormack et al., 2005). Early onset of TLE can therefore be 

associated with network dysfunction rather than focal pathology per se. 

5.2 Evidence of Hemispheric Specialisation in TLE   

The question of hemispheric specialisation emerges in the context of focal 

epilepsy, whereas non-focal epilepsy affects neural networks globally and in 

which case the question of hemispheric specialisation is not relevant. In adult 

TLE, the pattern of complementary impairments caused by unilateral lesions 

reflects hemispheric specialisation of functions and provides strong clues about 

the organisation of memory in the healthy mature brain. On the other hand, early 

onset seizures interfere with the normal process of hemispheric lateralisation 

(Willment & Golby, 2013) and may result in the reorganisation of memory 

functions to a larger extent than in older patients (Helmstaedter & Elger, 1998; 

Gleissner et al., 2005; Willment & Golby, 2013).  
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5.2.1 Language  

5.2.1.1 Behavioural Evidence 

For language functions, there is behavioural evidence of hemispheric 

specialisation in adult TLE who tend to exhibit language impairments, including 

naming objects, word finding difficulties and auditory comprehension, after left-

sided pathology (Bartha-Doering & Trinka, 2014; Mesulam et al., 2013). These 

deficits arise as a result of a strongly left lateralised language network for verbal 

concepts and pathology encroaching on the left anterior temporal lobe and left 

hippocampus (Davies et al., 1998; Drane et al., 2008; Hamberger et al., 2007). 

Language impairments in adults with TLE in the right hemisphere are less 

frequent and less severe (Bartha et al., 2004; Bartha et al., 2005; Bell et al., 

2003; Field et al., 2000; Hamberger & Seidel, 2003; Oddo et al., 2003; 

Trebuchon-Da Fonseca et al., 2009), providing evidence of hemispheric 

specialisation and lateralised impairments associated with unilateral pathology in 

adult TLE.  

In children, however, early unilateral damage usually does not result in severe 

language impairments. Even though left sided seizures can cause transient 

speech arrest (Nickels et al., 2012), children with TLE are rarely aphasic 

(Gleissner et al., 2005). Aphasia is only observed in Landau-Kleffner syndrome, 

whereby children have developed language functions normally before exhibiting 

aphasia as a result of continuous bilateral epileptic activity (Landau & Kleffner, 

1957). Naming difficulties are, however, sometimes documented in children with 

left sided-TLE, similarly to the adult TLE cohort, but the severity of deficits 

appears lesser, and instead children with TLE exhibit a more widespread pattern 

of cognitive dysfunction. Difficulties in reading skills are also observed, although 

no difference between left and right TLE is reported (see Lah et al., 2017 for a 

review).  

Other studies have shown no significant language impairments compared to 

healthy children. Datta et al. (2013) demonstrated no significant difference in 

language performance in children with and without epilepsy in the temporal lobes 

(age range 7 and 13 years) on tasks of language production and comprehension. 

Similarly, Mankinen et al. (2014) showed no significant language impairment in 
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childhood TLE compared to a group of healthy children (age range 8-15 years) 

(Mankinen et al., 2014). Together, these findings suggest that early-acquired left-

sided pathology does not result in severe language deficits, unlike in adult-onset 

TLE, providing little evidence of hemispheric specialisation.  

5.2.1.2 Neuroimaging Evidence 

fMRI studies have shown atypical distribution patterns of language activation 

(right lateralisation or bilateral representation of language) in about 20 to 33% of 

adult TLE cases (Adcock et al., 2003; Gaillard et al., 2007; Vingerhoets et al., 

2004). However, several others have shown left lateralisation of language in adult 

TLE similarly to healthy controls (Friedman et al., 1998; Rutten et al., 2002; 

Cousin et al., 2008), suggesting hemispheric specialisation.  

In children with TLE, language activation is weaker and less strongly left 

lateralised than in healthy children (Yuan et al., 2005). Several fMRI studies 

provide neuroimaging evidence of functional reorganisation in children with TLE 

who show atypical language lateralisation. More specifically, Yuan et al. (2005) 

showed that cortical representation of language is atypical when pathology is 

acquired before the age of five. Everts et al. (2010) investigated language 

lateralisation using fMRI in children with and without focal epilepsy (not specific to 

the temporal lobe) between the ages of 7 and 18 years (Everts et al., 2010). 

Whereas every child without epilepsy showed left lateralisation, 30% of children 

with epilepsy showed atypical lateralisation. In addition, the researchers 

demonstrated no difference in language dominance between children with 

seizures occurring in the left versus right hemisphere. Similarly, Yuan and 

colleagues documented atypical lateralisation in 78% of children with TLE 

compared to only 11% in age-matched controls (Yuan et al., 2006). Datta et al. 

(2013) showed that despite differences in language laterality, children with and 

without epilepsy do not significantly differ on measures of language abilities, 

suggesting efficient compensatory reorganisation to support language 

performance (Datta et al., 2013). Datta et al. (2009) pointed out that typical 

development of language is hampered in the context of childhood TLE (Datta et 

al., 2009). These findings demonstrate that children with TLE may show less 
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evidence of hemispheric specialisation and more occurrence of atypical language 

lateralisation compared to adults with TLE.  

5.2.2 Memory 

5.2.2.1 Behavioural Evidence 

Behavioural evidence of hemispheric specialisation for memory relies on 

lateralisation of impairments. In adult TLE, material-specific memory impairments 

are often reported, with verbal memory deficits in patients with left TLE and visual 

memory deficits in patients with right TLE (Helmstaedter et al., 2003; Jones-

Gotman et al., 2000; Jones-Gotman et al., 2010). However, verbal memory 

deficits are generally more prominent than visual memory deficits. In addition, 

standardised tests of visual memory do not always reliably distinguish between 

left and right TLE (Lee et al., 2002; McConley et al., 2008). Despite 

methodological limitations, neuropsychological studies demonstrate material-

specific memory impairments in adults with TLE, consistent with the side of 

pathology.  

In contrast to adult-onset TLE, material-specific deficits are not as clearly side-

dependent in paediatric TLE, and studies show inconsistent findings. Within-

group comparisons in two studies show that the left TLE groups are more 

impaired in verbal compared to visual memory, and the right TLE groups are 

more impaired in visual compared to verbal memory (Kar et al., 2010; Kibby et 

al., 2014). Between-group comparisons with healthy controls show that left TLE 

groups are significantly impaired on verbal memory tasks compared to controls 

(Cohen, 1992; Engel, 1998; Kibby et al., 2014), and the right TLE groups show 

significant impairments in visual memory (Cohen, 1992; Engle & Smith, 2010; 

Kibby et al., 2014). Several studies do not compare patients’ performances to a 

control group (Mabbott & Smith, 2003; Gonzalez & Anderson, 2007; Kar et al., 

2010). When comparing the two patient groups together, some studies report 

more visual memory deficits in the right TLE group compared to the left TLE 

group for dot location (Kibby et al., 2014) and face recognition (Mabbott & Smith, 

2003; Gonzalez & Anderson, 2007; Kibby et al., 2014). However, no differences 

between the two patient groups are reported for verbal memory. A recent study 
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by Cormack and colleagues reported a bigger effect of aetiology than side of 

lesion, where hippocampal sclerosis (HS), but not dysembryoplastic 

neuroepithelial tumours (DNT), was associated with impairments in delayed story 

recall tasks regardless of the side of lesion (Cormack et al., 2012). 

Few studies control for IQ making it difficult to know whether the memory and 

learning difficulties reflect global cognitive impairments or selective memory 

deficits in the presence of preserved intelligence. Whereas studies investigating 

long-term memory in childhood TLE suggest a tendency for lateralised deficits, 

more widespread memory impairments are reported than in adults, as both verbal 

and visual memory are impaired. 

5.2.2.1.1 Problems with Standardised Tests  

Studies examining material-specific impairments in unilateral brain pathology 

show inconsistent findings. These inconsistencies could be related to the 

imperfection of the tests designed to measure lateralised effects, which may not 

be sensitive enough to the specialisation of the left and right temporal lobes. 

Several confounds in the memory processes that these tests assess, as well as 

in the nature of items to remember, may hamper clear comparison between 

verbal and visual tests.  

First, standardised verbal and visual memory tasks often assess distinct cognitive 

processes, wherein verbal memory is usually being tested through recall and 

non-verbal (i.e. visual) memory through recognition. As previously discussed, 

recognition and recall are separate memory processes subserved by distinct 

substructures of the MTL. Second, differences in the modality of presentation of 

verbal and non-verbal materials could also contribute to inconsistent findings. 

Verbal tasks are usually presented in the auditory modality (e.g. spoken words); 

whereas non-verbal tasks are presented in the visual modality (e.g. designs). 

Information in the auditory modality is received in temporal order, whereas the 

visual modality is more prone to configural organisation. With this respect, it is 

important that stimuli in both tasks are presented in the same sensory modality 

by, for instance, assessing verbal memory in the visual modality for better 

comparisons with non-verbal memory tasks. In addition, differences in task 

difficulty between input modality may hamper clear investigation of lateralisation 
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of memory dysfunction. Third, studies often compare verbal associative memory 

(i.e. word pairs) to single item visual memory (e.g. complex figures). Distinct 

neural mechanisms subserve these processes, whereby the hippocampus 

contributes to associative memory, and other non-hippocampal medial temporal 

regions contribute to single-item memory (Henke et al., 1999; Eichenbaum et al., 

1994; Brown & Aggleton, 2001). The nature of unbalanced standardised tests 

has made it difficult to investigate lateralisation of dysfunction associated with 

unilateral pathology. More balanced and controlled paradigms are required to 

investigate this further. 

5.2.2.2 Neuroimaging Evidence 

fMRI studies in adults demonstrate functional reorganisation of memory 

functions, with activation contralateral to the seizure focus (Golby et al., 2002; 

Powell et al., 2005; Sidhu et al., 2013). However, it has been shown that 

contralateral reorganisation of memory is an inefficient process which does not 

allow preservation of memory performance (Powell et al., 2005). On the other 

hand, Sidhu et al. (2013) demonstrated that ipsilateral reorganisation to posterior 

portions of the hippocampus successfully supports memory performance (Sidhu 

et al., 2015). However, contralateral reorganisation can become efficient as a 

long-term process after surgery. Sidhu et al. (2016) demonstrated that 

engagement of the contralateral hippocampus 12 months after surgery is 

associated with better memory performance. These studies demonstrate 

functional reorganisation (ipsilateral or contralateral) of memory in adult TLE, and 

indicate that fMRI can be used as a tool to provide evidence of hemispheric 

specialisation. In addition, there is evidence of relationship between language 

and verbal memory lateralisation. Sepeta and colleagues (2016) demonstrated 

that Broca’s area and the MTL are co-lateralised in adults with and without TLE. 

Similarly, Everts and colleagues (2010) showed that language lateralisation is 

related to verbal memory performance in patients with left TLE. Such co-

lateralisation of language and verbal memory provides valuable information 

regarding hemispheric specialisation.  

For childhood TLE, however, there are no fMRI studies investigating memory 

networks and therefore no neuroimaging evidence of hemispheric specialisation. 
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It has been shown in adult studies that stronger functional reorganisation of 

memory is associated with earlier age at onset of seizures (Mechanic-Hamilton et 

al., 2009; Sidhu et al., 2015), providing assumptions that functional 

reorganisation may be prominent in childhood TLE. In addition, there is no 

indication regarding co-lateralisation of language and verbal memory in childhood 

TLE. This co-lateralisation of functions should therefore be investigated to 

examine the extent of memory reorganisation and its relation to language 

laterality. This would provide useful information for the prediction of language and 

memory outcome after surgery.   

These findings from language and memory studies suggest that functional 

deficits are less lateralised in childhood TLE than in adult TLE, providing less 

evidence of hemispheric specialisation in the paediatric cohort. In addition, 

atypical language representation is more prominent in children compared to 

adults with TLE, however there is a dearth of information regarding functional 

representation of memory in childhood TLE and its relation to language laterality.  

6 Current Research  

6.1 Aims 

The current study arose from the breadth of research discussed above. The main 

aim of the current research was to develop experimental tools to provide better 

investigation of hemispheric specialisation of memory in childhood TLE to 

optimise surgical decision-making and decrease the risk of memory impairment 

after temporal lobe surgery. Particularly, the aim was to develop two protocols: a 

behavioural protocol and an fMRI protocol.  

The first aim was therefore to develop a behavioural protocol to assess 

lateralisation in paediatric TLE, using knowledge of neurobiology of the memory 

system and respecting models of processes of memory. Such experimental 

protocol would refine identification of side-dependent impairment in relation to 

material type, levels of semantic access and input modality in childhood TLE.  
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The second aim was to develop an fMRI protocol to assess localisation of verbal 

memory circuits in relation to language laterality. More specifically, the aim was to 

design a memory paradigm that taps into the hippocampal-neocortical network 

that is at risk of compromise given learning and recall deficits. Together, these 

protocols may improve interpretation of findings and optimise clinical applications. 

6.2 Overview of Thesis 

 Chapter 1 was the introductory chapter that laid the groundwork for the 

subsequent chapters. 

 Chapter 2 will describe the development of the behavioural protocol (the 

Pair Games) to assess lateralisation of memory. 

 Chapter 3 will discuss the findings in a large cohort of typically-developing 

children who were administered the Pair Games. 

 Chapter 4 will discuss the pilot findings in a sample of six young patients 

with TLE who were candidates for surgery.  

 Chapter 5 will describe the development of the fMRI protocol to examine 

language and verbal memory representations. 

 Chapter 6 will discuss the findings in a cohort of typically-developing 

children who were administered the fMRI protocol.  

 Chapter 7 will discuss the pilot findings in a sample of five young patients 

with TLE who were candidates for surgery.  

 Chapter 8 is the final chapter that provides a general discussion about the 

overall thesis.  
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Chapter 2 

 The “Pair Games”: A Test of 
Learning and Memory  

 

Children with Temporal Lobe Epilepsy often exhibit learning and memory 

impairments. Neuropsychological assessment characterises and quantifies the 

extent of these cognitive impairments, however, quantifying memory deficits has 

been compromised by a lack of adequate instruments. The aim of the present 

chapter was therefore to develop a diagnostic tool to refine diagnosis of memory 

impairment and help predict outcome after surgery in the temporal lobe.  
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1 Introduction 

Memory deficits are frequently reported in patients with Temporal Lobe Epilepsy 

(TLE). Medically intractable, and lesion-based TLE occurs in 20-30% of the 

patients (Engel, 1998). In such cases, a surgical intervention is proposed for the 

resection of the temporal lobe lesion and the epileptogenic zone which usually 

encroaches on the hippocampus (Radhakrishnan et al., 1998). TLE and surgical 

intervention in the temporal lobe are associated with cognitive impairments, most 

prominent in the domains of learning and memory. Such cognitive dysfunctions 

are pervasive and debilitating in childhood TLE and impact the quality of life of 

these patients.  

Neuropsychological assessment characterises and quantifies the extent of 

cognitive dysfunction associated with TLE, and evaluation of learning and 

memory is particularly important in this context due to the prominence of memory 

impairment associated with seizures and/or presence of a lesion in the temporal 

lobe. As mentioned in Chapter 1 (section 4.5.1, page 21), the contribution of 

neuropsychological evaluation to surgical decision-making in paediatric TLE is to: 

1) characterise the status of memory and learning in relation to different aspects 

of cognitive function, 2) establish the pattern of lateralisation of function vis-à-vis 

the focus of seizures and/or locus of lesion, 3) relate selective deficits in learning 

and memory to the neural systems subserving the mnemonic functions, 4) 

identify risks to memory and learning in the presence of unilateral versus bilateral 

disease, and 5) predict learning and memory outcome post-surgery. In addition, 

neuropsychological assessment provides indication on the functionality of the 

hemisphere contralateral to the lesion, and can detect possible dysfunction 

contralateral to the primary seizure focus (Jones-Gotman et al., 2000). 

These goals are achieved in adults with TLE who most often show a specialised 

and lateralised pattern of brain organisation (Bell & Davies, 1998; Hermann et al., 

1997; Jones-Gotman, 1993; Zhao et al., 2014). On the other hand, focal 

representation of function and overall pattern of brain organisation is often 

disrupted in children with early onset of seizures, even in those patients who 

present with seizures/lesions involving the temporal lobe, leading to a more 

generalised pattern of cognitive and learning deficits (Cohen, 1992; Cormack et 
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al., 2005; Cormack et al., 2012; Engle & Smith, 2010; Golouboff et al., 2012; 

Rzezak et al., 2009).  

Such generalised patterns of deficits are caused by multiple factors, including 1) 

early onset of TLE as a reflection of network dysfunction rather than focal 

pathology per se (Cormack et al., 2005; Doucet et al., 2015), 2) aetiology of TLE 

as manifestation of bilateral disease even in the presence of focal signs restricted 

to one temporal lobe (Babb, 1991; Halasz, 2016; Quigg et al., 1997), 3) the 

trajectory of learning and memory development may differ based on the 

involvement of cortical versus subcortical mesial temporal lobe pathology (Bell et 

al., 2013; Mueller et al., 2012). 

To overcome some of these issues, and to achieve the goals of an informed and 

effective neuropsychological assessment outlined above, tests that measure 

different components of learning and memory in relation to their neural structures 

are needed. There is a need for the development of assessment tools that are 

consistent with theoretical concepts of memory processes. In addition, such tools 

should cater to the age range of the clinical population being investigated, and be 

sensitive to detecting variations in age differences at test and/or age at onset of 

the seizure-inducing pathology. More specifically, there is a need to construct 

tests that address several memory processes and that use measures that tap into 

these processes. These variables are described below.  

1.1 Processes of Learning and Memory  

Although epilepsy is a disease of cortical organisation (Kramer & Cash, 2013), it 

invariably affects subcortical as well as cortical interactions. When epilepsy 

affects the temporal lobes, targeted and sensitive tests are required to investigate 

how much of the hippocampal-cortical network is compromised, and, in relation to 

this, identify which aspects of the memory and learning system subserved by this 

network are impaired prior to surgical decision-making. 

1.1.1 Learning 

Paired-associate learning paradigms assess the ability to bind information into a 

mental representation for later retrieval. The hippocampus plays a critical role in 
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the binding of disparate elements. More specifically, it encodes trial-unique 

events by binding spatial and temporal features of an episode to form an 

integrated representation (Cohen & Eichenbaum, 1993). Supporting this idea, 

patients with hippocampal damage exhibit impairments in tasks that require 

relational binding of information (Watson et al., 2013).  

1.1.2 Recall and Recognition 

Successful retrieval requires the use of associative mechanisms, and in that 

respect, it relies on the structural and functional integrity of the hippocampal 

formation (Eichenbaum et al., 1994; Kesner et al., 2005; Konkel & Cohen, 2009; 

Morris, 2006). Successful recognition in the absence of recall suggests that the 

information has been encoded and consolidated, and is available for retrieval, but 

is not accessible through recall (Tulving, 1991). The processes of recall and 

recognition are supported by distinct neural substrates, with the hippocampal 

formation supporting recall (Patai et al., 2015) and the parahippocampal and 

perirhinal cortices supporting recognition (Davachi et al., 2003; Diana et al., 2007; 

Henke et al., 1999). Testing the processes of recall versus recognition in 

childhood TLE can result in dissociations, and shed light on the cognitive profile 

of patients and provide information related to the localisation of brain dysfunction. 

More specifically, this can shed light on the territory of damage to the cortical 

versus subcortical structures. 

The intrinsic role of the hippocampus in learning and retrieval and its vulnerability 

to insults (Lowenstein et al., 1992) reflects the wide range of individual variation 

both in typical and clinical populations. Moreover, the extended developmental 

trajectory of hippocampal formation is related to later emergence of episodic 

memory difficulties in clinical populations, with difficulties sometimes only 

recognised in school age years (Gadian et al., 2000). The developmental nature 

of learning and the effects of elapsed time and consolidation on retrieval suggest 

the importance of characterising impairments related to the distinct processes of 

learning and recall as a function of age in childhood TLE.  
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1.2 Measures of Learning and Memory 

Adequate measures are necessary to assess how learning and memory 

processes are affected in patients.  

1.2.1 Material Type  

Material-specific memory deficits have been reported in imaging and lesion 

studies (Dalton et al., 2016; Milner, 1971; Golby et al., 2001; Golby et al., 2002; 

Willment & Golby, 2013), demonstrating that verbal and non-verbal memory 

systems are functionally separate but interconnected.  

Numerous observations in patients with unilateral lesions of the medial temporal 

lobe (MTL) indicate that memory processes are lateralized according to content. 

Left-sided lesions interfere with verbal memory processes, whereas right-sided 

lesions interfere with non-verbal memory processes. However, paediatric TLE 

studies often investigate lateralisation of memory deficits where verbal memory is 

tested through recall and non-verbal memory is tested through recognition (e.g. 

Engle & Smith, 2010; Kibby et al., 2014). As mentioned above, distinct neural 

substrates subserve recall and recognition, hampering the comparison between 

verbal and non-verbal memory reported in those studies. 

Saling introduced the notion of task-specificity which suggests that different 

memory processes (e.g. recall and recognition) assessed with different tasks 

might be differentially affected in TLE (Saling, 2009), and suggests the need to 

assess and compare memory processes using comparable tests that are equated 

in difficulty, each tested in the same modality. Because of the distinct neural 

substrates subserving the processes of recall and recognition, comparing verbal 

recall to non-verbal recognition results in different systems being inappropriately 

compared and compromises the investigation of lateralisation of memory. It is 

clinically critical to distinguish between recognition and recall-based tasks, and 

because of the hippocampal involvement frequently associated with TLE, the 

particular aspects of memory that are at risk may be better assessed with recall 

tasks. This shows the importance of assessing verbal and non-verbal memory 

within the same memory process, e.g. recall.  
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1.2.2 Input Modality  

In addition, the investigation of lateralisation of memory deficits in paediatric TLE 

may have been hampered by the confounding effects of input modality. Verbal 

memory tasks are usually presented in the auditory modality (e.g. stories or 

words read to the patients), whereas non-verbal memory tasks are presented in 

the visual modality (e.g. designs) (Cohen, 1992; Cormack et al., 2012; Engle & 

Smith, 2010; Kar et al., 2010; Kibby et al., 2014; Mabbott & Smith, 2003).  

Words presented in the visual and auditory modalities are processed in separate 

streams (Penney, 1989), and distinct strategies may be used for the processing 

of auditory and visual words. Left and right hemispheres use qualitatively different 

strategies to process words, and sensory modalities may play different roles in 

conceptual representations (Gainotti, 2014). Information in the auditory modality 

is received in temporal order, whereas the visual modality is more prone to 

configural organisation. In this respect, it is important that stimuli in both tasks are 

presented in the same sensory modality by, for instance, assessing verbal 

memory in the visual modality for better comparisons with non-verbal memory 

tasks. 

1.2.3 Levels of Semantic Structure 

The levels of semantic structure of information have an impact on how well the 

material is learned and memorised. Pre-existing representations of individual 

items allow the support of a dual-coding strategy whereby both verbal and non-

verbal systems are engaged which enhances the memory trace (Silverberg & 

Buchanan, 2005). Semantic items are better learned and memorised as a result 

of more exposures and easier access to pre-existing representations. 

Examination of lateralisation of memory impairment in paediatric TLE has been 

hindered by the confounding effects of levels of semantic structure, whereby 

standard tests are often composed of items that can be coded both verbally and 

visually. Standardised non-verbal memory tests may be insensitive to right 

hemisphere pathology, which generally allow some level of verbal labelling of 

pictures. Patients with right hemisphere damage may automatically activate the 

verbal system for the encoding of pictorial information thereby compensating for a 
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non-verbal memory deficit. The impurity of non-verbal stimuli may therefore 

hinder the test’s ability to capture impairment in visual memory. Comparing 

memory performance for non-semantic non-verbal information and verbalisable 

images may tease apart the nature of impairment in right hemisphere damaged 

patients. Tests of memory for non-semantic items may be more sensitive to 

capture lateralised impairment in unilateral brain damage. 

In addition, performance on verbal memory tests composed of semantic stimuli is 

often compared to performance on non-verbal memory tests composed of 

abstract shapes that provide limited access to semantic representations (Cohen, 

1992; Cormack et al., 2012; Kar et al., 2010). Moreover, memory for non-

semantic items pushes the boundaries of new learning and, in that respect, may 

be better predictors of post-operative learning ability. 

1.3 A “Purer” Measure of Memory 

Paediatric TLE is often associated with a generalised pattern of cognitive 

dysfunction, involving impairments in learning and episodic memory, but also in 

semantic memory, intellectual abilities and executive function (Cohen, 1992; 

Cormack et al., 2005; Cormack et al., 2012; Engle & Smith, 2010; Golouboff et 

al., 2012; Rzezak et al., 2009). This generalised pattern of impairment may result 

from a network dysfunction associated with early onset of pathology (Cormack et 

al., 2005; Doucet et al., 2015). Because of this pattern of dysfunction, clinical 

tools assessing memory without controlling for the effects of other cognitive 

processes may have led to an inappropriate designation of impairment in children 

with TLE. Tests that are highly influenced by the level of general intellectual 

functioning may have difficulty capturing memory impairments in isolation from 

other cognitive impairments.  

In healthy children, executive function contributes to performance in episodic 

memory, particularly for recall rather than recognition (Rajan et al., 2014), 

reflecting the use of strategic processes required to encode and retrieve episodic 

traces (Schneider & Pressley, 1997). As a result of this contribution, memory 

impairments in childhood TLE are partially explained by executive dysfunction 

(Rzezak et al., 2012). This suggests the importance of using tools that enable a 
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better isolation of learning and memory impairments in order to identify the extent 

of hippocampal involvement in the cognitive profile of TLE for a better prediction 

of memory outcome after surgery in the temporal lobe.  

1.4 Aims 

The aims of the present chapter are to: 

a) Develop a diagnostic tool that incorporates the critical domains discussed 

above by designing a paired-associate learning test for the assessment of 

hippocampal learning and memory systems that is consistent with 

theoretical knowledge of neural substrates of recall versus recognition 

and is sensitive to the lateralisation of memory deficits in childhood TLE. 

b) Examine the contribution of intellectual functioning in performance on the 

Pair Games. 

c) Examine test validity and reliability of the construct. 

d) Standardisation of raw scores in order to provide normative data. 

2 Methods 

2.1 Participants 

One hundred and thirty typically-developing children and adolescents between 

the ages of 8 and 18 years were recruited for the study (M=13 years, SD=3). 

These children were approached through East London schools, and were all 

English-speaking with no history of psychiatric or neurological disorder. These 

exclusion criteria were identified with a screening questionnaire completed by 

parents. Participants were not excluded based on learning disabilities, such as 

dyslexia or ADHD, in order to provide a better representation of the general 

population. In the full cohort, 5 children had learning difficulties (attention 

difficulties, N=2 and dyslexia, N=3), but nonetheless had normal IQ. Informed 

written consent was obtained from parents for participants under 18 years old, 

and from participants themselves if they are 18 years old. The cohort was 

composed of 30 males and 100 females. There was generally more interest from 
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females than males in participating in the study, and obtaining a balanced sample 

was difficult. 

2.2 Socio-Economic Status 

Socio-economic status was determined based on the participants’ postcode using 

The Index of Multiple Deprivation from the UK Department for Communities and 

Local Government . Deprivation deciles range from most deprived (score of 1) to 

least deprived (score of 10). Participants in the present cohort had SES scores 

across the whole range (M=4, SD=2, min=1, max=10). 

2.3 Neuropsychological Assessment   

General intellectual functioning was assessed using the Wechsler Abbreviated 

Scale of Intelligence – Fourth Edition (WASI-IV).  

Memory ability was assessed using the Children’s Memory Scale (CMS), which is 

a widely used standardised diagnostic tool for children. This test is composed of 

several subtests and provides measures of verbal and non-verbal learning and 

memory. For the purpose of this study, only two subtests were administered: The 

Dot Locations and Word Pairs. The Word Pairs subtest assesses the ability to 

learn a list of pairs of words over three consecutive trials, whereby the examinee 

is presented with the first word of each pair and is asked to recall the second 

word (cued recall). In the delayed test, following a 30-minute delay, the 

participant is asked to retrieve as many pairs as possible through free recall, and 

is then asked to make yes/no recognition judgments to word pairs to indicate 

whether they were part of the list that was learned earlier. The Dot Locations 

subtest evaluates the ability to learn the spatial location of several dots over three 

consecutive trials. After a 30-minute delay, the participant is asked to recall those 

locations again by placing the tokens in the grid.  

In this chapter, the neuropsychological properties of the Pair Games paradigm 

are compared with those obtained from the subtests of the CMS. 
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2.4 Development of the Pair Games 

2.4.1 Paired-associate Learning 

The paired-associate paradigm adopted here compares the learning and recall of 

pairs of items presented in the auditory or visual modality across three learning 

trials. The paired-associate learning paradigm along with retrieval through recall 

(rather than recognition) is considered to be dependent on the integrity of the 

hippocampus (see Chapter 1, section 2.3.2, page 12). The Pair Games is 

composed of five subtests, controlling for several variables to allow systematic 

comparisons between them (Table 2.1). These variables are material (verbal 

versus non-verbal), modality of presentation (auditory versus visual), and 

conceptual component of items (semantic versus non-semantic). The five 

subtests consist of paired-associate learning of Spoken Words, Written Words, 

Objects, Abstract Designs, and Pseudowords. The remainder of the stimulus 

categories from Table 2.1 were not developed because of the difficulty retrieving 

sounds through the process of recall. Sounds that can be labelled are not 

remembered by their modality of input (i.e. audition). A sound that does not have 

a label, or cannot be repeated (backward speech which cannot be articulated by 

the human vocal chords) cannot be easily remembered. However, the five 

stimulus categories selected for the development of the Pair Games allow 

comparison between the three variables of interest.  

Table 2.1 Overview of the experimental paradigm. 

 Material 

 Concept Non-verbal Verbal 

M
o

d
a

lit
y
 

Visual 

Semantic  Objects Written words 

Non-semantic Designs 
Written 

pseudowords 

Auditory 

Semantic  
Meaningful 

sounds 
Spoken words 

Non-semantic 
Non-

meaningful 
sounds 

Spoken 
pseudowords 
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2.4.2 Stimulus Material 

The stimuli with access to semantic labels (i.e. objects and written words) were 

selected from the MRC Psycholinguistic Database (Wilson, 1988), and are 

matched to each other on age of acquisition (Kuperman et al., 2012), verbal 

frequency (Brown, 1984), word length, concreteness, familiarity and imageability.  

A total of 120 word stimuli were selected for the word tasks; 60 stimuli were used 

for the Spoken Words task and 60 others were used for the Written Word task. 

For the Object task, 60 object stimuli were selected from Snodgrass’ original 

dataset (1980) based on concept familiarity and visual complexity. For these 

stimuli, concept familiarity ranged from 1.4 to 4.95 and visual complexity ranged 

from 1.10 to 3.90 on a 5-point rating scale (where 1 indicates simple and 5 

indicates very complex). 

The pseudoword items are composed of monosyllabic and bi-syllabic 

pronounceable non-words and are matched to the words in terms of the number 

of syllables. The design stimuli are composed of black and white abstract, but 

reproducible, line drawings.  

The stimuli which compose each subtest of the Pair Games (versions A and B) 

are presented in Appendix A (page 311). Each task is composed of 30 stimuli, 20 

of which were used to create 10 pairs, and the remaining 10 used as distractors 

for the recognition task (see section 2.7.3, page 49). Amongst the 10 pairs, 8 are 

composed of unrelated items (hard pairs) and 2 are composed of related items 

(easy pairs).  

2.5 Two Parallel Versions 

For each of these subtests, two versions were created using different stimuli to 

enable administration of parallel versions to the same participants at two different 

time points (e.g. before and after surgery). The stimuli selected for Spoken Word, 

Written Word, and Object subtests are equivalent across the two versions. No 

significant difference in performance between the versions (A versus B) was 
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observed, F(1,49)=0.337, p=0.564, thus allowing for a comparable assessment 

across two time points.  

2.6 Tablet-based Application 

An application was developed using the MIT App Inventor 2 software for the 

presentation of the stimuli and the recording of the responses. Administering the 

memory subtests with a tablet makes the testing procedure more engaging and 

child-friendly, and also allows a more controlled administration process.  

2.7 Learning and Memory Processes  

2.7.1 Learning  

The list of 10 stimulus pairs was presented to the participants who were asked to 

listen/look carefully to remember the pairings. The participants were then 

presented with the first item of each pair and were asked to try and remember the 

item that went with it. Each pair was presented individually for 5 seconds during 

which the participants were asked to click on the stimulus that they preferred 

(Figure 2.1A). This was to ensure the encoding of each pair within each subtest, 

and to use the same procedure across the 5 subtests. After the last pair of the list 

was presented, the participant was immediately presented with the stimulus 

appearing on the left hand side of the screen for each pair and asked to recall by 

drawing (for non-verbal items) or writing (for verbal items) the stimulus that was 

paired with it (Figure 2.1B). This encoding-cued recall cycle is repeated 3 times in 

a row for each subtest to establish a learning curve for each participant on that 

subtest. No feedback was given on their performance.  

A pseudo-random response order was used to avoid a recency effect, whereby 

last items of the list are better retrieved. To achieve this, the items that were 

presented last during encoding were not presented at the beginning of the 

retrieval phase. This way, immediate recall of the last items of the list is 

prevented. 
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The paradigm involves two measures of learning: learning average and learning 

gain. The learning average score in the Pair Games is measured by averaging 

performance from the three consecutive trials.  It has been argued that learning 

should be measured as a gain score from initial to last performance (Woodrow, 

1946). In that respect, we define the learning gain as the extent of increase in the 

acquisition of stimulus pairings over consecutive trials. This learning curve is 

thought to be affected by testing, wherein testing studied items after each 

learning phase increases later delayed recall, compared to repeated study 

without testing (Potts & Shanks, 2012; Roediger III & Arnold, 2012). The gain in 

learning refers to the increase in performance from the first to the third trial and is 

measured by subtracting performance at trial 1 from performance at trial 3.  

2.7.2 Delayed Recall  

A final cued recall trial is administered after a 15-minute delay, where participants 

are presented with a cue, i.e. the first stimulus item of the pair, and are asked to 

remember the item that was paired with it. This is performed for each pair of each 

subtest. During this delay period, the learning phase of another task takes place.  

The measure of delayed recall refers to the amount of learned information at trial 

3 that is forgotten after a delay, and is measured by subtracting performance at 

the delayed trial from performance at trial 3. A negative score therefore indicates 

a loss of information. This score is therefore computed with consideration of prior 

learning by taking into account how much information was previously learned in 

order to fully characterise delayed recall ability.   

2.7.3 Delayed Recognition  

In the forced-choice recognition stage, participants are presented with the first 

stimulus of each pair (i.e. the cue) and asked to pick from 3 choices the target 

associate that was paired with the cue (Figure 2.1C). Amongst the 3 choices, 

there are 2 distractors: 1 new stimulus and 1 familiar stimulus that was among 

the list to be remembered, as part of a different pair. With this paradigm, the 

distractors cannot be rejected purely on the basis of familiarity, and recall of the 

association is required to make recognition judgments. Such associate-

recognition tasks are thought to rely on both familiarity and recollection processes 
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(Yonelinas, 2001), and in that respect, are more sensitive to the functionality of 

the MTL than standard item-recognition tasks.  

Because of the response options, recognition is easier than cued recall by its 

very nature. Examining recognition after recall therefore allows the investigation 

of retrieval of information that is encoded and available but that was not 

previously accessible through recall. The measure of recognition accuracy refers 

to the amount of information that is successfully recognised after accounting for 

false alarms. This measure is obtained by subtracting familiar and intrusion errors 

from the correctly identified targets. With these three response options, chance 

recognition accuracy is 33%. 

 

Figure 2.1 A. Encoding. B. Cued Recall. C. Recognition. 

2.8 Procedure of Administration 

The administration of the 5 subtests is counterbalanced between and within 

material type (verbal and non-verbal) in order to prevent interference, and the 

order of administration of the tasks was randomised between participants. 

The administration of the whole paradigm took about 1 ½ hours and took place 

either at the UCL Great Ormond Street Institute of Child Health or at the 

participant’s school.  

2.9 Statistical Analyses 

Statistical analyses are carried out to investigate the psychological properties of 

the Pair Games, in comparison to the standardised measure of memory i.e. the 

CMS. This includes examination of validity and reliability of the paradigm.  
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Analyses of variance with repeated measures were performed, with a 5 (subtest: 

Spoken Words, Written Words, Objects, Designs, Pseudowords) x 3 (trial: one to 

three) design. Other statistical analyses in this section include partial Pearson 

correlations, factor analysis, and Cronbach’s alpha. Analyses are adjusted for 

age and intellectual functioning FSIQ, where appropriate.  

Performances on the CMS were examined with repeated measures ANOVAs, 

with a 2 (subtest: Dot Locations and Word Pairs) x 3 (trial: one to three) design. 

Analyses are performed on raw data, rather than on age-controlled standard 

scores, in order to be able to capture age-related differences.  

3 Results  

3.1 Neuropsychological Assessment 

The WASI-IV provided measures of intellectual ability for full scale IQ (M=104, 

SD=10), verbal IQ (M=106, SD=10), and performance IQ (M=100, SD=11). No 

participants had standard scores below 70. Memory ability, assessed using the 

CMS, provide measures of verbal learning (M=92, SD=17), verbal delayed recall 

(M=96, SD=15), non-verbal learning (M=103, SD=15) and non-verbal delayed 

recall (M=104, SD=14). The range of memory scores is larger than for IQ scores, 

as illustrated in Figure 2.2.   

 

Figure 2.2 Standard scores on measures of IQ and memory. 
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All children successfully completed all subtests from the Pair Games, as well as 

the two subtests selected from the CMS. Table 2.2 illustrates memory 

performances for each subtest as the average percentage correct recall over the 

three trials. Figure 2.3 is a boxplot representation of the distribution of 

performance for each subtest and illustrates large variability across individuals.  

Table 2.2 Descriptive statistics for memory scores across subtests (%). 

 Subtests Mean SD Min Max 

Pair Games 

Spoken words  61 21 10 100 

Written words 66 25 7 100 

Objects 65 23 0 100 

Designs 47 20 7 93 

Pseudowords 41 23 0 97 

CMS 
Dots  85 13 25 100 

Word Pairs 56 18 0 93 

 

 

Figure 2.3 Boxplot of distribution of performance across subtest (%). 

3.2 Capturing a Wide Range of Abilities 

The ability of the Pair Games to capture a wide range of abilities was verified by 

calculating the percentage of participants with floor and ceiling performances in 

each subtest of the Pair Games.  
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A floor performance is when the score achieved at the third trial is 0%, in which 

case the task is too difficult. A ceiling performance is when the performance at 

the first trial is 100%, in which case the task is too easy. Table 2.3 illustrates the 

percentages of participants who demonstrate these effects for each subtest, and 

suggests that these extreme scores are relatively infrequent. This finding 

indicates that the Pair Games is able to capture a wide range of abilities and can 

reflect the high variability in performances across patients. 

Table 2. Proportion of floor and ceiling effects for each subtest of the Pair Games (%). 

Task Floor effect 
Ceiling 

effect 

Spoken words 0 0.8 

Written words 0.8 5.5 

Objects 2.3 2.3 

Designs 0 0 

Pseudowords 3.2 0 

 

Similar analyses were conducted for the subtests of the CMS. There seems to be 

a high percentage of participants obtaining a ceiling effect on the Dot Locations 

subtest, with 22% of children obtaining 100% correct performance at the first trial. 

This finding suggests that the task may be too easy (Table 2.4A). This ceiling 

effect was further explored in different age groups, and results suggest that the 

percentage of participants obtaining at or near ceiling scores is high even in 

younger children (Table 2.4B).  

Table 2.4 A. Percentage of floor and ceiling effects for each subtest of the CMS (%). B. 

Percentage of ceiling effects for Dot Locations in three age groups (%). 

 A   B 

Task Floor effect 
Ceiling 

effect 

 
Age group 

Ceiling 

effect 

Dot Locations 0 22.2  8-11 years 15.8 

Word Pairs 0.8 0  12-15 years 14.3 

    16-18 years 37.2 
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3.3 Test Validity  

3.3.1 Concurrent validity  

Concurrent validity is the correlation between a test and a validated tool that 

measures a different but related construct. Performance on the Pair Games was 

compared to intellectual functioning measured by WASI-IV. Correlation analyses 

with measures of general cognitive ability provide an estimate of the degree that 

intellectual functioning accounts for memory and learning ability in typically-

developing children. 

Table 2.5 illustrates the correlations between the learning scores of the Pair 

Games subtests and WASI-IV measures. The findings indicate that learning and 

memory skills are positively correlated with intellectual functioning. However, 

these correlations are low to moderate, suggesting that intelligence has a small to 

moderate impact on children’s memory ability.   

The subtest learning scores from the CMS were also compared to IQ scores. 

Fisher’s tests were computed to compare correlations between the subtests of 

the Pair games and the CMS’s Word Pairs task with FSIQ. Results show that the 

Word Pairs scores are more strongly correlated with FSIQ than the Pair Games is 

(p<0.06), suggesting that the CMS subtest is more closely related to intelligence 

than the Pair Games is. Performance on that subtest may be more dependent on 

intellectual functioning than the comparable subtests of the Pair Games.  

Table 2.5 Correlation coefficients between learning and intelligence scores. 

 
 

Verbal 

IQ 

Performance 

IQ 

Full Scale 

IQ 

Pair Games 

Spoken words  0.20* 0.21* 0.24** 

Written words 0.21* 0.18* 0.23** 

Objects 0.16 0.26** 0.25** 

Designs 0.21* 0.24** 0.28** 

Pseudowords 0.23* 0.28** 0.31** 

CMS 
Dots  0.12 0.30** 0.25** 

Word Pairs 0.40** 0.38** 0.47** 

** Correlation is significant at the 0.01 level (2-tailed) 
* Correlation is significant at the 0.05 level (2-tailed) 
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3.3.2 Convergent Validity  

Convergent validity is the degree to which two measures that are assumed to 

measure the same construct are related. We can explore convergent validity 

between the CMS and the Pair Games tests and assess to what extent they 

measure the same construct of learning and memory. Correlation analyses were 

computed between the tests, with FSIQ partialled out (Table 2.6). Moderate 

correlations are found between the subtest scores involving cued recall from the 

Pair Games and Word Pairs from the CMS (p<0.001). Low correlations were 

found between the subtest scores of the Pair Games and Dot Locations from the 

CMS (p<0.030).  

Fisher’s tests were computed to compare coefficient correlations and 

demonstrate that the results of the Pair Games are more strongly correlated with 

those of the Word Pairs subtest than those of the Dot Locations subtest (p<0.08). 

This is found for all subtest scores of the Pair Games apart from the Objects 

(p=0.47) and Pseudowords (p=0.68) subtest scores. Higher correlations with the 

Word Pairs subtest than with the Dot Locations subtest may be related to the fact 

that the latter is a measure of spatial memory. In addition, the memory load is 

greater in the paired-associate tests, wherein each item is paired with another 

item requiring the binding of the two items. On the other hand, the Dot Location 

test requires the binding of the same items with a different location, thereby 

reducing the load. These correlations indicate convergent validity with the CMS, 

particularly for measures that involve cued recall.  

Table 2.6 Correlation coefficients between Pair Games and CMS scores. 

 Dot 

Locations 
Word Pairs 

Spoken Words 0.22* 0.39** 

Written Words 0.19* 0.46** 

Objects 0.29** 0.36** 

Designs 0.27** 0.44** 

Pseudowords 0.35** 0.31** 

** Correlation is significant at the 0.01 level (2-tailed) 
* Correlation is significant at the 0.05 level (2-tailed) 
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3.4 Test reliability 

Reliability analysis was computed on the Pair Games paradigm to determine how 

closely related the subtests are and how strongly each subtest is associated with 

the memory component that the paradigm measures. An exploratory factor 

analysis was performed to understand the structure of the subtests from the two 

paradigms. Cronbach’s alpha was then calculated on the Pair Games paradigm 

to assess internal consistency of the construct. 

Exploratory factor analysis consists of separating the variables into factors based 

on statistical measures. A factor loading is produced for each subtest of the two 

paradigms, i.e. the Pair Games and the CMS, as an indication of how strongly 

each subtest is associated with the factor. The principal-axis factoring method 

was used with direct oblimin rotation to assess the factor structure. Eigenvalues 

greater than one were used as a threshold to determine the number of factors to 

retain. The analysis yielded only one factor with 53.35% of total variance 

explained. Sampling adequacy measured by the Kaiser-Meyer-Olkin (KMO) index 

was 0.86, and Bartlett’s Test of Sphericity was significant (p<0.001), both 

indicating the appropriateness of interpreting factor analysis. Table 2.7 presents 

the factor loadings on the factor for each subtest, and demonstrates that the 

factor loadings for the subtests of the CMS are lower than for the subtests of the 

Pair Games. Only 19% of variance in Dot Locations can be explained by the 

factor, whereas much higher variance in all subtests of the Pair Games can be 

explained by the factor. 

 

 

 

 

 

 

Table 2.7 Factor analysis on memory scores. 

 

 
Factor 

loadings 

% of 

Variance 

explained 

Pair Games 

Spoken words  0.68 46 

Written words 0.74 54 

Objects 0.74 55 

Designs 0.74 55 

Pseudowords 0.72 52 

CMS 
Dots 0.44 19 

Words 0.64 41 
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 Cronbach’s alpha was calculated as a measure of internal consistency of the 

Pair Games paradigm. The results indicate Cronbach’s α = 0.84, demonstrating 

high reliability as values above 0.8 are considered as acceptable for cognitive 

tests (Kline, 1999). Table 2.8 shows how Cronbach’s α would change if specific 

items were removed from the analysis. None of the subtest would increase 

reliability of the paradigm if deleted from the analysis, suggesting that they each 

contribute to the reliability of the paradigm.  

 

 

 

 

 

3.5 Standardisation of Raw Scores 

The final aim was to compute standardised scores for clinical purposes. For each 

subtest of the Pair Games, standardisation of raw scores was performed for five 

separate age groups (group 1: 8-9, group 2: 10-11, group 3: 12-13, group 4: 14-

15, group 5: 16-18 years old). Standardisation was conducted on 5 age groups 

from 8 to 18 years old to account for changes in cognitive developmental profiles 

as a function of age. The division into five age bands allows a balanced 

composition of groups with equivalent number of individuals in each age group. 

This standardisation of scores was computed for each measure (section 2.7, 

page 48), allowing meaningful comparison between them, as well as with other 

standardised tools used clinically. The standardisation tables are illustrated in 

Appendix C (page 316). 

Raw scores were converted to z-scores by subtracting the mean and dividing by 

the standard deviation for each age group separately. Those scores were then 

multiplied by 15, and 100 was added to compute scores analogous to Wechsler 

scores with a mean of 100 and a standard deviation of 15. A score of 100 

therefore reflects the average performance of a given age group. The few 

 
Cronbach’s α if 

item deleted 

Spoken words  0.82 

Written words 0.81 

Objects 0.80 

Designs 0.81 

Pseudowords 0.81 

Table 2.8 Cronbach’s α for each subtest from the Pair Games. 
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missing scores were replaced with the mean standard score (100) to create 

representative standard scores.  

3.5.1 Combination of Subtests for Index Scores   

Index Scores were derived from the average of each participant’s standard 

scores on the relevant subtests (Table 2.9). The derivation of Index Scores 

allows the investigation of different variables of interest, i.e. material type, access 

to semantic label, and modality of presentation. These index scores can be 

investigated for all four measures of learning and memory. For example, for the 

measure of delayed recall, one can investigate verbal materials specifically, 

which comes down to a “verbal delayed recall” score referring to the average 

delayed recall scores of Written Words and Pseudowords.  

In addition, despite not being Index Scores per se, performance on the Spoken 

Words and Written Words tasks can be compared to provide indication of 

modality differences (auditory modality for the former and visual modality for the 

latter). 

Table 2.9 Index Scores and the subtests they comprise. 

Index Scores Subtests that the index comprises 

Verbal material Written Words and Pseudowords 

Non-verbal material Objects and Designs 

Semantic Written Words and Objects 

Non-Semantic  Pseudowords and Designs 

3.5.2 Differences between Index Standard Scores 

An important consideration for interpreting the performances across domains is 

the amount of difference between different standard scores, e.g. difference 

between Verbal Learning and Non-verbal Learning. The minimum difference 

between any pair of scores required for statistical significance was computed. 

Because very small variance is observed between the different age groups, the 

values are shown for all age groups combined. To obtain those values, the first 

step was to calculate the standard deviation of the scores’ paired difference 

(SDy), for a measure of variability. Correlation between the two scores (ry.x) was 

then calculated, for a measure of reliability. The standard error of measurement 
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of the difference was then calculated using the formula below (Harvil, 1991), 

where N =130. 

 𝑆𝐸𝑀𝑑𝑖𝑓𝑓 = 𝑆𝐷𝑥.𝑦√(1 − 𝑟2)
𝑁 − 1

𝑁 − 2
 

Those values were then multiplied by a factor of 1.96 to yield the amount of 

difference that is statistically significant at p≤0.05. In addition, the frequency of 

the difference in the standardisation sample is represented in separate tables to 

provide an indication of how frequently such discrepancy is observed in the 

general population. Appendix D (page 360) contains the tables with differences 

between Index Scores required to reach significance and the frequency of those 

differences. With these scores, differences between standardised domains can 

be better interpreted. 
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3.6 Summary of Results 

This chapter had several aims regarding the development of the memory 

protocol. Table 2.10 provides a summary of the findings corresponding to each 

aim. 

Table 2.10 Summary of aims and the results. 

Aims Results 

1 

Develop a diagnostic 
tool to assess 

hippocampal learning 
and memory systems 

with theoretical 
knowledge of neural 
substrates of recall 
versus recognition 

and is sensitive to the 
lateralisation of 
memory deficits 

The tool is a paired-associate paradigm of learning, 
recall and recognition, controlling for material (verbal 
versus non-verbal), modality of presentation 
(auditory versus visual), and conceptual component 
of items (semantic versus non-semantic). 

2 

Examine the 
contribution of 

intellectual 
functioning in 

performance on the 
Pair Games 

Intellectual functioning had only a small contribution 
in performance on the Pair Games (r<0.23 across 
subtests, with correlations either non-significant or 
significant at the 0.05 level) 
 

3 
Examine test validity 
and reliability of the 

construct 

 
Moderate correlations were found between the 
subtests of the Pair Games and Word Pairs from the 
CMS (r=0.31-0.46). Low correlations were found 
between the subtest of the Pair Games and Dot 
Locations from the CMS (r=0.19-0.35). 
 
Exploratory factor analysis yielded only one factor 
with 53.35% of total variance explained. The factor 
loadings for the subtests of the CMS (19-41%) were 
lower than for the subtests of the Pair Games (46-
55%).  
 
Internal consistency of the Pair Games indicated 
Cronbach’s α = 0.84, demonstrating high reliability. 
 

4 

Standardisation of 
raw scores in order to 

provide normative 
data 

For each subtest of the Pair Games, standardisation 
of raw scores was conducted for five separate age 
groups from 8 to 18 years old. In addition, the 
minimum difference between any pair of scores 
required for statistical significance was calculated. 
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4 Discussion 

There has been growing interest in examining learning and memory abilities in 

children with TLE, particularly in the context of pre-operative assessments for the 

prediction of outcome. Current measures that are available to assess memory 

are vulnerable to the effects of confounding variables, such as input modality and 

dual-coding, influencing performance on the tests and hindering the examination 

of lateralisation and selective impairments in memory function. In addition, these 

measures do not provide a comprehensive, balanced and systematic approach to 

memory assessment, hampering the ability to compare performances across 

tests and identify specific memory impairments. The Pair Games was developed 

to overcome these issues. 

4.1 Construction of the Pair Games 

This novel paradigm is a paired-associate learning paradigm devised to counter 

the shortcomings in the literature, and add to improved understanding of the 

neurobiology of learning and memory. The paradigm provides measures of 

learning and retrieval of learnt information, both assessed through cued recall, as 

well as a measure of delayed recognition. In order to understand the mechanisms 

underlying an impairment in delayed recall, we can investigate whether the 

information was not properly encoded or stored in long-term memory, or whether 

the information is available in long-term memory but simply not accessible 

through recall.  

Recognition memory is based on two separate sub-processes, namely 

recollection and familiarity, which are functionally distinct and depend on different 

brain regions. Recollection processes involve the retrieval of rich contextual 

details, whereas familiarity reflects a general feeling about previous encounters 

without specific details (Eichenbaum et al., 2007; Yonelinas, 2002). Recollection 

is generally more impaired than familiarity after hippocampal pathology; it is 

therefore useful to assess recognition memory through recollection rather than 

through familiarity, otherwise intact recognition may simply reflect preserved 

familiarity. Because the response options in the Pair Games recognition task 

include familiar distractors, successful recognition is performed with reduced 

involvement of familiarity. Reducing involvement of familiarity-based retrieval is 
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possibly more likely to capture the functionality of the hippocampus, as opposed 

to other regions of the MTL. In addition, the inclusion of familiar distractors makes 

the recognition task more challenging and reduces the risk of ceiling effects. 

Recognition tasks that are too easy are not sensitive enough to capture subtle 

deficits, and make interpretation of performance difficult. 

Epilepsy is a disorder of cortical organisation but it interferes with the network as 

a whole rather than the cortex alone. By designing the Pair Games, we are able 

to evaluate different aspects of this network. The balanced nature of the 

instrument allows for adequate comparison between tests, such as verbal and 

non-verbal tests, providing indication of lateralisation of memory function, 

relevant to patients with TLE. The variables of input modality and levels of 

semantic structure were also taken into account, allowing 1) the examination of 

the effects of these variables on learning and memory, and 2) controlled and 

adequate comparison between verbal and non-verbal memory. The Pair Games 

could be clinically useful for the assessment of the integrity of the medial 

temporal lobe regions, and the hippocampal region in particular, at the pre-

operative level, and in turn, it could provide input to surgical decision-making and 

prediction of memory outcome.  

4.2 A “Purer” Measure of Memory    

The findings suggest that whereas intellectual status contributes to learning and 

memory functioning in typically-developing children, the influence is moderate 

and the level of intellectual ability cannot fully predict memory capacity. The 

factor analysis shows that the yielded factor explained higher variance in all 

subtests of the Pair Games than in the subtests of the CMS. This suggests that 

the Pair Games provides a purer assessment of memory, whereas the CMS 

reflects the contribution of additional factors, such as intellectual ability and/or 

executive function. In accordance with the hypothesis that the CMS assesses 

broader cognitive abilities than the Pair Games, the present findings show that 

the CMS, and more particularly the Word Pair subtest, is more closely related to 

intellectual functioning than the Pair Games.  

In addition, the Pair Games involves deep encoding whereby the participants are 

asked to make a preference judgment for each pair, minimising inter-individual 
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variability in executive functions, such as attention or concentration (Baumeister 

et al., 2007). The use of such judgement at encoding may help them focus on the 

pairs and control for potential concentration difficulties.  

This has clinical relevance as it is important to examine memory impairments in 

isolation of other cognitive processes, such as general cognitive ability or 

executive functioning. The clinical assessment should disentangle impairments in 

different cognitive processes and identify specific deficits by understanding 

whether poor performances on memory tests reflect intrinsic memory deficits or 

low general cognitive abilities/executive functioning. This has implication both in 

terms of cognitive intervention and in the prediction of memory impairments after 

surgery for TLE. Whereas neuropsychological tasks are never process-pure, 

using instruments that limit the involvement of other cognitive processes may 

provide better indication of the functionality of the memory process and of the 

extent of hippocampal involvement in the cognitive profile. The limited 

involvement of other cognitive processes in addition to the balanced design of the 

paradigm minimises differences due to factors such as concentration between 

tasks and makes the subtests more equivalent, thereby allowing better 

comparison between, for example, verbal and non-verbal memory. 

4.3 Validity and Reliability 

The present chapter demonstrated evidence of validity and reliability by 

evaluating psychometric properties of the instrument (Pawlowski et al., 2013; 

Urbina, 2004). Test validity was verified with correlations with other standardised 

tests, namely with the WASI-IV for a measure of intellectual functioning and the 

CMS for a measure of memory, and confirmed that the test measures what it 

intends to measure (Westen & Rosenthal, 2003). Test reliability was verified by 

examining internal consistency using Cronbach’s alpha, as well as examining 

factor structure and dimensionality of the instrument using factor analysis 

(Embretson, 2007; Schmitt et al., 2010). 
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4.4 Standardised Scores 

Comprehensive normative data were collected and are now available, providing a 

standard against which the performance of patients with TLE can be compared 

(Cohen & Swerdlik, 2005; Franzen & Wilhelm, 1996). The instrument was 

standardised across a large age range of typically-developing children to take 

into account the developmental trajectory of learning and memory.  

4.5 Additional Advantages of the Pair Games 

The Pair Games is able to measure performance across a broad range of 

learning and memory abilities without leading to floor or ceiling effects, permitting 

its use with both low and high functioning patients. Moreover, this tool could be 

used to provide valuable information and identify patients’ strengths to use for 

remedial programs and compensate for weaknesses. 

In addition, the parallel versions of the paradigm allow systematic comparisons 

between performances across two time points. For example the Pair Games can 

be administered before and after clinical intervention (e.g. surgery) and such 

clinical follow-up can provide indication on the impact of surgery on cognitive 

outcome and on the trajectory of learning and memory.  

Finally, the computerised characteristic of the Pair Games has multiple 

advantages associated with the optimisation of test administration. First, using a 

tablet-based application allows for a more controlled administration process with, 

for example, standardised presentation of pairs. Second, a portable 

neuropsychological tool reduces the amount of materials usually involved in 

standardised tests, and facilitates administration in different contexts. Last, the 

utilisation of the interactive platform allows for a child-friendly psychological 

assessment, allowing examinees to be more engaged and more highly 

motivated.   

5 Conclusions 

The present chapter described the development of the Pair Games, a paired-

associate learning paradigm assessing learning, delayed recall and recognition 

for different types of information (verbal versus non-verbal materials, auditory 
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versus visual input modalities, and semantic versus non-semantic information). 

The balanced nature of the Pair Games tests allows comparing different subtests 

and capturing specific memory impairments. Examining subtests in isolation does 

not permit clear understanding of the deficit, whereas direct comparison between 

subtests of the Pair Games can shed light on the underlying impairment. For 

example, reporting impairment in the Object subtest in isolation cannot 

distinguish between non-verbal memory impairment and semantic deficit. 

Comparing this subtest with Written Words can provide indication of material-

specific impairment. Similarly, comparing Objects with Designs can provide 

indication of semantic deficit. Without these comparisons, conclusions are 

difficult. The Pair Games therefore allows the investigation of memory profiles 

beyond material-specificity and provides a better understanding of the nature of 

the impairments. 

In addition, the contribution of intellectual functioning to learning and memory 

performance was investigated. Whereas standard memory tools possibly assess 

broader cognitive abilities beyond memory functioning leading to performance 

being mediated by other cognitive processes and being influenced by, for 

example, attentional difficulties, the Pair Games provides a purer measure of 

memory, reducing the contribution of general cognitive ability and/or executive 

functioning. In that respect, the Pair Games may be more specific to temporal 

lobe pathology than standard tools which are more dependent on intellectual 

functioning. Finally, normative scores were derived from raw scores; useful for 

clinical practice. The instrument should now be validated among typically-

developing children in order to establish a profile of learning and memory in 

children before the tool can be used clinically (see Chapter 3). 

6 Future Directions 

The next step will be to examine the behavioural data acquired with the Pair 

Games in a sample of healthy children to identify the profile of learning and 

memory in typically-developing children and to define developmental changes in 

mnemonic functions. These investigations will offer a baseline against which 

comparisons to the neuropsychological profile in children with epilepsy can be 

made. 
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Chapter 3 

 Paired-associate Learning 
and Memory in Children and 
Adolescents Using the Pair 

Games 

 

The “Pair Games”, which was developed and described in Chapter 2, was 

administered on a large sample of typically-developing children and adolescents. 

This chapter discusses the findings regarding the developmental trajectory of 

learning and memory and the performance for different material types. 

Documenting developmental effects on performance establishes a baseline to 

which performance from paediatric TLE patients of various ages can be 

compared, and from which the effects of age at seizure onset on learning and 

memory can be better understood. 
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1 Introduction 

The full description of the Pair Games designed for the assessment of learning 

and memory in childhood Temporal Lobe Epilepsy (TLE) was provided in the 

previous chapter (Chapter 2). This new measure was developed to improve the 

diagnosis of learning and memory problems at baseline, and help with prediction 

of outcome after surgery. Before this experimental paradigm can be translated 

into clinical application, it is necessary to establish its relevance to charting the 

typical development of learning and memory from childhood to adolescence in 

healthy controls, thereby providing a standard against which the performance of 

patients with TLE can be evaluated. This chapter will present the learning and 

memory performance of a group of healthy children and adolescents using the 

five subtests of the Pair Games. 

1.1 Theoretical Framework 

1.1.1 Neocortical and Hippocampal Learning Systems 

As discussed in Chapter 1, the complementary learning systems theory posits 

separate but complementary cortical and hippocampal learning systems 

(McClelland et al., 1995). Whereas the neocortical learning system is involved in 

slow learning and requires multiple exposures, the hippocampal learning system 

has a role in rapid encoding and integration of new information. These 

complementary learning systems are responsible for long-term storage of 

information in the neocortex through neocortical-hippocampal interaction. In this 

framework, information is initially stored in the hippocampal memory system and 

is gradually integrated in the neocortical system through the process of 

consolidation (Squire, 1992). In this respect, the hippocampus is also involved in 

memory retrieval until the representation is fully established in the neocortical 

system (Wickelgren, 1979).  

1.1.2 Subregions of the MTL - Recall versus Recognition 

The Medial Temporal Lobe (MTL) plays a crucial role in episodic memory, but the 

subregions of the MTL are thought to subserve distinct memory processes. As 

discussed in Chapter 1, a consensus has emerged over the functional 



Chapter 3: The Pair Games in typically-developing children 
 

 

Buck 69 
 

dissociation between recollection and familiarity (Eichenbaum et al., 2007), 

typically assessed with measures of recall and recognition, respectively. Whereas 

the hippocampus is involved in recollection processes, familiarity processes are 

reported to rely on the perirhinal cortex (Davachi et al., 2003; Diana et al., 2007). 

Lesion studies have provided evidence of these distinct memory processes. 

Patients with developmental amnesia (DA) who sustained selective early onset 

bilateral hippocampal pathology (Vargha-Khadem et al., 1997) exhibit severe and 

selective impairment in recall memory, in the context of relatively well-preserved 

recognition memory (Adlam et al., 2009; Baddeley et al., 2001; Patai et al., 2015). 

Based on these models of learning and memory, it is assumed that learning is 

dependent on hippocampal-neocortical interactions, recall is predominantly 

mediated by hippocampal retrieval mechanisms, and recognition is primarily 

dependent on parahippocampal and perirhinal cortices. 

In that respect, it is important to study different aspects of memory processes in 

relation to the brain anatomy and the organisation of the medial temporal memory 

system. However, it is difficult to tease apart the psychological processes of 

recollection and familiarity on the basis of behavioural data, and few studies tap 

into the neural substrate of recollection. Instead, we can address the question of 

how children and adolescents learn and retrieve learnt information from memory 

through tests of recall and recognition. Whereas recognition reflects the 

contribution of both processes, i.e. recollection and familiarity, recall can only be 

achieved through recollection of information.  

1.2 Developmental Trajectory of Learning and Memory 

1.2.1 Ontogeny of Learning and Memory 

Neurodevelopmental studies demonstrate that different learning and memory 

processes come online at different stages of development. Studies in young 

monkeys and preverbal human infants have provided evidence of early 

emergence of recognition memory, through preferential viewing paradigms which 

measure the tendency to fixate longer on novel stimuli compared to familiar ones. 

In humans, evidence of this type of recognition memory is present in the first few 

weeks of life (Fagan, 1970; Pascalis & de Schonen, 1994). On the other hand, 

the ability to learn relational associations between stimuli develops somewhat 
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later in life, around the ages of 5 and 6 years (Rudy et al., 1993). Similarly, the 

ability to form and bring back to mind episodic memory emerges in early 

childhood, and as a result, impairment in the system subserving the ability to 

recall events does not become apparent until this age. Consistent with this 

hypothesis, children with DA do not show signs of recall impairments until early 

childhood, when recall ability typically emerges (Gadian et al., 2000). These 

findings indicate that some memory processes, such as recognition memory, are 

present early in life, whereas other processes, such as recall and learning that 

require more complex cognitive demands, emerge later in life.  

1.2.2 Neural Development of Structures supporting Learning and Memory  

As discussed in Chapter 1, evidence suggests that the protracted course of 

neural development of regions subserving memory may be related to the 

developmental trajectory of learning and memory ability. The neural basis 

supporting these functions undergoes structural and functional development 

across childhood and adolescence (Sowell et al., 2001), including changes in 

hippocampal volume and cortical thickness of the temporal lobe (Gogtay et al., 

2004; Sussman et al., 2016). The extended trajectory of these neural changes 

parallels the development of learning and memory in children, with the age-

related emergence of functional relationship between these structures and 

memory performance (Blumenfeld & Ranganath, 2007; Ghetti et al., 2010; Khul 

et al., 2008; Newcombe et al., 2007; Riggins et al., 2015). Together, structural 

and functional development of these regions may mediate the development and 

maturation of learning and memory functions across childhood and adolescence.  

1.2.3 Age-Related Changes in Learning and Memory 

Age-related increases in learning and memory are documented across childhood 

and adolescence (Pirogovsky et al., 2009; Litt et al., 2013), however, the 

developmental trajectory for distinct learning systems is not fully understood and 

developmental changes in memory are much better documented for aspects of 

semantic memory, such as vocabulary development (Henderson et al., 2013; 

Wojcik, 2013) and concept formation (Favarotto et al., 2014; Robertson & Kohler, 

2007), than for episodic memory.  
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1.2.3.1 Neocortical Learning System – Repetitive Learning 

Associative learning is the process by which information is integrated and 

encoded into memory such that exposure to one component of the mnemonic 

trace elicits retrieval of other components (Mayes et al., 2007; Pirogovsky et al., 

2009; Postma et al., 2008). Studies that have examined the developmental 

trajectory of learning have generally focused on verbal memory or on memory for 

easily verbalised items (common objects) (Beuhring & Kee, 1987; Hund et al., 

2002; Jansen-Osmann & Heil, 2007; Pentland et al., 2003; Shing et al., 2008), 

and may have thus captured the maturation of memory as well as language 

abilities. The development of non-verbal paired-associate learning is less 

understood and researched. Harel et al. (2014) studied learning of pattern-

location associations in school-age children (5-10 years old) and demonstrated 

learning improvement with age that was attributed to the development of 

executive functions  (Harel et al., 2014). These developmental studies document 

age-related improvements in associative learning, for either verbal or non-verbal 

materials, but comparison of different processes enabling such learning has not 

been investigated. 

Information about the developmental process of learning across childhood and 

adolescence remains sparse and further research is needed across a large age 

range. More specifically, research is needed not only to chart the maturation of 

different learning processes (verbal and non-verbal), but also to conduct direct 

and balanced comparisons between these processes for a more concise 

examination of the development of learning abilities. 

1.2.3.2 Hippocampal Learning System – Recall  

The process of recollection is thought to improve gradually throughout childhood 

and adolescence (Bjorklund et al., 2009), with age-related improvements in recall 

of contextual details from 8 to 24 years (e.g. Ghetti & Angelini, 2008; Ghetti et al., 

2011). The maturation of the recollection process, known to be dependent on 

hippocampal retrieval mechanisms, is thought to be intrisically related to the 

development of the ability to bind features of a representation. In several studies, 

age-related improvement was associated with binding abilities, and was apparent 

in tests of item combination but not in tests of single item memory (Lloyd et al., 

2009; Sluzenski et al., 2006). These findings indicate that age-related 
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improvement of recollection may be linked to maturation of the hippocampal-

dependent binding process.  

However, it is unclear whether these age-related changes reflect changes in the 

ability to form strong mnemonic traces or the ability to bring information back to 

mind. Previous studies have often examined recall as a measure of delayed 

retention without controlling for prior encoding levels. There is therefore a need to 

investigate age-related changes in the ability to bring previously learnt 

information back to mind in order to disentangle age-related changes in memory 

formation and recall. Helmstaedter and Elger (2009) used this approach to 

examine recall and demonstrated age-related decreases in number of forgotten 

words over time between the ages of 10 and 20 years. Further research is 

required to study age-related changes as a function of type of material (e.g. 

verbal versus non-verbal). 

1.2.3.3 Perirhinal-dependent memory – Recognition  

Recognition memory also improves with increasing age, although there are 

distinct developmental processes for familiarity- and recollection-based 

recognition, possibly reflecting distinct maturation trajectory for perirhinal versus 

hippocampal regions. Age-related changes are documented for recollection-

based recognition across childhood and adolescence (between the ages of 8 and 

18 years), whereas familiarity-based recognition reaches its peak during middle 

childhood (e.g. Naus et al., 1977) and remains relatively stable across this time 

span (Billingsley et al., 2002; Ghetti & Angelini, 2008).  

Overall, age-related changes are documented in learning and memory, however, 

many developmental studies have focused on the preschool age, and less is 

known about changes in school-age children and adolescents (although see 

(Billingsley et al., 2002 and Ghetti & Angelini, 2008). Moreover, there is a dearth 

of knowledge regarding the developmental trajectory of learning and memory as 

a function of type of information, and previous studies have often investigated 

performance using one task only (a verbal or non-verbal memory test).  
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1.3 Variables Influencing Learning and Memory 

1.3.1 Material Type  

1.3.1.1 Verbal and non-verbal materials are processed and learned differently 

Whereas there is evidence for age-related improvement in learning and memory 

abilities across childhood and adolescence (e.g. Pirogovsky et al., 2009; Litt et 

al., 2013), less is known about the differences in learning abilities for different 

material types (e.g. verbal versus non-verbal). Verbal and non-verbal materials 

are processed differently (Paivio, 1971), whereby pictorial information is 

configural and holistic, whereas verbal information is associated with sequential 

modes of processing. Differences in cognitive processing of verbal and non-

verbal information may be associated with differences in learning and memory 

ability for these two types of information.  

1.3.1.2 Visual Superiority Effects in Adults 

Paivio postulated a dual-code model whereby verbal and visual systems are 

specialised for the processing of verbal (e.g. words) and visual (e.g. pictures) 

information, respectively (Paivio, 1971). Paivio also demonstrated that visual 

stimuli are more likely to be encoded in both verbal and visual representations 

relative to verbal stimuli, leading to better memory for visual information 

compared to verbal information (Paivio, 1991). This visual superiority effect has 

been shown in adults for associative memory, providing evidence for mnemonic 

advantage for the association of non-verbal information (Hockley, 2008), possibly 

as a result of higher likelihood to verbalise pictures than to visualise words 

(Snodgrass et al., 1974) and, in that respect, making use of the dual-coding 

system. These studies suggest visual superiority effects in adults, but such 

effects are less known in children.  

1.3.1.3 Children: verbal PA associated with reading/writing abilities 

In children, acquisition of verbal paired-associates (PA) is related to orthographic 

learning (Wang et al., 2017) and reading ability (Litt et al., 2013) through the 

ability to form links between phonological and visual (orthographic) features of 

words. Such links were not observed with visual paired-associate learning (Wang 

et al., 2017), suggesting  that the relationship between paired-associate learning 
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and reading/spelling is not driven by the overall associative learning ability, but 

rather by the ability to link  phonological and orthographic forms together (Elbro & 

Jensen, 2005; Litt et al., 2013; Messbauer & de Jong, 2006). These studies 

suggest distinct material-specific processes for verbal and non-verbal modes of 

learning and memory. Whereas verbal paired-associate learning may be 

enhanced or further mediated by reading/writing abilities, non-verbal paired-

associate learning may not be influenced in this way, and therefore may be less 

cognitively demanding. 

1.3.1.4 The right hippocampus is functional earlier than the left 

From a neuronal perspective, material-specific memory is an indirect reflection of 

hemispheric specialisation (left versus right) and neuroimaging studies have 

documented the specific role of the right hippocampus in children to support 

visuo-spatial memory. Prabhakar et al. (2018) studied hippocampal activation 

associated with memory for object-location in toddlers and demonstrated stronger 

right than left hippocampal activation (Prabhakar et al., 2018). However, this 

study focused on spatial memory rather than cognitive episodic memory. The 

putative roles of the hippocampus in spatial memory versus that in cognitive non-

verbal memory are distinct and can be dissociated even though they can be both 

subserved by the right hemisphere. It is possible that the right hippocampus may 

be functional earlier than the left hippocampus, possibly to sustain visuo-spatial 

abilities (Burgess et al., 2002) which may be more important than linguistic 

abilities in early childhood. In that respect, young children may exhibit higher 

learning and memory for non-verbal, compared to verbal information.  

1.3.2 Input Modality  

The ability to learn new words is a fundamental characteristic of linguistic 

development, and requires the establishment of new representations. The 

separate stream hypothesis posits that verbal information presented in the 

auditory and visual modality are processed in separate streams (Penney, 1989). 

The two modalities also differ in their linguistic form, whereby orthographic 

information is presented in the visual modality, while phonological information is 

delivered through the auditory modality (Rummer et al., 2013). Differences in 

memory performance between the two modalities can relate to the properties of 

these streams.  
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Several studies document the asymmetry between the two modalities with better 

learning of written compared to spoken words in adults. Fueller et al. (2013) used 

a paired-associate learning paradigm to compare immediate recall of words in 

spoken and written forms presented either orally or visually. The authors reported 

better recall for words retrieved through the visual modality, irrespective of the 

input modality and attributed their finding to the superiority of written 

representations at the time of retrieval (Fueller et al., 2013). The superiority of 

written words over spoken words can possibly be explained by reduced cognitive 

load of maintaining temporal representations and therefore by reduced effort 

(Janczyk, et al., 2018). Similarly, Nelson et al (2005) demonstrated that written 

training of rare words leads to better representation than phonological training 

(Nelson et al., 2005). These authors also demonstrated that phonological 

recoding of written words is more readily available than orthographic recoding of 

spoken words, essentially leading to stronger mnemonic traces of written words. 

Differences in the ability to learn spoken and written words therefore appears to 

be related to the quality of phonological and orthographic representations. 

The indication that written words establish traces that are more accessible than 

spoken words, possibly as a result of variable quality of phonological 

representations, is supported by neuropsychological evidence. Children with 

dyslexia tend to have underspecified phonological representations (Elbro & 

Jensen, 2005) and also show impairment on paired-associate learning of auditory 

verbal information, but not when verbal stimuli are presented in the visual 

modality. This finding suggests the influence of phonological processing skills in 

auditory verbal paired-associates (de Jong et al., 2000; Windfurh, 2001), and 

contributes to the observation that phonological representations may be less 

stable or less well-specified.  

Together, these studies converge on the idea of superiority of the visual modality 

to learn words, as a result of reduced effort and stronger representations; 

however less is known about the persistence of this asymmetry between the two 

modalities after memory consolidation. More research is needed to study 

modality-specific asymmetry in word recall after a delay, to examine the extent to 

which the visual superiority persists after learning. 
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1.3.3 Levels of Semantic Structure – effects of IQ 

Learning and memory depend on the availability of information, and higher 

performance is therefore shown for information that allows access to conceptual 

representations (Elbro & Jensen, 2005; Messbauer & de Jong, 2006). Non-

semantic verbal (i.e. pseudowords) and visual (i.e. abstract shapes) information 

requires forming the fully specific phonological/configural representation before 

the material can be learned and memorised, and in this respect, task demand is 

increased. The ability to form and retain in memory such phonological/configural 

representations for non-semantic information may be related to other higher 

cognitive functions. 

For the verbal domain, it has been shown that language abilities improve with 

age and influence associative learning (Luciana, 2003), particularly through the 

development of reading abilities (Litt et al., 2013; Hulme et al., 2007; Windfurh, 

2001). The development of verbal learning and memory may therefore be 

intrinsically related to the maturation of language (Hund & Plumert, 2003; Shing 

et al., 2008). Consistent with this hypothesis, Hulme et al. (2007) demonstrated 

that paired-associate learning is associated with irregular word reading abilities, 

through the binding of phonology and orthographic representations (Hulme et al., 

2007). More specifically, the most robust relationship with reading ability has 

been consistently reported for paired-associate learning of pseudowords, 

compared to real words (Clayton et al., 2018; Elbro & Jensen, 2005; Hulme et al., 

2007; Mayringer & Wimmer, 2000). These findings indicate that non-semantic 

verbal paired-associate learning and memory are intrinsically related to language 

abilities. The underlying mechanisms of non-verbal paired- associate learning are 

however less understood and most studies have focused on verbal paired-

associate learning and its contribution to language abilities. Following the 

identified relationship between paired-associate learning of novel words and 

language abilities, it is possible to generalise this link and predict that paired-

associate learning of non-semantic information (pseudowords and abstract 

shapes) is related to general intellectual ability.  
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1.4 Aims and Hypotheses 

Despite substantial progress towards an understanding of the processes 

supporting memory and the developmental changes occurring in childhood and 

adolescence, there remain major gaps in our knowledge about the nature of 

these changes. New research is needed to gain an in depth understanding of 

memory development, particularly the ways in which children acquire and retrieve 

learnt information, and more specifically the variables that influence performance.  

The aims of the present study are to: 

1. Chart the developmental trajectory and performance changes in learning, 

recall and recognition during childhood. The following hypothesis was 

formulated:  

a. Given the rapidly developing learning ability of healthy children 

and adolescents, paired-associate learning performance, as well 

as subsequent recall and recognition of learnt material will improve 

with age.   

2. Compare learning, forgetting and recognition for different types of 

information. Based on theoretical frameworks about emerging 

specialisation of function in children (i.e. verbal versus non-verbal), the 

temporal versus configural nature of input modality (i.e auditory versus 

visual), and access to conceptual representations (i.e. semantic versus 

non-semantic), the following hypotheses were formulated: 

a. Better learning and memory performance for non-verbal compared 

to verbal materials. 

b. Better learning and memory performance will be demonstrated for 

verbal information presented in the visual, compared to the 

auditory modality. 

c. Higher levels of IQ will be associated with better learning and 

memory for non-semantic, but not for semantic information. 
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2 Methods 

2.1 Participants 

The participant sample included in this chapter is the same as the one reported in 

the previous chapter (Chapter 2). Briefly, the sample consisted of 130 healthy 

children and adolescents between the ages of 8 and 18 years (M=13 years, 

SD=3).  

2.2 Pair Games 

The Pair Games paradigm which was developed for the investigation of learning, 

recall and recognition was described in Chapter 2. The score of forgetting was 

used to account for learning capacity (how much is learned before the delay 

period) to provide a measure of retention, whereby negative scores indicate that 

information was forgotten after a delay. In the results section, I therefore refer to 

scores of forgetting, but for the sake of consistency with previous studies, I refer 

to the term retention or recall in the discussion section.  

The paradigm is composed of balanced subtests allowing comparison between 

different variables, namely material type (verbal versus non-verbal), semantic 

structure of information (semantic versus non-semantic content) and input 

modality (auditory versus visual). There are two versions of the same paradigm, 

as described in the previous chapter (Chapter 2, section 2.5, page 47) 

2.3 Statistical Analyses 

Analyses of variance using a repeated measures design were computed, 

exploring different variables of interest, i.e. material type (verbal versus non-

verbal), lexical access (semantic versus non-semantic content), and modality of 

presentation (auditory versus visual). For the investigation of the first two 

variables, a 2 (concept: semantic, non-semantic) x 2 (material: verbal, non-

verbal) design was employed. For the investigation of modality of presentation, 

modality (auditory, visual) was the within-subject factor. The analysis of ‘modality’ 

was separate from the analysis of ‘material’ and ‘access to semantics’ because 
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the paradigm is not fully balanced. For example, a task using auditory 

presentation of non-verbal information, such as the sound of a train, was not 

included in the design of the Pair Games (see Chapter 2, section 2.4.1, page 46 

for more detail).  

These analyses of within-subject effects were carried out separately for the 

different measures, thus giving rise to four measures, namely, learning, gain in 

learning, forgetting, and recognition. Statistical analyses were carried out on the 

raw scores (percentages) in each case. In addition, the influence of intellectual 

status and age on performance was controlled with Pearson partial correlations.  

3 Results 

3.1 Learning  

3.1.1 Measure  

As stated above, two measures were investigated in this section: learning and 

learning gain. The measure of learning was explored by averaging performance 

across three trials. The gain in learning was explored by measuring the increase 

in performance from the first to the third trial to have a measure of how much is 

gained over repetitive trials.  

3.1.2 Learning Performance 

Table 3.1 and Figure 3.1 illustrate the descriptive statistics and distribution of 

learning and learning gain, respectively. For the gain in learning, a negative score 

indicates that previously correct recall of pairs (i.e. on trial 1) was erroneous on 

trials 2 or 3. This decrease in performance with repeated trials was of no more 

than two items and occurred in less than 1% of the participants’ responses for 

each subtest. Overall, the results demonstrate that a large proportion of 

information across all subtests was successfully learned. In addition, there was a 

significant learning curve with improvement in performance over consecutive 

trials (Figure 3.2).  
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In order to test whether higher learning gain was related to lower initial acquisition 

due to greater opportunity for improvement, a correlation analysis was computed 

between learning gain and performance at trial 1. Analysis of the composite score 

(all subtests) demonstrates no relationship between initial acquisition and 

learning gain (r=0.16 p=0.078). However, separate analyses on each subtest 

indicate a significant relationship for performance on the subtests with semantic 

content, wherein lower initial acquisition was related to higher learning gain 

(Spoken Words r=-0.40, Written Words r=-0.50, and Objects r=-0.29). This 

relationship was not observed for subtests without semantic content 

(Pseudowords r=0.02 and Designs r=0.06). Additional correlations were 

computed for those composite scores (semantic and non-semantic content) and 

these confirm a negative relationship between initial acquisition and learning gain 

for semantic items (r=-0.259, p=0.003), whereby higher initial acquisition was 

associated with lower learning gain. On the other hand, a positive relationship 

was shown between initial acquisition and learning gain for non-semantic items 

(r=0.25 p=0.007), whereby higher initial acquisition was associated with higher 

learning gain. 

Table 3.1 Descriptive statistics for learning and learning gain (%). 

Figure 3.1 Boxplot illustrating the distribution of learning and learning gain across 

subtests. 

Learning   Learning gain 

Subtests M SD Min Max  Subtests M SD Min Max 

Spoken words  61 21 10 100  Spoken words  37 18 -20 80 

Written words 66 25 7 100  Written words 35 24 -10 100 

Objects 65 23 0 100  Objects 33 19 -20 80 

Designs 47 20 7 93  Designs 26 17 -10 70 

Pseudowords 41 23 0 97  Pseudowords 32 21 -10 80 

Overall 56 18 13 89  Overall 33 11 2 56 
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Figure 3.2 Learning curve and loss after a delay for each subtest of the Pair Games. 

 

3.1.3 Relationship to Intellectual Status 

Confirming one of the postulated hypotheses, both measures of learning 

(learning and learning gain) across tasks were significantly related to the level of 

intellectual abilities (r=0.43, p<0.001 and r=0.22, p=0.018, respectively). Average 

learning in each individual subtest is significantly related to intellectual abilities, 

with higher IQ associated with better learning (Table 3.2). Investigation of 

correlations at every trial shows significant relationship between intelligence and 

performance at every step of the learning process (trial 1: r=0.40, trial 2: r=0.40, 

trial 3: r=0.43, all p<0.001). 

Table 3.2 also illustrates that the influence of intellectual ability on learning gain is 

observed for Designs and Pseudowords, but not for Objects and Words. 

Table 3.2 Pearson’s correlations, and p values, between learning scores (learning and 

learning gain) of each subtest and intellectual abilities, with age partialed out. 

 

 

 

 

 

 

A. Learning   B. Learning Gain  

Subtests r p   Subtests r p 

Spoken words  0.28 0.018  Spoken words  0.01 0.931 

Written words 0.30 0.003  Written words -0.12 0.864 

Objects 0.32 0.001  Objects -0.12 0.843 

Designs 0.35 0.001  Designs -0.22 0.022 

Pseudowords 0.37 <0.001  Pseudowords -0.41 <0.001 

Overall  0.43 <0.001  Overall  0.22 0.018 
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3.1.4 Developmental Trajectory of Learning  

Partial Pearson correlations show that average learning across subtests was 

significantly related to age (r=0.53 p<0.001), with better learning in older children 

(Table 3.3). However, this relationship was not observed for the gain in learning 

across subtests (r=0.16 p=0.092). Figure 3.3 illustrate the developmental 

trajectory for these two measures.  

Table 3.3 Pearson’s correlations, and p values, between learning scores (learning and 

learning gain) of each subtest and age, with FSIQ partialed out. 

 

 

 

 

 

  

Figure 3.3 Influence of Age on Learning and Learning Gain. 

 

3.1.5 Effect of Semantics 

There was a significant main effect of semantics on learning (F(1,124)=227.467, 

p<0.001), where semantic items were better learned than non-semantic items 

(65% and 44%, respectively), irrespective of material type (Table 3.4 and Figure 

3.4). There was also an effect of semantics on learning gain (F(1,114)=7.905, 

A. Learning  B. Learning Gain 

Subtests r p   Subtests r p 

Spoken words  0.27 0.002  Spoken words  -0.01 0.921 

Written words 0.40 <0.001  Written words -0.11 0.236 

Objects 0.45 <0.001  Objects 0.07 0.447 

Designs 0.53 <0.001  Designs 0.26 0.005 

Pseudowords 0.43 <0.001  Pseudowords 0.29 0.002 

Overall  0.53 <0.001  Overall  0.16 0.092 
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p=0.006), where higher learning gain was observed for semantic items (34%) 

compared to non-semantic items (29%) (Figure 3.4).  

 

 

 

 

 

 

 

 

Figure 3.4 Effect of semantics for Learning and Learning Gain. 

 

Table 3.4 Descriptive statistics for learning of semantic and non-semantic items (%). 

 

 

 

 

Correlations between FSIQ and learning gain indicate that non-semantic items 

were better learned by those who have higher intellectual functioning (r=0.41, 

p<0.001), whereas this relationship was not found for semantic items (r=-0.03, 

p=0.749) (Figure 3.5).  

 Learning Learning gain 

Conceptual Level M SD M SD 

Semantic 65 24 34 22 

Non-semantic 44 22 29 19 
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Figure 3.5 Correlations between FSIQ and learning gain for semantic and non-semantic 

items. 

 

Another significant correlation between age and learning gain indicates that non-

semantic items were better learned by older children compared to younger 

children (r=0.36, p<0.001), whereas this relationship was not found for semantic 

items (r=-0.04, p=0.682) (Figure 3.6).  

  

Figure 3.6 Correlations between age and learning gain for semantic and non-semantic 
items. 
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3.1.6 Effect of Material Type 

There was an effect of material type on learning (F(1,124)=4.811 p=0.030), as well 

as an interaction between material and semantics (F(1,124)=7.968 p=0.006) (Figure 

3.7). Post-hoc paired sample t tests showed that the effect of material type was 

only significant for non-semantic items (t(125)=3.79, p<0.001), and non-verbal 

items were learned better than verbal items (47% and 41%, respectively). 

Semantic items did not show an effect of material type (t(127)=0.079, p=0.937). 

The descriptive statistics are displayed in Table 3.5. 

Table 3.5 Descriptive statistics for learning and learning gain of verbal and non-verbal 

materials, for non-semantic items only (Pseudowords and Designs) (%). 

 

 

 

In addition, there was a significant effect of material type for learning gain 

(F(1,114)=4.856, p=0.030), where performance was higher for verbal compared to 

non-verbal items (34% and 30%, respectively). No significant interaction was 

shown.  

  

Figure 3.7 Recall performance across three learning trials depending on material and 

levels of semantic structure. 

 

 Learning Learning gain 

Material Type M SD M SD 

Verbal 41 23 32 21 

Non-Verbal 47 20 26 17 
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3.1.7 Modality effect 

There was a significant effect of modality of presentation on learning 

(F(1,128)=5.351, p=0.022) whereby the performance was higher for information 

presented in the visual modality compared to the auditory modality (66% and 

61%, respectively). However, the learning gain was similar for information 

presented in either modality (F(1,124)=0.008, p=0.927). As illustrated in Table 3.6, 

llearning gain was 37% for auditory information and 36% for visual information. 

Table 3.6 Descriptive statistics for learning and learning gain of auditory and visual items 

(%). 

 

 

 

3.2 Forgetting  

3.2.1 Measure  

The measure investigated in this section is the amount of learnt information that 

was lost after a delay, which was constant across subtests (i.e. 15 minute delay). 

This provides an indication of forgetting as a function of delay.  

3.2.2 Forgetting Score 

Table 3.7 illustrates the descriptive statistics for forgetting. Negative scores 

indicate loss of learnt information after a delay, whereas positive scores indicate 

an increase in performance after a delay. The boxplot (Figure 3.8) illustrates the 

distribution of forgetting across participants, for each subtest. For all subtests, the 

majority of participants retained learnt information after a delay (0% loss), but 

some forgot and others remembered more after a delay. One-sample t tests 

showed significant forgetting in all subtests (p<0.001), apart from Designs 

(p=0.103).  

 

 Learning Learning gain 

Modality Mean SD Mean SD 

Auditory 61 21 37 18 

Visual 66 25 36 24 
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Table 3.7 Descriptive statistics for level of  
forgetting of learned material (%). 

 

Figure 3.8 Boxplot illustrating the 
distribution of forgetting accuracy for 

each subtest. 

 

3.2.3 Relationship with Intellectual Abilities 

Partial correlations were computed to examine the relationship between 

intellectual abilities and forgetting (Table 3.8), but no relationship was found (r=-

0.10 p=0.270) (Figure 3.9).  

Table 3.8 Correlations between 

forgetting in each subtest and FSIQ. 

 

 

 

 

 

 

 

Figure 3.9 Correlations between 

FSIQ and forgetting. 

 

3.2.4 Developmental Trajectory of Forgetting  

Similarly, a partial Pearson correlation controlling for FSIQ showed an overall 

weak effect (r=0.19 p=0.033), driven by the effect found in the Spoken Word 

subtest, suggesting that, overall, forgetting is only weakly age-related (Table 3.9 

Subtests M SD Min Max 

Spoken words  -4 9 -50 10 

Written words -4 11 -30 60 

Objects -4 12 -40 70 

Designs -2 14 -40 40 

Pseudowords -7 13 -50 20 

Overall -4 6 -20 16 

Subtests r p 

Spoken words  -0.05 0.627 

Written words 0.04 0.708 

Objects -0.04 0.718 

Designs -0.09 0.358 

Pseudowords -0.12 0.211 

Overall  -0.10 0.270 
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and Figure 3.10). Ad hoc investigation of each subtest separately showed a 

significant relationship between age and the Spoken Word subtest only (r=0.18 

p=0.046), whereby older children retained slightly more than younger children. 

 

Table 3.9 Correlations between 
forgetting in each subtest and 

age. 

 

 

 

 

 

Figure 3.10 Correlations between 
Age and forgetting. 

 

3.2.5 Effect of semantics 

There was no evidence of an effect of semantics on forgetting (F(1,120)=0.544, 

p=0.462) and, as illustrated in Table 3.10, a similar amount of information was 

forgotten after a delay whether it was semantic or non-semantic (-4 and -5%, 

respectively).  

Table 3.10 Descriptive statistics for forgetting of semantic and non-semantic items (%). 

 

 

 

3.2.6 Effect of material type 

There was a significant effect of material type found for the measure of forgetting 

(F(1,120)=9.954, p=0.002), suggesting that the loss of retained information after a 

delay was greater for verbal compared to non-verbal items (-6% and -3%, 

respectively, Table 3.11). There was also a significant interaction between 

Subtests r p 

Spoken words  0.18 0.046 

Written words 0.17 0.065 

Objects 0.12 0.188 

Designs 0.07 0.450 

Pseudowords -0.01 0.970 

Overall  0.19 0.033 

Conceptual Level Mean SD 

Semantic -4 12 

Non-semantic -5 14 
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material and semantics (F(1,120)=6.767, p=0.010) (Figure 3.11). A post-hoc paired 

t test suggests that this effect of material type was only shown for non-semantic 

items (t(122)=3.616, p<0.001), where there was a greater loss of verbal (-7%) 

compared to non-verbal (-2%) information after a delay. No effect of material type 

was found for semantic items (Paired t test, t(125)=-0.422, p=0.674).  

Table 3.11 Descriptive statistics for forgetting of verbal and non-verbal items (%). 

 

 

 

In addition to the amount of information that was lost, the frequency of forgetting 

also differed. Indeed, 23% of participants showed a spontaneous increase in 

performance for non-verbal material, compared to 9% for verbal material. 

   

Figure 3.11 Interaction between Material and Semantics. 

 

3.2.7 Modality Effect 

There was no significant effect of modality of presentation on the amount of 

forgetting after a delay (-4% in both modalities, Table 3.12) (F(1,126)=0.177, 

p=0.675). Figure 3.12 illustrates that the amount of information that was lost after 

a delay was similar whether the information was presented in the auditory or 

visual modality.   

Material Mean SD 

Verbal -6 12 

Non-verbal -3 13 
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Table 3.12 Descriptive statistics for 
forgetting of auditory and visual items 

(%). 

 

 

Figure 3.12 No Effect of Modality on 

Forgetting. 

3.3 Recognition  

3.3.1 Measure  

The measure of recognition accuracy was computed by subtracting intrusion 

errors and familiar errors from correct recognition of target items [Target - 

(Intrusion + Familiar error)]. Intrusion errors consisted of selecting a new item that 

was not part of the studied list, and familiar errors consisted in selecting a familiar 

stimulus that was among the list to be remembered, but part of a different pair. A 

negative score indicates that more errors were made relative to correct 

performance (i.e. target).  

3.3.2 Recognition Performance 

Table 3.13 illustrates the descriptive statistics for recognition. The boxplot (Figure 

3.13) illustrates the distribution of recognition accuracy across participants, for 

each subtest. A repeated ANOVA, with a 2 (concept: semantic, non-semantic) x 2 

(material: verbal, non-verbal) design was computed to explore familiarity errors. A 

significant effect of semantics was shown (F(1,120)=40.23, p<0.001), with more 

familiarity errors made for non-semantic items (10%) than semantic items (5%).  

 

 

Modality Mean SD 

Auditory -4 9 

Visual -4 11 
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Table 3.13 Descriptive statistics for recognition scores (%). 

Subtests Target 
Intrusion 

error 

Familiar 

error 

Recognition 

accuracy 
SD Min Max 

Spoken words  94 1 5 87 25 0 100 

Written words 94 1 5 88 24 -40 100 

Objects 95 1 4 90 21 0 100 

Designs 88 1 11 76 30 -40 100 

Pseudowords 88 3 9 76 35 -80 100 

Overall 91 1 7 83 20 4 100 

 

  

Figure 3.13 Boxplot illustrating the distribution of recognition accuracy for each subtest. 

 

3.3.3 Relationship with Intellectual Abilities 

A partial correlation, controlling for the effect of age, showed that FSIQ was 

significantly related to recognition accuracy across subtests (r=0.22, p=0.015), 

where those with higher FSIQ had better recognition scores (Figure 3.14). 

Investigating each subtest individually showed a significant correlation with 

recognition accuracy for Pseudowords only (r=0.26, p=0.005), and not for the 

other subtests (Table 3.14). 

 

 

 



Chapter 3: The Pair Games in typically-developing children 
 

 

92        Buck 
 

Table 3.14 Correlations between 

FSIQ and recognition scores. 

  

Figure 3.14 Correlations between 

recognition in each subtest and FSIQ. 

 

3.3.4 Developmental Trajectory of Recognition  

A partial correlation, controlling for the effect of FSIQ, showed a relationship 

between age and recognition (r=0.34, p<0.001), whereby older children had 

better recognition scores than younger children (Figure 3.15 and Table 3.15). 

This was observed across all subtests, apart from the Spoken Words which did 

not reach acceptable levels of statistical significance (r=0.164 p=0.078).  

In addition to recognition accuracy, familiar errors were also investigated as these 

indicate familiarity-based retrieval of information. A significant negative 

correlation was observed with age, after controlling for FSIQ (r=-0.39, p<0.001), 

where older children produced less familiar errors than younger children. 

Subtests r p 

Spoken words  0.12 0.186 

Written words 0.09 0.313 

Objects 0.17 0.075 

Designs 0.16 0.097 

Pseudowords 0.26 0.005 

Overall  0.22 0.015 
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Figure 3.15 Correlations between age and recognition accuracy/familiar errors. 

 

Table 3.15 Correlations between age and recognition accuracy/familiar errors. 

 

 

 

 

 

3.3.5 Effect of Semantics 

A significant main effect of semantics (F(1,119)=44.074, p<0.001) indicates that 

semantic items were better recognised than non-semantic items (89% and 76%, 

respectively) (Table 3.16 and Figure 3.16).  

 

A. Recognition Accuracy  B. Familiarity Error 

Subtests r p   Subtests r p 

Spoken words  0.16 0.078  Spoken words  -0.19 0.032 

Written words 0.24 0.010  Written words -0.30 0.001 

Objects 0.29 0.002  Objects -0.26 0.006 

Designs 0.31 0.001  Designs -0.31 0.001 

Pseudowords 0.25 0.008  Pseudowords -0.25 0.006 

Overall  0.34 <0.001  Overall  -0.39 <0.001 
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Table 3.16 Descriptive statistics for 
recognition of semantic and non-

semantic items (%). 

 

 

 

Figure 3.16 Effect of semantics on 

recognition. 

 

Partial Pearson correlations demonstrate that recognition accuracy was related to 

intellectual abilities for non-semantic items (r=0.26, p=0.005), but not for semantic 

items (r=0.14 p=0.129) (Figure 3.17). Log transformation was applied on the 

recognition scores of semantic items in order to account for ceiling effects. 

Correlation analysis on the transformed scores showed significant relation with 

FSIQ (r=0.24, p=0.008). 

 

Figure 3.17 Correlations between FSIQ and recognition for semantic and non-semantic 

items. 

 

Conceptual Level Mean SD 

Semantic 89 23 

Non-semantic 76 33 

Semantic  Non-semantic  

* 
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3.3.6 Effect of material type 

There was no evidence of effect of material type on recognition (F(1,119)=0.335, 

p=0.564), indicating that verbal (82%) and non-verbal (83%) materials were 

similarly recognised (Table 3.17 and Figure 3.18). 

 

Table 3.17 Descriptive statistics for 
recognition of verbal and non-verbal (%). 

 

 

 

 

 

 

Figure 3.18 No material-effect on recognition.  

 

3.3.7 Modality Effect 

There was no evidence of a modality effect on recognition ability (F(1,123)=0.096, 

p=0.758). Table 3.18 and Figure 3.19 illustrate that information presented in the 

auditory (87%) or visual modality (88%) were similarly recognised.  

 

Table 3.18 Descriptive statistics for 
recognition of auditory and visual 

items (%). 

 

 

 

 

Figure 3.19 No modality-effect on recognition. 

 

Material Mean SD 

Verbal 82 25 

Non-Verbal 83 23 

Modality Mean SD 

Auditory 87 25 

Visual 88 24 
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3.4 Summary of Findings 

Several hypotheses were generated based on the theoretical framework and 

current literature on learning and memory in children. Table 3.19 provides a 

summary of the findings corresponding to each hypothesis. 

Table 3.19 Summary of generated hypotheses and the results 

Hypotheses Results 

1 

Paired-associate 
learning, as well as 
subsequent recall 
and recognition of 
learnt material will 
improve with age 

Age-related improvement was observed for learning 
(r=0.53 p<0.001) and recognition (r=0.34 p<0.001), 
but less so for recall (r=0.19 p<0.033) where the 
correlation was driven by the Spoken Words subtest. 
The same pattern of results was found for intellectual 
status, whereby higher IQ was associated with better 
learning (r=0.43 p<0.001) and recognition (r=0.22 
p=0.015), but not with recall (r=-0.10 p=0.270) 

2 

Better learning and 
memory will be 

shown for non-verbal 
compared to verbal 

materials 

Better learning (47% versus 41%, p<0.001) and less 
forgetting (-2% versus -7%, p<0.001) was found for 
non-verbal compared to verbal materials, but only for 
non-semantic information (Designs versus 
Pseudowords). 
No material-specific effect was shown for recognition 
(82% versus 83%, p=0.564). 

3 

Better learning and 
memory will be 

observed for verbal 
information presented 

in the visual, 
compared to the 
auditory modality 

 
Better learning (p=0.022) was shown for written 
words (66%) compared to spoken words (61%). 
However, no difference was shown for recall (-4% in 
both modalities, p=0.675) or recognition (87% and 
88%, p=0.758). 
 

4 

 
High IQ will be 

associated with better 
learning and memory 
for non-semantic, but 

not for semantic 
information 

 

High IQ was associated with greater gain in learning 
for non-semantic items (r=0.41 p<0.001), but not for 
semantic items (r=-0.03 p=0.749). Similarly, high IQ 
was associated with better recognition for non-
semantic items (r=0.26, p=0.005), but not for 
semantic items (r=0.14 p=0.129).  
The effect of IQ on semantic versus non-semantic 
items was not observed in scores of learning and 
forgetting. 
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4 Discussion 

4.1 Development of Learning and Memory 

The findings from the present study demonstrate distinct age effects for 

learning/recognition and recall. Whereas learning and recognition improved with 

increasing age (consistent with the first hypothesis), recall remained constant 

across the age range (inconsistent with predictions from the first hypothesis). 

These findings can shed light on the developmental trajectory of neocortical and 

hippocampal learning systems.  

4.1.1 Learning and Recognition Abilities have a Developmental trajectory 

The results documented in this study suggest age-related differences in learning 

and recognition, whereby improvement in performance was associated with 

increasing age. This finding is consistent with various studies investigating the 

development of long-term memory (Alexander & Smales, 1997); Baddeley et al., 

2011; Harel et al., 2014; Ghetti & Bunge, 2012). For example, Helmstaedter and 

Elger (2009) documented age-related improvement in verbal learning (word list 

learning), from age 5 until about 22 years (Helmstaedter & Elger, 2009). The 

results from the current study corroborate the findings from previous 

developmental studies and demonstrate increasing capacity for learning as the 

ability for binding increases. The development of episodic memory may therefore 

be a result of increased efficiency with which information is processed and 

retained in long-term memory. 

Despite a significant age effect in the present study, the results show only subtle 

developmental changes in learning and recognition. The moderate age effects on 

learning and recognition performance are consistent with the observation that 

these processes emerge in early infancy (Fagan, 1970; Pascalis & de Schonen, 

1994; Rudy et al., 1993). The pillars for learning and recognition processes are 

therefore established early in life, and age-related changes in performance 

possibly reflect specialisation of these processes and access to a larger pool of 

strategies and knowledge. As they get older, children have increasing access to 

semantic knowledge and to mnemonic strategies that may be useful for learning 

arbitrary pairs of items.  



Chapter 3: The Pair Games in typically-developing children 
 

 

98        Buck 
 

In this respect, age-related changes in learning and recognition may be a result 

of the use of more elaborate strategies (Bjorklund et al., 2009). In the present 

study, high IQ was also associated with increased learning and recognition 

performance. Parallel relationships with intellectual abilities are therefore 

consistent with this hypothesis, whereby higher intellectual functioning may be 

associated with the use of strategies to process information (Kron-Sperl et al., 

2008). Moreover, putative neocortical networks become more differentiated as 

semantic categories expand and differentiate, and generalisations across and 

within conceptual categories emerge. 

4.1.2 Recall Ability does not Show a Developmental Trajectory   

Whereas the ability to learn and recognise previously learnt information was age-

dependent, the ability to bring back to mind the same information was not. The 

present study showed age-invariant ability for the recall of learnt information, after 

the level of prior learning was taken into account. Despite late emergence of the 

recollective process, the present findings suggest that once established, the 

capacity is age-invariant.  

This finding is inconsistent with age-related improvement in recall reported in 

previous studies (Bjorklund et al., 2009; Ghetti & Angelini, 2008; Ghetti et al., 

2011; Lloyd et al., 2009; Sluzenski et al., 2006). However, previous studies that 

have shown improvement in recall with age have not accounted for prior learning. 

Age-related changes reported in those studies could therefore be due to changes 

in learning as well as retention abilities. Helmstaedter et al. (2009) used a similar 

score to the one used in the present study to take account of learning capacity, 

and also showed age-related improvement. However, in contrast to the present 

study which included five subtests, these authors examined auditory verbal 

memory only, and it is possible that age-related improvement in retention may be 

a characteristic that is specific to the auditory modality. This will be discussed in 

section 4.3. The present finding therefore indicates that retention remains the 

same across the age range if learning capacity is controlled for, and suggests the 

importance of accounting for learning capacity when studying development of 

retention. In addition, the paradigm used by Helmstaedter and colleagues was 

not paired-associate, but instead supra span learning of categorisable single 
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items. As such, the recall (after 5 repetitions) is more neocortically mediated than 

in the Pair Games. to  

The present study indicates a finite age-invariant capacity to bring back to mind 

information that is bound as a paired-associate, after a short delay. This 

interpretation is also supported by the absence of a relationship between recall 

and IQ, suggesting that recall ability does not change as a function of intellectual 

ability. In addition, similar levels of recall were shown for different types of 

information (temporal versus configural nature of input modality and semantic 

versus non-semantic representations), indicating that recall ability is not 

influenced by modality and representational content of the stimuli. Age-invariant 

recall ability may indicate that the hippocampal learning system is memory pure, 

independent of other cognitive factors that instead influence the neocortical 

learning system.  

Whereas there is evidence of developmental changes in the structure of the 

hippocampus until the age of 25 (Gogtay et al., 2006), it has been shown that the 

hippocampus develops rapidly in the first few years of life, but with slow 

increases after that. In this respect, a relationship between hippocampal volume 

and memory ability would have been predicted in early childhood and less so in 

older children. Yet, hippocampal-dependent episodic memory does not appear to 

emerge until later in childhood.  However, studies show similar relationships 

between hippocampal volume and memory in children and young adults, but a 

diminished relationship during adulthood (see Van Petten, 2004, for a review). 

It is understood that a) learning is dependent on hippocampal-neocortical 

interactions, b) recall is predominantly mediated by hippocampal retrieval 

mechanisms, and c) recognition is primarily dependent on the parahippocampal 

cortices. Based on the above theoretically-guided framework, it is possible that 

different developmental changes for learning/recognition and recall reflect distinct 

maturation of neocortical and hippocampal systems. The neocortical learning 

system may show functional maturation across childhood and adolescence, 

mirroring the protracted neurodevelopment of cortical areas, such as cortical 

thickness of the temporal lobe (Gogtay et al., 2004; Sussman et al., 2016), as 

well as the interaction between the hippocampus and the temporal and prefrontal 

cortices (Bachevalier & Vargha-Khadem, 2005; Mishkin et al., 1997; Mishkin et 

al., 1998). On the other hand, the hippocampal learning system may be more 
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age-invariant. Whereas hippocampal volume develops across childhood and 

adolescence (Gogtay et al., 2006), it is established that subfields of the 

hippocampus may develop at different rates, with for example the CA1 reaching 

structural maturity by the age of 2 years. Distinct maturation for subregions of the 

hippocampus may contribute to the observation that not all functions of the 

hippocampus develop at the same rate (Bachevalier & Vargha-Khadem, 2005). 

More research is required to investigate the mechanisms underlying recall ability 

and its development before it reaches maturity, as well as to reconcile the current 

behavioural observations with neurodevelopmental findings on the maturation of 

the hippocampus.  

4.2 Superiority of the Visuo-spatial System for Learning 

and Recall 

The balanced nature of the Pair Games allows for adequate comparison between 

subtests, such as verbal and non-verbal subtests, allowing direct comparison 

between verbal and non-verbal memory systems. Whereas pictorial information is 

configural, verbal information is temporal and sequential; therefore it is assumed 

that verbal and non-verbal materials are processed differently.  

Consistent with the second hypothesis, non-verbal materials were better learned 

and were less susceptible to forgetting after a delay than verbal materials, 

suggesting that once non-verbal information is learned, the memory traces are 

well-retained after a delay. This could suggest better encoding and consolidation 

of non-verbal, compared to verbal material over time; thereby making those 

memory traces more resistant to interference. This is consistent with adult studies 

which demonstrated superiority of non-verbal over verbal learning and memory, 

with better learning and slower decay of non-verbal representation of information 

compared to verbal representation (Hockley, 2008; Stenberg & Radeborg, 1995). 

Interestingly, this effect of material type is not observed in recognition, possibly 

reflecting an effect of accessibility rather than availability of information. The 

present study therefore demonstrated better non-verbal than verbal learning and 

memory, extending adult findings to children and adolescents. 

An interesting finding is that the material effect reported here was only observed 

for non-semantic items, and no difference was shown for semantic materials. 
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Non-semantic items were developed with the aim of minimising the effects of the 

dual route to learning and retention, whereby pseudowords are visualised with 

more difficulty than words, and designs are verbalised with more difficulty than 

objects. This was verified with participants’ debriefs wherein they reported less 

dual encoding for non-semantic items. However, it is possible that a dual-route 

strategy was more accessible for designs than for pseudowords, with 

verbalisation of designs easier than visualisation of pseudowords. This could 

contribute to the effect of material type shown for non-semantic items.  The 

absence of an effect of material type for semantic items may suggest that these 

items are processed with multiple semantic associations, whereby both verbal 

and non-verbal information are encoded and stored visually and verbally through 

a dual-process. On the other hand, it is also possible that the two systems 

actually differ in their mnemonic efficacy, with mnemonic superiority of the visual 

code over the verbal code (Stenberg & Radeborg, 1995). This material-effect for 

non-semantic items is consistent with the theory of mnemonic superiority of the 

non-verbal memory system, with better learning and retention of non-verbal 

compared to verbal items indicating stronger visuospatial representations. An 

important note to consider relates to the difference between 2- versus 3-

dimensional visuo-spatial abilities. The latter is truly spatial in that it externalises 

the representation from within self to the external space outside of one’s own. 

The pattern of results obtained with the Pair Games may therefore be specific to 

2-dimensional visuo-spatial ability.  

Disparity in the mnemonic performance across materials may be related to 

differences in cognitive processes. On the assumption that configural processing 

is less cognitively demanding than orthographic processing, participants may 

have more possibility to explicitly engage in  elaborate processing of non-verbal 

materials. Distinct mnemonic strategies may be employed at encoding, with 

subvocal rehearsal of verbal information, and more elaborate strategies for non-

verbal information, such as the binding of individual items of a pair, leading to 

better performance. This hypothesis is consistent with the strategies reported by 

participants when debriefed on the tasks. In addition, whereas verbal paired-

associate learning is influenced by reading/writing abilities (Elbro & Jensen, 2005; 

Litt et al., 2013; Messbauer & de Jong, 2006; Wang et al., 2017; Windfurh, 2001), 

the present finding suggests that non-verbal paired-associate is less cognitively 

demanding than verbal paired-associate learning. The superiority of non-verbal 
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over verbal learning and memory may therefore reflect reduced cognitive load 

and more elaborate mnemonic strategies.  

From a neurobiological point of view, the superiority of the visuo-spatial system 

mirrors neurodevelopmental findings. Several studies suggest that the right 

hippocampus is functional earlier than the left hippocampus, through higher 

activation (Prabhakar et al., 2018) and higher volume (Thompson et al., 2009; 

Uematsu et al., 2012) to support early visuo-spatial abilities (Burgess et al., 

2002). Whereas the present study did not show material-specific effects of age, it 

is possible that these would have been observed in a younger sample (below 8 

years old), with possibly stronger age-related changes in verbal compared to 

non-verbal learning and memory. Despite similar rates of development for verbal 

and non-verbal materials, it is possible that visuo-spatial memory emerges earlier 

and remains better than verbal memory across childhood and adolescence, as a 

result of early functionality of the right hippocampus.   

4.3 Modality Differences for Learning  

This study allowed delineation of two separate modalities (auditory and visual 

modalities) for the processing of verbal material. Consistent with the third 

generated hypothesis, words presented in the visual modality were better learned 

than words presented in the auditory modality. Differences in performance based 

on the input modality were observed for learning but not retrieval (recall and 

recognition scores), implying that performance equalised during consolidation. In 

addition, age-related improvement was observed in the retention of spoken 

words, but not of other information type, suggesting that it is a characteristic 

specific to auditory verbal memory.  

4.3.1 Better Learning for Written than Spoken Words  

The modality asymmetry, with better learning of written compared to spoken 

words reported here is consistent with adult studies (Fueller et al., 2013; Janczyk 

et al., 2018; Nelson et al., 2005), and may be associated with differences in the 

quality of phonological and orthographic representations. Moreover, an ERP 

study showed longer processing time for temporal analysis of auditory 

information compared to visual information (Kayser et al., 2003), providing 
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evidence that the superiority of the visual modality may result from reduced 

cognitive load of maintaining temporal representations. Overall, the visual 

modality system appears to be more efficient for the initial processing and 

memory trace formation of words. 

4.3.2 Performance Equalises over Consolidation 

Whereas differences between the two modalities were observed for learning, 

performance equalised during consolidation, and no modality effect was shown 

for subsequent recall and recognition. One possible explanation is that the 

graphic and phonological mnemonic traces are strengthened with repeated 

presentations, and repeated learning allows for the establishment of 

decontextualized representations, creating stronger traces and reducing effects 

of input modality after a delay.  

This finding has important clinical implications, as it is possible that children with 

learning difficulty do not reach a level of learning that is sufficient for establishing 

robust and decontextualized representations and may show persistence of 

modality asymmetry after a delay. Strengthening memory traces by encouraging 

a combination of orthographical and phonological representations of words could 

help enhance retention. However, this is also related to IQ in that with patients 

who are of low ability, graphic and orthographic representations may not be able 

to rise to the level required to enhance retention. This finding warrants further 

investigation and more research is required to examine the utility of using 

orthographical representations as a mnemonic strategy in cognitive intervention.  

4.3.3 Increased retention of auditory verbal information with age  

Whereas no overall age-related changes were shown for retention (discussed in 

section 4.1.2, page 98), improvement was nevertheless found for the Spoken 

Words subtest, whereby verbal retention increased with increasing age. This 

finding replicates the findings of Helmstaedter’s study which also demonstrated 

age-related effects of verbal retention. Because this age-related effect was only 

found for that subtest, and not for the other four, it is assumed that age-related 

changes in retention are specific to auditory memory. Evidence from animal 

studies raises the possibility that auditory memory in the service of verbal 

learning and retention may be related to the human-specific ability of speech. In 
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Fritz and colleagues’ study (2016), monkeys were trained on auditory memory 

and although they showed evidence of visual and tactile memory, they exhibited 

great difficulty with auditory memory (Fritz et al., 2016), possibly as a result of 

lack of speech (Fritz et al., 2005). Monkeys are able to hold auditory information 

in working memory but not in long-term memory because this needs to ride on a 

sensory system for storage; which in the case of audition means auditory-motor 

links. For humans, the phonological subvocal reverberations when we perceive 

verbal information provide us with that auditory/motor link up. However, in the 

absence of such a link up, the monkey can only hold on to auditory traces for 

brief periods of time in working memory. This therefore suggests that long-term 

auditory memory is related to speech, and in that respect, development in 

auditory memory may mirror the development of language skills in children 

(Schulze et al., 2012). This finding may have important implication in the clinical 

context, in that it is possible that children who present with language impairments 

may also exhibit auditory long-term memory deficits. 

4.4 Effect of IQ on Non-Semantic Learning Gain and 

Recognition 

The present study showed that information containing semantic representations 

showed higher gain in learning and better subsequent recognition than non-

semantic information, but no effect of semantic content was observed for 

retention. The levels of semantic structure of information to be encoded have an 

impact on how well it is learned and recognised, with better performance for 

semantic items as a result of more exposures and of easier access to pre-

established representations. In a paired- associate task, semantic items of a pair 

need to be bound at encoding for later retrieval, but non-semantic items require 

the establishment of semantic representations before the items of a pair can be 

bound into a holistic representation. Whereas semantic items allow semantic 

linking to facilitate learning, non-semantic items reduce this possibility and, in this 

respect, push the limits of new learning.  

Consistent with the fourth hypothesis, the effect of semantics on learning gain 

and recognition was found to be IQ-dependent. This finding is consistent with 

another study which demonstrated that individual differences in learning of a 
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complex video game are mediated by differences in fluid intelligence (Lee et al., 

2015). In the present study, children with higher IQ showed higher performance 

for non-semantic information than children with lower IQ, possibly as a reflection 

of the efficiency of encoding strategies (Bjorklund et al., 2009; Cusack et al., 

2009; Kron-Sperl et al., 2008). For example, deep-encoding strategies may be 

employed by children with higher intellectual status, whereas those with lower IQ 

might process the perceptual components of the paired items. Easy items (i.e. 

semantic items in the present study) are processed through the use of similar 

strategies (or different strategies of the same efficiency) across IQ levels, 

whereas difficult items (i.e. non-semantic items in the present study) are 

processed differently based on IQ levels. The finding therefore shows that non-

semantic learning and recognition are mediated by variations in IQ, whereas 

recall is not. 

Intellectual ability is a function of the cortical network and age-related 

improvements are mediated by cortical maturation, such as cortical thickness, as 

well as access to more extensive neuronal networks and higher levels of 

semantic categorisation (Burgaleta et al., 2014; Shaw et al., 2006). The 

neuroanatomical correlates of intellectual ability and their relation with the cortical 

learning system (learning and recognition), but not with the hippocampal learning 

system (recall), provide added evidence of the two the separate systems (cortical 

versus hippocampal). Whereas knowledge of words is dependent on the 

neocortical system (Marslen-Wilson, 1984; Tranel et al., 2001), learning new 

material is dependent on hippocampal-neocortical interactions (Davis et al., 

2009). Neuropsychological evidence suggests that initial processing of new 

words (pseudowords) is supported by the hippocampal learning system (Gooding 

et al., 2000; Vergaellie et al., 1995), and gradually becomes integrated into the 

neocortical learning system, through hippocampal-neocortical interactions as 

novel words become familiar (Davis et al., 2009). This suggests that non-

semantic learning could be a marker for the ability of hippocampal-neocortical 

interactions in children with TLE. Together, these findings support the 

complementary learning systems theory which posits separate cortical and 

hippocampal learning systems (McClelland et al., 1995).  

The influence of IQ on the ability to learn new information may have important 

clinical implications. On the basis of the present findings, it may be possible to 
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address individual differences in cognitive rehabilitation and help design and 

implement more effective training programmes. Patients with lower IQ may 

benefit from deep processing of information and explicit training instructions, and 

may require more guided intervention to improve cognitive rehabilitation success. 

It is possible that these patients will benefit from strengthening of the habit 

learning system which is slow in contrast to the hippocampal cognitive learning 

system which is fast and trial unique. Moreover, tests of non-semantic items 

showed that higher initial acquisition (at trial 1) was associated with higher 

learning gain. On the other hand, in tests of semantic items, higher initial 

acquisition was associated with lower learning gain due to lower opportunity for 

improvement or possibly effects of proactive interference. This observation 

suggests that non-semantic paired-associate learning tests may be more 

sensitive for the assessment of learning gain than tests of semantic items. In 

order to assess whether a patient may benefit from repetitive learning in the 

educational setting for example, non-semantic paired-associate learning tests 

may be more appropriate. These findings provide important clinical implications.   

5 Limitations 

The measures obtained in this study are based on accuracy of responses. It is 

possible that some more subtle effects were not captured with this methodology 

and could be captured using methods such as reaction time. In addition, the 

Pseudowords and Designs subtests were developed with the aim of minimising 

dual-encoding strategies in order to reflect purer measures of verbal and non-

verbal memory compared to words and objects. However, complete abolishing of 

a dual-route strategy is not possible and it could be argued, for example, that 

some level of verbalisation is still possible for the abstract shapes, allowing verbal 

labelling in addition to the visual code. Nonetheless, this verbal coding of shapes 

did not seem to occur frequently and when debriefed on the task, participants 

reported encoding the visual properties of the shapes. This observation was 

similar for the Pseudowords.  

6 Conclusions 

The aim of the present chapter was to characterise the profiles of learning and 

memory in a large sample of children across a wide age range, documenting 
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developmental changes. Four main findings were discussed. First, increasing age 

across childhood and adolescence was related to improved learning and 

recognition. However, the ability to recall learnt information from long-term 

storage was not age-dependent. From a methodological point of view, this finding 

indicates that it is crucial for memory tests to employ a scoring system that 

accounts for such distinct age-related effects. A delayed recall score which does 

not take prior learning into account will provide a misinterpretation of age-effects. 

The present findings therefore highlight the advantage of a “forgetting” score over 

a stand-alone “delayed recall” score. Second, lower performance was shown for 

verbal compared to non-verbal memory, providing evidence of the superiority of 

visuo-spatial representations. Third, lower learning was shown for auditory 

compared to visual memory indicating modality differences at the initial 

acquisition, although performance equalised after consolidation. Fourth, levels of 

semantic structure of information had an impact on how well the relevant material 

was learned and memorised in children and this effect was dependent on IQ 

levels. Overall, the present study provides evidence for distinct developmental 

trajectory of the hippocampal versus neocortical learning systems, and 

characterises learning and memory performance for different types of materials, 

shedding light on the underlying mechanism of these functions. 

7 Future Directions 

The clinical utility of the Pair Games paradigm will be assessed by collecting data 

on different clinical groups with known or suspected MTL pathology. 

Administering this paradigm to a group of patients with TLE would provide more 

refined measures than currently available to detect learning and memory 

impairments in patients with damage to regions critical for these functions. 

Comparison with standardised diagnostic measures would shed light on the 

added value of the Pair Games for the identification of specific impairments. 
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Chapter 4 

Pilot of the “Pair Games” in 
Childhood TLE 

 

In the present chapter, the Pair Games was piloted in a small sample of 

paediatric patients with TLE who were candidates for surgery. Performance of 

patients on this novel protocol was compared with performance on standardised 

tests. The aim was to assess whether the Pair Games could reveal the status of 

lateralisation in individual patients with unilateral pathology in the temporal lobe, 

and characterise any selective deficits consistent with the underlying 

neuropathology. More specifically, the added clinical value of the Pair Games 

over the standardised tests was investigated.  
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1 Introduction  

Temporal lobe epilepsy (TLE) is a common form of seizure disorder. Given that 

the hippocampus plays a major role in the generation and spread of temporal 

lobe seizures (McIntyre & Racine, 1986) and is also a critical structure serving 

long-term memory, including episodic memory (Squire & Zola-Morgan, 1991), 

impairments in memory and learning are frequently documented in patients with 

TLE. The effects of TLE on cognitive function can be quite different in children 

compared to adults. The present chapter focuses the review of the literature on 

TLE in paediatric cases.   

In such patients, identification of specific learning and memory impairments is 

critical, particularly in MR-negative cases where a structural lesion is not visible. 

Evidence of cognitive impairment may indicate covert pathology, with specific 

neuropsychological deficits related to compromised neural systems. This type of 

brain-behaviour-dependent information can in turn identify the territory of covert 

brain pathology and inform surgical decision-making.   

Evidence suggests that in patients with epilepsy, particularly in those with early 

onset of seizures, the extent of cognitive impairment may be often greater than 

the territory of the lesion (Cormack et al., 2005). For example, Hippocampal 

Sclerosis (HS) is frequently associated with a more extensive pattern of extra-

temporal lesion than other types of epileptogenic lesions. Patients with HS thus 

present with greater functional and structural alterations in brain organisation 

than those with mesial TLE associated with other lesions such as tumours (Wei 

et al., 2016).  

Evidence of wider cognitive impairment was also put forward by Skirrow et al. 

(2015), who identified “release effects”. The authors showed that, after surgery 

for TLE, children showed improvement in memory functions typically subserved 

by the unoperated temporal lobe (Skirrow et al., 2015). As such, improvements in 

verbal memory were observed after right temporal lobe surgery, and 

improvements in non-verbal memory were observed after left temporal lobe 

surgery. This release phenomenon is a reflection of the combined effects of 

reduction of seizures, cessation of drug therapy, as well as the release of the 

functions of the unoperated side from the spill over of seizures from the damaged 
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side.  These release effects suggest that unilateral seizures have noxious effects 

on the memory function subserved by the contralateral side, which may not be 

consistently identified pre-operatively. The cognitive profile may therefore be 

more severe than the visible lesion. In view of these considerations, 

neuropsychological tests based on knowledge of structure/function relationships 

within and beyond the MTL system are required to ascertain the status of 

memory and learning in relation to other aspects of cognitive function to help with 

surgical decision-making.  

1.1 Lateralisation of Memory Deficits 

In adults, unilateral temporal lobe lesions result in material-specific memory 

deficits, wherein left and right temporal lesions are associated with verbal and 

visual memory deficits, respectively (Jones-Gotman et al., 2000; Golby et al., 

2002; Milner, 1966; Willment & Golby, 2013), however inconsistencies have also 

been reported (see Saling, 2009, for a review). These side-dependent 

dissociations in memory are interpreted in terms of the underlying hemispheric 

specialisation of function that is normally well established in adults and is 

compromised after unilateral temporal lobe seizures/lesions.  

In children, long-term memory and learning deficits are frequently reported, but 

material-specific deficits are not as clearly side-dependent as in adults, and 

studies show inconsistent findings. Several studies have documented verbal 

memory impairment in left TLE (Cohen, 1992; Engel, 1998; Kibby et al., 2014; 

Kar et al., 2010) and non-verbal memory impairment in right TLE (Cohen, 1992; 

Engle & Smith, 2010; Kibby et al., 2014). However, when comparing the 

performance of left and right TLE patients directly, some studies reported more 

non-verbal memory deficits in the right TLE group compared to the left TLE group 

for dot location (Kibby et al., 2014) and face recognition (Mabbott & Smith, 2003; 

Gonzalez & Anderson, 2007; Kibby et al., 2014), but no difference was observed 

between the two patient groups on measures of verbal memory. Other studies 

showed no difference between the two groups on any measure of verbal and 

non-verbal memory (Cohen, 1992; Engle & Smith, 2010).  

The argument for this pattern of finding may also relate to the observation that 

the net effect of a unilateral lesion sustained in childhood is impairment in non-
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verbal functions, including non-verbal memory. A left-sided lesion often leads to 

reorganisation of language along with verbal memory to the right hemisphere 

thus “crowding out” visuospatial functions of the right side. At the same time, a 

lesion of the right hemisphere impairs non-verbal functions of that side. In this 

respect, impairment in non-verbal memory is observed irrespective of side of 

pathology. Moreover, a generalised pattern of dysfunction may be related to 

several factors including age at onset of epilepsy and the manifestation of 

bilateral disease despite focal signs (see Chapter 1, section 5.1, page 26). In 

addition, inconsistent findings across studies may be related to the insensitivity of 

neuropsychological tools to measure lateralisation of cognitive deficits.  

1.1.1 Standardised tests are not sensitive enough to detect anomalous 

patterns of cerebral lateralisation 

Whereas there is some evidence of material-specific deficits in the literature, the 

findings are inconsistent across studies and reports have been confounded by 

unbalanced tests and the lack of test sensitivity to measure laterality effects. The 

inadequacy of the tests is even more striking in paediatric studies wherein the 

patterns of impairment are more varied and less clear-cut than those in adults. 

These tests may not be sensitive enough to capture the processes dependent on 

the mesial versus the lateral cortical regions, or the specialisation of the left and 

right temporal lobes.  

Investigation of laterality effects in memory has been confounded by several 

factors. First, verbal memory has been typically assessed through recall whilst 

non-verbal memory has been assessed through recognition. Such comparisons 

are problematic because the processes of recall and recognition are dependent 

on distinct subregions of the temporal lobe (Diana et al., 2007; Patai et al., 2015). 

In addition, recognition is easier than recall, making a balanced comparison more 

difficult to achieve. Second, access to semantic representations has not been 

balanced in verbal and non-verbal memory tests. Thus, verbal memory tests 

commonly use words, which have a semantic representation, whilst non-verbal 

memory tests often use abstract designs which do not carry representational 

content. Third, the input modality (auditory versus visual) has been confounded 

whereby verbal memory tests are often presented in the auditory modality whilst 

non-verbal memory tests are presented in the visual modality. In addition, ceiling 
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effects shown in some subtests (e.g. Dot Locations from the CMS) may not 

capture any underlying impairment.  

These considerations raise the need for directly comparable measures to assess 

and contrast verbal and non-verbal memory performance and to capture any 

laterality effects. The difficulty in addressing the question of memory lateralisation 

in childhood TLE also relates to the age at onset of seizures and the status of 

hemispheric specialisation prior to the insult (see Chapter 1, section 5.1, page 

26).  

1.2 Compromised Memory Processes  

In addition to the effects of side of temporal lobe pathology, the pattern of 

learning and memory dysfunction in TLE may be related to the involvement of 

cortical versus mesial temporal lobe structures. Different functional roles of 

cortical versus mesial structures have been put forward in animal and adult 

studies (Cohen & Eichenbaum, 1993; Eichenbaum et al., 1992; Murre, 1996; 

Saling et al., 2002; Squire, 1992; Squire et al., 1993), whereby mesial temporal 

lobe structures mediate retrieval processes of new information and cortical 

structures store long-term memories. Adult patients with pathology in these 

specific structures show distinct memory profiles, whereby deterioration in 

delayed recall is related to mesial pathology and impairment in learning and 

recognition are often associated with pathology in temporolateral structures 

(Bugerman et al., 1995; Helmstaedter et al., 1997; Helmstaedter et al., 1996).  

In childhood TLE, the influence of mesial versus cortical temporal lobe pathology 

is less understood. Several studies have shown that mesial pathology is 

particularly susceptible to impairments in delayed recall (Law et al., 2017; Ljung 

et al., 2017; Rzezak et al., 2014; Zhao et al., 2014). Cormack and colleagues 

showed a larger effect of aetiology than side of lesion, where hippocampal 

sclerosis (HS), but not dysembryoplastic neuroepithelial tumours (DNET), was 

associated with impairments in delayed recall regardless of the side of lesion 

(Cormack et al., 2012). As mentioned above, MTS is more bilateral and extends 

beyond the MTL by virtue of its nature whereas DNET has a more restricted 

effect, often sparing the hippocampus and showing a more selective side-

dependent effect.  
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However, the specific memory processes (e.g. recall versus recognition) impaired 

in TLE with cortical pathology has not been extensively studied. Nolan and 

colleagues directly compared mesial and cortical TLE paediatric groups but no 

difference was found between the memory performance of the two groups (Nolan 

et al., 2004). Gonzalez and colleagues demonstrated higher memory impairment 

in mesial than cortical TLE, particularly for measures of delayed recall of paired-

associates (Gonzalez & Anderson, 2007). Neuropathology does not neatly occur 

in TLE making it difficult to separate how much is cortical versus mesial and how 

this variable relates to recognition versus recall. However, the clinical tools may 

not have provided adequate comparison between memory processes. 

Investigations of mnemonic processes have been confounded in the literature, 

and methodological considerations of standardised tests may hinder the ability to 

compare learning, recall and recognition processes. First, the delayed recall 

score may not fully take account of the underlying process it intends to measure. 

Some patients may find it difficult to learn new information, but could 

nevertheless be able to maintain the learnt information over a delay. Such a 

profile of performance cannot be fully documented based on scores that are 

computed irrespective of prior learning, as for example in the CMS wherein the 

delayed recall score refers to the amount of information recalled after a delay. 

Second, whereas learning is assessed through cued recall in the CMS, retrieval 

after a delay is assessed using a free recall test, and the comparison between 

these two scores may therefore be confounded by the effects of distinct cognitive 

mechanisms involved in cued and free recall. Third, recognition tests that require 

a yes/no judgment may not be sensitive enough to capture impairment. This 

characteristic also affects chance level performance, which is reduced when 

more response options are available (i.e. chance=50% in the CMS, and 33% in 

the Pair Games). The standardised tests may therefore not provide adequate 

comparison between memory processes, thus impeding the accuracy of 

diagnostic assessments.   

1.3 The Pair Games 

The Pair Games was developed for the assessment of learning and memory, 

based on knowledge of the neurobiology of memory functions. This paradigm 

allows direct comparisons between verbal and non-verbal mnemonic functions, 
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and between separate memory processes (i.e. learning, recall and recognition). A 

full description of the development of the Pair Games can be found in Chapter 2, 

and normative data on a large sample of typically-developing children were 

described in Chapter 3. The construct of the Pair Games may provide an 

improved detection of specific learning memory impairments in patients with TLE.  

1.4 Aims and Hypotheses 

The aim of the present chapter is to pilot the Pair Games in a small sample of 

paediatric patients with TLE and evaluate the face validity of the novel 

instrument. The present chapter will present the pattern of performance across all 

cases, using both the standardised tests and the Pair Games. It is predicted that 

the overall pattern of performance will be better differentiated with the Pair 

Games than with standardised tests. More specifically, the Pair Games will more 

clearly identify:  

a) The presence of verbal versus non-verbal impairments in relation to side 

of pathology (left versus right).  

b) Different components of psychological processes (i.e. learning, recall and 

recognition) that may be compromised.  

The patients involved in the current study presented as candidates for temporal 

lobectomy to the epilepsy surgery service at Great Ormond Street Hospital for 

Children NHS Foundation Trust. They were not selected to address specific 

questions relating to hemispheric side, site, and extent of pathology affecting the 

temporal lobe. Rather, these cases were representative of candidates for 

temporal lobe surgery.  As such, they provide the opportunity to evaluate the 

clinical relevance and applicability of the Pair Games over and above the 

standardised protocols routinely used for pre-surgical evaluation of memory in 

our paediatric patient population. Isolating the mnemonic processes that may be 

compromised in these cases will inform surgical decision-making, and guide 

prognosis of memory outcome after surgery.   
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2 Methods 

2.1 Participants  

Six children with TLE were recruited from Great Ormond Street Hospital (GOSH) 

in London, UK for the purpose of this study. All patients were diagnosed with 

intractable epilepsy and had been on multiple anticonvulsant medication for a 

number of years. The sample is composed of three children with left-sided 

pathology, two with right-sided pathology, and one with bilateral pathology. The 

aetiology is varied, with four patients diagnosed with Hippocampal Sclerosis (HS) 

and two with pathology sparing the mesial structures on MRI (one with a 

porencephalic cyst and one with Dysembryoplastic Neuroepithelial Tumour 

(DNET) in the temporal lobe). one patient showed additional extra-temporal 

pathology, with Focal Cortical Dysplasia (FCD) in the parietal lobe. The age at 

onset of seizures ranges from 1 to 10 years, and the patients were aged between 

12 and 18 years at the time of testing. Clinical characteristics of the patients are 

reported in Table 4.1 and a representation of the lesion location for each case is 

illustrated in Figure 4.1. Appendix F (page 365) provides the structural MRI scans 

(coronal and sagittal views) for each patient. 

 

Table 4.1 Clinical Characteristics of Patients. 

 
Side of 

pathology 
Aetiology 

Seizure 
onset 

(age in 
years) 

Age Gender 

Case 1 Right  HS 2 16 F 

Case 2 Right Porencephalic cyst in temporal lobe 9 16 F 

Case 3 Bilateral HS 9 16 M 

Case 4 Left  HS 8 12 F 

Case 5 Left DNET in temporal lobe 11 16 F 

Case 6 Left HS and FCD in parietal lobe 1 18 F 
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Figure 4.1 Representation of the six cases’ lesion location. 

 

2.2 Standardised Neuropsychological Tests   

All patients underwent a full neuropsychological assessment of language, 

memory and intellectual ability using standardised clinical protocols. Intellectual 

abilities were assessed using the Wechsler Intelligence Scale for Children 4th UK 

Edition, which provides standard scores for Full Scale IQ (FSIQ), Perceptual 

Reasoning (PSI), Verbal Comprehension (VIQ), and Working Memory (WMI). 

VIQ and PIQ scores for each case are presented in Table 4.2.  

 

Table 4.2 VIQ and PIQ scores for each case. 

 
Side of 

pathology 
VIQ  PIQ 

Case 1 Right  96 102 

Case 2 Right 99 94 

Case 3 Bilateral 83 110 

Case 4 Left  91 115 

Case 5 Left 104 121 

Case 6 Left 85 77 

 

Patients aged below 18 (N=5) were administered the Children’s Memory Scale 

which provides measures of verbal and non-verbal learning and memory. The 

verbal subtests of the CMS consist of story recall (Stories) and paired-associate 

learning (Word-Pairs). For the Stories subtest, the patient listens to a story and is 

asked to recall the contents from memory, immediately and after a 30 minute 

filled delay. The Word Pairs test consists of a list of pairs of words to be learned 

over three consecutive trials, through cued recall. A free recall test is then 

administered after a 30 minute delay, followed by a yes/no recognition test. The 



Chapter 4: The Pair Games in paediatric TLE 
 

 

118        Buck 
 

non-verbal subtests of the CMS are Dot Locations and Faces. The former subtest 

evaluates spatial memory, whereby the patient is asked to learn the location of 

dots over three consecutive trials, then again after a delay of 30 minutes. The 

Face subtest consists of yes/no recognition judgments to a series of previously 

studied faces, assessed both immediately after exposure and after a 30-minute 

delay. 

One patient who was above the age limit to be administered the CMS for clinical 

assessment (>16 years old) was instead administered the Wechsler Memory 

Scale 4th UK Edition (WMS-IV), which provides a comparable measure of verbal 

and non-verbal immediate and delayed memory.  

2.3 The Pair Games 

The Pair Games paradigm was developed for the assessment of learning and 

memory through recall to provide assessment of the functional integrity of the left 

and right hippocampus in patients with known or suspected pathology of this 

structure. The paradigm is composed of 5 subtests assessing verbal and non-

verbal learning and memory. These subtests are Spoken Words, Written Words, 

Written Pseudowords, Objects and Designs. These subtests assess cued recall 

over three consecutive learning trials, as well as delayed cued recall and 

recognition after a 15 minute delay. The recognition tests involve multiple choice 

answers (1 target and 2 distractors), amongst which one distractor is a familiar 

item that belongs to another pair (familiar item) and another distractor is 

completely new to the test (new item). This method measures intrusion errors 

and false alarms and provides a more stringent evaluation of recognition. 

The Pair Games provides measures of learning, delayed recall and recognition. 

The measure of learning is the average performance over the three consecutive 

trials. The measure of delayed recall is computed based on the amount of 

previously learnt information that is remembered after a delay, and in that 

respect, takes the level of prior learning into account. The measure of recognition 

is computed based on the number of target items that are successfully 

recognised, minus intrusion and familiar errors (refer to Chapter 2 for a more 

detailed description of these measures). Standard scores were computed from a 

sample of 130 typically-developing children.  
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2.4 Analyses 

For the standardised tests, performance was examined using the scaled scores 

and standard scores. Results from the Pair Games paradigm are reported using 

standard scores, derived from raw scores using the standardisation tables 

reported in Appendix C (page 316). Standard scores from the standardised 

memory tests and the Pair Games are reported in Appendix E (page 362) for 

each patient separately.  

A standard score of 100 reflects average performance of a given age-group, and 

scores of 85 and 115 are 1 standard deviation (SD) below and above the mean, 

respectively. Similarly, scores of 70 and 130 are 2 SDs from the mean, 

respectively. In that respect, scores of 70 or below reflect significant impairment. 

The full classification of standard scores is presented in Appendix B (page 315).  

2.4.1 Lateralisation of Memory  

Discrepancies between verbal and non-verbal scores were investigated to assess 

material-specific impairments. These discrepancy scores were examined using 

the CMS and the Pair Games, thereby comparing the two test instruments. In the 

CMS, verbal memory scores are composed of scores from the Word Pairs and 

Stories subtests, and non-verbal memory scores are composed of scores from 

Dot Locations and Faces subtests. Discrepancies between verbal and non-verbal 

scores were examined for immediate recall and delayed recall. The significance 

of discrepancies between these scores was evaluated using the CMS manual. 

Discrepancy between verbal and non-verbal immediate recall was not computed 

for one patient (Case 1), because this patient was assessed with another 

standardised test (WMS-IV) which does not provide computed measures of 

verbal and non-verbal immediate recall. 

The Pair Games can determine how well a patient learns and remembers verbal 

material (Written Words and Pseudowords), compared to non-verbal material 

(Objects and Designs). Discrepancies between verbal and non-verbal memory 

were examined for learning, recall and recognition. For better comparison with 

the CMS, the effect of material type was investigated in the Pair Games 

separately for semantic items (Written Words versus Objects) and non-semantic 

items (Pseudowords versus Designs). Discrepancies between verbal and non-
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verbal materials are presented in Appendix D, Table D.5 (page 361) for learning, 

delayed recall and recognition scores.  

2.4.2 Compromised Memory Processes  

With the CMS, measures of learning, recall and recognition were compared for 

the Word Pairs subtest only, as this is the only subtest that provides all the 

relevant measures. The significance of discrepancies between these scores was 

evaluated using the CMS manual. A measure of learning could not be computed 

for one patient (Case 1), because this patient was assessed with another 

standardised test (WMS-IV) which does not provide a measure of learning. 

The Pair Games enables assessment of how well a child is able to learn versus 

how well he/she can recall the learnt information, as well as how well a child 

recalls as opposed to recognises newly learnt information. Discrepancies 

between learning and recall, and between recall and recognition were examined 

for each subtest separately.  

3 Results 

3.1 Lateralisation of Memory Deficits 

3.1.1 CMS 

Discrepancy between verbal and non-verbal scores was investigated for the 

measures of immediate recall and delayed recall across patients (Table 4.3). For 

the measure of immediate recall, 5/5 cases showed lower verbal compared to 

non-verbal scores. However, significant discrepancy was shown in only one 

patient (Case 3 with bilateral pathology), with higher verbal compared to non-

verbal deficits. For delayed recall, the discrepancies were small, and in the 

expected direction based on the side of pathology in only 1/5 unilateral cases. 

Case 3 with bilateral pathology showed lower verbal compared to non-verbal 

delayed recall. None of the discrepancy scores between verbal and non-verbal 

delayed recall reached significance.   

The directions of the discrepancies were generally not in accordance with the 

side of pathology. The test did not capture stronger non-verbal compared to 
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verbal learning/memory deficit in any of the six patients, even in the right-sided 

cases.  

Table 4.3 Discrepancy between verbal and non-verbal scores for immediate recall and 
delayed recall, for the CMS (standard scores). Positive values indicate lower scores for 
non-verbal compared to verbal performance, and negative scores indicate the opposite. 
Based on the predictions, left TLE cases are expected to show negative scores (stronger 
verbal than non-verbal deficit), whereas right TLE cases are expected to show positive 
score (stronger non-verbal than verbal deficit). Numbers in red indicate significant 
discrepancy between verbal and non-verbal scores. 

 
Side of 

pathology 
Immediate 

Recall  
Delayed 
Recall 

Significance 
threshold  

 18 19 

Case 1 Right  NA 2 

Case 2 Right -4 -3 

Case 3 Bilateral -28 -6 

Case 4 Left  -10 6 

Case 5 Left -9 3 

Case 6 Left -7 3 

3.1.2 Pair Games 

3.1.2.1 Semantic Subtests 

Discrepancy between verbal and non-verbal scores was investigated for the Pair 

Games, for semantic and non-semantic subtests separately. The thresholds for 

significant discrepancy between scores for learning, recall and recognition are 

indicated in Table 4.4.  

Within the right TLE group (N=2), lower non-verbal compared to verbal scores 

would be predicted based on the right-sided pathology. This was confirmed in 2/2 

cases for learning, 2/2 for recall, and 1/2 for recognition. The discrepancies 

reached significance in one patient, for learning and recognition scores. Within 

the left TLE group (N=3), lower verbal compared to non-verbal scores was 

predicted. This was shown in 2/3 cases for learning, 3/3 cases for recall, and 1/3 

cases for recognition for which the discrepancy reached significance. The patient 

with bilateral pathology (Case 3) showed a similar profile to the left-sided cases 

with verbal recall impairment. Figure 4.2 illustrates discrepancy between verbal 

and non-verbal scores for the CMS and the Pair Games (semantic subtests).  

Table 4.4 Discrepancy between verbal and non-verbal scores for learning, recall and 
recognition, for semantic subtests of the Pair Games (Written Words versus Objects, 
standard scores). Positive values indicate lower scores for non-verbal compared to verbal 
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performance, and negative scores indicate the opposite. Based on the predictions, left 
TLE cases are expected to show negative scores (stronger verbal than non-verbal 
deficit), whereas right TLE cases are expected to show positive score (stronger non-
verbal than verbal deficit). Numbers in red indicate significant discrepancy between 
verbal and non-verbal scores.  

 
Side of 

pathology 
Learning  Recall Recognition  

Significance 
threshold  

 28 38 18 

Case 1 Right  13 26 -4 

Case 2 Right 38 1 25 

Case 3 Bilateral 9 -36 1 

Case 4 Left  -9 -15 -74 

Case 5 Left 2 -20 1 

Case 6 Left -23 -18 12 

 

 

Figure 4.2 Material-specific impairment for learning, recall and recognition (for immediate 
and delayed recall for the standard test), within subtests composed of semantic items 
(Written Words and Objects). The bars represent verbal performance minus non-verbal 
performance, with positive values indicating higher non-verbal relative to verbal deficit, 
and negative values indicating the opposite pattern. Values close to 0 indicate little 
difference between verbal and non-verbal scores. The black lines indicate the threshold 
at which differences between scores are significant, based on data from the sample of 
typically-developing children. 
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3.1.2.2 Non-Semantic subtests 

Material-specific effects were then investigated for non-semantic items, and the 

discrepancies between verbal and non-verbal scores are illustrated in Table 4.5. 

Within the right TLE group (N=2), lower non-verbal compared to verbal scores 

was shown in 1/2 cases for learning, 0/2 for recall, and 2/2 for recognition, but 

none of these discrepancies reached significance. Within the left TLE group 

(N=3), lower verbal compared to non-verbal scores were shown in 1/3 cases for 

learning, 2/3 cases for recall, and 2/3 cases for recognition. Amongst these 

discrepancies, 2 reached significance. Figure 4.3 illustrates discrepancies 

between verbal and non-verbal scores for the non-semantic subtests of the Pair 

Games. 

Table 4.5 Discrepancy between verbal and non-verbal scores for learning, recall and 
recognition, for non-semantic subtests of the Pair Games (Pseudowords versus Designs, 
standard scores). Positive values indicate lower scores for non-verbal compared to verbal 
performance, and negative scores indicate the opposite. Based on the predictions, left 
TLE cases are expected to show negative scores (stronger verbal than non-verbal 
deficit), whereas right TLE cases are expected to show positive score (stronger non-
verbal than verbal deficit). Numbers in red indicate significant discrepancy between 
verbal and non-verbal scores. 

 
Side of 

pathology 
Learning  Recall Recognition  

Significance 
threshold  

 28 36 32 

Case 1 Right  -15 -4 2 

Case 2 Right 1 -30 7 

Case 3 Bilateral 8 -5 13 

Case 4 Left  10 -15 -19 

Case 5 Left -28 8 -15 

Case 6 Left 5 -21 17 

 

 

-40

-20

0

20

40

60

Learning 

-60

-40

-20

0

20

40

60

Delayed Recall 

-80

-60

-40

-20

0

20

40

Recognition 



Chapter 4: The Pair Games in paediatric TLE 
 

 

124        Buck 
 

Figure 4.31 Material-specific impairment for learning, recall and recognition (for 
immediate and delayed recall for the standard test), within subtests composed of non-
semantic items (Pseudowords and Designs). The bars represent verbal performance 
minus non-verbal performance, with positive values indicating higher non-verbal relative 
to verbal deficit, and negative values indicating the opposite pattern. Values close to 0 
indicate little difference between verbal and non-verbal scores. The black lines indicate 
the threshold at which differences between are significant, based on data from the 
sample of typically-developing children. 

 

Table 4.6 provides an overview of the discrepancies captured with the CMS and 

the Pair Games. With the CMS, all patients had lower verbal than non-verbal 

scores, therefore the discrepancy was consistent with the side of pathology only 

in left TLE cases. Within the semantic subtests of the Pair Games, material-

specific impairments were observed in accordance with the side of pathology in 

all cases and reached significance in 3/6 of them. Within the non-semantic 

subtests, the pattern of discrepancies was less conclusive. In addition to the large 

ranges within which discrepancies are considered non-significant, reflecting high 

variability among the normative sample, the direction of discrepancy was not 

always consistent with the prediction based on side of pathology.  

Table 4.6 Discrepancy between verbal and non-verbal scores as a function of side of 
pathology, captured with the CMS, the semantic subtests of the Pair Games (Written 
Words versus Objects) and the non-semantic subtests of the Pair Games (Pseudowords 
versus Designs). The ticks indicate when the direction of discrepancy between verbal and 
non-verbal learning/memory is consistent with the side of pathology (left versus right), 
irrespective of whether it is significant or not. Double ticks indicate that the discrepancy 
reached significance.  

 
Side of 

pathology 
CMS 

Pair Games 

Semantic 
items 

Pair Games 

Non-Semantic 

items 

Case 1 Right   √  

Case 2 Right   √√  

Case 3 Bilateral  √√ √√  

Case 4 Left  √ √√ √ 

Case 5 Left  √ √ √√ 

Case 6 Left √ √  

 

3.1.2.3 Influence of IQ on Semantic and Non-Semantic Learning 

In the present cohort, the patients with IQ scores below 100 showed lower 

learning gain for non-semantic than semantic information, whereas the other 

patient who did not show this pattern of impaired performance had a high IQ 

(Table 4.7). 
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Table 4.7 Discrepancy between learning gain scores for semantic (S) and non-semantic 

(NS) information. 

 VIQ PIQ 

Discrepancy 

between S 

and NS  

Stronger 

impairment 

Significance 

threshold 
  28 

 

Case 1 96 102 15 NS 

Case 2 99 94 26 NS 

Case 3 83 110 24 NS 

Case 4 91 115 14 NS 

Case 5 104 121 -15 S 

Case 6 85 77 22 NS 

3.2 Compromised Memory Processes  

3.2.1 CMS 

The comparisons between recall and learning/recognition were investigated for 

scores obtained from the standardised test for each case (Table 4.8). Lower 

learning compared to recall scores was observed across patients (5/5), but the 

discrepancy reached significance in only 1/5 cases. Similarly, the discrepancy 

between recall and recognition scores reached significance in only 1/5. Apart 

from case 6 (scale score=3), the recognition scores were very similar across 

participants (scaled scores between 10 and 11).  

Table 4.8 Discrepancy between learning, recall and recognition scores, for the Word 
Pairs subtest of the CMS (scaled scores). Positive scores indicate lower recall compared 
to learning/recognition scores. Numbers in red indicate significant discrepancy between 
verbal and non-verbal scores. 

 Pathology 
Side of 

pathology 

Learning 

versus 

recall 

Recall 

versus 

recognition 

Significance 

threshold 

  
4 4 

Case 1 Mesial  R NA NA 

Case 2 Cortical R -2 3 

Case 3 Mesial B -2 2 

Case 4 Mesial L -4 2 

Case 5 Cortical L -3 -2 

Case 6 Mesial L -2 -5 
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3.2.2 Pair Games 

Tables 4.9 and 4.10 illustrate the discrepancies between learning and recall, and 

between recall and recognition, respectively, for each subtest of the Pair Games. 

Across the two comparisons (learning versus recall and recall versus recognition) 

and across all subtests, discrepancy reached significance in 4/6 cases (Cases 1-

4) and almost reached significance in the remaining two cases. 

Table 4.9 Discrepancy between learning and recall for each subtest of the Pair Games 
(standard scores). Positive scores indicate lower recall compared to learning scores. 
Numbers in red indicate significant discrepancy between learning and recall scores, 
numbers in orange indicate that the discrepancy is within 3 points of reaching 
significance. 

 Pathology 
Side of 

pathology 

Spoken 

Words 

Written 

Words 

Pseudo-

words 
Objects Designs 

Significance 

threshold 
 

 
35 38 42 41 44 

Case 1 Mesial  R 16 0 -11 7 0 

Case 2 Cortical R 17 -25 8 -62 -23 

Case 3 Mesial B -73 52 19 7 6 

Case 4 Mesial L 54 9 10 3 -15 

Case 5 Cortical L 11 13 6 -9 42 

Case 6 Mesial L -12 -20 -39 -15 -23 

 

Table 4.10 Discrepancy between recall and recognition for each subtest of the Pair 
Games (standard scores). Positive scores indicate lower recall compared to recognition 
scores. Numbers in red indicate significant discrepancy between recall and recognition 
scores. 

 Pathology 
Side of 

pathology 

Spoken 

Words 

Written 

Words 

Pseudo-

words 
Objects Designs 

Significance 

threshold 
 

 
38 39 40 39 41 

Case 1 Mesial  R 24 5 13 43 7 

Case 2 Cortical R 32 -1 22 -25 -15 

Case 3 Mesial B -43 58 26 21 8 

Case 4 Mesial L -20 -45 -6 14 -12 

Case 5 Cortical L 0 -1 -4 -22 19 

Case 6 Mesial L 24 5 -18 -25 -14 

 

Table 4.11 provides an overview of the discrepancies between recall and 

learning/recognition scores captured with the CMS and the Pair Games.  
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Table 4.11 Significant discrepancy between recall and learning/recognition captured with 

the CMS and the Pair Games. 

   CMS Pair Games 

 Pathology 
Side of 

pathology 

Word 

Pairs 

Spoken 

Words 

Written 

Words 

Pseudo-

words 
Objects Designs 

Case 1 Mesial  R NA    √  

Case 2 Cortical R     √  

Case 3 Mesial B  √ √    

Case 4 Mesial L √ √ √    

Case 5 Cortical L      √ 

Case 6 Mesial L √   √   

3.2.3 Auditory Verbal Memory 

For the auditory verbal subtests, performance was particularly susceptible to 

impaired recall across patients, and low-to-impaired recall scores were identified 

in 4/6 cases with the Pair Games and in 3/6 cases with the CMS (Table 4.12). 

Similarly, learning performance was susceptible to impairment as captured with 

both tools, but recognition impairments were captured in only 1/6 cases with 

either protocols.  

Table 4.12 Low performance (standard score<85, √) and deficits (standard score<70, √√) 
in auditory verbal memory captured with the Pair Games (PG) and the standardised test 

(CMS). 

  Learning Recall Recognition 

 
Side of 

pathology 
PG CMS PG CMS PG CMS 

Case 1 Mesial    √    

Case 2 Cortical √ √√ √√ √√   

Case 3 Mesial √ √√     

Case 4 Mesial  √√ √√ √ √√  

Case 5 Cortical       

Case 6 Mesial √ √√ √ √  √√ 
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3.3 Summary of Findings 

It was predicted that the overall pattern of dysfunction would be better 

differentiated with the Pair Games than with standardised tools. Table 4.13 

provides a summary of the findings corresponding to each hypothesis. 

Table 4.13 Summary of formulated hypotheses and results. 

Hypotheses Results 

1 

The Pair Games will 
more distinctively 

identify the presence 
of verbal versus non-
verbal impairments in 

relation to side of 
pathology (left versus 

right) 

Significant discrepancy between verbal and non-
verbal memory was identified in 3/6 patients with the 
Pair Games. These material-specific impairments 
were consistent with the side of pathology. The other 
patients showed non-significant discrepancy in line 
with the side of pathology. 
The CMS identified significant discrepancy in only 
1/6 patient (Case 3 with bilateral pathology). 
Memory for non-semantic items (Pair Games) and 
auditory verbal memory (Pair Games and CMS) 
were not side-dependent. 

2 

The Pair Games will 
more distinctively 

identify the different 
components of 
compromised 

memory processes 
(learning, recall and 

recognition) 

Discrepancy between learning/recognition and recall 
was identified in 4/6 patients with the Pair Games 
and in 2/6 with the CMS.  
Auditory verbal recall was particularly susceptible to 
impairment. 

 

4 Discussion 

4.1 Lateralisation of Memory Deficits 

Investigation of material-specific impairments with standardised tools is generally 

confounded by the effects of input modality (auditory versus visual) and access to 

semantic structure (semantic versus non-semantic). Lateralisation of memory 

deficits was investigated in the present cohort of children with TLE using a 

standardised test (i.e. CMS) and the novel test of Pair Games. 
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4.1.1 CMS versus Pair Games 

In the present cohort of patients, the CMS captured significant discrepancies 

between verbal and non-verbal scores in one patient only. In addition, for the 

remainder of the patients, the discrepancies were generally not consistent with 

the side of pathology. More importantly, the CMS did not capture material-specific 

impairment in patients with right-sided pathology, suggesting that this paradigm 

captures material-specific deficits only for verbal functions and may not be 

sensitive enough to reveal hippocampal-dependent dysfunction occurring as a 

result of right-sided TLE.  In addition, the CMS provides a measure of recognition 

only for verbal material, reducing the possibility of highlighting deficits in patients 

with right-hemisphere damage.  

The inconsistencies in the literature pertaining to material-specific impairments in 

childhood TLE could be the result of methodological shortcomings of the 

standardised tests which may be insensitive to distinctions between the functions 

of the mesial temporal structures, or to their associated memory processes. 

Assumptions that left TLE is associated with more straightforward verbal memory 

deficits than right TLE (e.g. Alessio et al., 2004; Hermann et al., 1997) may result 

from the inability of standardised tools to successfully capture non-verbal memory 

deficits. This finding has clinical implications for the validity of the standardised 

non-verbal memory tests, and may suggest impoverished sensitivity of these 

tests. 

The Pair Games, on the other hand, controls for several variables and allows 

more direct comparisons between verbal and non-verbal mnemonic functions. 

Significant discrepancies consistent with the side of pathology were identified in 

3/6 cases. These discrepancies reflected both verbal-specific impairments and 

non-verbal-specific impairments and are consistent with the side of pathology, 

whereby left- and right-sided lesions were associated with verbal and non-verbal 

memory impairments, respectively. The other three patients showed discrepancy 

scores in the expected direction, but these did not reach significance. 

4.1.2 Effects of Age at Onset of Epilepsy 

A standardised test should be sensitive to variations in age, such as differential 

memory profiles depending on the age at which the pathology occurred. The 

present pilot study showed evidence of distinct memory profiles as a function of 
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age at onset of seizures. All patients with evidence of material-specific 

impairments had seizure-onset during middle to late childhood (after the age of 8 

years), whereas other patients who did not show material-specific deficits had 

considerably earlier onset of seizures (before the age of 2). These findings are 

compatible with the effects of age at onset of epilepsy on patterns of lateralisation 

of memory impairment (Mechanic-Hamilton et al., 2009; Sidhu et al., 2015). 

This effect of age at onset of pathology is related to the specialisation of cognitive 

abilities and the division of labour between the cerebral hemispheres as a 

function of the developmental process (Satz & Strauss, 1990; Vargha-Khadem et 

al., 1997).  In this context, seizures in early life interfere with the normal 

emergence of hemispheric specialisation (Vargha-Khadem et al., 1994). An early 

onset of pathology may therefore lead to alterations in patterns of brain 

organisation resulting in the lowering of cognitive abilities and generalised 

impairments across cognitive domains (Vargha-Khadem, 2002). Thus, early 

lesions take maximum advantage of brain plasticity and reorganizational capacity 

of the immature brain by rescuing high priority cognitive functions, but in the 

process sacrifice hemispheric specialisation and focal representation of function. 

Children with early onset of epilepsy may therefore show a less lateralised 

pattern of memory dysfunction. By contrast, pathology acquired later in life may 

impair aspects of function selectively depending on the site of damage. 

4.1.3 Performance on the Auditory Verbal Memory subtest is not Sensitive 

to Hemispheric Side of TLE  

Standardised tests, such as the CMS, often assess verbal memory through 

auditory input. However, auditory verbal memory may be particularly susceptible 

to disruption in TLE, irrespective of hemispheric side of pathology (see 4.2.2 for a 

discussion). In the present cohort, 4/6 patients presented with low to impaired 

recall in the Spoken Word subtest across both left and right TLE, whereas 2/6 

showed lateralised deficits on the equivalent Written Words subtest.  This finding 

raises the possibility that studies demonstrating verbal memory deficits using 

auditory input in patients with left or right TLE (Cormack et al., 2012; Engle & 

Smith, 2010; Mabbott & Smith, 2003; Nolan et al., 2004) may in fact be reporting 

on the confounded effects of input modality and material specificity.  
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4.1.4 Non-Semantic Subtests do not show Lateralised Deficits 

Side-dependent material-specific impairments were initially predicted to be more 

easily documented using subtests composed of non-semantic items inasmuch as 

these items do not allow dual-encoding (Silverberg & Buchanan, 2005). Contrary 

to predictions, however, material-specific impairments related to side of pathology 

were mostly observed for semantic rather than non-semantic items (e.g. words 

and objects versus pseudowords and designs). However, these subtests may 

provide valuable clinical information not captured with semantic subtests as 

discussed below. 

4.1.4.1 Ability for New Learning to Predict Outcome 

The non-semantic subtests may play an important role in predicting the limits of 

cognitive capacity by testing the ability to form links between novel items not 

present in the mental lexicon. Thus, pseudowords and design pairs push the 

limits of new learning.  As such, these measures can prove valuable not only in 

determining the status of patients’ ability in relation to healthy controls, but also in 

predicting the capacity for new learning after surgery for TLE.  Consistent with 

this reasoning, patients in the present cohort exhibit increased difficulty learning 

non-semantic than semantic paired-associates relative to controls. The Pair 

Games was previously administered to a large sample of typically-developing 

children and the results were discussed in Chapter 3. An important finding that 

resulted from that study demonstrated that the effect of semantics on learning 

gain was IQ-dependent. Thus, healthy controls with higher IQ learned non-

semantic information better over consecutive trials than those with lower IQ 

(Chapter 3, section 4.4, page 104). The scores of patients with TLE, who 

generally exhibit lower IQ, should therefore be interpreted within the context of 

the findings reported for healthy controls. In the present cohort, 5/6 patients 

showed lower learning gain for non-semantic than semantic information, and all 5 

patients had IQ scores below 100, whereas the one patient who did not show this 

pattern of impaired performance had a high IQ (see Table 4.12). These findings 

provide evidence that whereas the non-semantic subtests of the Pair Games do 

not capture material-specific impairment, they contribute to the diagnostic 

assessment by identifying difficulties with learning of novel verbal and non-verbal 
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information. This learning difficulty may be a reflection of memory problems in the 

educational setting which requires acquisition of novel information.  

4.2 Compromised Memory Processes  

Compromised memory processes were assessed with the CMS and the Pair 

Games and specific impairments and discrepancies between learning, recall and 

recognition scores were examined with both paradigms.  

4.2.1 CMS versus Pair Games  

Overall, the CMS captured significant discrepancy between impaired memory 

processes in 2/6 patients. However, these discrepancy scores were small and fell 

just short of significance. In addition, all patients showed a comparable pattern of 

recognition abilities, coupled with lower learning compared to recall performance. 

In this respect, distinct patterns of compromised memory processes were not 

identified across patients. On the other hand, the Pair Games did distinguish 

between learning and recall performance, and between recall and recognition 

performance in 5/6 patients.  

The Pair Games may therefore be useful in identifying the specific memory 

process(es) that are compromised, thereby implicating the neural substrates 

underlying specific aspects of memory.  To the extent that recall is dependent on 

the hippocampus whereas recognition is not (Patai et al., 2016), with the latter 

more likely served by the cortical parahippocampal and lateral temporal regions, 

relative deficits in one or the other mnemonic abilities may serve as a guide as to 

the structures and/or areas that may be compromised by TLE.   For example, 

Case 6 with HS shows a general pattern of lower learning and recognition scores 

compared to recall scores, which may be consistent with the additional adverse 

effects of focal cortical dysplasia in the left parietal lobe. Similarly, Case 4 

showed lower learning/recognition compared to recall scores, possibly reflecting 

cortical pathology. Overall, the Pair Games identified more clearly than the CMS 

the different components of mnemonic processes affected. 
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4.2.2 Susceptibility of Auditory Memory to Forgetting 

As previously indicated, standardised tests of learning, delayed recall and 

recognition for verbal information are usually presented in the auditory modality. 

Findings from the present study demonstrate the susceptibility of auditory verbal 

information to forgetting as a function of elapsed time.  This is attributed, at least 

in part, to the limited capacity of the auditory system for temporal order (Janczyk 

et al., 2018), irrespective of the underlying site of neuropathology (mesial versus 

cortical) and side of pathology (left versus right). In contrast to the other subtests 

of the Pair Games, the Spoken Words subtest did not reveal a clear pattern of 

discrepancy scores as a function of side and site of neuropathology. Several 

factors may account for reasons why auditory memory is susceptible to forgetting 

in paediatric TLE.   

First, age-related effects in auditory memory shown in typically-developing 

children (see Chapter 3, section 4.3.3, page 103) may implicate the contribution 

of other cognitive skills which develop with age. An age-related effect of delayed 

recall was shown only for the Spoken Words subtest, whereby older children 

recalled more words than younger children after a delay. Memory for auditory 

verbal information may be particularly susceptible to the influence of other 

factors, such as levels of late-emerging executive functioning, and variations in 

attention (Chang et al., 2010; Vanderploeg et al., 1994).  These considerations 

raise the possibility that auditory verbal input may not be as process-pure as 

those that are less influenced by temporal order. Discrepancy scores between 

mnemonic processes may therefore be influenced by other cognitive factors in 

tests of auditory verbal memory.  

Second, typically-developing children showed modality-specific differences with 

lower performance in auditory compared to visual learning, but performance 

equalised after a delay (see Chapter 3, section 4.3, page 102). As such, children 

learn visually-presented words better than orally-presented words, but they show 

similar delayed retention abilities for both input modalities. It was postulated that 

through repetitive learning trials, children were able to establish decontextualized 

representations which were then no longer dependent on the input modality. It is 

possible that children with TLE, who exhibit learning difficulty, do not reach a 

learning standard that is sufficient for robust representations to be formed, and 
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therefore they continue to show better performance during delayed recall for 

information presented in the visual modality compared to the auditory modality.  

Third, long-term auditory memory is related to speech (Fritz et al., 2005), 

therefore children who present with language impairments, as often reported in 

childhood TLE (Zhao et al., 2014), may also be vulnerable to auditory memory 

deficits. Together, these observations suggest that children with TLE are 

susceptible to forgetting auditory verbal information after a delay, irrespective of 

side and site of neuropathology.  

5 Limitations 

The present study contains only six patients and is therefore a pilot study to test 

the face validity of the Pair Games. Such a small sample size limits conclusions, 

and instead, provides preliminary findings that await more rigorous and 

systematic examination using a much larger sample tested both pre- and post-

operatively. A second limitation relates to the difficulty of assessing the 

consequences of developmental pathology in a heterogeneous patient group. In 

addition, children with TLE, and more specifically, those with HS, often show 

extensive functional abnormality beyond what is visible on MRI.  

6 Conclusions   

Overall, the Pair Games provided finely grained analyses of memory 

performance compared to the standardised test (i.e. the CMS). Compared to 

standardised tests, the Pair Games provides refined identification of learning and 

memory impairments. This novel tool identifies non-verbal memory deficits, which 

are captured with difficulty using standardised instruments. This suggests that the 

Pair Games is a useful tool to assess the functionality of the left and right 

hippocampi. However, even with the Pair Games, material-specific impairments 

are not as clear and consistent in young TLE patients as what is reported in the 

adult literature, and may be related to age at onset of seizures.  

The non-semantic subtests of the Pair Games did not identify patterns of 

lateralised deficits but may instead provide information regarding the ability to 

learn new information, irrespective of material type. The present findings also 

suggest susceptibility of auditory memory to forgetting after a delay in childhood 
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TLE. Auditory verbal memory was susceptible to forgetting after a delay, 

irrespective of the side and site of neuropathology. Verbal memory tests 

composed of auditory items may therefore not be suitable for the investigation of 

discrepancies between scores. This may provide important methodological and 

clinical implications considering that standardised tests of verbal memory are 

typically auditory.  

Overall, the Pair Games has the potential to be a useful clinical tool to provide 

behavioural evidence of the integrity of the hippocampi and its interaction with the 

neocortical learning system. The present findings suggest that this novel tool 

provides more specific and sensitive assessment of learning and memory 

impairments than standardised instruments, thereby providing a better 

understanding of the cognitive profile and delineating the specific nature of 

impairment. In conjunction with other standardised measures, this tool could 

provide valuable information in clinical populations, and may even be used to 

investigate the functionality of the hippocampi in other clinical populations.  

7 Future Directions 

Following the pilot of this Pair Games in a small sample of children with TLE, 

confirmation of the findings are necessary by administering the protocol to a 

larger patient sample. Moreover, in order to verify the pattern of lateralised 

dysfunction as identified with the Pair Games, this novel tool could be 

administered in a sample of adult patients with TLE who generally show clearer 

patterns of lateralised dysfunction. More specifically, it would be relevant to test 

whether semantic and non-semantic subtests provide distinct profiles of 

lateralisation, similarly to children with TLE.  

In addition, further work is required to validate the ability of the protocol to predict 

memory outcome after surgery by administering the protocol to the same patients 

after surgical intervention. Such a follow-up study would allow the identification of 

specific subtests that best predict memory outcome. For example, non-semantic 

subtests push the limits of new learning, and as such, may best predict academic 

achievement. 
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Chapter 5 

Development of a Combined 
Language/Memory fMRI 

Paradigm 

 

Functional Magnetic Resonance Imaging (fMRI) is a technique frequently used to 

determine the territories of eloquent tissue that serve critical functions, such as 

language. This can be particularly useful as part of the pre-surgical assessment 

for TLE in order to predict cognitive outcome and guide surgical decision-making. 

Whereas language fMRI is widely used, memory fMRI is less frequently 

employed in adult TLE, and lacking in childhood TLE. The aim of the present 

chapter was to develop a combined language/memory fMRI paradigm that would 

be suited for children, to provide clinically useful information for surgical planning 

in paediatric TLE. 
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1 Introduction 

1.1 Learning and Memory Deficits after Temporal Lobe 

Surgery for Epilepsy 

Focal surgery for intractable epilepsy aims to halt or decrease the frequency of 

seizures (Sherman et al., 2011). However, children with Temporal Lobe Epilepsy 

(TLE) are at risk of verbal learning and memory deficits after resection of the 

temporal lobe (Adams et al., 1990; Gleissner et al., 2002; Szabo et al., 1999; 

Williams et al., 1998). The major cognitive complaint of patients who undergo 

surgery in the temporal lobe is difficulty with learning and memory demonstrated 

through a failure to recall the relevant memoranda (Baxendale et al., 2007; 

Bowles et al., 2010; Manns & Eichenbaum, 2006; Helmstaedter & Elger, 1993; 

Khalil et al., 2016; Mueller et al., 2012). There is growing interest in using 

functional imaging as a pre-operative tool with the aim to evaluate the risk of, and 

possibly reduce, such post-operative cognitive impairments.   

1.2 fMRI protocols to Predict Memory Outcome 

Early onset seizures interfere with the normal process of hemispheric 

lateralisation (Willment & Golby, 2013) and may result in the reorganisation of 

memory functions to a larger extent than in older patients (Helmstaedter & Elger, 

1998; Gleissner et al., 2005). In patients with TLE who have unilateral lesions, it 

is difficult to assess how much of the preservation is mediated by the unoperated 

side which can compensate for any failures of the operated side. It is therefore 

important to identify the lateralisation and localisation of these functions prior to 

surgical intervention to test the ability of non-damaged tissue to support memory 

and evaluate the risk of major post-operative memory deficits. Functional 

magnetic resonance imaging (fMRI) is a potentially useful pre-surgical diagnostic 

tool of memory lateralisation, and can help predict post-operative learning and 

memory performance. The aim of fMRI is to determine the territories of eloquent 

tissue that serve the critical functions of memory and language prior to surgical 

intervention to guide surgical decision-making (Lindquist, 2008).  
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FMRI is widely used for language mapping in adults and children; however 

memory fMRI is more seldom employed with limited published studies in children 

(Mankinen et al., 2015). The present chapter discusses the development of a 

novel fMRI protocol for the pre-operative functional mapping of language and 

memory to guide surgical decision-making and help with predictions of outcome.  

1.2.1 Language fMRI to Predict Memory Outcome 

Information obtained from language fMRI is sometimes used to predict memory 

outcome in TLE, due to Medial Temporal Lobe (MTL) activation during language 

tasks (Sepeta et al., 2016). Binder and colleagues demonstrated that language 

lateralisation was predictive of verbal memory change from pre- to post-surgery 

in adult patients with left TLE (Binder et al., 2008; Binder et al., 2010). They 

showed that stronger left lateralisation of language was associated with stronger 

verbal memory decline after surgery. Language fMRI has also been used in 

paediatric patients to infer the relationship between memory ability and the 

functions of the language network. Everts and colleagues showed an association 

between language lateralisation and verbal memory in patients with left TLE 

(Everts et al., 2010). However, neuropsychological evaluation of memory is not 

predictive of post-operative outcome (Lah, 2004); therefore such relationship as 

identified at the pre-operative level in Everts and colleagues’ study does not 

necessarily contribute to the prediction of memory outcome after surgery. These 

studies suggest that whereas language fMRI can possibly provide useful 

information regarding memory outcome after surgery in adult TLE, it is not 

sufficiently robust  in paediatric TLE, and targeted memory fMRI paradigms 

should be developed.  

Using language fMRI to predict memory outcome assumes co-lateralisation of 

these functions. Co-lateralisation of language and memory functions has 

previously been studied (Cai & Van der Haegen, 2015); however, dissociating 

these domains of function can be difficult due to overlapping and/or 

interconnectivity of  regions involved during cognitive processing, such as the 

prefrontal and parietal cortex. Similarly, the left hippocampus is activated in a 

verbal fluency task as well as in an auditory word recognition task (Pirmoradi et 

al., 2015). Moreover, Sepeta and colleagues demonstrated that Broca’s area and 

the MTL are not co-lateralised in children (Sepeta et al., 2016), suggesting that 
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language fMRI is not a viable substitute to predict memory outcome. Indeed, 

language fMRI remains an indirect marker of memory function, whilst information 

obtained from memory fMRI, such as memory lateralisation (Bonelli et al., 2010; 

Sidhu et al., 2015)(), are regarded as better predictors of memory outcome after 

surgery than language fMRI. These findings not only indicate the need for 

developing suitable memory fMRI paradigms, as opposed to relying on language 

fMRI, for the prediction of memory outcome particularly in paediatric patients, but 

also suggest the importance of examining the relationship between language and 

memory lateralisation. 

1.2.2 Memory fMRI to Predict Memory Outcome 

1.2.2.1 Memory Encoding 

Memory fMRI is employed in adult TLE studies to investigate neural subtrates 

related to encoding and/or retrieval processes. Memory fMRI studies often 

evaluate the encoding phase, with retrieval assessed after the scanning (Bonelli 

et al., 2010; Golby et al., 2002; Rabin et al., 2004; Sidhu et al., 2013; Sidhu et al., 

2015a; Sidhu et al., 2015b). In these studies, images are acquired during the 

presentation of information, when participants encode items in the scanner, with 

retrieval of information occuring after the scanning session. This provides 

information about the neural network associated with the encoding phase of 

memory, but not the network that is involved in storage and/or retrieval of 

mnemonic information.  

1.2.2.2 Memory Retrieval 

1.2.2.2.1 Recognition 

fMRI studies investigating retrieval-related activations often use a recognition 

task (e.g. Kennepohl et al., 2007), and examine MTL activity during successful 

recognition. The old/new paradigm which is often used compares brain activation 

during retrieval of studied items (“old”) and new items (“new”). With these 

paradigms, brain activation during retrieval of studied items could reflect retrieval 

associated with either familiarity or recollection processes, leading to confusion 

regarding the differential role of subregions engaged within the MTL. As 

discussed in Chapter 1 (section 2.1.3, page 6), recollection refers to the reliving 

of vivid and detailed episodes, whereas familiarity is associated with a sense that 
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information was previously encountered but without any contextual detail. These 

two processes are thought to be mediated by distinct subregions of the MTL, with 

recollection supported by the hippocampus and familiarity relying on perirhinal 

cortex (Aggleton & Brown, 1999; Eichenbaum et al., 2007; Yonelinas, 2002).  

Surgical intervention for TLE usually involves the removal of variable portions of 

the hippocampus depending on the extent of the lesion (Radhakrishnan et al., 

1998), as well as surrounding perirhinal and temporal neocortex. In cases of 

cortical damage, whereby the hippocampus may not have a major role in the 

seizure onset and/or progression, it is still critical to test the functionality of this 

structure considering its major role in initial memory formation (McClelland et al., 

1995). In this respect, cortical damage may still hamper the hippocampal-

neocortical network of memory, leading to apparent learning and memory deficits. 

Pre-operative examination of the integrity of the hippocampal-neocortical network 

that is at risk of compromise is therefore particularly relevant.  

Examination of hippocampal activity requires memory fMRI tasks that engage the 

recollection process. This can be achieved using the Remember/Know paradigm 

(e.g. Giovanello et al., 2006; Henson et al., 1999; Smith et al., 2011; Wais et al., 

2010) for which the responses are thought to reflect recollection/familiarity 

processes, respectively (Tulving, 1985). However, this paradigm may be too 

complex for young children and patient populations. In addition, familiarity and 

recollection may differ along a continuum depending on response confidence, 

and the imaging contrasts may therefore not be totally process-pure 

(Eichenbaum et al., 2007). In that respect, brain activation during a so-called 

“recollection” contrast (i.e. “Remember>Know”) may also include some activity 

related to familiarity; which may lead to differences in findings between fMRI 

studies. As a result, fMRI recognition tasks that only address the neocortical 

network may not be optimal for the investigation of the hippocampal-neocortical 

network in TLE. 

1.2.2.2.2 Recall 

An alternative is to employ recall paradigms to investigate memory networks. 

However, fMRI studies that use such paradigms usually involve covert 

responses, with additional verbal recall after the scanning session to measure 

performance (e.g. de Zubicaray et al., 2007; Reas et al., 2011). A potential issue 
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with this approach is that performance may differ between the two retrieval 

periods, and the fMRI data may therefore not fully represent activation related to 

successful performance. In this respect, in-scanner overt recall may be more 

valid.  

For clinical purposes, it may be useful to acquire data related to separate phases 

of the memory process, i.e. encoding and retrieval. For example, patients with 

TLE may have particular difficulty retrieving information from memory, with 

relatively normal encoding performances, in which case identifying the underlying 

mechanism of retrieval may be useful, whereas other patients may show the 

opposite pattern. The development of new memory fMRI paradigms is needed in 

order to better characterise the neural substrates subserving memory and better 

predict memory outcome after surgery in paediatric TLE.  

1.3 Problems with Scanning the Medial Temporal Lobe 

Heterogeneous findings across fMRI studies investigating memory-related MTL 

activations may relate to methodological considerations, both in terms of the 

memory task itself and of data analysis. This is observed in the failure to replicate 

results from previous studies and to report significant activation in the 

hippocampus. fMRI images are sensitive to distortions in regions where the 

magnetic field is particularly non-homogeneous, such as in the MTL. 

Susceptibility artefacts are prominent in the MTL and can lead to image distortion 

and signal loss in Echo-Planar Imaging (EPI) images (Figure 5.1) (Olman et al., 

2009), making it difficult to obtain reliable signal and, in turn, hampering 

interpretation. For these reasons, methodological considerations need to be 

rigorously applied in fMRI studies that have a particular interest in the MTL.  
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Figure 5.1 Signal Dropout and Distortion in EPI images. 

1.4 Single-Subject Level versus Group-Level Analyses 

Single-subject analyses of fMRI data are critical for clinical decisions on individual 

patients. Potential diagnostic use of fMRI tools, for example to guide surgical 

planning in TLE patients, is only possible if it is valid at the single-subject level. 

However, there has been little focus on single-subject fMRI, mainly due to 

difficulty in producing reliable findings at the individual level (Fadiga, 2007), and 

further research is required to assist single-subject fMRI.  

1.5 Aims 

Overall, it may be more suitable to use recall-based memory paradigms that tap 

into the hippocampal-neocortical network that is at risk of compromise given that 

the phenotype is failure to learn and recall new information. As mentioned above, 

previous paradigms may be insensitive to recall-based activation or to online 

performance (overt responses). In addition, paradigms used in adult studies 

involving multiple levels of answers, such as the Remember/Know paradigm, 

may be too complex for the paediatric population.  

The present fMRI protocol was developed with understanding of 

neuropsychological theories of memory in order to guide experimental design, 
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improve interpretation of findings and optimise clinical applications. The 

development of this protocol had several aims which will be described in the 

methods section of the present chapter: 

a) Develop a combined language/memory fMRI paradigm to examine the 

networks of both functions within one scanning session, providing a cost- 

and time-effective approach and, most importantly, permitting 

investigation of the interaction between the two circuits.  

b) Design a protocol that examines brain activity related to both memory 

encoding and retrieval. 

c) Develop a paradigm sensitive to MTL function because of its known 

involvement in memory and its susceptibility to pathology in TLE.  

d) Construct a paradigm to investigate brain activation at the single-subject 

level, to guide clinical decisions on individual patients. 

Several variables related to the experimental fMRI protocol will be specifically 

investigated in the results section: 1) test validity, 2) data quality, and 3) 

reproducibility of the protocol.  

2 Methods 

2.1 Participants 

Twenty-eight normally developing children and adolescents were recruited for 

this study; one participant was excluded from further analyses due to high level of 

in-scanner movement. These participants also took part in the study reported in 

Chapters 2-3 (see Chapter 2, section 2.1, page 44). The sample in this study 

includes 11 males and 17 females, aged between 8 and 18 years (M=14, SD=3).  

2.2 Socio-Economic Status 

Socio-economic status was determined for each participant with deprivation 

deciles ranging from most deprived (score of 1) to least deprived (score of 10). 

SES deciles in the present cohort ranged from 2 to 10 (M=5, SD=2).  
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2.3 General Intellectual Functioning 

General intellectual functioning was assessed using the Wechsler Abbreviated 

Scale of Intelligence – Fourth Edition (WASI-IV). This tool provides measures of 

full scale IQ (M=107, SD=9), verbal IQ (M=107, SD=9), and performance IQ 

(M=106, SD=10). The group-level scores on these measures are illustrated in 

Figure 5.2. 

  

Figure 5.2 Standard scores for Full Scale IQ, Verbal IQ, and performance IQ. 

2.4 Memory 

Memory ability was assessed using the Children’s Memory Scale (CMS), which 

provides measures of verbal and visual learning and memory. These measures 

are described in Chapter 2 (section 2.3, page 45). The group-level scores on 

these measures are illustrated in Figure 5.3.  
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Figure 5.3 Standard scores for learning and memory measures obtained from the CMS. 

2.5 Development of the fMRI protocol 

2.5.1 Language Task: Verb Generation (VG) 

A verb generation task (VG), which consists in generating verbs that correspond 

to a given noun, is currently being used clinically at Great Ormond Street Hospital 

as part of the pre-surgical evaluation of expressive language (Petersen et al., 

1988). A similar task has been employed in neuroimaging studies to examine 

neural substrates supporting retrieval of semantic knowledge (e.g. Holland et al., 

2001; Kurland et al., 2014), generating strong and consistent lateralised 

activation in the left hemisphere language network. The specific regions that are 

activated during this task include Broca’s area, Wernicke’s area, the middle 

frontal gyrus, dorsolateral prefrontal cortex, cingulate cortex, supplementary 

motor area, and right cerebellum (Brennan et al., 2016; Gaillard et al., 2000; 

Holland et al., 2001; Pang et al., 2011).  

In the present study, the same VG paradigm was employed, whereby participants 

were presented with nouns one at a time, and were asked to overtly generate a 

verb for each noun (for example they hear “cake” and generate the verb “eating”). 

There were a total of 60 nouns, divided into 6 lists of 10. 

2.5.2 Memory Task: Cued Recall  

The memory task involves remembering the nouns that were presented during 

the language task. In that respect, the language block involves the encoding of 
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words, and the memory block involves the retrieval of words. Cues are presented 

to the participants to guide recall of previously encoded words in order to 

compare correctly recalled versus forgotten words. These cues consist of two-

phoneme word stems created from the studied words (for example “æn” as a cue 

for “animal”) and are pronounced slowly to ensure correct perception. 

Participants are presented with word stems, one at a time, and are asked to say 

the word it corresponds to if they remember it, or to say “pass” if a study word 

could not be retrieved. Each stem is unique in the full list of study words (60). The 

performance is calculated as percent correct recall.  

Cued-recall using word stems has multiple advantages. First, it allows event-

related investigation of fMRI data, as retrieval-related activation is time-locked to 

each cue. This permits investigation of brain activation related to successful 

memory specifically. Second, the performance reflects recall memory which is 

known to be dependent on the hippocampus (Patai et al., 2016), as opposed to 

recognition memory. This approach was adopted in a couple of studies which 

reported activation in the hippocampus during successful recall (Okada et al., 

2013; Schott et al., 2005). 

2.5.2.1 Accounting for Priming Effects 

Priming is the facilitation in processing of a stimulus due to prior encounter with 

that stimulus. This implicit memory is devoid of intentional and conscious 

recollection (Graf & Schacter, 1985). The effect of priming has been widely 

studied using word-stem completion tasks whereby participants are presented 

with words, and are later asked to complete word stems with the first word that 

comes to mind. Word stems are more likely completed with previously presented 

words. In contrast to recall processes dependent on the hippocampal system, 

priming is cortically-mediated (Buckner et al., 1995; Squire, 1992; Wiggs & 

Martin, 1998). 

The present paradigm aims to test the integrity of the memory network which 

consists of the interaction between the hippocampus and the MTL in TLE 

patients. These patients sustain unilateral damage with possible changes in the 

pattern of lateralisation, therefore the aim is to test the residual capacity of this 

network regardless of the side of damage. In this respect, even in the event that 
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word fragments may prompt priming, the paradigm would still test the integrity of 

the hippocampal-neocortical network.  

However, several measures have been put in place to minimise this priming 

effect. First,  stems for words that were not previously heard (foils) were inserted 

in the cued recall phase (15 words in each list: 5 foils and 10 target words), to 

which participants are expected to respond “pass” and not try to complete with a 

word. The stem of these foils do not match any studied word. With this approach, 

it is possible to have a measure of false alarms (stem completion with non-

studied words). Second, the task instructions emphasised explicit recollection. 

Participants were instructed to give a word response only when certain of their 

prior presentation and to otherwise say “pass” in the event of uncertainty. This 

procedure resembles the Remember/Know procedure commonly used to 

dissociate recollection and familiarity processes; however, such procedure may 

have been too complicated for younger children in this study. Generally, it is 

understood that a task’s instructions heavily influence the form of memory used, 

i.e. implicit memory (priming) versus explicit remembering (Graf et al., 1984). 

Third, each of these unique 90 stems (from 60 studied words and 30 foils) is 

shared by at least 4 other common words. The number of words that share the 

same word stem refers to the lexical set size. The lexical set size affects word-

stem completion and retention whereby larger set sizes lead to reduced target 

recovery (Nelson et al., 1987). Response alternatives may lead to a different 

word than the target word, therefore requiring conscious recollection to retrieve 

the correct word. With these methodological considerations, the risk of priming 

effects is minimised, and performance should primarly reflect conscious recall.  

2.5.3 Baseline Task 

The baseline task involves making an odd/even decision to numbers; for 

example, the participant is presented with the number “3” and has to say “odd”. 

The presentation of this number is similar to the presentation of words and word 

stems (every 4 seconds).  

This baseline task has three purposes. First, it acts as a baseline to subtract from 

the active conditions (language and memory) to investigate activation contrasts. 

This task was selected because of its simplicity and accessibility to all ages and 

because of its motor processes. It is generally recommended to use an active 
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control task as baseline rather than passive rest for contrasting with an active 

cognitive task, as it can account for cognitive attentional and motor processes 

(Binder et al., 2008). In a study comparing several baseline tasks, Stark and 

Squire (2001) demonstrated higher activation in the hippocampal region 

associated with a memory task when the odd/even digits task was used as 

baseline, compared to when rest was used as baseline (Stark & Squire, 2001). 

This finding provides evidence that this baseline task is useful for the exploration 

of hippocampal activity in memory tasks. The second purpose of the baseline 

task is to introduce a short delay period between encoding and recall, and the 

third purpose is to prevent subvocal rehearsal and the maintenance of 

information in short-term memory storage during the delay. The selection of this 

baseline task therefore optimises investigation of brain activation during the 

language and memory tasks.  

2.5.4 Stimulus Material 

For the purpose of this study, stimuli were selected from the MRC 

Psycholinguistic Database and the word properties were compared with that of 

the stimuli from the clinical VG task. New words were selected for this 

experimental version in order to administer and compare the clinical and 

experimental versions in the same participants. The new stimuli matched the 

ones from the clinical version on several properties: word frequency (Brown, 

1984), concreteness, familiarity, and imageability (Table 5.1). In addition, all of 

the words were acquired before the age of 8 (Kuperman et al., 2012) and were 

composed of 1 to 3 syllables, similar to the clinical version.  

Table 5.1 Matched properties between the experimental and the clinical protocols. 

 Clinical  Experimental  
t df p value 

 M SD M SD 

Word frequency 12 3 13 3 0.299 138 0.765 

Concreteness 600 3 594 3 1.489 131 0.139 

Familiarity 578 5 568 5 1.641 136 0.103 

Imageability 606 3 600 3 1.319 135 0.189 

2.5.5 Overt Response 

Whereas most fMRI studies involve covert verbal responses in order to avoid 

movement artifacts (Alessio et al., 2013; Barch et al., 1999), the present study 

involves overt responses. In addition to being easier for children, overt verbal 
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responses may be advantageous for clinical studies. Involving overt responses 

allows online measure of performance and this is beneficial as it makes it 

possible to explore specific brain activation associated with verbal output. This is 

particularly relevant for the interpretation of performance and the investigation of 

brain network in patients with cognitive impairment. Movement-related artifacts 

can be controlled for using image processing techniques (Birn et al., 2004). A 

couple of studies have employed overt cued recall paradigms and demonstrated 

significant activation in the MTL for successful recall (Hayama et al., 2012; Okada 

et al., 2012). In addition, overt responses also have the potential to reveal the 

interaction of two networks as cognitive memory is translated into a verbal output. 

For the purpose of this study, overt verbal responding was therefore used during 

fMRI scanning.  

2.5.6 Previous Protocols Leading up to the Final Protocol 

The fMRI protocol was developed while investigating different variables in order 

to optimise activation in the hippocampus. The protocol was therefore adapted 

along the recruitment period and not all 28 participants were administered the 

same version of the protocol. The pie chart below illustrates the distribution of 

protocol versions across participants (Figure 5.4). 

 

 

Figure 5.4 Pie chart illustrating the distribution of protocol versions across participants. 

 

Protocol 1 Two baseline tasks: counting task and rest N=9 
Protocol 2 Add visual cues on the screen and change baseline task into odd/even task N=6 
Protocol 3 Remove Rest Block to reduce delay between encoding and retrieval N=3 
Protocol 4 20 different words - replace the least remembered words with more memorable ones  N=10 
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The initial version (protocol 1) contained two baseline tasks: a rest and a counting 

task whereby participants had to count upward starting from a number provided 

to them e.g. count upward from 7. The first nine participants were administered 

this version of the protocol. Upon realisation that the stimuli were sometimes 

difficult to perceive due to high level of scanner noise, visual presentation of the 

stimuli was added to the auditory presentation. Combined visual and auditory 

presentation of stimulus ensured successful perception, i.e. they hear and see 

the words at the same time. In addition, the baseline task was replaced with the 

odd/even decision task to optimise hippocampal activation in the memory block. 

Six participants were administered this version 2 of the protocol.  

In the third version, the rest block was removed as it did not provide significant 

additional information than the other baseline task and made the overall scanning 

session longer. Three participants were administered this version with the rest 

block removed. The last and final protocol version (4) was created to increase 

hippocampal activation at the individual level. Investigation of hippocampal 

activation in individual subjects showed that the presence of signal in the 

hippocampus was related to in-scanner memory performance and not to any 

other measure, e.g. movement parameters (Figure 5.5). In that respect, it was 

important to increase in-scanner memory performance to boost hippocampal 

activation. The twenty least remembered words from the list were therefore 

replaced with more memorable words which have the same properties discussed 

in section 2.5.4 (page 149). The last 10 participants recruited for this study were 

administered this protocol version.  

Figure 5.5 Presence of signal in the hippocampus is related to in-scanner memory 

performance. 
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Despite these slight modifications, the activation tasks (i.e. language and memory 

tasks) remained the same, and the analyses were therefore collapsed across 

protocol versions and all participants were included in the following analyses. 

2.5.7 Procedure 

Before the scanning session, participants completed a practice session during 

which they received instructions on how to perform the VG, baseline and cued 

recall tasks. The protocol was composed of a total of 6 lists of 10 words, with 

each list composed of different words. The scanning session was composed of 3 

runs, each composed of two lists of words. Verbal responses were monitored via 

an MRI-compatible microphone.  

Figure 5.6 illustrates the procedure of the fMRI protocol. Before the beginning of 

each block, a visual prompt was displayed on the screen for 5000ms in order to 

prepare the participants for the upcoming task. These prompts were [ACTION 

WORDS] for the VG block, [ODD OR EVEN?] for the baseline block, and 

[REMEMBER OR “PASS”] for the cued recall block (Figure 5.6).  

 

Figure 5.6 Procedure of fMRI protocol. 

 

The stimuli were presented at a rate of one every 4 seconds. Each block of VG 

and baseline lasted for 40 seconds (10 x 4), whereas the cued recall block lasted 

for 60 seconds (15 x 4), and the whole protocol lasted for 16 minutes.  
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2.5.8 Two Parallel Versions 

Two versions of this protocol were developed using different stimuli to allow 

administration to the same participants at two time points (e.g. before and after 

surgery) and compare findings. 

2.6 Data Acquisition 

Data were acquired on a 3T Siemens MRI system with a 20 channel head coil. 

Imaging parameters for multiband EPI images were the following: TR (repetition 

time) = 1250, TE (echo time) = 26ms, slice thickness 2mm, slice gap 1mm. A 

slice tilt was applied to align the scans perpendicular to the long axis of the 

hippocampus (Figure 5.7) and optimise the Blood Oxygenated Level Dependent 

(BOLD) sensitivity in medial temporal lobe regions (Weiskopf et al., 2006). For 

each functional scanning run, 270 images were acquired, with a total of 810 

images across the 3 runs. In addition to the functional images, a T1-weighted 

magnetisation prepared rapid gradient-echo (MPRAGE) scan was acquired for 

anatomical localisation. 

 

Figure 5.7 Functional Scans are aligned perpendicular to the long axis of the 

hippocampus. 

 

The presentation of stimuli (every 4 sec) was purposely not locked to the TR 

(1.25 sec) in order to improve effective sampling of the signal. This way, data 

were sampled at different points on the canonical response, providing better 

estimation of the latency of response and quantifying the response shape (Figure 

5.8). It has been shown that effective sampling is improved by staggering 

stimulus presentation relative to TR onset (Cabeza & Kingstone, 2006). 
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Figure 5.8 Presentation of stimuli not locked to the TR improves effective sampling of the 

signal. 

 

2.7 Data Pre-Processing  

The signal in raw fMRI data is influenced by many factors other than brain 

activity, such as heart beat, respiration and head movement. Whereas it is 

difficult to adjust for all factors, the signal undergoes pre-processing steps prior to 

data analysis in order to remove head motion artifacts and increase validity and 

sensitivity in group analyses. Figure 5.9 illustrates each step of data pre-

processing.  

The first step was spatial realignment of the images to account for head motion, 

using Statistical Parametric Mapping software (SPM12, Wellcome Department of 

Cognitive Neurology, London, UK: www.fil.ion.ucl.ac.uk/spm/). Retrospective 

motion correction is useful to reduce artifacts related to head movement during 

data acquisition. The second step was to unwarp the images in order to reduce 

spatial distortion. To achieve this, opposite phase encoded EPIs (blip-up and blip-

down images) were acquired during scanning and the unwarping was performed 

using the TOPUP toolbox in FSL (Andersson et al., 2003).  

Time 
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Figure 5.9 Illustration of each step of data pre-processing. 

 

The third step, carried out in the R statistical programming language (R Core 

Team, 2013), involved additional retrospective motion correction using Functional 

Image Artefact Correction Heuristic (FIACH) which controls for physiological 

noise and corrects for large amplitude signal change (Tierney et al., 2015). 

FIACH has been shown to be particularly useful in cases of task-induced motion 

and improves signal to noise ratio in regions that are susceptible to field 

inhomogeneity, e.g. the inferior temporal lobe. Finally, the images were co-
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registered, normalised to a standard MNI space for group analyses, and 

smoothed with a Gaussian kernel of 6 mm full width half maximum (Weiskopf et 

al., 2006). 

2.8 Imaging Analyses 

Functional MRI data captured changes in BOLD signal over time in each voxel 

during the experiment. The intensity of the signal in each voxel over time is called 

the time-series. Statistical analysis of functional images was conducted on SPM 

using a General Linear Model (GLM) to predict the time-series of each voxel 

using a linear combination of predictor variables (Friston et al., 1995). The 

movement parameters were included in the design matrix as covariates. For the 

purpose of this study, contrasted parameter estimate images were created for 

each participant, describing differences in brain activation between language and 

baseline tasks (“Language>Baseline”) and between memory and baseline tasks 

(“Memory>Baseline”). 

The equation of the GLM is the following: Y = X * β + Ԑ, where Y is the BOLD 

signal, X is the design matrix that contains the predictors that explain variance in 

Y, β is the beta values from each condition [β1X1+ β2X2+ β3X3…], and Ԑ is noise, 

or unexplained variance (Figure 5.10). In the equation, βX is the predicted effect 

of interest for each condition of the paradigm. In the design matrix, each column 

is a regressor and contains the beta values for the specific condition, and each 

row is a volume of fMRI data.  
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Figure 5.10 The General Linear Model (GLM). 

 

A high-pass filter was applied to remove low frequency noise and the effects of 

scanner drifts (Lindquist, 2008). Temporal and dispersion derivatives were 

included in the GLM in order to model the onset and duration of the BOLD peak 

(Henson et al., 2001). The temporal derivatives slightly shift the signal and the 

dispersion derivatives change the width of the haemodynamic response. 

For individual-subject analyses (1st level), the changes in BOLD signal over time 

was examined for each individual using fixed effect analysis across the three 

runs. For group analyses (2nd level), contrast estimates from each individual were 

entered into a GLM with individuals treated as a random factor. Random effect 

analyses were computed to identify patterns of task-related activation that are 

consistent across the group.  

Whole brain analysis was performed, with independent t tests for each voxel in 

the brain. Statistical tests were carried out for each voxel to test how well the 

model predicts the observed data by determining whether activation in a specific 

voxel is systematically related to the task. SPM provides a statistical map 

showing the test statistics for each individual voxel. These statistical maps are 

overlaid onto structural images to display the activated voxels. The statistical 

parametric maps only display voxels whose t-values exceed a selected statistical 

threshold (α) and are therefore considered significant. Extend and height 

threshold were employed, and specified where appropriate.  
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2.8.1 Regions of Interest (ROIs) 

Several regions of interest (ROIs) were created for the analysis of functional 

activation, using the Hammersmith atlas (Hammers et al., 2003) and the MarsBar 

software (Brett et al., 2002). ROIs were created around Broca’s area for the 

investigation of language activation, and the hippocampus for the investigation of 

memory activation. Manual segmentation of the hippocampus ROI was 

performed along the anterior/posterior axis for further investigation of 

hippocampus subregions. In addition, the ROIs were divided into left/right ROIs to 

compare signal in left and right hippocampi. The whole temporal lobe was also 

investigated for both language and memory activations.  

2.9 Test Validity 

2.9.1 In- and Out-Scanner Memory Performance 

Before inferring memory-related brain activity from this fMRI study, it is important 

to verify the nature of the memory task. To do this, performance on the memory 

task administered inside the scanner was compared to performance on a 

standardised tool assessing memory which was administered outside the 

scanner, i.e. learning and delayed recall of Word Pairs from the Children’s 

Memory Scale (CMS). 

2.9.2 Controlling for Priming Effects 

The issue of priming effects in an explicit memory task has been described in 

section 2.5.2.1 (page 147). In addition to the methodological considerations to 

reduce the risk of a priming effect, investigation of performance was carried out to 

ensure that this effect was absent or minimal.  

First, average intrusion (retrieval of a word that was not part of the list) was 

calculated. Second, a stem completion task was administered after the scanning 

session to measure the rate of word completion for the word stems. In the stem 

completion task, participants were presented with word stems other than the 

ones presented in the scanner and were instructed to say the first word that 

comes to mind. The participants who were administered version A inside the 

scanner were presented with the word stems from version B for the stem 
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completion task, and vice versa. The percentage of stem completion with the 

target word was calculated for each word stem and compared with memory 

performance for that word stem. This was done for the stems of the most 

remembered words (>90%). If performance was mediated by priming, we would 

predict the word stems generating the highest recall to also be associated with 

high completion with the target words. 

2.10 Data Quality 

Data quality in fMRI is typically measured using the signal-to-noise ratio (SNR) of 

the acquired data. Several types of SNR can be investigated in fMRI data: image 

SNR, temporal SNR (tSNR) and contrast-to-noise ratio (CNR).  

2.10.1 Image SNR 

Image SNR is the quality of data in a single fMRI volume and is quantified as 

mean signal value of voxels divided by the standard deviation of voxels (Bennett 

& Miller, 2010): 

𝑆𝑁𝑅𝑖𝑚𝑎𝑔𝑒 =
𝜇𝑖𝑚𝑎𝑔𝑒

𝜎𝑖𝑚𝑎𝑔𝑒
 

SNR was measured in the mean EPI image in each individual (Welvaert & 

Rosseel, 2013) (Figure 5.11A). The image SNR was calculated in the 

hippocampus to measure data quality in the specific region of interest. The SNR 

was also tested in separate regions of the hippocampus, i.e. the anterior and 

posterior portions of the hippocampus (Figure 5.11B). Paired t tests were carried 

out between the signal intensity in different subregions of the hippocampus. 

 

Figure 5.11 A. Example of an individual’s mean EPI image, from which SNR was 
measured. B. SNR was calculated in different portions of the hippocampus: in the anterior 
hippocampus, shown in red, and in the posterior hippocampus, shown in blue. 
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2.10.2 Temporal SNR (tSNR) 

The tSNR refers to the amount of raw (non-task specific) signal across time, and 

assesses data quality of fMRI time series (Welvaert & Rosseel, 2013). Voxel 

based time-series were extracted in two ROIs (Broca’s area and the 

hippocampus), whereby one value was obtained for each scan for each 

participant, providing a time course of the signal. Paired t tests were carried out 

between the tSNR in different ROIs. 

2.10.3 Contrast-to-Noise Ratio (CNR) 

The CNR corresponds to the data quality based on a specific contrast and 

includes information related to the strength of the signal for a specific contrast. 

The CNR therefore can provide an indication of the ability to detect BOLD 

changes (Olman et al., 2009) and provides indication of how well the task-

induced brain activation is detected (Welvaert & Rosseel, 2013). To calculate the 

CNR, beta values were extracted in ROIs (hippocampus and Broca’s area) using 

MarsBar for the two contrasts of interest (“Memory>Baseline” and 

“Language>Baseline”):  

𝐶𝑁𝑅 =
𝜇𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

𝜎𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡
 

Paired t tests were carried out between the two contrasts of interest, in each 

ROIs separately. 

2.10.4 Movement Artefacts 

Movement parameters from FIACH were investigated to test whether they have 

an impact on EPI intensity in the hippocampus. In-scanner motion can degrade 

image quality and reduce SNR (Van Dijk et al., 2012). The effect of movement 

artefacts was therefore investigated in the hippocampus ROI due to its 

susceptibility to low SNR. Pearson’s correlations were computed between signal 

intensity and FIACH TSNR, which is a measure of deviation of the realigned 

images (Tierney et al., 2015). The effect of movement artefact was investigated 

for the different types of data quality measures, namely image SNR, tSNR, and 

CNR. 
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2.11 Reproducibility of the Protocol 

2.11.1 Memory Performance across Runs 

The reproducibility of the protocol was determined based on the stability of the 

data across the three scanning runs, which were a few minutes apart. For this 

section, each run was analysed separately to investigate inter-run variability.  

The consistency between performance across runs was measured using Intra 

Class Correlation (ICC), which is a measure of the ratio of between-subjects 

variance and between-tests variance. In this respect, the value approaches 1 if 

the variability across individuals is larger than the variability within individuals 

across repeated runs. The ICC was based on a mean-rating (k=3), absolute 

agreement, 2-way mixed-effects model. 

2.11.2 Laterality Indices across Runs 

Lateralisation indices (LI) assess hemispheric lateralisation for a specific 

cognitive function. This LI is calculated based on the sum of voxel value and 

takes the strength of a voxel’s activation into consideration. For the present 

purpose, LIs were calculated in two ROIs; in Broca’s area and in the 

hippocampus. These LIs were calculated using the LI toolbox (Wilke & Lidzba, 

2007), where  

LI =
∑ activation𝑙𝑒𝑓𝑡 − ∑ activation𝑟𝑖𝑔ℎ𝑡

∑ activation𝑙𝑒𝑓𝑡 + ∑ activation𝑟𝑖𝑔ℎ𝑡
 

Consistent with clinical studies, values above 0.2 are considered left lateralised, 

LIs below 0.2 are considered right lateralised, and values between -0.2 and 0.2 

indicate bilateral representation. Language lateralisation was determined based 

on LI values in Broca’s area during the VG task, and memory lateralisation was 

determined based on LI values in the hippocampus during the cued recall task. 

The consistency between LI values across runs was measured using ICC, based 

on a mean-rating (k=3), absolute agreement, 2-way mixed-effects model. 

2.11.3 SNR in the Hippocampus across Runs 

Signal intensity in the hippocampus was identified in each individual’s EPI 

acquisitions (image SNR) and compared across scanning runs. ICC was 
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computed based on a mean-rating (k=3), absolute agreement, 2-way mixed-

effects model. 

3 Results 

3.1 Test Validity 

3.1.1 In- and Out-Scanner Memory Performance 

As shown in Figure 5.12, learning scores on the standardised test (i.e. the CMS) 

and memory scores on the fMRI task are moderately related (r=0.39, p=0.042), 

suggesting that the memory fMRI task does reflect memory performance 

observed outside the scanner, but is also influenced by other factors inside the 

scanner. The delayed memory score on the Word Pair subtest of the CMS was 

not related to the in-scanner memory performance (r=-0.06, p=0.765), probably 

due to the longer delay interval, i.e. 20 minutes, as opposed to 1 minute in the 

scanner. In that respect, the in-scanner performance is more closely related to 

the CMS learning score than to the delayed memory score.  

 

 

Figure 5.12 Significant positive correlation between in-scanner memory performance and 

performance on the standard memory test administered outside the scanner. 
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3.1.2 Controlling for Priming Effects 

The priming effect was investigated by calculating the false alarm rate and 

investigating performance on the word-stem completion task. First, few false 

alarms were made, with an average intrusion of 4% (SD=6%) across participants. 

Second, the percentage of stem completion with the target word is presented in 

Table 5.2 for the best recalled words (>90%). For example, the word “ant” was 

part of the studied list in version A but not in version B, and half of the 

participants were administered version A and the others were administered 

version B. In version A, the word stem “An” led to the successful recall of the 

word “ant” 100% of the time. However, in version B, this word stem was 

completed with the word “ant” only 33% of the time. High prevalence of stem 

completion with the target word was observed in only one word that also had high 

recall prevalence (i.e. “table”). These findings suggest that recall performance 

cannot be fully explained by priming.  

Table 5.2 Stem Completion and Recall Performances (%). 

Word 
Word 
stem 

Correctly 
recalled 

Stem 
completed 
with target 

word 

Ant  An 100 33 

Brain  Bra 100 33 

Father  Fa 95 12 

Leaf  Lea 100 42 

Pocket  Po 100 0 

Rat  Ra 95 0 

Table  Ta 100 83 

Team  Tea 100 0 

 

3.2 Data Quality  

3.2.1 Image SNR  

The signal (mean signal intensity), noise (standard deviation of signal intensity) 

and SNR are reported in Table 5.3. A Paired sample t test shows no significant 

difference between the SNR of anterior and posterior hippocampi, t(26)=-1.505, 

p=0.144. 
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Table 5.3 Signal, Noise, and SNR in the hippocampus. 

 

 

 

3.2.2 Temporal SNR (tSNR) 

The time-series in the two ROIs, averaged across participants, are illustrated in 

Figure 5.13. The intensity of the time-series in Broca’s area (M=4.9 SD=0.02) 

was higher than in the hippocampus (M=4.5 SD=0.04), and a paired t test 

confirms significance of the difference (t(26)=4.966, p<0.001). The standard 

deviations suggest little difference in the variability across time (scans) in either of 

the two ROIs. However, the variability between voxels within a ROI is larger, and 

is particularly high in the hippocampus (mean variability across scans 22.1, 

compared to 1.49 in Broca’s area).  

 

   

Figure 5.13 Time-series in Broca’s area and the hippocampus, across participants. 
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Hippocampus
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Hippocampus 4740 372 6.8 

Anterior hippocampus 4558 397 7.2 

Posterior hippocampus 4979 375 7.7 
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3.2.3 Contrast-to-noise ratio (CNR) 

The CNRs in both ROIs for both contrasts are illustrated in Figure 5.14. CNR in 

Broca’s area was higher than in the hippocampus, for both contrasts. A paired- 

sample t test showed that CNR in Broca’s area is higher for the contrast 

“Language>Baseline” (M=1.26 SD=0.49) than “Memory>Baseline” (M=0.80 

SD=0.68), which is expected (t(26)=-3.114, p=0.004). However, CNR in the 

hippocampus was also higher in the contrast “Language>Baseline” (M=0.29 

SD=0.79) compared to “Memory>Baseline” (M=-0.16 SD=0.87) (t(26)=-2.903, 

p=0.008). 

 

Figure 5.14 Mean CNR across participants for two contrasts of interest 
(“Language>Baseline” and “Memory>Baseline”) in two ROIs (Broca’s area and the 
hippocampus). 

 

3.2.4 Effect of Movement Artefact  

The relations between movement parameter and image SNR, tSNR, and CNR 

are illustrated in Figure 5.15. No significant relation was found between 

movement artifact and image SNR in the hippocampus (r=0.250, p=0.200). 

Correlation analyses were performed between FIACH TSNR and the time-series 

extracted in the hippocampus and showed no significant relation (r=0.273 

p=0.160). Finally, the relation was tested for the CNR in the hippocampus, for the 

contrast Memory>Baseline, and showed no significant effect of movement 

artefact (r=-0.097 p=0.623).  



Chapter 5: Language/memory fMRI 
 

 

166        Buck 
 

Figure 5.15 Correlations between movement artefact and measures of data quality in the 

hippocampus.  

3.3 Reproducibility of the Protocol 

3.3.1 Memory Performance across Runs 

Memory performance across runs is illustrated in Figure 5.16. Performance was 

58% (SD=24) in the first run, 53% (SD=21) in the second run, and 60% (SD=18) 

in the third run. ICC was 0.91, indicating stability of performance across runs. 

This implies that it is possible to collapse findings from across the runs and treat 

them as fixed effect in 1st level analyses.  

 

Figure 5.16 In-scanner memory performance across three scanning runs (95% CIs). 

 

3.3.2 Laterality Indices across Runs 

Group-level language and memory LIs across the three runs are reported in 

Figure 5.17. For language LIs, ICC was 0.45, indicating stability of values across 
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runs. For memory LIs, ICC could not be calculated because the between-subject 

variation is relatively small compared to the within-subject variation, indicating 

that the LIs are not stable across runs.   

 

Figure 5.17 Group-Level Lateralisation Indices for Language and Memory in each run 

(95% CIs). 

 

For the values of language lateralisation, only 3 out of 28 participants showed 

difference in the classification of LIs (i.e. left, right or bilateral) across runs, and 

the LIs vary between left and bilateral representations. Memory LIs show more 

variation across runs than language LIs. Some participants showed differences in 

the classification of values with the LIs varying from left to right representations 

across runs. However, memory LI is overall more bilateral than language LI; it is 

therefore not surprising that differences in the LI classification (left versus right) 

are more common for memory LI than for language LI.  

3.3.3 SNR in the Hippocampus across Runs 

Signal intensity in the hippocampus across scanning runs is represented in 

Figure 5.18. ICC was 0.98, indicating high reliability of intensity across runs. 
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Figure 5.18 Mean image SNR in the hippocampus across runs. 

3.4 Summary of Results 

This chapter had several aims regarding the development of the fMRI protocol. 

Table 5.4 provides a summary of the findings corresponding to each aim. 

Table 5.4 Summary of aims and results. 

Aims  Results 

1 
Develop a combined 
language/memory 

fMRI paradigm 

The paradigm involves a language task, i.e. verb 
generation task, and a memory task, i.e. cued recall 
task, allowing the investigation of both cognitive 
networks within one scanning session. 

2 

The protocol should 
allow to examine 

brain activity related 
to both memory 
encoding and 

retrieval 

The language block acts also as the memory 
encoding phase, and the words are subsequently 
retrieved. This protocol design permits the 
investigation of both encoding- and retrieval-related 
brain activation. 

3 
The protocol should 
be sensitive to MTL 

function 

The memory task consists in recall-based retrieval to 
increase hippocampal involvement.  

4 

The protocol should 
allow investigation of 
brain activation at the 
single-subject level 

Although this is an intrinsic aim of the protocol, 
activation at the single-subject level was not explicitly 
investigated in the present chapter. Instead, this aim 
will be examined in the chapter related to patients 
with TLE (Chapter 7). However, it is important to 
note that low reliability of fMRI findings may hamper 
single-subject level analysis.  
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5 
Examine test validity 

of the protocol 

 
Learning scores on the standardised test (i.e. the 
CMS) and memory scores on the fMRI task were 
moderately related (r=0.39, p=0.042). False alarms 
(i.e. identifying a foil as “remembered”) were shown 
in only 4%. In addition, the percentage of stem 
completion with the target word was not related to 
recall performance. These findings suggest little 
influence of priming on memory retrieval. 

6 
Examine data quality 

of the protocol  

There was no significant difference between image 
SNR of anterior and posterior hippocampi (p=0.144). 
Regarding tSNR, intensity of the time-series was 
higher in Broca’s area (M=4.9 SD=0.02) compared to 
the hippocampus (M=4.5 SD=0.04). The CNR in 
Broca’s area and the hippocampus were higher for 
the contrast “Language>Baseline” (M=1.26 and 
M=0.29, respectively) compared to the contrast 
“Memory>Baseline” (M=0.80 and M=-0.16, 
respectively). Finally, there was no effect of in-
scanner motion on any measure of data quality 
(p>0.160). 

7 
Examine the 

reproducibility of the 
protocol 

 
The results showed stability of memory performance 
across runs (ICC=0.91). Language LIs were also 
stable (ICC=0.45), but the memory LI appeared less 
stable across runs (ICC could not be calculated). 
SNR in the hippocampus was stable across runs 
(ICC=0.98). 
 

4 Discussion 

4.1 Data Quality 

4.1.1 SNR 

The data quality of fMRI data was first investigated in terms of SNR. In EPI 

images, SNR has been used as a measure of signal dropout by Olman and 

colleagues (Olman et al., 2009), and was specifically investigated in the 

hippocampus in the present study due to its susceptibility to signal distortion.  

Olman et al. (2009) calculated signal intensity in different MTL regions and 

reported a mean signal of 5662 averaged across seven ROIs, namely the 

anterior hippocampus, middle hippocampus, posterior hippocampus, entorhinal 

cortex, perirhinal cortex, posterior parahippocampal gyrus, and the amygdala. 
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The mean signal intensity in the hippocampus calculated in the present study (i.e. 

4741) is similar to the one documented in Olman’s study, although unfortunately 

the authors did not report signal intensity for separate ROIs, therefore a more 

specific comparison between hippocampal signals was not possible. 

Whereas anterior regions of MTL are more prone to susceptibility-induced signal 

distortion than posterior regions (Olman et al., 2009), no difference in SNR was 

found between the different subregions of the hippocampus ROI in the present 

study. This finding indicates that the present protocol allows significant brain 

activation to be captured in the anterior hippocampus and that differences in 

activation between subregions of the hippocampus may be attributed to 

functional segregation of the hippocampus (e.g. Lepage et al., 1998; Paz-Alonso 

et al., 2008) rather than to signal dropout in the anterior hippocampus.  

In addition, time-series extracted in Broca’s area and the hippocampus showed 

higher raw (non-task specific) signal for the former ROI, which may be due to the 

magnetic susceptibility of the MTL region. Within the hippocampus ROI, 

variability in signal between voxels was particularly high. Several factors may 

contribute to this finding. First, it is possible that the hippocampus is more 

susceptible to non-task related variability which may be reflected in the variability 

of the time-series. Such variability may include movement artefacts (although this 

is not found in the present study), physiological noise or signal distortions,. 

Second, differences in signal intensity between left and right hippocampus may 

generate overall high variability in time-series within the hippocampus ROI. In 

addition, it is possible that this variability is actually related to the task, but is not 

captured by looking at raw signal activation. For example, it is possible that 

different voxels within the ROI are activated for successful memory compared to 

unsuccessful memory, leading to high variability when voxel activation is 

collapsed across performance (i.e. successful and unsuccessful). Task-related 

activation will be explored in Chapter 6. Similarly, low CNR in the hippocampus 

may reflect either high amount of non-task related variability (i.e. noise), or task-

related differences (i.e. successful versus unsuccessful memory) in voxel 

activation within the ROI which is not captured using a block analysis contrast 

(i.e. “Memory>Baseline”).  

Generally, fMRI studies do not always report SNR or other measures of data 

quality. Signal loss in MTL regions lead to low SNR in those regions, making null 
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findings difficult to interpret as they may reflect signal loss as opposed to 

absence of brain activity in that region. Moreover, the studies that do present 

SNR of their data use different definitions and measurements of SNR, making 

comparison with other fMRI studies difficult (Welvaert & Rosseel, 2013). 

4.1.2 In-Scanner Motion 

In-scanner motion can be an issue in fMRI and may hamper data quality. Task-

related motion, such as head movement related to speech, can cause signal 

changes which may be misinterpreted as brain activation (Friston et al., 1996). 

Negative effects of in-scanner motion are especially pronounced in paediatric 

populations (Engelhardt et al., 2017) and should particularly be taken into 

consideration in fMRI studies involving overt speech. It has been shown that 

image quality is specifically impeded in images with low SNR (Havsteen et al., 

2017), therefore the effect of movement artefact on image quality in the present 

study was specifically investigated in the hippocampus due to its relatively lower 

SNR compared to Broca’s area. However, in-scanner motion did not have a 

significant impact on fMRI data quality, providing evidence that overt verbal 

responses do not significantly impact on the fMRI signal and should be 

considered in future fMRI studies.    

4.2 Reproducibility and Reliability 

The reproducibility of the fMRI protocol was tested by investigating the stability of 

several variables across the three scanning runs. These variables were 1) 

memory performance, 2) language and memory LIs, and 3) EPI signal intensity 

(image SNR) in the hippocampus. First, memory performance was investigated 

across the three scanning runs. The average memory performance across the 

runs was 55% (SD=22), and the variability across runs was not significant. The 

consistency of performance across the runs indicates the reproducibility of the 

memory task. 

Second, language and memory LIs were investigated across the scanning runs. 

Bennett and Miller suggested a range of ICC values between 0.33 and 0.66 

within which fMRI studies are typically reliable (Bennett & Miller, 2010). In the 

present study, the ICC value for language LIs was 0.45 which therefore reflects 
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reliable results and indicates that language LI values were stable across runs. 

Memory LI values were less stable across runs, however, possibly as a result of 

noise in the data (e.g. physiological noise from the participants and system noise 

in the scanner) or subject variability in use of strategy (Bennett & Miller, 2010). It 

is possible that the changes in LI values in memory reflect changes in attention 

and arousal between runs which can modulate responses and influence brain 

activation (e.g. Sterr et al., 2007). These factors suggest that a considerable 

amount of trials may be needed to provide a measurable response, and it is 

possible that the number of trials in each run (10 for language and 15 for 

memory) prevents analysis of reliability across runs. Another possible influence is 

differences in cognitive strategies used during the memory task to retrieve the 

words (e.g. Miller et al., 2002) or differences in performance (i.e. successful 

versus unsuccessful memory). These results indicate that whereas the language 

LIs were stable across the three scanning runs, the memory LIs were less stable, 

which may be due to several factors and should be investigated further. 

Reliability is the likelihood of obtaining the same results (i.e. brain activations) if 

the fMRI experiment is repeated. In this respect, reliability has usually been 

measured with separate scanning sessions (e.g. days apart), rather than with 

separate runs within a session as in the present study. Splitting the data into 

separate runs decreases the number of trials and may hamper the ability to 

examine reliability. Another study investigated reliability of brain activity in the 

amygdala during emotional face processing and reported poor reliability of 

activation in the amygdala, both between two runs (10 minutes apart) and 

between two scanning sessions (two weeks apart), whereas the reference 

regions (i.e. the fusiform face area) showed high reliability between runs and 

between sessions (Nord et al., 2017). Regions within the MTL are particularly 

susceptible to poor reliability of brain activation (Brandt et al., 2013), which has 

important implications with regards to interpreting fMRI results. Further 

investigation of reliability of hippocampal activation should therefore be 

conducted across different scanning sessions. 

Brandt and colleagues investigated reliability of memory fMRI activation using 

data from two sessions, 1 month apart. The authors measured ICC for the degree 

of activation at each voxel of the brain and reported that despite reliability of 

memory activation at the group-level, activation was not stable within individuals 
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(Brandt et al., 2013). Overall, reliability of fMRI findings is rarely investigated, and 

those studies that do investigate it generally report poor reliability of brain 

activation (see Bennett & Miller, 2010, for a review). Several factors can however 

improve reliability of fMRI results, including increasing the size of the ROIs 

(Friedman et al., 2013), having additional runs (Friedman & Glover, 2006) and 

increasing the SNR by having additional scans (Bennett & Miller, 2010).  

The reliability of fMRI should be a concern for researchers because without 

reproducible results, studies cannot effectively contribute to scientific knowledge. 

The issue of reliability is particularly important for clinical application of fMRI 

findings, whereby, for example, localisation of function is used to guide surgical 

planning. In the case of low reliability, single-subject fMRI analysis is hampered 

which reduces clinical validity of the paradigm as a diagnostic tool. In the future, it 

would therefore be important to measure reliability across separate scanning 

sessions in order to perform the reliability analysis.  

4.3 Clinical Implications 

This fMRI protocol has multiple advantages over current neuroimaging tasks. 

First, the combined language/memory aspect of the protocol offers pre-operative 

mapping of both networks in a time- and cost-effective manner. Memory fMRI 

administered in conjunction with language fMRI could provide a better guide for 

tailored resections, particularly in the temporal lobe, and help predict outcome. 

This protocol can be used to shed light on how the two systems interact in cases 

of early TLE abnormality, and explore whether lateralisation for memory and 

language are interdependent. This paradigm can provide additional information 

compared to other paradigms that investigate language and memory separately, 

by providing indication of the interaction between these two networks and of the 

status of functional organisation in the context of brain lesion.   

Second, the protocol enables examination of fMRI activation related to both 

memory encoding and retrieval, providing a more robust mapping of memory-

related networks, as both phases are dependent on hippocampal involvement 

(Saddiki et al., 2018; Spaniol et al., 2009). Moreover, obtaining robust activation 

in the hippocampus at the individual level has proven challenging across fMRI 

studies (Dupont et al., 2001; Saddiki et al., 2018), but a wider approach to 
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memory mapping involving two memory phases (encoding and retrieval) may 

increase the chances of capturing such an effect.  

Third, this protocol investigates activity related to recall memory, as opposed to 

recognition, for a better examination of the hippocampal-neocortical network 

(Aggleton & Brown, 1999; Eichenbaum et al., 2007; Patai et al., 2016; Yonelinas, 

2002). Failure to show robust activation in hippocamal regions in some fMRI 

studies may be due to the recognition nature of the tasks often employed, which 

may rely on other subregions of the MTL. Word-stem cued recall tasks have been 

used by previous fMRI studies and show activation in several regions which are 

associated with successful recall, namely bilateral parietal cortex, bilateral medial 

temporal lobe, including the hippocampi, and left temporal cortex in healthy 

adults (Hayama et al., 2012; Okada et al., 2012; Schott et al., 2005; Wimber et 

al., 2008). Patients with epilepsy are impaired in word-stem recall (Hudson et al., 

2010), making this task potentially sensitive to the identification of network 

abnormalities. 

Lastly, the design of the protocol permits investigation of fMRI data through both 

block-analyses and event-related analyses. Block analyses allow examination of 

brain activity related to memory effort, irrespective of performance, whereas 

event-related analyses examine successful memory specifically and are 

particularly relevant for predicting memory outcome in the clinical setting. 

Together, the features of this protocol make it particularly useful for the 

investigation of pre-operative memory networks and for the prediction of memory 

outcome in TLE.  

5 Limitations 

As mentioned above, the influence of priming has been controlled for in the 

memory test. However, it is possible that, despite efforts to reduce the effect of 

priming, the retrieval of words is still influenced by some level of automatic 

retrieval or echoic memory.    

Another limitation relates to the short delay between encoding and retrieval 

phases (50 seconds). The attribution of long-term memory with such delay could 

be disputed, but methodological considerations were put in place to insure this. 

The baseline task involving active and overt response prevents subvocal 
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rehearsal and maintenance of information in working memory. It is possible that a 

longer delay between encoding and recall phases of memory is more sensitive 

for the investigation of hippocampal-related brain activation, but this comes with 

the pitfall of longer scanning time, especially with children.  

As mentioned in section 4.3 (page 173), low reliability of fMRI findings may 

hamper single-subject level analysis which has crucial implications in the clinical 

context. Reliability of fMRI needs to be taken into consideration and confirmation 

of reliability may be difficult without additional scanning sessions.   

6 Conclusions 

A combined language/memory fMRI paradigm was developed to map critical 

functions in paediatric TLE prior to surgical intervention. The advantages of this 

paradigm are 1) the functional mapping of language and memory within one 

scan, 2) the investigation of encoding and retrieval neural networks, 3) recall-

based retrieval to increase hippocampal involvement, and 4) overt verbal 

responses to monitor in-scanner memory performance.  

In the present chapter, several variables related to the novel fMRI protocol were 

examined: 1) test validity, 2) data quality, and 2) reproducibility of the protocol. To 

examine test validity, behavioural performance was investigated and compared 

with out-of-scanner memory performance. To test data quality, SNR was 

investigated and the findings indicate no significant difference in signal quality in 

the anterior versus the posterior hippocampi. This finding has important 

implications considering the anterior hippocampus is generally susceptible to 

signal loss, hampering interpretation of findings. The present protocol therefore 

provides the ability to capture brain signal in different subregions of the 

hippocampus. In addition, because the present protocol involves overt speech, 

in-scanner motion was examined. The results showed that movement artefact 

does not have a negative impact on image quality, suggesting that overt verbal 

responses should be considered in future studies to monitor in-scanner 

performance. Lastly, the reproducibility of the protocol was investigated and the 

results showed stable image SNR in the hippocampus, as well as stable memory 

performance and language LI values across the three scanning runs. However, 

memory LIs were less stable across runs which may be attributed to several 

factors and should be investigated further across several scanning sessions 
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rather than scanning runs. Overall, this novel language/memory fMRI protocol 

was developed and examined as part of this thesis, and could provide clinically 

useful information for surgical planning in paediatric TLE. 

7 Future Directions 

The next step will be to investigate the imaging data acquired with this protocol in 

a sample of healthy children to identify the language and memory networks in 

typically-developing children. In addition, it will be relevant to characterise the 

relationship between language and memory lateralisation, and to define age-

related changes in the memory network using the novel fMRI protocol. These 

investigations will offer a baseline against which comparisons to the network in 

children with epilepsy can be made. 
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Chapter 6 

Language and Memory 
networks in Typically-

Developing Children using a 
combined fMRI paradigm 

 

In the present chapter, the language/memory fMRI paradigm, which was 

developed and described in Chapter 5, was administered to a sample of typically-

developing children to define the typical networks engaged in language and 

memory processing. This chapter aims at characterising the development of the 

memory network and its relation to language lateralisation. This study has clinical 

implications regarding surgical decision-making in childhood TLE, by providing 

the opportunity to compare the networks activated in children with epilepsy to a 

typical network. 
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1 Introduction 

When studying clinical populations, novel protocols should be validated in 

typically-developing children before they are used in a clinical setting. It is 

important to define the typical networks engaged in cognitive processing, in the 

case of this research those involved in memory, to which we can compare the 

networks activated in children with epilepsy, and from which predictions can be 

made about memory outcome after temporal lobe surgery. In children with 

epilepsy, different aspects of memory function can reorganise to other brain 

regions, similarly to what is reported for language reorganisation (de Ribaupierre 

et al., 2012; Yuan et al., 2006). Such shifts in reorganisation of cognitive 

functions must be identified at the pre-operative level as this information often 

aids surgical planning by mapping the territory of eloquent tissue, and also serve 

as a prognostic indicator of cognitive outcome after surgery. 

Whereas the language network is routinely being investigated in the clinical 

workup of children with Temporal Lobe Epilepsy (TLE) who are candidates for 

surgery, there is a dearth of information about the status of the memory network 

in these children. In addition, there is little understanding regarding the 

relationship between the organisation or reorganisation of the language network 

and the memory network, and their respective lateralisation. The present chapter 

will therefore investigate the language and memory networks in typically-

developing children using the novel functional Magnetic Resonance Imaging 

(fMRI) protocol. 

1.1 Defining the Territory of the Language Network 

As discussed in Chapter 1, the language network is often identified in both 

healthy children and patients with brain pathologies using a verb generation task. 

The verb generation task requires participants to generate a semantically 

appropriate verb for each noun presented (e.g. generate the verb “eat” for the 

noun “cake”).  Activated regions typically associated with these tasks are 

illustrated in Figure 6.1, and include Broca’s area in the Inferior Frontal Gyrus 

(IFG), Wernicke’s area in the left superior temporal gyrus (STG), the cingulate 

gyrus, and the dorsolateral prefrontal cortex (Holland et al., 2001). This task 
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typically shows left lateralisation in frontal and temporal regions in children 

(Friedman et al., 1998; Gaillard et al., 2000; Holland et al., 2001).  

 

 

  Figure 6.1 Summary of language-related brain activation reported in healthy children.  

1.2 Defining the Memory network 

1.2.1 Memory Encoding Network 

Compared to the memory network in adults, the network in children remains 

relatively unexplored (see Chapter 1, section 5.2.2.2, page 33). However, the 

research that has been conducted to date indicates that the memory network 

changes over development until adolescence (Guler et al., 2013; Ofen et al., 

2007; Maril et al., 2010). In one study relevant to the memory network in children, 

Maril and colleagues (2010) investigated verbal memory encoding-related activity 

using an incidental encoding task in children and adolescents (age range 7-19 

years). Activity related to subsequent memory was shown in left hippocampus, 

left prefrontal cortex (PFC) and bilateral basal ganglia (Maril et al., 2010). Figure 

6.2 illustrates the activated regions typically associated with memory.  

The authors also documented age-related effects with reduced activation in the 

right inferior temporal lobe and right dorsolateral PFC, as well as reduced 

hippocampal activation with increasing age. Age-related changes in hippocampal 

activation are however not consistent across studies. As opposed to Maril and 

colleagues’ study, Ghetti et al. (2010) documented increasing activation with age. 
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In the former study, the memory task consisted of phonological encoding with a 

surprise recognition task, whereas in the latter study, the memory task consisted 

of paired-associate learning of objects. Ofen et al. (2007) examined brain 

activation during scene encoding and showed no age-related effects in the MTL. 

Differences in the memory tasks between the studies make it difficult to make 

direct comparisons and may explain the mixed findings. 

Another reason for mixed findings and inconsistent hippocampal effects across 

studies relates to the fact that the hippocampus is not a single homogeneous 

structure but instead contains several subregions that likely perform more than 

one memory-related function, and show different activation patterns depending 

on task demands. Several studies have documented differential roles of 

subregions of the hippocampus in adults (Lepage et al., 1998; Greicius et al., 

2003). Similarly, the roles of hippocampal subregions have been investigated in 

children and there is evidence of a higher contribution of anterior compared to 

posterior hippocampus to memory encoding (Ghetti et al., 2010; Maril et al., 

2010). However, functional segregation of the hippocampus is not consistently 

investigated in paediatric studies (e.g. Guler et al., 2013; Ofen et al., 2007) and is 

therefore not fully understood. 

 

Figure 6.2 Summary of memory-related (encoding and retrieval) brain activation reported 

in healthy children. 

 

1.2.2 Memory Retrieval Network 

In children, less is known about the memory retrieval network than the encoding 

network.The research that has been conducted suggests that the memory 
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retrieval network in children is largely similar to that of adults (Guler and Thomas, 

2013; Bauer et al., 2017). However, there is also evidence that the memory 

retrieval network changes over development. For example, Guler and Thomas 

(2013) showed that the left ventrolateral PFC and left inferior parietal cortex are 

activated during memory retrieval in older children but not in younger children. In 

addition, Bauer and colleagues documented age-related increases in activation in 

hippocampal and parahippocampal regions (Bauer et al., 2017). Figure 6.3 

provides a visual summary of age-related changes in memory-related activation 

in healthy children. Further research needs to replicate these findings and 

establish the significance of the functional activation profiles that occur over the 

lifespan.  

 

Figure 6.3 Summary of age-related changes in memory-related activation in healthy 

children. 

 

Functional segregation of the hippocampus for memory retrieval has previously 

been documented, with different roles of the anterior and posterior subregions 

(Paz-Alonso et al., 2008), as being similar to encoding. In addition to the retrieval 

network being less investigated than the encoding network in children, brain 

activations related to retrieval have solely been investigated using recognition 

tasks. This is especially important to note because the hippocampus is thought to 

be more important for recall than for recognition (see Chapter 1, section 2.3.2, 

page 12). Patients with Developmental Amnesia (DA) who sustained neonatal 

hypoxia/ischaemia and consequently suffered selective bilateral hippocampal 

pathology (Vargha-Khadem et al., 1997) exhibit severe and selective impairment 
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in recall memory, in the context of relatively well-preserved recognition memory 

(Adlam et al., 2009; Baddeley et al., 2001; Patai et al., 2015). Based on these 

data, it appears that the hippocampus plays a critical role in recollection and 

recall, but less so in recognition which is mediated by the parahippocampal 

cortices. 

1.3 Relationship between Language and Memory 

Networks 

Numerous studies have demonstrated hippocampal activation during language 

processing, whereby this structure contributes to language function through the 

retrieval and binding of information across domains (see Duff & Brown-Schmidt, 

2012 for a review). Milner and Rasmussen’s study (1977) claimed that language 

reorganises only if one or both of the language areas are damaged. Contradicting 

this finding, Liegeois and colleagues showed that patients who had lesions far 

from the language areas reorganised, but those who had lesions encroaching 

language areas did not (Liegeois et al., 2004). Kneckt then surmised that those 

who reorganised had lesions encroaching the hippocampus (Knecht, 2004). 

These lesion studies suggest that hippocampal pathology influences language 

lateralisation, suggesting that the repesentation of langage might be different in 

the context of reorganisation of the memory system (Weber, 2005). Together, 

these findings suggest there may be a relation between memory and language 

lateralisation.  

However, DA patients show good preservation of language skills, especially 

vocabulary and semantic memory,  in the presence of severe bilateral 

hippocampal damage, indicating that the hippocampus is not crucial for language 

functions (and semantic memory) (see Elward & Vargha-Khadem, 2018 for a 

review). The relation between language and memory networks is therefore 

unclear at this stage, and may critically depend on long-term auditory verbal 

memory. Until this relationship is fully investigated, it will be difficult to take full 

account of any differences between the data in adults versus children.   

Co-lateralisation of memory and language functions in healthy adults has been 

demonstrated, whereby those with language dominance in the left hemisphere 

also show left lateralisation for verbal memory and right lateralisation for faces 
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(Weber et al., 2007). A recent study by Sepeta and colleagues investigated 

lateralisation of MTL and language regions (Broca’s and Wernicke’s areas) 

during a language task in adults and children. The task consisted of an auditory 

description decision task whereby participants heard a sentence that described 

an object (e.g. “A long yellow fruit is a banana”), which was a correct definition in 

70% of the time. Participants were asked to make a semantic decision on the 

accuracy of the sentence. The authors showed co-lateralisation of activation in 

Broca’s area and the MTL in healthy adults (Sepeta et al., 2016). Left lateralised 

activation in the MTL was reported in those who showed left lateralised activation 

of language regions, whereas those with atypical language lateralisation 

activated right or bilateral MTL regions. These findings indicate co-lateralisation 

of activations in language regions and the MTL in right handed adults. 

In children, however, this co-lateralisation of activations in Broca’s/Wernicke’s 

areas and MTL regions were not found. Sepeta and colleagues demonstrated 

increasing left lateralisation of MTL activation with age, but activations in Broca’s 

area and medial temporal regions were less interrelated in paediatric cases 

compared to adults. Whereas the activations in both Broca’s/Wernicke’s areas 

and the MTL were examined during a language task, the findings could indicate 

more segregation between lateralisation of language and lateralisation of memory 

functions in healthy children. This could in turn have implications for the pattern of 

findings in the paediatric patient population with MTL pathology.  

1.4 Aims 

This study aims to: 

a) Identify the typical network supporting language performance in children 

and adolescents. 

b) Define the core network supporting verbal memory encoding and 

memory retrieval, to identify activity related to successful memory 

performance.  

c) Characterise the relationship between language and memory 

lateralisation in children and adolescents. 

d) Define age-related activity-dependent changes in the memory network. 
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2 Methods 

2.1 Participants  

The participant sample included in this chapter is the same as the one reported in 

Chapter 5. Briefly, the sample consisted of 27 healthy children and adolescents, 

10 males and 17 females, between the ages of 8 and 18 years (M=14 years, 

SD=3).  

Intellectual status was measured in each individual using the Wechsler 

Abbreviated Scale of Intelligence – Fourth Edition (WASI-IV), as described in 

Chapter 5 (section 2.3, page 145). The scale provides measures of Full Scale, 

Verbal and Performance Intelligence Quotients (FSIQ, VIQ and PIQ). 

Handedness was measured for each participant using the Edinburgh 

Handedness Inventory (Oldfield, 1971), providing a score between -100 (i.e. 

strongly left handed) and 100 (i.e. strongly right handed). 

2.2 fMRI protocol 

A full description of the fMRI protocol is provided in Chapter 5. Briefly, the 

language paradigm consists of a verb generation task, in which participants are 

presented with nouns and are asked to overtly produce a corresponding verb for 

each noun. The memory task requires recalling the nouns presented during the 

language task utilising word stems as cues to guide recall. The baseline task, to 

which both the language and memory tasks are compared, is an odd/even 

decision-making task with written numbers.  

Verbal responses were monitored via an MRI-compatible microphone and 

accuracy was assessed for each participant to examine in-scanner performance.  

Percentage scores based on in-scanner performance were subsequently 

analysed.  
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2.3 Behavioural analyses 

Behavioural performance was investigated for the language and memory tasks. 

For the language task, an incorrect response consisted of a failure to generate a 

verb. For the memory task, each response was classified as a ‘hit’ (correct 

recall), ‘miss’ (incorrect recall), ‘correct rejection’ (foils are correctly rejected) or 

‘false alarm’ (foils are identified as being part of the studied list and completed 

with a word).  

Pearson correlations were carried out between language and memory 

performances and demographic variables, including  FSIQ, VIQ, handedness and 

age.  

2.4 Imaging Analyses 

2.4.1 Modelling  

fMRI analyses were conducted using blocked and event related models. For 

block analyses, effects of interest were modelled by convolving block sequences 

(onset and duration i.e. 40 seconds for language and baseline blocks and 60 

seconds for memory block) with a haemodynamic response function (HRF). For 

event-related analyses, effects of interests were modelled by convolving each 

trial onset with HRF. Within the language block, subsequent hits and subsequent 

misses were modelled separately. Similarly, within the memory block, hits, 

misses and correct rejections were modelled separately.  

For individual subject analyses (1st level), the changes in Boldl Oxygenation 

Level-Dependent (BOLD) signal over time was examined using fixed effects 

analysis across the three runs. For group analyses (2nd level), contrast estimates 

from each subject were entered into a General Linear Model (GLM) with subjects 

treated as a random factor. Random effects analyses were computed to identify 

patterns of task-related activation that are consistent across the group.  

Temporal and dispersion derivatives of the HRF were included in the model in 

order to model the onset and duration of the BOLD peak (Henson et al., 2001).  



Chapter 6: Language/memory fMRI in typically-developing children 
 

 

186        Buck 
 

2.4.2 Block Analysis 

In block analyses, the different conditions (i.e. language, baseline and memory) 

were separated into blocks of extended time intervals. Block analyses have high 

detection power for the difference in amplitude of brain activation using the HRF 

(Henson, 2004), meaning that it has good ability to differentiate between different 

conditions. 

2.4.2.1 First Level 

Three regressors of interest were created: Language (L), Baseline (B) and 

Memory (M) (Table 6.1). For each subject, contrasts were created for language 

[defined by (L)-(B)] and memory [defined by (M)-(B)]. These contrasts for each 

subject were used in the second level analysis. 

Table 6.1 Description of each regressor. 

 

 

 

2.4.2.2 Second Level 

A single contrast image was entered for each subject into a one-sample t test 

(one-tailed) to examine the group effect of each contrast of interest. Language 

activations were investigated for the contrast “Language>Baseline”. Whole-brain 

analysis at the group level is reported at a height threshold of p<0.05, corrected 

for multiple comparisons (FWE). 

Memory activations were investigated for the contrast “Memory>Baseline”. 

Whole-brain analysis at the group level is reported at a height threshold of 

p<0.001, uncorrected. Lower threshold is employed for the memory contrast 

compared to the language contrast for better investigation of smaller brain 

regions within the MTL.  

2.4.3 Event-Related Analysis 

In event-related analyses, the BOLD response is modelled to each trial within a 

block (Henson et al., 2001) and allows the separation of trials based on the 

Regressors  Description  

Language (L) Verb generation task  
Baseline (B) Baseline task: odd/even decision to numbers  
Memory (M) Cued recall task, irrespective of performance 
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participant’s performance (e.g. correct versus incorrect). It provides a better 

representation of the latency of brain response by providing a better 

characterisation of the shape and the onset of the HRF than block analyses 

(Mechelli et al., 2003). 

2.4.3.1 First Level 

Six regressors of interest were created (Table 6.2): Subsequent Hit (SH), 

Subsequent Misses (SM), Baseline (B), Hits (H), Misses (Mi) and Correct 

Rejections (CR).  

Table 6.2 Description of each regressor of interest. 

 

The encoding-related responses for words that were subsequently remembered 

(SH) were compared to words that were subsequently forgotten (SM). For each 

subject, contrast images were created for subsequent memory [defined by (SH)-

(SM)] and memory retrieval [defined by (H)-(M+CR)]. In addition to brain 

activation, brain deactivation that predicts subsequent memory was also 

investigated. This was examined using the opposite contrast (“SM>SH”). These 

contrast images for each subject were used in the second level analysis. Table 

6.3 provides the number of trials for each regressor.  

Table 6.3 Average number of trials across participants for each regressor used in the 

event-related analyses. 

 

 

 

 

Regressors  Description  

Subsequent Hits (SH) Activation during the encoding of words that were later retrieved  
Subsequent Misses (SM) Activation during the encoding of words that were later forgotten 
Baseline Baseline task: odd/even decision to numbers  
Hits (H) Activation during the successful retrieval of words 
Misses (Mi) Activation during the unsuccessful retrieval of words 
Correct rejection (CR) Activation during correct rejections of words at retrieval  

Regressors  Number of Trials SD Min  Max  

Subsequent Hits (SH) 33 13 8 54 
Subsequent Misses (SM) 25 11 6 41 
Hits (H) 33 13 8 54 
Misses (Mi) 25 11 6 41 
Correct rejections (CR) 30 2 24 30 
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2.4.3.2 Second Level 

Second level analyses were computed to investigate the group effect of each 

contrast of interest, using one-sample t tests, one-tailed. Whole-brain analysis at 

height threshold of p<0.05 (FWE, corrected) did not yield significant activated 

voxels, and instead, a liberal threshold of p<0.01, uncorrected, was used to 

characterise trends in the data that are subthresholded. A lower threshold was 

employed for event-related analyses compared to block analyses to identify 

activation in specific subregions of the MTL.  

2.4.4 Age-Related Effects 

Age-related effects in memory activations were examined using age as a 

continuous regressor in an analysis of covariance (ANCOVA) against the whole 

brain event-related design retrieval activations.  

2.4.5 Anterior versus Posterior Hippocampal Activation 

Comparison between memory-related activation in the anterior and posterior 

hippocampus were investigated by extracting and comparing beta weights in 

different hippocampus ROIs, for memory encoding (contrast “SH>SM”) and 

memory retrieval (contrast “H>Mi+CR”). A beta weight is the estimated parameter 

value for a specific condition in the statistical model. Extracting beta weights from 

ROIs can provide a measure of parameter estimates which is not dependent on 

an arbitrarily defined threshold. Beta weights indicate the effect size and the 

direction of the signal in the specific ROI. They can be informative, especially in 

cases where activation in an ROI is not visible on the thresholded t-map, by 

providing numeric representation of the activation for each condition. In addition, 

beta weights can be useful for assessing individual differences.  

2.4.6 Laterality Index (LI) Calculations 

LIs were calculated to assess hemispheric lateralisation for language and 

memory, as described in Chapter 5 (section 2.11.2, page 161). LIs were 

determined at the individual level in separate ROIs for language and memory. 

Language LIs were determined based on LI values in Broca’s area during the VG 

task, and memory LIs were determined based on LI values in the hippocampus 

during the cued recall task. 
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To investigate the relationship between language and memory LIs, correlations 

were carried out between language LI in Broca’s area and memory LIs in the 

hippocampus. In addition, language LI was also calculated in the hippocampus to 

have a comparison with memory LI in that same region.  

3 Results 

3.1 In-Scanner Behavioural Performance 

3.1.1 Language Task 

Participants had an average score of 91% (SD=9) on the VG task. An 

independent sample t tests showed no significant difference in performance 

between males (M=90% SD=12%) and females (M=91% SD=6%), t(25)=-0.249, 

p=0.805. Correlation analyses showed that performance was not related to FSIQ, 

after controlling for age (r=0.262, p=0.195), or to handedness (r=0.287, p=0.147). 

Partial correlations showed that the scores were correlated with age, controlling 

for FSIQ (r=0.376, p=0.058), where older children performed better than younger 

children (Figure 6.4A). The results were similar when VIQ was used as covariate 

instead of FSIQ.  

3.1.2 Memory Task 

The types of responses from the cued recall task are reported in Table 6.4. On 

average, over half of the words were successfully recalled (57%), and almost all 

lures were successfully rejected (96%).  

Table 6.4 In-scanner memory performance (mean (M) and standard deviation (SD) 

expressed in percentage). 

 

 

 

 

Performance Mean SD 

Hits (H) 57 20 
Misses (M) 43 20 
Correct rejection (CR) 96 6 
False alarms (FA) 4 6 
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An independent samples t tests showed no significant difference in performance 

between males (M=65% SD=20%) and females (M=51% SD=18%), t(25)=1.845, 

p=0.077. Memory scores were not related to FSIQ or VIQ, after controlling for 

age, or to handedness (Table 6.5). The scores were, however, significantly 

related to age, after controlling for FSIQ, with better performance with increasing 

age (Figure 6.4B).  

Table 6.5 Correlations between demographic variables and in-scanner memory 

performance. 

 

 

 

 

 

 

Figure 6.4 Relationship between age and performance on the language (A) and memory 

(B) tasks, corrected for FSIQ. 

3.2 Block analyses 

3.2.1 Language Activations 

Activations were found in regions typically associated with language. Activation 

was found in left Broca’s area, the left STG, bilateral dorsolateral prefrontal cortex 

(DLPFC), pre-supplementary motor area (pre-SMA), right cerebellum, left 

 Statistic 

FSIQ 
r=0.27 

p=0.180 

VIQ 
r=0.03 

p=0.894 

Handedness 
r=0.49 

p=-0.139 

Age 
r=0.41 

p=0.036 

A B 
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thalamus, left anterior insula and bilateral middle cingulate cortex (MCC) (Figure 

6.5). In addition, activation was also found in the left posterior hippocampus at a 

lower threshold (p<0.001) (Figure 6.6). 

 

Figure 6.5 Group activation during verb generation task (p<0.05, FWE). 

 

 

Figure 6.6 Group activation in the hippocampus during verb generation task (p<0.001, 
uncorrected). Whole brain analysis but masked to include only the hippocampal region for 
viewing purposes. 

 

3.2.2 Memory Activations 

Activations were found in left Broca’s area, left dorsolateral PFC, bilateral 

cerebellum and bilateral posterior temporal lobes. Activations were also shown in 

bilateral anterior insula, bilateral pre-supplementary motor area (pre-SMA) 
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bilateral middle and posterior cingulate cortex (PCC & MCC), and bilateral 

caudate.  

Because many of these activations overlap with those reported for language, 

another contrast was investigated (“Memory>Language”) to identify activations 

that are specific to the memory task. Activations were shown in right dorsolateral 

PFC, right orbitofrontal PFC, bilateral posterior temporal lobes (right posterior 

middle temporal gyrus and left posterior superior temporal gyrus), right pre-SMA, 

and posterior cingulate cortex (p<0.001, uncorrected) (Figure 6.7).  

 

Figure 6.7 Group activation during cued recall task (p<0.001, uncorrected) (contrast 

“M>L”). 

3.3 Event-Related Analyses  

3.3.1 Memory Encoding 

Successful memory encoding was associated with activity in the left temporal 

pole and right posterior superior temporal lobe (Figure 6.8). Deactivations were 

found in bilateral parahippocampal gyrus, bilateral supramarginal gyrus, bilateral 

lingual gyrus, and left cerebellum.  
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Figure 6.8 Group activation and deactivation for subsequent memory (p<0.01, 

uncorrected). 

Beta weights were extracted from the hippocampus ROI for subsequent hits and 

subsequent misses (Table 6.6 and Figure 6.9). These values did not significantly 

differ from one another (paired t-test, t(26)=-0.758, p=0.455). The paired t-test 

was repeated in subregions of the hippocampus (anterior and posterior) 

separately in case an effect is specific to a subregion and not apparent in the 

averaged ROI. However, the subsequent hits and misses values did not 

significantly differ from one another, either in the anterior (paired t-test, t(26)=-

0.590, p=0.560) or the posterior (paired t-test, t(26)=-0.870, p=0.392) 

hippocampus. 
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Table 6.6 Mean beta weights for 
subsequent hits and misses 
extracted from hippocampus 
ROI. 

 

Figure 6.9 Mean beta weights for 
subsequent hits and misses extracted from 
hippocampus ROI. Displayed with 
confidence intervals. 

 

3.3.2 Memory Retrieval 

Activity associated with successful memory retrieval was shown in bilateral 

hippocampi, left posterior superior temporal gyrus and left caudate (Figure 6.10). 

Deactivation was shown in right DLPFC, right ACC, bilateral insula, and right 

inferior anterior temporal gyrus.  

 

Figure 6.10 Group activation and deactivation for successful retrieval (p<0.01, 

uncorrected). 
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Figure 6.11 and Table 6.7 provides a visual representation of the mean beta 

weights extracted from a hippocampus mask, for each condition of memory 

retrieval (hits, misses and correct rejections). Paired t-tests show a trend towards 

higher beta weights for hits compared to misses (t(26)=1.83, p=0.078), and no 

significant difference between hits and correct rejections (t(26)=1.30, p=0.206) or 

between misses and correct rejections (t(26)=0.43, p=0.67).  

 

Table 6.7 Mean beta weights for 
hits, misses and correct rejections 
extracted from hippocampus ROI. 

       

 
Figure 6.11 Mean beta weights for hits, misses 
and correct rejections extracted from hippocampus 
ROI. Displayed with confidence intervals. 

3.4 Age-Related Effects  

The results show positive and negative correlations between memory retrieval 

activations and age. More specifically, age-related changes were observed in the 

hippocampus and the bilateral medial prefrontal cortex (mPFC). Activation in the 

right hippocampus increased with age, whereas activation in the mPFC 

decreased with age (Figure 6.12).  

 

Figure 6.12 Positive and negative correlations between memory retrieval activation and 
age (p<0.01, uncorrected). 
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3.5 Anterior versus Posterior Activations 

Beta weights were extracted from anterior and posterior hippocampus ROIs 

during memory encoding and retrieval and are displayed in Figure 6.13. Paired t 

tests were carried out to compare beta weights in the anterior and posterior 

hippocampi. For encoding, the values were not significantly different (t(26)=0.32, 

p=0.750). For retrieval, the values in the anterior hippocampi were significantly 

higher than those in the posterior hippocampi (t(26)=2.20, p=0.037). The paired t-

tests were repeated in left and right hippocampus separately in case an effect is 

side-specific and not apparent in the averaged ROI. For encoding, the values in 

the anterior and posterior hippocampi were not significantly different in either the 

left (t(26)=0.702, p=0.485) or right (t(26)=-0.335, p=0.740) hippocampus. For 

retrieval, the additional analyses showed that the reported higher values in the 

anterior compared to the posterior portions was specific to the right hippocampus 

(t(26)=2.602, p=0.015). The values were not significantly different in the left 

hippocampus (t(26)=1.556, p=0.132).   

 

Figure 6.13 Beta weights extracted from anterior and posterior hippocampus ROIs during 

memory encoding and retrieval. 

3.6 Memory Lateralisation 

Functional lateralisation was investigated for memory retrieval, for block 

activations and event-related activations (Figure 6.14). For event-related 

analyses, there is a large variability in the memory LIs across the anterior and 

posterior hippocampi. For block analysis (activation irrespective of memory 

performance) the LI is also widespread in the posterior hippocampus. However, 

the group-level memory LI in the anterior hippocampus is more left lateralised 
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(M=0.45, SD=0.45) than in the posterior hippocampus (M=0.26, SD=0.51). In 

fact, the majority of participants show left lateralisation (N=22), and the others 

show either right lateralisation (N=3) or bilateral representation (N=2). 

 

Figure 6.14 Memory retrieval LIs in the anterior and posterior hippocampi, for block and 

event-related analyses. 

3.7 Relationship between Language and Memory 

Lateralisation  

As illustrated in Figure 6.15, language was left lateralised in all participants 

(N=27, M=0.80, SD=0.18). Memory was less strongly left lateralised and more 

variable across individuals (M=0.31, SD=0.50). Whereas every subject showed 

left lateralisation for language, the distribution proved far more widespread for 

memory, with a range of LIs in participants (N left=17, M=0.64, SD=0.19, N 

right=5, M=-0.53, SD=0.16, N bilateral=5, M=0.01, SD=0.16). 
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Figure 6.15 Distribution of language (“Language>Baseline”) and memory 

(“Memory>Baseline”) lateralisation across individuals. 

 

Language and memory LIs were not significantly correlated (r=0.13, p=0.458). 

Correlations were also investigated with memory LIs in the different portions of 

the hippocampus but the results indicate no significant correlation between 

language LI and memory LI in the anterior hippocampus (r=0.06, p=0.760) or the 

posterior hippocampus (r=0.18, p=0.329). In addition, language and memory LI 

values were not significantly related to age, FSIQ, VIQ, or handedness (Table 

6.8). 

Table 6.8 Correlations between language and memory LIs and demographic variables. 

 

 

 

 

 

 

 

 

 

As illustrated in Figure 6.16, for language, LIs in Broca’s area and in the 

hippocampus were significantly and positively correlated (r=0.39, p=0.037). 

 
Demographic 

variables  
Statistics  

Language LI 

Age 
r=-0.18 
p=0.363 

FSIQ 
r=0.25 

p=0.210 

VIQ 
r=0.22 

p=0.268 

Handedness 
r=0.11 

p=0.602 

Memory LI 

Age 
r=-0.50 
p=0.401 

FSIQ 
r=0.23 

p=0.245 

VIQ 
r=0.34 

p=0.079 

Handedness 
r=0.08 

p=0.691 
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However, language LI in the Broca’s area was not correlated with memory LI in 

the hippocampus (r=-0.01, p=0.942).  

 
 

Figure 6.16 Correlations between language LI in Broca’s area and memory LIs in the 

hippocampus. 
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3.8 Summary of Findings 

This chapter had several aims regarding the mapping of language and memory 

networks in typically-developing children and adolescents. Table 6.9 provides a 

summary of the findings corresponding to each aim. 

Table 6.9 Summary of aims and the findings 

Aims Findings 

1 

Identify the typical 
network supporting 

language 
performance in 

children and 
adolescent 

Language-related activation was found in regions 
typically associated with verb generation tasks, 
namely Broca’s area, Wernicke’s area, the cingulate 
gyrus, left insula, left thalamus, left insula and the 
dorsolateral prefrontal cortex.  

2 

Define the core 
network supporting 

verbal memory 
encoding and 

memory retrieval 

For memory encoding, hippocampal activation was 
shown, irrespective of subsequent performance. 
Successful memory encoding was associated with 
activity in the left temporal pole and right posterior 
superior temporal lobe.  
For memory retrieval, activations were found in left 
Broca’s area, left dorsolateral PFC, bilateral 
cerebellum, bilateral posterior temporal lobes, 
bilateral anterior insula, bilateral pre-SMA, bilateral 
PCC & MCC, and bilateral caudate. Successful 
memory retrieval was associated with activity in 
bilateral hippocampi, left posterior superior temporal 
gyrus and left caudate.  

3 

Characterise the 
relationship between 

language and 
memory lateralisation 

Language was left lateralised in all participants 
(M=0.80, SD=0.18). Memory was less strongly left 
lateralised and more variable across individuals 
(M=0.31, SD=0.50). Language and memory LIs were 
not significantly correlated (r=0.13, p=0.458). 

4 

Define age-related 
activity-dependent 

changes in the 
memory network 

 

Activation in the right hippocampus increased with 
age, whereas activation in the mPFC decreased with 
age.   
 

  

4 Discussion 

This study investigated language and memory networks in children and had four 

primary aims: 1) identify the language network, 2) define the verbal memory 

network (encoding and retrieval), 3) characterise the relationship between 
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language and memory lateralisation, and 4) define age-related changes in the 

memory network. Figure 6.17 provides an illustration of activations and 

deactivations for memory encoding and retrieval.  
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     DLPFC                                           Caudate                                 Insula (subcortical structure)    

     Lingual gyrus                                  ATL                                        Hippocampus                  

     Anterior temporal gyrus                  Cingulate cortex                     Posterior temporal gyrus 

     Supramarginal gyrus                      Parahippocampal gyrus 

 

Figure 6.17 Illustration of activations and deactivations for memory encoding and 

retrieval. 

4.1 Validating the Language Task 

Language-related activation was found in regions typically associated with verb 

generation tasks, namely Broca’s area, Wernicke’s area, the cingulate gyrus, left 

insula, left thalamus and the dorsolateral prefrontal cortex (Holland et al., 2001). 

Activation in the left insula has previously been reported during verb generation 

(Rau et al., 2007), and is thought to mediate motor aspects of speech production 
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(Cereda et al., 2002; Oh et al., 2014; Van Turennout et al., 2003). The left insula 

may thus reflect overt speech in the present protocol. Moreover, the thalamus, 

sometimes shown in memory fMRI studies (Guler & Thomas, 2013), is involved in 

the manipulation of lexical information (see (Llano, 2013), for a review). Overall, 

the present study identifies language-related activation in regions previously 

documented as being associated with language tasks, and thereby replicates 

previous findings and validates the experimental language task. 

4.2 Hippocampal Activation during Encoding, 

Irrespective of Retrieval Success 

During memory encoding (i.e. the language block), activity was found in the left 

posterior hippocampus. Hippocampal activation has not previously been reported 

during verb generations tasks, and activation could instead reflect encoding of 

the words for subsequent retrieval. The participants were aware of the following 

memory task, and may have engaged strategies to encode the words. As such, 

hippocampal activation during the language task in the present study may be 

related to the encoding of words into memory storage.  

However, whereas hippocampal activation was found during word encoding, 

activation did not predict memory retrieval. The beta weights extracted from the 

hippocampus ROI showed similar levels of activation for subsequent hits and 

misses. This indicates that the hippocampus was activated irrespective of 

whether the words were later remembered or forgotten. This finding replicates 

that observed in Sidhu and colleagues’ study (2013) whereby left hippocampal 

activation was shown in healthy adults during word encoding, irrespective of later 

retrieval (as shown in block analysis). In the paediatric literature, there are mixed 

findings. Two studies found hippocampal activation during encoding which was 

predictive of later retrieval (Maril et al., 2010; Ofen et al., 2007). On the other 

hand, similarly to the present findings, Guler and Thomas (2013) did not find 

hippocampal activation that predicted recall, although they did not report whether 

activation was found with block analysis. Ghetti and colleagues (2010) found 

different patterns of activation in different age groups. Adults and 14 year olds 

activated the MTL during successful encoding, whereas encoding-related MTL 

activation did not predict subsequent retrieval in 10 year olds, suggesting 
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developmental changes in functional specialisation of the MTL. Overall, these 

studies demonstrate a clear role in the hippocampus for memory encoding in 

children. However, as with the present findings, it is unclear whether activation at 

encoding predicts later retrieval, and studies report mixed findings. 

Differences in memory protocols may explain mixed findings across studies with 

regards to hippocampal activation during encoding. First, event-related analysis 

of successful encoding is dependent on the retrieval task, and the documented 

activation may therefore differ across studies depending on the paradigm. The 

above mentioned studies which documented hippocampal activation that was 

predictive of retrieval used a recognition task. On the other hand, the present 

study along with Thomas and Guler’s study assessed retrieval with a recall task 

and did not find subsequent memory effects in the hippocampus. These findings 

suggest that subsequent memory effects in the hippocampus may differ between 

recognition and recall in children.  

Second, the strategy at encoding may have an impact on hippocampal activation 

(Heckers et al., 2002). In Maril and colleagues’ study, the encoding was 

phonological and incidental. Children were instructed to generate a new word 

from two presented words by replacing the first phoneme of the second word with 

the first phoneme of the first word (e.g. generate “pool” from “pen” and “tool”). In 

Ofen and colleagues’ study, children were asked to make an indoor/outdoor 

decision to visually presented scenes. In the present study, however, the 

instruction encouraged binding of information through the generation of verbs 

that are semantically related to the nouns being presented. Similarly, Guler and 

Thomas’ study involved paired-associate learning, encouring the binding of items 

into a holistic representation. This binding is known to be associated with 

hippocampal activation (Habib & Nyberg, 2008; Meltzer & Constable, 2005), and 

may be less involved in studies that instruct phonological processing or 

indoor/outdoor decision. Becker and colleagues (2017) directly compared 

incidental versus intentional encoding for subsequent retrieval and showed 

greater hippcampal activation for the latter compared to the former. The authors 

postulate that the intent to remember triggers the binding process supported by 

the hippocampus (Becker et al., 2017). It is therefore possible that whereas 

hippocampal activation is associated with subsequent recognition effects (Maril et 

al., 2010; Ofen et al., 2007), it is also associated with binding of information 
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irrespective of subsequent retrieval, as shown in the present study. Another 

interpretation for hippocampal activation observed in block but not event-related 

analyses resides in the large interindividual variability in hippocampal activation, 

which will be discussed below (section 4.4, page 206).  

4.3 Anterior Hippocampus supports Memory Retrieval 

4.3.1 Functional Segregation of the Hippocampus 

Bilateral activation in the hippocampus was shown during successful retrieval of 

words (as shown in event-related analyses). Hippocampal activation is 

associated with the binding of information (Habib & Nyberg, 2008; Meltzer & 

Constable, 2005); as such, the word stem cues presented at retrieval may have 

triggered the retrieval of features that were bound together into a holistic 

representation at encoding, thereby rendering them dependent on hippocampal 

activation. More specifically, the anterior hippocampus appears to have a bigger 

role in memory retrieval than the posterior hippocampus. Functional segregation 

of the hippocampus was investigated in the present study by extracting beta 

weights in the anterior and posterior hippocampi. The findings showed higher 

beta weights in the anterior hippocampus compared to the posterior 

hippocampus for successful retrieval, providing evidence of functional 

segregation of the hippocampus.  

The anterior-posterior functional segregation in the MTL has previously been 

documented in adults. The HIPER model described by Lepage and colleagues in 

1998 postulated the role of anterior and posterior hippocampus in encoding and 

retrieval, respectively (Lepage et al., 1998). However, this functional segregation 

is not consistently reported. For example, Heckers and colleagues showed 

anterior hippocampal activation during successful retrieval (Heckers et al., 2002). 

Similarly, Greicius and colleagues showed anterior and posterior hippocampal 

activation during both encoding and retrieval (Greicius et al., 2003). 

Although the posterior hippocampus may play a role in episodic memory in 

adults, there is evidence to suggest the role of anterior hippocampus in children. 

Moreover, the distinguishing feature of the anterior versus posterior hippocampus 

in humans is cognitive memory versus visuo-spatial navigation. The posterior 
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hippocampus subserves visuospatial navigation (Maguire et al., 2011), whereas 

the anterior hippocampus subserves cognitive memory, including episodic 

memory. Gogtay and colleagues (2016) documented structural changes in the 

anterior hippocampal region, with decrease in volume between the ages of 4 and 

25 years. Although the significance of this structural development is not fully 

understood, it could reflect synaptic pruning (Johnson et al., 1996) and enhanced 

selectivity of this region to support cognitive memory (Ghetti & Bunge, 2013). In 

addition, Riggins and colleagues (2015 and 2016) showed significant correlation 

between anterior hippocampal volume and episodic memory in young children 

(Riggins et al., 2015; Riggins et al., 2016). Consistent with the present findings, 

several fMRI studies have shown evidence of the role of the anterior 

hippocampus in episodic memory development (Ghetti et al., 2010; Maril et al., 

2010; Paz-Alonso et al., 2008). Whereas these previous studies documented 

anterior hippocampal activation during encoding (Ghetti et al., 2010; Maril et al., 

2010) and recognition (Paz-Alonso et al., 2008), the present study extends the 

findings to recall memory. Overall, these studies along with the present findings 

show evidence of specialisation along the longitudinal axis of the hippocampus in 

children, with a clear role of the anterior region in cognitive memory.  

The reason for differences in functional segregation of the hippocampus between 

children and adults is not fully understood. For an explanation, it would be 

pertinent to examine the trajectory of development of cognitive memory versus 

visuo-spatial memory in children versus adults. Anterior hippocampal activation in 

children could mirror structural development in subregions of the hippocampus 

(Gogtay et al., 2006) and, in this respect, reflect developmental changes. 

Alternatively, methodological considerations may have hindered the ability to 

observe activation in the anterior hippocampus in previous studies. Magnetic 

susceptibility is particularly prominent in the anterior hippocampus (Olman et al., 

2009) reducing the possibility of capturing activation in that brain region. Prior 

studies that did not attempt to reduce signal loss in the anterior hippocampus 

(e.g. by applying a slice tilt, as in the present study) may have resulted in 

misconceptualised functional segregation of the hippocampus, providing more 

functional importance to the posterior portion. These interpretations warrant 

further investigation with, for example, more longitudinal studies examining 

hippocampal activation in a large age range that includes both children and 

adults, with methodological consistency across children and adults. 
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4.3.2 Left Lateralisation in the Anterior Hippocampus  

Additional evidence supporting the role of the anterior hippocampus in memory 

retrieval resides in lateralisation indices. Investigation of memory LIs showed 

varied lateralisation across individuals in the posterior hippocampus, but left 

lateralisation in the anterior hippocampus during retrieval, irrespective of 

performance (as shown in block-analyses). Memory-related activation in the 

anterior hippocampus was robustly left lateralised in the control sample, providing 

additional evidence  that the anterior hippocampus has a specific role in memory 

retrieval. This has important clinical implications, because it indicates that block-

analysis can be used as a good marker for TLE by characterising changes in the 

lateralisation pattern of memory. Whereas typically-developing children show left 

lateralisation of memory in the anterior hippocampus during memory retrieval, 

irrespective of performance, children with TLE may show different lateralisation 

patterns as a result of brain injury and/or functional reorganisation. This 

lateralisation pattern may provide clinically useful information for the prediction of 

memory outcome after surgery. 

4.4 Individual Differences in Memory Lateralisation 

The present findings showed large variability in memory lateralisation across 

individuals, particularly for activation reflecting successful memory (as shown in 

event-related analyses). Interindividual variability in language lateralisation has 

been previously documented (see Josse & Tzourio-Mazoyer, 2004 for a review) 

and is influenced by factors such as manual preference, whereby right-

handedness is associated with left hemispheric specialisation for language (Satz, 

1979; Rasmussen & Milner, 1977). With regards to memory, the adult literature 

reports interindividual variability in the quantity and quality of memory, and in the 

mnemonic strategies employed (Jones et al., 2006; Kanai & Rees, 2011;  Nyberg 

et al., 2003). Although individual differences in mnemonic performance have 

been documented, there are limited studies reporting individual differences in the 

neural substrates supporting memory in children (although see Prabhakar et al., 

2018).  
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4.4.1 Developmental Changes 

The interindividual variability in memory lateralisation can be related to several 

factors, such as developmental changes and/or differences in mnemonic 

strategies employed. The variability in lateralisation could reflect developmental 

changes in the lateralisation of the MTL, with stronger left lateralisation arising in 

older adolescents. There may be high inter-individual variability in memory 

representations before lateralisation is established. In typically-developing 

children, language lateralisation changes with age paralleling the development of 

language skills (Holland et al., 2007) and is emergent by the age of 5 (Hodgson 

et al., 2016;  Weiss-Croft & Baldeweg, 2015). Similarly to language function, it is 

possible that the lateralisation of memory changes with age and parallels the 

development of mnemonic skills. In addition, several studies converge on the 

observation that the right hippocampus is functional earlier than the left 

hippocampus (Prabhakar et al., 2018; Thompson et al., 2009; Uematsu et al., 

2012), which may be associated with age-related changes in hippocampal 

laterality. One could therefore assume that memory is initially associated with 

bilateral or right-sided hippocampal activation, with increasing left lateralisation 

with age concomitant with language learning, literacy skills and social 

interactions.  

This interpretation could provide insight into the pattern of lateralised impairments 

shown in TLE, whereby less lateralised MTL function in children could explain 

why memory deficits are less clearly lateralised in paediatric compared to adult 

patients. However, the present findings do not suggest a developmental 

trajectory in memory lateralisation, and such functional development was not 

captured possibly due to the older age of participants (8 to 18). Similar to 

language, it is possible that memory lateralises early in life, before the age of 8. 

The present data are, however, not sufficiently powered to look at trajectories as 

a function of age groups’ maturing specialised functions. Administering the 

memory paradigm in younger children (between 5 to 8 years old) could shed light 

on the developmental trajectory of memory lateralisation. 

As an alternative and contradicting interpretation, several authors have 

postulated that adults show higher brain variability compared to children which 

reflects greater neural complexity and a higher cognitive ability such as cognitive 

flexibility (Hutchison & Morton, 2016; McIntosh et al., 2008). Similarily, Marusak 
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and colleagues (2017) demonstrated age-related increases in the variability of 

functional connectivity in children aged between 7 and 16 years old (Marusak et 

al., 2017). The present study did not elucidate developmental changes in inter-

individual variability of brain activation. Whether increasing age is associated with 

more or less variability in memory-related brain activation remains unknown and 

more research is needed to characterise how functional representations of 

memory change over the course of development.  

4.4.2 Visual Imagery 

Alternatively, the reported varied memory lateralisation could reflect distinct 

mnemonic strategies employed. D’Argembeau and colleagues (2006) showed 

that mnemonic strategies influence the pattern of brain activation and contribute 

to interindividual differences in neural representation. Visual imagery is a 

common form of mnemonic strategy (Belardinelli et al., 2009; Bogousslavsky et 

al., 1987) and is supported by the right hippocampus (Ishai et al., 2002; Ghaem 

et al., 1997; Mellet et al., 2000). In the present study, right hippocampal activation 

was found in participants who may have explicitly applied imagery strategies to 

memorise the words.  

Paivio described the Dual-Coding theory which postulated the superiority of high-

imageability words in memory (Paivio, 1991). According to this theory, 

participants can memorise high-imageability words with two codes, the verbal 

and the visual codes. The latter consist in forming an image of the word to study. 

For low-imageability words, however, the verbal codes are most likely to be used. 

Consistent with this hypothesis, preventing visual imagery processing at retrieval 

reduces the ability to remember concrete but not abstract words from a studied 

list (Parker & Dagnall, 2009). These findings indicate that high-imageability 

words, as employed in the present study, may be processed via verbal and/or 

visual codes. 

There is evidence to suggest that visual imagery of words may be processed by 

the right hippocampus. The Dual-Coding theory may show lateralisation effects in 

brain activation, whereby low-imageability words, amenable to verbal mediation, 

are left lateralised, whereas high-imageability words which can be processed via 

both codes show more bilateral representation. Patients with right-hippocampal 

damage reportedly show visual memory impairment, but verbal memory deficits 
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are sometimes documented as well (e.g. Engle & Smith, 2010), possibly as a 

result of impaired visual imagery of verbal information. In addition, lesion studies 

have documented hemispheric lateralisation of imageability whereby patients with 

right temporal lobe damage were impaired on memory for high- but not low-

imageability words (Jones-Gotman & Milner, 1978; Villardita et al., 1988). 

However, neuroimaging studies have not been very conclusive regarding the 

lateralisation effect and do not always support the assumption that the right 

hemisphere is involved during the processing of high-imageability words (Fiebach 

& Friederici, 2004; Klaver et al., 2005; Scott, 2004). These imaging studies have 

not controlled for the participants’ mnemonic strategies (verbal mediation versus 

visual imagery), however, and these could possibly affect lateralisation above 

and beyond word property (low- versus high imageability). Despite not being 

directly investigated in the present study, right-hippocampal activation during 

memory for words may provide neural evidence of lateralisation effects of 

mnemonic strategies for high-imageability words. Further research into the effect 

of visual imagery on memory lateralisation is needed to confirm this speculation.  

Overall, the present set of results leads to the following formulation: whereas the 

left anterior hippocampus is consistently activated across individuals during 

memory retrieval irrespective of performance, inter-individual differences occur 

for activation that is specific to remembered words possibly as a result of 

differences in mnemonic strategies. Although the reason for right-sided 

hippocampal activation during verbal memory is not discernable from the present 

data, the assumption is that visual strategies may be used to support verbal 

memory.  

4.4.3 Interpreting Interindividual Variability 

With high variability in the pattern of brain activation, the question arises as to 

how a participant’s memory activation can be interpreted. Multivariate Pattern 

Analysis (MVPA) can be carried out on fMRI data to examine the distributed 

pattern of activation across voxels at the individual-subject level. MVPA exploits 

voxel-level variability within subjects and neutralises the effects of subject 

variability, and is therefore more sensitive to neural differences at the individual 

level than univariate analyses. Morcom and Henson (2017) used MVPA to study 

memory representation in healthy older adults. Whereas prefrontal activation 
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during memory was previously documented in healthy aging, Morcom and 

Henson were able to demonstrate that this activation was not compensatory and 

therefore non-specific in that it did not carry information about memory outcomes. 

The authors postulated that brain activation in the prefrontal cortex becomes less 

specific with age (Morcom & Henson, 2018). Similarly to adults, MVPA could be 

applied to healthy children to examine the functional role of each hippocampus to 

sustain memory, and, whether the left and/or the right hippocampus contains 

differential mnemonic traces. The finding from Morcom and Henson’s study, 

along with the large variability in hippocampal activation found in the present 

study, suggest that there may not be a single typical memory network, and 

instead, different regions support memory in different ways across the early age 

spectrum, and indeed across the lifespan.  

To understand the pattern of activation in children with epilepsy, it is important to 

compare the pattern of activation typically observed in children at the same age. 

However, the large variance in memory representation in the typical population 

may suggest that it is not clinically feasible to compare a single TLE patient 

against a common average. In addition, because memory representations are so 

varied in children, it is especially important to better understand whether the 

network of memory representations is focal or more diffuse, and consider the 

implications on other aspects of cognition, before decisions are made for surgical 

resection of temporal lobe structures. 

4.4.4 Relationship between Language and Memory Lateralisation 

With the present paradigm, it was possible to investigate the interaction of 

hemispheric lateralisation for language and memory functions. The findings 

showed that whereas every participant was strongly left lateralised for language, 

there was high inter-individual variability in lateralisation for memory. In addition, 

correlation analyses indicated that language and memory LIs were not related. 

These findings demonstrate that memory-related hippocampal lateralisation does 

not parallel language-related Broca’s lateralisation in children. 

The lack of co-lateralisation of cognitive functions in typically-developing children 

is in line with the study from Sepeta et al. (2016) which documented a lack of co-

lateralisation in Broca’s area and the MTL during a language task. In that study, 

in contrast to evidence of co-lateralisation in adults, in children there was left 
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lateralisation in Broca’s area, but bilateral activation in the MTL within the same 

task. The present study expands this finding by demonstrating a lack of co-

lateralisation between language and verbal memory functions.  

Whereas a relationship between language and verbal memory lateralisation is 

documented in the adult literature, the present finding does not show such a 

relationship in children and adolescents. The findings might therefore suggest a 

developmental shift in the relationship between memory and language 

lateralisation. However, hippocampal lateralisation was not related to age in the 

present study, which is inconsistent with previous findings that showed increasing 

left lateralisation in the MTL (Sepeta et al., 2016). However, differences between 

the studies might explain distinct findings. First, in their study, MTL lateralisation 

was examined during a language task, whereas in the present study 

hippocampal lateralisation was examined during a memory task. Second, the 

cohort was younger (6-13 years old) than in the present study (8-18 years old), 

and this difference might indicate that developmental changes occur before the 

age of 8. To explore this further, age-related changes in memory-related MTL 

lateralisation should be further explored in children below the age of 8 years, 

particularly if different aspects of cognitive memory emerge at different stages of 

development.  

Characterising memory networks and the relationship with language lateralisation 

provides a baseline against which the network in children with epilepsy can be 

compared. The present findings showed that language and memory networks are 

not co-lateralised in typically-developing children, underlining the importance of 

examining both networks in the patient population for the prediction of cognitive 

outcome.  

4.5 Age-Related Effects 

4.5.1 Core Recollection Network is Stable across the Lifespan 

Despite the individual differences in memory activation, there is a “core 

recollection network” that showed consistent memory activation in the present 

study and appears to be stable across childhood and adolescence. This 

recollection network comprises the left hippocampus, left temporal lobe and left 
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caudate. Similarly, the adult literature described the core recollection network 

comprising the hippocampus, parahippocampal, posterior cingulate cortex, left 

angular gyrus and mPFC which is stable across the adult lifespan (de 

Chastelaine et al., 2016). Together, these findings document brain activation 

related to memory retrieval which is stable across childhood and adulthood, 

particularly in the left hippocampus.  

Age-related effects were however found in two brain regions in the present study, 

whereby activation in the right hippocampus increases and activation in the 

mPFC decreases with age. In adults, these brain regions do not show age-

related effects, but instead the magnitude of hippocampal and prefrontal 

activation is associated with memory performance (de Chastelaine et al., 2016). 

Both the MTL and PFC have consistently been described has playing a critical 

role in episodic memory in adults (Blumenfeld & Ranganath, 2007; Staresina & 

Davachi, 2006) and children (Ghetti et al., 2010; Guler & Thomas, 2013; Ofen et 

al., 2007;  Maril et al., 2010). Both of these regions undergo structural changes 

throughout childhood and adolescence. Hippocampal volume increases with age 

(Durston et al., 2001), and this is particularly documented in the posterior 

hippocampus (Gogtay et al., 2006) which continues to grow until adolescence 

(Insausti et al., 2010). The anterior hippocampus on the other hand decreases in 

volume with age (Gogtay et al., 2006), possibly as a result of pruning. Similarly, 

the prefrontal cortex undergoes protracted development until late adolescence 

(Casey et al., 2000). Functional development of these regions is however less 

clear. 

4.5.2 Increase in Right Hippocampal Activation 

Functional development of the hippocampus might parallel the structural 

maturation documented across childhood. Age-related effects in the 

hippocampus were previously documented by Ghetti et al. (2010). Their study 

examined age-related differences in hippocampal activation during encoding of 

arbitrary associations between objects and colours in four groups of participants 

(8-year-olds, 10–11-year-olds, 14-year-olds, and young adults). The authors 

documented increased functional selectivity in the hippocampus whereby 

younger children recruit the hippocampus for item recognition (i.e. objects), but 

from the age of 14 years old, the hippocampus is selectively activated during the 
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retrieval of previously learnt associations (i.e. objects-colours). Their findings, 

along with the current finding, converge toward the interpretation that increases in 

hippocampal activation with age may reflect increased recruitment of binding 

strategies for memory (Davachi, 2006; Konkel & Cohen, 2009; Moscovitch, 

2008). 

However, other studies showed different age-related effects in the hippocampus. 

Maril et al. (2010) examined hippocampal activation with a word encoding task in 

participants aged between 7 and 19 years and showed decreases in 

hippocampal activation as age increased. As mentioned above, in their study, 

words were phonological and incidentally encoded, and retrieval was tested with 

a surprise recognition task. This study therefore tested item recognition and did 

not involve the binding of information, contrary to Ghetti and colleagues’ study 

and to the present study where semantic association at encoding was likely to 

have occurred. Ofen et al. (2007) studied participants aged between 8 and 24 

years and found strong hippocampal activation during global scene encoding, but 

did not find age-related effects in the hippocampus. Methodological differences 

across studies may explain the mixed findings observed.  

It is possible that age-related increases in hippocampal activation are less likely 

to be observed in tasks that involve global (Ofen et al.) or phonological (Maril et 

al.) processing of information rather than associative integration of information 

(Maril et al, and the present study). In addition, previous studies assessed 

retrieval with recognition tasks whereas the present study employed a recall task. 

Recall-based memory is more effortful and shows a more protracted 

development than recognition memory (Perlmutter & Lange, 1978). It is therefore 

possible that hippocampal activation shows distinct age-related effects for 

recognition and recall. Hippocampal activation related to recognition may 

decrease with age as a result of increased functional selectivity in the 

hippocampus whereby this structure becomes more specialised for the retrieval 

of associations rather than item recognition which is likely to be cortically 

mediated (e.g. Barker et al., 2007). On the other hand, activation related to recall 

may increase with age through the elaboration of binding and mnemonic 

strategies. 

More specifically, in the current study, age-related increases were particularly 

observed in the right hippocampus. Whereas the left hippocampus is recruited 
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across childhood and adolescence, the role of the right hippocampus may arise 

as children get older. As discussed above, we postulated that visual imagery may 

play a role in remembering words, and may be associated with right hippocampal 

activation. It is possible that such a mnemonic strategy is particularly developed 

in older children who may then process words via both codes (verbal mediation 

and visual imagery). On the other hand, younger children might rely solely on 

verbal mediation dependent on the left hippocampus. The present study 

therefore documents age-related changes in hippocampal activation, specific to 

the right side, which may reflect increases in visual imagery with age. In addition, 

whereas developmental changes have been demonstrated for encoding-related 

activation, the present study demonstrates age differences in retrieval-related 

hippocampal activation. 

4.5.3 Decrease in mPFC Activation  

The specific roles of subregions within the PFC are still under investigation, but it 

is assumed that the lateral PFC guides cognitive control processes at encoding 

and contributes to the elaboration of mnemonic strategies at retrieval (Badre & 

Wagner, 2007; Blumenfeld & Ranganath, 2007) which are known to develop with 

age (Durston et al., 2001). On the other hand, the medial PFC contributes to 

one’s own cognitive or affective state (Dobbins & Han, 2006; Simons et al., 

2005). 

Previous studies have demonstrated increase in lateral PFC activation with age. 

Several studies have demonstrated increase in activation during memory 

encoding, which was also associated with increased memory performance 

(Ghetti et al., 2010; Ofen et al., 2007; Wendelken et al., 2011). Similalry, increase 

in lateral PFC activation with age was also shown during memory retrieval (Guler 

et al., 2013; Paz-Alonso et al., 2008). Together, these findings converge on the 

idea that functional development of the lateral PFC contributes to age-related 

improvement in memory, possibly through the elaboration of strategic processes. 

The present study, however, showed decrease in bilateral mPFC activation with 

increasing age. Age-related effects in the mPFC are seldom documented, but 

Guler et al. showed the opposite effect with activation increase in older children, 

which they attributed to increased metamemory abilities. Instead, age-related 

decrease in mPFC activation shown in the present study may be attributable to 
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other factors. The mPFC has a role in the representation of emotions (Ochsner & 

Gross, 2014) and developmental studies have shown age-related changes in the 

contribution of mPFC to aversive stimuli across childhood and adolescence 

(Cohen et al., 2016; McRae et al., 2012; Silvers et al., 2017). It is possible that 

older children show decreased mPFC activation during the retrieval of neutral 

words for which an emotional response is not necessary, whereas older children 

show mPFC activation for both neutral and aversive stimuli. Cassidy et al. (2014) 

showed age-related differences in mPFC activation in adults, where older adults 

showed increased activation during encoding compared to young adults. The 

authors attributed this effect to increased focus on the emotional aspect of the 

material in older adults. Similarly, age-related decrease in mPFC activation 

shown in the present study may reflect reduced focus on emotional aspects of 

information during word retrieval. However, this interpretation remains weak 

considering the studied list did not contain emotional words. 

Another interpretation relates to the self-referential role of episodic memory, 

which relies on the mPFC (Denny et al., 2012; Martinelli et al., 2013; Northoff & 

Bermpohl, 2004). Self-referential processing at encoding consists of linking the 

items to be learned with personal information or knowledge, for example 

retrieving an autobiographical memory related to a word presented. Self-

referential processing enhances memory retrieval (Serbun et al., 2011) and its 

influence on memory is shown across the adult lifespan (Kalenzaga et al., 2015). 

In children, self-referential processing at encoding also enhances memory 

retrieval (Cunningham et al., 2014; Sui & Zhu, 2010) but it is unclear whether this 

strategy is applied spontaneously and if so, whether there are developmental 

changes in its spontaneous usage. Children’s memories are more self-referential 

than memories in adolescents, and have more references to children’s cognitive 

and affective state (Fivush & Zaman, 2014). In this respect, whereas in younger 

children, word retrieval might spontaneously trigger self-reference context 

associated with the words learned at encoding, older children might show 

reduced self-referencing. In other words, decreased mPFC activation with age 

might reflect a decrease in the contribution of self-related processes during 

memory and an objective retrieval of words.  

These interpretations remain speculative at this point, and warrant further 

investigation. However, age-related functional changes may indicate more 
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selective recruitment of the PFC and reflect a shift from diffuse to focal activation 

with age (Durston et al., 2006). Younger children show activation throughout the 

lateral and medial PFC, but older children show more focal activation with 

activation in the DLPFC only.  

4.6 Additional Clinical Implications for Paediatric TLE 

Identifying a typical network of memory encoding and retrieval offers a baseline 

against which comparisons to the network in patients with TLE (who are 

candidates for surgery) can be made. The present study demonstrates 

deactivation of the primary hub of the Default Mode Network (DMN). Encoding-

related deactivation was found in the parahippocampal gyri bilaterally and 

retrieval-related deactivation was found in the PFC and the right inferior temporal 

cortex. These regions are part of the DMN (Ward et al., 2014; Uddin et al., 2013), 

and it is thought that the suppression of the DMN is functionally important for 

goal-directed cognition (Anticevic et al., 2012). Task-induced deactivation of the 

DMN enables allocation of resources for successful encoding of information, and 

is associated with memory formation (Chai et al., 2014). For example, 

deactivation of the PFC is associated with successful retrieval in healthy adults 

(e.g. Balardin et al., 2015; Otten & Rugg, 2001) and children (Guler & Thomas, 

2013). Identifying the pattern of deactivation related to successful memory is 

critical as it suggests the ability to deactivate specific brain regions for successful 

encoding and retrieval of information. 

Failure to deactivate regions that form the DMN may be associated with poor 

memory performance (Anticevic & al., 2010). It has been shown that epileptic 

discharges affect the DMN (Fahoum et al., 2013) and, more specifically, TLE with 

HS is associated with decreased functional connectivity within the DMN (Liao et 

al., 2011). Such abnormalities in DMN may contribute to cognitive deficits in 

children with epilepsy (Wang et al., 2017). Compared to healthy controls, patients 

with TLE have different patterns of activation and/or deactivation and this has 

been documented both in adult TLE (Stretton et al., 2012), and paediatric TLE 

(Mankinen et al., 2015). The absence of deactivation in specific regions may 

serve as a possible predictor of post-operative memory impairment. These 

patterns may be associated with their memory impairments, providing predictions 

of memory outcome after surgery. This novel fMRI protocol is therefore able to 
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define activation and deactivation related to memory in typically-developing 

children and can be applied in clinical settings to guide surgical decision-making. 

5 Limitations 

Overt responses were used in the present paradigm in order to monitor 

performance and conduct event-related analyses. Whereas this has advantages 

in terms of identifying neural correlates that are specific to successful memory, it 

may come at the cost of speech-related artefacts. However, pre-processing steps 

were implemented (e.g. FIACH, see Chapter 5, section 2.7, page 154) in order to 

reduce these artefacts. In addition, Chapter 5 investigated the impact of such 

motion related artefact on fMRI signal and did not show significant detrimental 

effects.   

Low statistical thresholds (p<0.01) were used to look for trends that are non-

significant, but may be promising indicators for future work. Such low threshold 

produces large clusters of activation over multiple anatomical regions and runs 

the risk of leading to false positives (Cremers et al., 2017; Woo et al., 2014). 

However, whereas the thresholded t maps were used to display whole brain 

activations, statistical analyses were carried out on ROIs independent of an 

arbitrarily defined thresholds. In view of the a priori hypothesis, LI calculations 

and beta extractions were carried out in the hippocampus, limiting the number of 

statistical tests (Poldrack, 2007). This study was the first to investigate 

hippocampal activation related to recall memory in children and remains 

exploratory. The findings should therefore be interpreted with caution and 

additional research with bigger sample sizes are now needed to confirm the 

preliminary findings, possibly using a more stringent statistical threshold.  

6 Conclusions 

The present study is the first to investigate language and memory networks within 

one paradigm in children and adolescents. The study demonstrated several 

interesting findings. First, hippocampal activation was shown during word 

encoding irrespective of memory retrieval, possibly reflecting the binding of 

information irrespective of subsequent retrieval. Second, the trends observed in 

this study may indicate functional segregation of the hippocampus with a role of 

the anterior region in memory retrieval. Third, there was a large variability in 
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memory lateralisation across individuals, which may be attributable to distinct 

mnemonic strategies employed. This finding has particular clinical implication as 

it indicates that it is critical to examine how a patient represents memory before 

surgical decision-making for the resection of the temporal lobe. In addition, as a 

result of this large interindividual variability in memory lateralisation, there was no 

significant relation with language lateralisation which was strongly left lateralised 

across individuals. Similarly, this finding holds important clinical relevance by 

indicating that the neural representation of the two functions should be examined 

prior to surgery and that memory lateralisation cannot be predicted based on 

language lateralisation. Finally, despite individual differences in memory 

activation, the present study demonstrated a core recollection network that 

appears to be stable across childhood and adolescence. Age-related changes 

were however shown in some brain regions, namely increases in right 

hippocampal activation and decreases in mPFC activation with age. Together, 

these findings provide interesting theoretical implications regarding the 

development of the memory network and its relation to language lateralisation, as 

well as clinical implications regarding surgical decision-making in childhood TLE.  

7 Future Directions  

The clinical utility of the combined language/memory fMRI protocol will be verified 

by administering the paradigm to children with TLE. The ability of children with 

cognitive impairments to perform the tasks inside the scanner will be tested, as 

this has an impact on the possibility to conduct event-related analyses. In 

addition, the ability of the fMRI protocol to identify eloquent cortex subserving 

critical functions at the individual level will be verified. 
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Chapter 7 

Pilot of the Language/Memory 
fMRI in Childhood TLE 

 

In the present chapter, the language/memory fMRI paradigm was piloted in a 

sample of paediatric patients with TLE who were candidates for surgery. The 

clinical aim of this protocol is to improve pre-surgical mapping of cognitive 

functions and improve prognostication of verbal memory outcome after surgery 

for TLE. In order to test face validity of this paradigm before it can be used 

clinically, several hypotheses were postulated on the basis of adult fMRI studies 

and knowledge on the effects of early age at onset of epilepsy, and examined in 

the present chapter.  
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1 Introduction 

As discussed in Chapter 1 (section 4.5.2, page 22), functional MRI (fMRI) is a 

useful pre-surgical tool for language and memory mapping to guide surgical 

decision and predict cognitive outcome in patients with Temporal Lobe Epilepsy 

(TLE) (Bonelli et al., 2010; Janszky et al., 2005; Sidhu et al., 2015; Rabin et al., 

2004). Memory fMRI has been used for surgical decision-making in adult TLE, 

but not yet for paediatric TLE. As discussed in Chapters 5 and 6, I developed a 

combined language/memory fMRI protocol which was validated in a sample of 

typically-developing children aged 8-18 years. The aim of this chapter was to pilot 

the protocol in a sample of paediatric patients with TLE who are candidates for 

surgery. Verbal memory is particularly vulnerable in patients with TLE (as 

opposed to non-verbal memory) (Baxendale et al., 2007; Gleissner et al., 2002; 

Helmstaedter & Elger, 1993; Khalil et al., 2016; Mueller et al., 2012), although 

see Chapter 4 for a discussion. In addition, one of the aims of the protocol is to 

characterise co-lateralisation of language and memory functions. For these 

reasons, verbal memory will be the focus of the present chapter. 

1.1 Mapping of Memory Functions in Adult TLE 

1.1.1 Contralateral Reorganisation  

Numerous studies have shown evidence of functional compensation in the 

context of unilateral brain pathology, leading to bilateral representations of 

cognitive functions. Functional correlates of verbal memory are often bilaterally 

activated in TLE (Towgood et al., 2015). Patients with right TLE have more 

bilateral representations of language and memory functions than left TLE and 

healthy controls (Sidhu et al., 2015; Sidhu et al., 2016), although patients with left 

TLE can show bilateral activation (Koylu et al., 2006; Milian et al., 2015; Sidhu et 

al., 2015). Bilateral activations documented in these studies indicate that 

functional representations are less lateralised in patients with TLE.  

Similarly to contralateral reorganisation of language (Hamberger & Cole, 2011), 

inter-hemispheric reorganisation of memory can occur in TLE with activations in 

homologous regions in the right hemisphere (Powell et al., 2007). Patients with 



Chapter 7: Language/memory fMRI in paediatric TLE 
 

 

Buck 221 
 

left TLE often show greater right hippocampal activation compared to the left, for 

verbal memory (Jokeit et al., 2001; Richardson et al., 2003; Golby et al., 2002; 

Powell et al., 2007). Strandberg and colleagues investigated verbal memory 

activations in left and right TLE patients and demonstrated a greater proportion of 

right-sided Medial Temporal Lobe (MTL) activation for verbal memory in patients 

with left TLE (N=6/8) compared to right TLE (N=2/6) (Strandberg et al., 2017). 

This difference in the laterality of memory impairments suggests functional 

reorganisation of verbal memory to the right hemisphere in left TLE cases. 

Contralesional lateralisation of memory can indicate functional reorganisation 

(Richardson et al., 2003) or simply reduced activation ipsilateral to the seizure 

onset (Detre et al., 1998; Golby et al., 2001; Janszky et al., 2005). Nonetheless, 

localising and lateralising critical cognitive functions before surgical intervention 

can spare essential brain regions and limit detrimental effects on language and 

memory functions. 

1.1.2 Ipsilateral Reorganisation  

In addition to contralateral reorganisation of memory, ipsilateral reorganisation is 

observed in adult patients with left TLE (Bonelli et al., 2013; Sidhu et al., 2015; 

Sidhu et al., 2016). A shift of activation to posterior portions of the hippocampus 

is associated with early onset of seizures (Sidhu et al., 2015), and may therefore 

be commonly observed in paediatric patients. Such ipsilateral reorganisation of 

memory is protective of memory impairment after anterior temporal lobe 

resection, more so than contralateral reorganisation (Sidhu et al., 2015). These 

findings indicate that distinct patterns of functional reorganisation may occur in 

the context of TLE and that ipsilateral reorganisation may be more benefitial for 

the preservation of functions than contralateral reorganisation.  

1.1.3 Co-Lateralisation of Language and Memory 

As discussed in Chapter 6, co-lateralisation of language and verbal memory 

functions is often documented in healthy adults reflecting lateralisation of verbal 

functions to the left hemisphere (e.g Weber et al., 2007). Numerous studies have 

demonstrated hemispheric specialisation for language processing in healthy 

adults, with language lateralising to the left hemisphere (Josse & Tzourio-

Mazoyer, 2004; Knecht, 2000; Springer et al., 1999). Similarly, material-specificity 
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in the medial temporal lobe (MTL) is documented for memory processing, with 

verbal and visual memory surbserved by the left and right MTL, respectively 

(Golby et al., 2001; Kelley, 1998; Shallice, 1994). Despite high occurrence of 

concordance between language and verbal memory lateralisation in healthy 

adults, discrepancies are sometimes documented. For example, an MEG study 

demonstrated co-lateralisation of language and verbal memory in 6 of the 10 

controls (60%) (Pirmoradi et al., 2016), with the remaining showing atypical 

(bilateral or right) lateralisation of language. These findings indicate a clear 

relationship between language dominance and material-specific lateralisation in 

the MTL in healthy adults, although discrepancies are sometimes shown.  

In adult TLE, whereas reorganisation of language and verbal memory often 

occurs jointly, discrepancy of lateralisation is sometimes shown, with only one 

function reorganising. Strandberg and colleagues (2017) documented a 

considerable proportion (N=5/8) of left TLE patients who showed left lateralisation 

of language in Broca’s area but right lateralisation of verbal memory in the MTL. 

Golby and colleagues documented language and memory lateralisation in adult 

patients with TLE, with 7 out of 9 patients showing discrepancy of lateralisation 

(Golby et al., 2002). Similarly, Pirmoradi et al. (2016) demonstrated co-

lateralisation of language and verbal memory in only 5 out of 13 adult TLE 

patients (38%). Interestingly, there is evidence to suggest that the relation 

between language and memory lateralisation may depend on the underlying 

pathology. Kovac et al. (2009) demonstrated that patients with hippocampal 

damage showed less correspondence between language and memory 

lateralisations than patients with cortical damage (Kovac et al., 2009). Similarly, 

patients with hippocampal pathology show higher occurrence of atypical 

language organisation (Knecht, 2004; Jansky et al., 2003; Liegeois et al., 2004; 

Weber et al., 2006). These findings suggest that language and memory may 

reorganise independently, and even in cases where language remains left-

lateralised, verbal memory can reorganise to the contralateral hemisphere 

(Strandberg et al., 2017). Investigating the neural correlates for both functions is 

therefore critical prior to surgical intervention.  
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1.1.4 Effect of Mesial Pathology  

Evidence suggests the role of the underlying neuropathology in the functional 

reorganisation of memory. Functional reorganisation of memory to the 

contralateral hippocampus is documented in patients with Hippocampal Sclerosis 

(HS) (Richardson et al., 2003; Sidhu et al., 2013; Sidhu et al., 2015). Similarly, 

Richardson and colleagues documented more left hippocampal activation during 

word encoding in patients with less severe left hippocampal pathology 

(Richardson et al., 2004). Moreover, significant relations between hippocampal 

volume and fMRI activations indicate that the degree of functional reorganisation 

is proportional to the extent of hippocampal damage (Powell et al., 2007). The 

latter study demonstrated this observation in both left and right TLE patients for 

verbal and visual memory, respectively. These findings indicate that the 

underlying brain pathology has a role in the functional reorganisation of memory, 

with mesial pathology associated with greater functional reorganisation of 

memory than cortical pathology. TLE with HS is associated with earlier age at 

onset than TLE without HS (Engel, 1993; Weiser et al., 1993); the presence of 

hippocampal pathology (i.e. HS) may therefore be associated with greater 

functional reorganisation as a result of early age of brain insult.  

1.2 Mapping of Memory Functions in Children 

Investigation of the effect of hippocampal damage on functional representation of 

memory in children is limited. In paediatric epilepsy, functional MRI studies have 

not yet investigated memory organisation, and have instead focused on the 

representation of language processing. Atypical language lateralisation is 

relatively frequent in children with TLE. For example, Yuan and colleagues 

documented atypical lateralisation in 78% of children with TLE compared to only 

11% in age-matched controls (Yuan et al., 2006). It is possible that reorganisation 

of memory function may also occur, as documented in adult TLE, and should be 

investigated alongside language lateralisation. 

Compared to adults with TLE, children with TLE may be prone to greater bilateral 

representation of functions as a result of greater potential for brain plasticity 

and/or more extensive brain pathology. It has been shown that children with TLE 

show greater occurrence of atypical language lateralisation compared to adults 



Chapter 7: Language/memory fMRI in paediatric TLE 
 

 

224        Buck 
 

with TLE (de Ribaupierre et al., 2012). The same pattern may be true for 

memory.  Sidhu and colleagues demonstrated that early age at onset of seizures 

(age range 3-25 years) was associated with bilateral verbal memory 

representation in the temporal lobes in adults with left TLE (Sidhu et al., 2015). 

Such a pattern of activation may be specifically associated with early onset of 

pathology. Children with hippocampal damage as a result of congenital 

hypothyroidism recruit additional bilateral hippocampus to maintain memory 

(Wheeler et al., 2011). The authors showed that the volume of the left 

hippocampus is correlated with visual memory and the volume of the right 

hippocampus is correlated with verbal memory. Similarly, patients with 

developmental amnesia who have selective bilateral hippocampal damage 

sustained by perinatal hypoxic-ischemic events show bilateral activations for 

memory retrieval. These patients show similar memory-related activations as 

healthy controls but also show additional activations in homologuous regions in 

the right hemisphere (Maguire et al., 2001). As such, it is possible that children 

with TLE exhibit stronger bilateral representation of memory, as a result of early 

acquired pathology/onset of seizures. Children with TLE may develop mnemonic 

strategies to support memory, reflecting plastic changes in response to early 

acquired pathology in the hippocampus, to counteract the noxious effects of early 

hippocampal damage. From a clinical perspective, it is important to assess the 

ability of the contralateral hippocampus to sustain memory, as this has 

implications for the prediction of memory outcome after surgery. 

Whereas contralateral reorganisation of verbal memory is more frequent in adults 

with left compared to right TLE, consistent with material-specific deficits, the 

pattern of functional reorganisation may be different in paediatric TLE. Material-

specificity of memory impairments is not always documented in children with 

hippocampal damage (Engle & Smith, 2010; Gold & Trauner, 2014) and Saling 

suggested that verbal and non-verbal memory are not entirely lateralised (Saling, 

2009). As such, lateralisation of verbal memory in children with TLE may be less 

dependent on the side of pathology than in adult TLE. If bilateral representation 

of verbal memory is to be found in paediatric TLE irrespective of lesion side, this 

can explain the finding that material-specific memory impairments are less 

pronounced in the younger population. Contralateral reorganisation of memory in 

paediatric TLE as a function of side of pathology should therefore be 

investigated. 
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In addition to contralesional hippocampus subserving memory, the contribution of 

the damaged hippocampus to memory retrieval has previously been investigated 

in children. Maguire et al. assessed the functionality of the remaining 

hippocampal tissue and its contribution to memory retrieval in a patient with 

developmental amnesia. This patient, Jon, has severe episodic memory 

impairments in the context of good general knowledge. Despite great bilateral 

volume reduction in the hippocampus, Jon showed hippocampal activation during 

autobiographical retrieval (Maguire et al., 2001). This finding provides evidence of 

the functionality of the damaged hippocampus and its contribution to memory 

retrieval. It is possible that in children with TLE, functional activation in the 

damaged hippocampus occurs to sustain memory retrieval, reflecting some 

functionality remaining in the residual hippocampal tissue. This would have 

critical implication as, in such cases, surgical removal of the damaged 

hippocampus may cause memory impairment. It is therefore of importance to 

examine the functional capacity of the remnant tissue of the damaged 

hippocampus in children with TLE prior to surgical intervention.  

1.3 Predicting Cognitive Outcome 

A goal of this language/memory fMRI protocol is to provide useful information 

regarding memory localisation prior to surgery in order to guide surgical decision 

and help predict cognitive outcome, and identify those patients who will be at risk 

of severe memory impairment after temporal lobectomy. Verbal memory decline 

is often reported after surgery in the left temporal lobe (see (Lah, 2004) for a 

review). However, after an initial post-operative decline, paediatric patients are 

reported to recover from their memory deficits and reach pre-operative 

performance standards within one year (Gleissner et al., 2005). Gleissner and 

colleagues however showed a big variability in verbal memory outcome, which is 

associated with the integrity of the left temporal lobe. This suggests the need for 

tailored resection of the structures that are critical to memory. Identifying 

functional organisation prior to surgical intervention could therefore guide tailored 

resection and limit detrimental loss of memory after surgery.  

The present protocol identifies prominent activations in temporal lobes, both in 

the MTL and lateral regions (Chapter 6). More specifically, activations in the 

anterior temporal lobes are related to successful memory and are known to have 
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a role in semantic integration. Surgical intervention for TLE often involves 

resection of the anterior temporal lobes; for that reason, functional representation 

in those regions may provide crucial clinical information prior to surgery. This 

protocol therefore has the potential to provide useful clinical information for 

predicting outcome after surgery in the temporal lobe in TLE.  

Numerous studies have demonstrated the utility of memory fMRI to predict 

memory outcome in adult TLE after surgery (see (Binder, 2012) for a review). 

Binder and colleagues demonstrated that verbal memory fMRI paradigms, as 

used by Bonelli, Powel and Richardson, have higher predictive value for verbal 

memory outcome than the scene encoding tasks used by Binder, Frings and 

Rabin (Binder et al., 2010; Bonelli et al., 2010; Frings et al., 2008; Rabin et al., 

2004; Richardson et al., 2004; Powell et al., 2008). Bonelli and colleagues 

showed particularly promising findings (Bonelli et al., 2010). These authors used 

MTL activation asymmetry during word encoding and predicted about 20% of the 

variance in memory changes from pre- to post-surgery. They showed greater 

verbal memory decline associated with greater pre-operative asymmetry to the 

left anterior MTL. Moreover, they showed that less decline was associated with 

greater asymmetry to the left posterior MTL, suggesting that ipsilateral 

reorganisation to posterior portions of the hippocampus is protective of memory 

decline. Similarly to the adult patient population, memory fMRI may prove itself 

useful in determining the risks of surgery and predicting outcome in children with 

TLE, but this has not yet been applied to children.  

1.4 Aims and Hypotheses 

The aim of this chapter is to pilot the language/memory fMRI protocol, described 

in the previous chapter, in a representative sample of paediatric patients with TLE 

who are candidates for surgery. The language/memory fMRI protocol was 

discussed in Chapter 5, and the neural network associated with word recall in 

typically-developing children was demonstrated in Chapter 6.  

Healthy children aged 8-18 years performed well in both tasks inside the scanner 

regardless of age (Chapter 6, section 3.1, page 189). Children with intractable 

epilepsy are at risk of cognitive deficits (Bailet & Turk, 2000), and may find the 

protocol challenging. Poor in-scanner performance reduces the number of “hits” 
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relative to “misses” and impedes the ability to investigate brain activation using 

event-related analyses. The first aim of this chapter was therefore to determine 

whether children with TLE could perform the task to provide enough hits and 

misses trials for event-related analyses to be powered. 

The language task of the protocol was validated against the clinical verb 

generation protocol currently used at Great Ormond Street Hospital by examining 

correspondence between the language networks and the language lateralisations 

across the experimental and clinical protocols. The ability of the protocol to show 

hippocampal activation at the individual-level was also investigated. In addition, 

several hypotheses regarding memory activations were generated for the current 

paediatric sample: 

a) Co-lateralisation of language and memory functions: functional 

organisation of memory will not necessarily be related to language 

lateralisation in all patients.  

b) Lateralisation of verbal memory based on side of pathology: memory 

lateralisation will not be related to side of pathology.  

c) Anterior versus posterior hippocampal activation: posterior hippocampal 

activation is expected to be found in both left and right TLE patients. 

d) Functional reorganisation as a function of type of pathology: there will be 

more contralateral reorganisation in cases where the lesion encroaches 

on mesial regions (i.e. MTL), and less in cases of damage to lateral 

temporal lobes. 

2 Methods 

2.1 Participants 

Five patients with intractable TLE were recruited from Great Ormond Street 

Hospital for Children in London, UK, and were administered the 

language/memory fMRI protocol. These patients were diagnosed with left (N=2), 

right (N=2) or bilateral (N=1) TLE with various aetiologies, and were candidates 

for surgical intervention. Clinical characteristics of these patients are reported in 

Table 7.1. The participants were aged between 12 to 18 years and were part of 



Chapter 7: Language/memory fMRI in paediatric TLE 
 

 

228        Buck 
 

the sample investigated in Chapter 4 regarding their performance on the Pair 

Games.  

Appendix F (page 365) provides the structural MRI scans (coronal and sagittal 

views) for each patient. 

Table 7.1 Clinical Characteristics of Patients. 

 
Side of 

pathology 
Aetiology 

Seizure 
onset 

(age in 
years) 

Age Gender 

Case 1 Right  HS 2 16 F 

Case 2 Right Porencephalic cyst in temporal lobe 9 16 F 

Case 3 Bilateral HS 9 16 M 

Case 4 Left  HS 8 12 F 

Case 5 Left DNET in temporal lobe 11 16 F 

 

For comparison purposes, data related to functional lateralisation from these 

patients were compared to that from typically-developing children documented 

and discussed in Chapter 6. The sample of controls consisted of 27 children and 

adolescents aged between 8 and 18 years (see Chapter 6, section 2.1, page 

184). Due to the slightly older age of the patient cohort compared to the control 

cohort, the patient data was also compared to that of an age-matched subsample 

of the control group (age 12-18 years) but did not yield different results. In 

addition, it was shown in Chapter 6 that memory lateralisation was not age-

dependent. 

2.2 fMRI Protocol 

The fMRI protocol was fully described in Chapter 5. Figure 7.1 illustrates the 

procedure, which involves a verb generation task, a baseline task and a cued 

recall task. Functional images were acquired and pre-processed as per Chapter 5 

(sections 2.6 and 2.7, page 153).  
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Figure 7.1 Procedure of fMRI protocol. 

2.3 Imaging Analyses 

Imaging analyses were carried out as per chapter 6 (section 2.4, page 185). 

Language-related activations were investigated using block analyses with 2 

regressors of interest (Table 7.2). Memory-related activations were investigated 

using event-related analyses with 5 regressors of interest (Table 7.3). Due to the 

small sample size (N=5), no statistical analyses were carried out and instead, 

observational analyses were conducted. 

Table 7.2 Description of each regressor in block-analyses. 

 

 

 

Table 7.3 Description of each regressor in event-related analyses. 

 

2.3.1 Clinical versus Experimental Language Protocols 

To validate the language task, the brain activation from the language task in the 

experimental protocol was compared to that of the clinical protocol. Both of these 

Regressors  Description  

Language (L) Verb generation task  
Baseline (B) Baseline task: odd/even decision to numbers  
Memory (M) Cued recall task, irrespective of performance 

Regressors  Description  

Subsequent Hits (SH) Activation during the encoding of words that were later retrieved  
Subsequent Misses (SM) Activation during the encoding of words that were later forgotten 
Baseline Baseline task: odd/even decision to numbers  
Hits (H) Activation during the successful retrieval of words 
Misses (Mi) Activation during the unsuccessful retrieval of words 
Correct rejection (CR) Activation during correct rejections of words at retrieval  
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protocols involve overt language tasks allowing direct comparisons. Three 

patients out of the sample of five were administered both protocols, in separate 

scanning sessions, for whom comparison of language-related activation was 

made possible. Language LIs were calculated in Broca’s area for each patient in 

both protocols and lateralisation indices (LIs) were calculated and compared 

between the two protocols for each patient. 

A height threshold of p<0.05 (FWE), corrected, was used for the experimental 

protocol, and a lower threshold (p<0.01, uncorrected) was used for the clinical 

protocol in order to obtain activation in language brain regions.  

2.3.2 Individual-Level Hippocampal Activation 

The ability of the fMRI paradigm to show individual-level activation in the 

hippocampus was investigated for both encoding-related (“SH>SM”) and 

retrieval-related contrasts (“H>Mi+CR”). Whole-brain analyses are reported at 

height threshold p<0.05, uncorrected, for each individual patient separately. 

2.3.3 Co-Lateralisation of Language and Memory Functions 

To test co-lateralisation of functions, LIs were calculated for language and 

memory in several Regions of Interest (ROIs), namely Broca’s area, the temporal 

lobe and anterior and posterior hippocampi. The LIs were calculated using the LI 

toolbox (Wilke & Lidzba, 2007), where:  

LI =
∑ activation𝑙𝑒𝑓𝑡 − ∑ activation𝑟𝑖𝑔ℎ𝑡

∑ activation𝑙𝑒𝑓𝑡 + ∑ activation𝑟𝑖𝑔ℎ𝑡
 

Values above 0.2 represent left lateralisation, LIs below 0.2 represent right 

lateralisation and values between -0.2 and 0.2 indicate bilateral representation. 

The categorisation of LI values (left, right, bilateral) was compared between 

language and memory for each patient.   

Language and memory LIs were calculated for the contrasts “L>B” and “M>B”, 

respectively. Memory LIs were investigated for block-analyses rather than event-

related analyses 1) for better comparison with language LIs, and 2) because 

typically-developing children were more left lateralised in block- compared to 

event-related contrasts (Chapter 6) making it a better investigation of changes in 

memory lateralisation in children with TLE. 
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2.3.4 Lateralisation of Verbal Memory based on Side of Pathology 

Memory LIs were calculated in several hippocampus ROIs (full, anterior and 

posterior hippocampus) as described in Chapter 6 (section 2.4.6, page 188). The 

LIs were investigated for memory retrieval (contrast “M>B”). LI values were 

investigated with the block contrast since this is the one that is the most 

lateralised in the typically-developing sample (see Chapter 6, section 3.6, page 

196). LI values for event-related contrasts were varied and all over the spectrum, 

making it difficult to interpret values from TLE patients.  

These LI values were investigated in light of side of pathology (left versus right). 

The proportion of cases showing left, right or bilateral activations for verbal 

memory was compared to the proportion documented in healthy controls 

(Chapter 6, section 3.6, page 196).  

2.3.5 Anterior versus Posterior Hippocampal Activation 

Beta weights related to memory retrieval were extracted from anterior and 

posterior hippocampus masks, as described in Chapter 6 (section 2.4.5, page 

188), for the contrast “H>Mi+CR” because typically-developing children show 

stronger anterior than posterior hippocampal activation for that specific contrast 

(Chapter 6). For visual purposes, values from the posterior hippocampus were 

subtracted from values from the anterior hippocampus to indicate, for each 

patient, in which portion (anterior versus posterior) memory shows the highest 

beta values. These individual values were compared to the control group’s value. 

2.3.6 Effect of Type of Pathology on Functional Reorganisation 

Memory LI values (for the contrast M>B) were investigated for each patient in 

several masks, namely the hippocampus (full, anterior and posterior) and the 

temporal lobe. These values were investigated in light of the underlying 

pathology (mesial versus cortical). The proportion of patients with mesial 

pathology showing contralateral reorganisation of memory will be compared to 

that of patients with cortical pathology.  
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3 Results 

3.1 Behavioural Performance 

Despite lower cognitive abilities than controls on measures of memory and 

intellectual functioning, all patients were able to perform the tasks inside the 

scanner. For the language task, they successfully generated a verb for 72 to 92% 

of the nouns heard (Table 7.4). For the memory task, they successfully 

remembered between 45% and 87% of the words and successfully rejected 

100% of the foils.   

Table 7.4 In-scanner language and memory scores, expressed in percentages. 

 

 

 

 

3.2 Language Activation in Clinial versus Experimental 

Protocol  

Table 7.5 provides language LIs calculated in Broca’s area in the clinical and 

experimental protocols. The classification of LIs (left/right/bilateral) is consistent 

between protocols for each patient.  

Table 7.5 Language LI in Broca’s area during clinical and experimental VG tasks. 

 

 

 

Thresholded SPM maps are illustrated in Figure 7.2. The VG task from the 

experimental protocol activated similar regions to the language task from the 

clinical protocol, namely Broca’s area, Wernicke’s area and the cingulate gyrus.  

 
Verb 

generation  
Hits 

Correct 

rejections 

Case 1 77 78 100 
Case 2 75 77 100 
Case 3 72 87 100 
Case 4 83 45 100 
Case 5 92 70 100 

 
Clinical 

protocol 

Experimental 

Protocol 

LI 

classification 

Case 3 -0.73 -0.98 Right  
Case 4 0.57 0.90 Left  
Case 5 0.40 0.93 Left  
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Figure 7.2 Correspondence of language activations with the clinical and experimental 
protocols. SPM maps for clinical protocols are displayed at p<0.01, uncorrected, and for 
experimental protocols at p<0.05(FWE), corrected. 

3.3 Individual-Level Hippocampal Activation 

Figure 7.3 illustrates encoding-related and retrieval-related hippocampal 

activation for each case separately. The results show encoding-related activation 

in 4/5 cases and retrieval-related activation in 4/5. 
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Figure 7.3 Encoding- and retrieval-related hippocampal activation for each case at 
p<0.05, uncorrected. 

3.4 Co-Lateralisation of Language and Memory 

Functions  

Language and memory LI values are displayed in Table 7.6 for each case. 

Language was left lateralised for 4/5 TLE patients. Case 3, who had bilateral 

TLE, showed right lateralisation in Broca’s area. For memory, laterality was 

varied across patients in both the hippocampus and the temporal lobe. Three out 

of four cases with left lateralisation of language showed bilateral or right 

lateralisation of memory in the hippocampus, and only case 4 demonstrated co-

lateralisation language and memory patterns. The pattern of lateralisation is 

different between the anterior and posterior hippocampus ROI and will be 

investigated further below. Figure 7.4 illustrates language and memory LIs for 

each individual patient, colour-coded for lesion location. 

Table 7.6 Categorisation of LI values for language (L>B) and memory (M>B) in several 

ROIs (Broca’s area, temporal lobe (TL), hippocampus (H)). 

 
Side of 

pathology 

Language Memory 

Broca’s TL H 
Anterior 

H 
Posterior  

H 
TL 

Healthy 
controls  

 
0.79 0.64 0.32 0.46 0.28 0.37 

Case 1 Right  0.87 0.87 -0.78 -0.64 -0.77 0.67 
Case 2 Right  0.98 0.64 0.22 .08 .88 .68 
Case 3 Bilateral  -0.8 0.38 -.12 .01 -.60 -.09 
Case 4 Left  0.90 0.80 .56 -.52 .65 .63 
Case 5 Left  0.93 0.75 -0.5 -.56 .85 -.05 
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Figure 7.4 Language (contrast “L>B”) and memory (contrast “M>B”) LIs for each 
individual case, colour-coded for lesion location. Language and memory LIs were 
calculated in Broca’s area and the hippocampus, respectively.  

3.5 Lateralisation of Verbal Memory based on Side of 

Pathology 

In the typically-developing sample (Chapter 6), the majority of children were left 

lateralised in the anterior hippocampus for memory (N=22), with some showing 

right lateralisation (N=3), and other bilateral representations (N=2). Three out of 

five patients with TLE (left and right TLE), however, showed right lateralisation for 

memory. Cases 2 and 3 (right and bilateral TLE, respectively) showed symmetric 

bilateral activations of memory. Figure 7.5 provides an illustration of the memory 

LI for each case, colour-coded for the lesion location.  
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Figure 7.5 Distribution of memory LIs for controls (grey) and TLE patients (colour-coded 

based on lesion location), for memory retrieval (contrast “M>B”). 

 

In the posterior hippocampus, the LI values in the typically-developing sample 

were more varied and spreadout along the spectrum. In the clinical sample, three 

patients showed left lateralisation (cases 2, 4 and 5), whereas the other two 

(cases 1 and 3) showed right lateralisation. None of the patients showed 

symmetric bilateral activations in the posterior hippocampus.   

3.6 Anterior versus Posterior Hippocampal Activation 

The difference between anterior and posterior hippocampus beta weights 

provides an indication of anterior versus posterior activation for each case. 

Positive values indicate higher betas in anterior compared to posterior 

hippocampus. Figure 7.6 illustrates difference in beta weights between anterior 

and posterior hippocampi for each case. 

The grey line represents the value from healthy controls and indicates stronger 

anterior than posterior hippocampal activation. All but one patient showed less 

anterior hippocampal activation compared to controls. Cases 4 and 5, with left 

TLE, showed particularly stronger activation in the posterior compared to the 

anterior hippocampus. Case 3 who has bilateral HS, on the other hand, showed 

stronger activation in the anterior compared to the posterior hippocampus.  
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Figure 7.6 Beta weights related to successful memory retrieval for each TLE case. Beta 
weights were extracted from anterior and posterior hippocampi ROIs. The grey line 
indicates the mean beta weights from healthy controls. Positive values indicate higher 
betas in anterior (A) compared to posterior (P) hippocampus ROI. 

3.7 Memory Reorganisation as a Function of Type of 

Pathology 

One of the hypotheses postulated functional reorganisation particularly in cases 

where the lesion encroaches on the MTL, and less in cases of damage to cortical 

regions. Cases 1, 3 and 4 have HS, whereas cases 2 and 5 have damage to 

cortical regions of the temporal lobe. Apart from case 4, cases with HS show right 

lateralisation in the posterior hippocampus, whereas the two cases with cortical 

damage show left lateralisation in the posterior hippocampus (Table 7.7). The 

pattern of functional reorganisation as a function of pathology is not as clear in 

the anterior hippocampus.  

Table 7.7 Classification of memory LIs (left, right, bilateral) in the anterior and posterior 

hippocampi for memory retrieval (contrast M>B), for each case  

 

  Pathology 

Anterior 

hippocampus 

(LI) 

Posterior 

hippocampus 

(LI) 

Case 1 Mesial -0.64 -0.77 
Case 2 Cortical  .08 .88 
Case 3 Mesial .01 -.60 
Case 4 Mesial -.52 .65 
Case 5 Cortical -.56 .85 
NCs  0.46 0.28 
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3.8 Summary of Findings 

Several hypotheses regarding memory activations were generated for the 

paediatric sample. Table 7.8 provides a summary of the findings corresponding to 

each hypothesis. 

Table 7.8 Summary of formulated hypotheses and results. 

Hypotheses Results 

1 

Functional 
organisation of 
memory will not 
necessarily be 

related to language 
lateralisation in all 

patients 

Whereas language was left lateralised for 4/5 TLE 
patients, memory laterality was varied across 
patients in both the hippocampus and the temporal 
lobe.  

2 
Memory lateralisation 
will not be related to 

side of pathology 

In the anterior hippocampus, 3/5 patients with TLE 
(left and right TLE), showed right lateralisation for 
memory. In the posterior hippocampus, 3/5 patients 
(left and right TLE) showed left lateralisation, 
whereas the other two showed right lateralisation.  

3 

Posterior 
hippocampal 

activation is expected 
to be found in both 
left and right TLE 

patients 

All patients with unilateral TLE showed less anterior 
hippocampal activation compared to controls. The 
two patients with left TLE showed stronger activation 
in the posterior compared to the anterior 
hippocampus. The patient with bilateral HS showed 
stronger activation in the anterior compared to the 
posterior hippocampus.  

4 

There will be more 
contralateral 

reorganisation in 
cases where the 

lesion encroaches on 
mesial regions and 

less in cases of 
damage to lateral 

temporal lobes 

Two out of three cases with HS showed right 
lateralisation in the posterior hippocampus, whereas 
the two cases with cortical damage showed left 
lateralisation.  
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4 Discussion 

4.1 Activations at the Individual Level 

In the normal brain, heterogeneity of activation patterns is observed between 

individuals as a result of variability in functional organisation (see Chapter 6 for a 

discussion), but the heterogeneity may be even higher in the clinical population. 

Gupta and colleagues identified neural correlates for a language and a motor 

task in children with epilepsy and in typically-developing children. The authors 

showed that the activation pattern associated with the language task, but not with 

the motor task, was more heterogeneous across paediatric patients than across 

typically-developing children (Gupta et al., 2014). The authors attribute the 

heterogeneity to impaired language functions and to functional compensation for 

neural disturbances (Eliasen et al., 2008; Vlooszijk et al., 2010). Spatial 

heterogeneity in patients makes it difficult to draw conclusions at the group-level. 

From a clinical perspective, characterising brain activations at the individual 

subject level is most relevant for diagnosis and prognosis.  

The present memory protocol captured MTL activation in each of the five TLE 

cases. Despite considerable efforts to document neural correlates of memory in 

adult TLE, report of memory network at the individual-level is lacking. Group-level 

analyses are useful to understand differences in activation patterns related to 

TLE, based on the spatial overlap of brain regions being activated among 

individuals of the sample (Haxby et al., 2001). However, the heterogeneity of 

clinical variables (e.g. underlying pathology, age at onset of seizures, and 

duration of epilepsy) across patients may influence neural networks (Sidhu et al., 

2015). For this reason, group-level analyses may fail to capture clinically relevant 

patterns of activation at the individual level. In the present study, individual 

subject MTL activation was detected in all five patients, providing useful clinical 

information. 



Chapter 7: Language/memory fMRI in paediatric TLE 
 

 

240        Buck 
 

4.2 Correspondence between Clinical and Experimental 

Language Tasks 

To validate the experimental language task against the well-validated clinical 

task, the language networks were compared between the two protocols. Three 

patients (2  left TLE and 1 bilateral TLE) were administered both protocols in 

separate scanning sessions allowing within-subjects comparisons. In all three 

cases, there was a clear overlap between the language activations of the two 

protocols. In addition, language LI values were calculated for each protocol, and 

provide the same categorisation (left, right, bilateral) for the three patients. This is 

particularly relevant for case 3 who shows atypical language lateralisation and for 

whom this is reflected with both protocols. The correspondence of language 

activations between the clinical and experimental tasks demonstrates the validity 

of the experimental verb generation task for the investigation of the language 

network related to verb generations.  

4.3 Lack of Co-Lateralisation of Language and Memory  

Atypical functional organisation has been documented in adult TLE for both 

language (Benke et al., 2006; Miro et al., 2014) and memory (Richardson et al., 

2003; Towgood et al., 2015), and functional reorganisation of language and 

verbal memory often occurs jointly (e.g. Golby et al., 2002). In childhood TLE, 

atypical language organisation is also shown (Gaillard et al., 2007; Maulisova et 

al., 2016 (Yuan et al., 2006) but memory fMRI has never been investigated, and 

more specifically, co-lateralisation of language and memory had never been 

studied until the present study. The combined language/memory fMRI protocol 

offers the possibility of investigating lateralisation of both functions. 

The findings from a recent study implied lack of co-lateralisation of language and 

memory functions in paediatric TLE. During a language task, Sepeta and 

colleagues demonstrated left lateralisation in Broca’a area, but age-dependent 

laterality of the MTL, with stronger left lateralisation with increasing age and 

therefore stronger independence of Broca’s area and MTL lateralisation in 

children compared to adults (Sepeta et al., 2016). This finding suggested that 

language areas and the MTL do not necessarily co-lateralise, and children, both 
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with and without TLE, show more bilateral activation within the MTL despite left 

lateralisation within language areas. In fact, typically-developing children 

presented in Chapter 6 showed variable memory lateralisation in the 

hippocampus indicating that verbal memory laterality is not related to language 

dominance. Similarly, the present chapter shows varied memory laterality across 

patients in both the hippocampus and the temporal lobe, despite left lateralisation 

for language. Only one patient from the present sample showed co-lateralisation 

of language and memory (to the left). Together, these findings indicate a lack of 

co-lateralisation of language and memory in children, both typically-developing 

and with TLE. 

The pattern of activation in children suggests that language and memory are two 

structurally-independent systems, at least during childhood and adolescence. In 

addition, the findings from the present chapter indicate that early damage 

associated with TLE alters the functional organisation of memory but overall does 

not substantially modify the language network. In the adult TLE literature, there is 

higher evidence of contralateral reorganisation of memory compared to language. 

In a study by Strandberg et al. (2017), 5 out of 8 (62%) patients showed left 

lateralisation for language but right lateralisation for memory. Similarly, Golby et 

al. (2002) showed that 5 out of 9 (56%) patients with language lateralised to the 

left and memory to the right, compared to 2 out of 9 (22%) with the opposite 

pattern. Moreover, even healthy children show less lateralised MTL activation 

(discussed in Chapter 6) which could also contribute to a lack of lateralised 

memory deficits in young patients with epilepsy (Cormack et al., 2012). Whereas 

language lateralisation is established by the age of 5 (Weiss-Croft & Baldeweg, 

2015), it is possible that hemispheric specialisation for memory is a slower 

process, leading to non-lateralised memory impairments in the occurrence of 

early onset pathology. These findings converge on the idea that contralateral 

reorganisation is more frequent for memory than for language.   

It was previously assumed that atypical language lateralisation in children occurs 

when lesions encroach on language areas (e.g. Lazar et al., 2000). However, 

Liegeois et al. (2004) showed that it is lesions to the MTL region rather than to 

the language regions that influence language reorganisation to the right 

hemisphere. Contralateral reorganisation of language was observed in only one 

case from the present sample (case 3 with bilateral TLE) which may be related to 
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bilateral hippocampal damage. The other patients with unilateral damage do not 

show atypical language representation. This observation is consistent with 

Liegeois et al’s findings and suggests the influence of bilateral hippocampal 

damage on language reorganisation to the right hemisphere. 

Overall, the findings suggest that lateralisation patterns of language and memory 

functions are independent in paediatric TLE. Temporal lobe seizures and/or 

pathology arising in adulthood reportedly alter the functional organisation of 

language and memory. Laterality information gathered from language fMRI is 

therefore sometimes used to estimate memory lateralisation, and hence predict 

memory outcome after surgery in adult TLE. However, the lack of co-

lateralisation of functions in children has implications for surgical decision and 

prediction of outcome, and indicates that for paediatric TLE, language 

lateralisation cannot be used to predict memory outcome.  

4.4 Evidence of Contralateral Reorganisation in the 

Anterior Hippocampus 

Adult patients with TLE often show contralateral reorganisation of memory, 

particularly verbal memory reorganisation to the right hemisphere in left TLE 

(Jokeit et al., 2001; Richardson et al., 2003; Golby et al., 2002). Such right 

hippocampal recruitment for verbal memory is shown in the present paediatric 

sample whereby both left TLE cases show right lateralisation of verbal memory in 

the anterior hippocampus, but not in the posterior hippocampus. This finding 

indicates distinct patterns of functional reorganisation in different portions of the 

hippocampus, with contralateral reorganisation of verbal memory in the anterior 

hippocampus as a function of side of pathology.  

This pattern of functional reorganisation based on side of pathology is not as 

clear in the posterior hippocampus and both left TLE cases are left lateralised. 

Two cases (1 and 3, with left and bilateral TLE, respectively) in the present 

sample show right lateralisation in the posterior hippocampus. Right lateralisation 

of verbal memory in right TLE (case 1) suggests memory lateralisation ipsilateral 

to seizure focus. Although this may seem counterintuitive, memory lateralised to 

the side of seizure onset has previously been documented where patients with 

right medial TLE show a reduced left hemisphere activity compared to controls 
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and to left medial TLE (Detre et al., 1998). Golby and colleagues also 

documented one patient with right MTL atrophy and right lateralisation of memory 

(Golby et al., 2002). Similarly, Dupont and colleagues described altered neural 

networks supporting verbal memory in patients with right medial TLE, where 

these patients exhibit global decreased activation in the left hemisphere 

compared to left TLE patients and healthy controls (Dupont et al., 2002). 

Alternatively, right lateralisation of verbal memory could simply reflect inter-

individual variability in memory lateralisation which is also reflected in the 

normative sample. Overall, these findings suggest that whereas memory 

lateralisation in the anterior hippocampus is somewhat related to the side of 

pathology, memory lateralisation in the posterior hippocampus may depend on 

other clinical factors.  

The recruitment of contralateral homologous areas may be related to greater 

potential for brain plasticity in children (Mundkur, 2005) or to a halt in the 

hemispheric specialisation process as a result of early onset pathology (Vargha-

Khadem et al., 2000). Distinct patterns of reorganisation in the anterior and 

posterior hippocampi may be related to distinct age-related structural changes in 

these regions. Gogtay et al. (2016) showed age-related decrease in anterior 

hippocampal volume, possibly reflecting pruning, but increase in posterior 

hippocampal volume. Contralateral activation in the anterior hippocampus 

specifically may therefore be shown as a result of early onset pathology. In 

addition, as described and discussed in Chapter 6, the anterior hippocampus 

seems to have a particular role in memory in healthy children and adolescents. 

The anterior hippocampus may therefore be more susceptible to functional 

reorganisation in the context of pathology. These interpretations remain 

speculative, and more research is required to investigate the differential patterns 

of memory reorganisation in the anterior and posterior hippocampus.   

Regardless of the underpinning factors driving memory organisation, pre-

operative memory lateralisation in the hemisphere ipsilateral to the seizure focus 

has important clinical implications as it tends to suggest high likelihood of post-

operative impairments. Sidhu and colleagues demonstrated that adult patients 

with left TLE who showed pre-operative memory activation in the left anterior 

hippocampus exhibited greater memory decline after anterior temporal 

lobectomy. Similarly, right TLE patients who showed pre-operative activation in 
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the right anterior hippocampus exhibited greater memory decline after surgery 

(Sidhu et al., 2015). Patients who show memory lateralised to the side of seizure 

onset are therefore at higher risk of memory impairment following surgery. 

Whereas interhemispheric functional reorganisation is sometimes associated with 

recovery of cognitive function (Weiller et al., 1995; Blasi et al., 2002), other 

studies have shown that contralateral reorganisation of functions is associated 

with poor recovery (Johansen-Berg et al., 2002; Ward et al., 2003). Powel et al. 

(2007) demonstrated that compensatory contralateral hippocampal activation in 

adults with unilateral HS is an inefficient process in that it does not allow the 

preservation of memory function. In children, it is not clear whether contralateral 

reorganisation of memory reflects an efficient mechanism to preserve memory 

function, and further investigation is required in paediatric TLE.  

4.5 Evidence of Ipsilateral Reorganisation to the 

Posterior Hippocampus 

In addition to contralateral reorganisation of memory, ipsilateral reorganisation 

can occur. This pattern of memory organisation has been documented in adult 

TLE and is associated with early onset of seizures (Sidhu et al., 2015). In the 

present study, whereas typically-developing children showed greater anterior 

than posterior hippocampal activation, both left TLE patients showed stronger 

posterior compared to anterior hippocampal activation. This shift of hippocampal 

activation along the anterior-posterior axis may reflect functional reorganisation to 

compensate for memory loss. Several studies have documented stronger 

posterior hippocampal activation in older individuals in order to maintain memory 

performance (Blum et al., 2014; Wang et al., 2010). Similarly, in a recent study, Li 

et al. (2017) investigated resting state functional connectivity in adult TLE and 

showed reorganised patterns of intra-hemispheric connectivity across the anterior 

and posterior hippocampal networks. The authors suggested that this pattern of 

connectivity strengthens the communication between bilateral posterior 

hippocampi and may compensate for the detrimental effects of seizures on 

memory performance (Li et al., 2017). These findings, along with the present 

study, suggest that the posterior hippocampi play a role in a compensatory 

mechanism to support memory.  



Chapter 7: Language/memory fMRI in paediatric TLE 
 

 

Buck 245 
 

Conversely, both right TLE patients showed stronger activation in the anterior 

compared to posterior hippocampi, similarly to controls, and case 3 with bilateral 

TLE showed an even higher proportion of anterior hippocampal activation than 

controls and left TLE cases. This finding therefore indicates a shift of memory 

activation to posterior hippocampi in left, but not right and bilateral TLE cases. 

However, only verbal memory was investigated in the present study, and it is 

possible that a posterior shift in hippocampal activation would be observed in 

right TLE cases if visual memory was assessed. Nevertheless, this finding 

suggests ipsilateral reorganisation to posterior hippocampi as a function of side of 

pathology.  

Powel et al. (2007) showed that memory performance in adult TLE was 

associated with ipsilateral activation, and for example in left TLE patients, verbal 

memory scores were correlated with activation in the damaged left hippocampus 

(Powell et al., 2007). Similarly, other authors demonstrated that ipsilateral, but not 

contralateral reorganisation of memory is associated with less memory decline 

after surgery (Bonelli et al., 2010; Sidhu et al., 2015). Similarly to adults, it is 

possible that ipsilateral rather than contralateral reorganisation of memory may 

be more beneficial in children. This finding has clinical relevance as it may 

suggest the importance of targeted anterior temporal lobe resection with the 

sparing of posterior hippocampi, especially in left TLE cases. Such surgical 

procedure may prove itself effective in sparing memory functions after surgery 

and reducing memory deterioration. This assumption warrants further 

investigation to verify to what extent sparing the posterior hippocampus in the 

surgical intervention helps the preservation of memory.  

4.6 Effect of Type of Pathology on Memory 

Reorganisation 

The present study showed memory lateralisation in the posterior hippocampus 

related to the type of pathology. Two out of the three patients with mesial 

pathology showed right lateralisation, whereas the two patients with cortical 

pathology showed left lateralisation. Memory lateralisation as a function of the 

type of pathology was however specific to the posterior hippocampus and was 

not shown in the anterior hippocampus. This finding suggests contralateral 



Chapter 7: Language/memory fMRI in paediatric TLE 
 

 

246        Buck 
 

reorganisation of verbal memory in the posterior hippocampus only in patients 

with mesial pathology. In addition, language was represented in the right 

hemisphere only in the case of bilateral hippocampal damage. These findings are 

consistent with the observation that reorganisation of language function in 

children is related to lesion in the MTL (Liegeois et al., 2004). Language 

lateralisation depends on the integrity of the hippocampus, suggesting a role of 

the hippocampus in language reorganisation (Knecht, 2004).  

It appears therefore that hippocampal damage is associated with contralateral 

reorganisation of memory in the posterior hippocampus. Additional research is 

however needed to confirm this, by comparing memory organisation between 

mesial versus cortical damage in a larger sample. Patients with temporal lesions 

are often excluded from studies (e.g. Gargaro et al., 2013), making it difficult to 

study the underlying factors associated with functional reorganisation. Together, 

these findings suggest stronger reorganisation in cases with hippocampal 

damage, compared to cases with cortical damage.  

5 Limitations 

The present study contains only five patients and is therefore a pilot study to test 

the clinical value of the fMRI protocol. Small sample sizes in neuroscience 

research may lead to reduced chances of detecting true effects and to low 

reproducibility of the findings (Button et al., 2013; Turner et al., 2017). Such 

sample size limits statistical power and inferences, and instead, provides 

preliminary conclusions; confirmation of the findings will require larger sample 

sizes. In addition, because examination was carried out at the individual-level for 

clinical purposes, a low statistical threshold (p<0.05, uncorrected) was used to 

visualise brain activation in subregions of the MTL. Whereas components above 

such low threshold might be labelled as noise, the findings were consistent with 

prior hypotheses. In addition, beta extraction and LI calculation were carried out 

independent of an arbitrarily defined threshold. The objective at this stage was to 

pilot the experimental fMRI protocol to examine its feasibility and provide a first 

examination of memory fMRI in the pre-surgical setting. Despite the small sample 

size and the low statistical threshold, the findings are consistent with hypotheses 

postulated on the basis of adult studies, and provide valuable first insight into the 

neural correlates of memory in children with TLE. 
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Another limitation from the present study relates to the fact that only verbal (not 

visual) memory was investigated. It is possible that similar patterns of brain 

activation would have been shown in right TLE patients if visual memory were 

also assessed. Investigating verbal and visual memory together would provide 

insight into material-specific lateralisation of memory in left and right TLE 

patients. However, the present study focused on verbal memory 1) to directly 

compare with language laterality, and 2) because verbal memory impairment is 

the main complaint after temporal lobe surgery. This protocol might therefore be 

more informative for left TLE cases, although verbal memory impairments are 

sometimes documented in right TLE patients, in which case this protocol would 

provide useful clinical information.  

6 Conclusions 

The language/memory fMRI protocol was designed for the investigation of both 

language and memory networks and therefore addresses two clinical questions 

within one scanning. This time- and cost-effective protocol was previously tested 

in a sample of healthy controls (Chapter 6), and now piloted on a small sample of 

paediatric patients with TLE. Findings from the present chapter suggest that this 

protocol provides successful mapping of language and memory networks in 

children with TLE, in accordance with hypotheses postulated on the basis of adult 

fMRI studies and knowledge on the effects of early age at onset of epilepsy.  

This study also provides preliminary findings regarding the lateralisation of verbal 

memory as a function of side and type of pathology. Patients with left TLE were 

left lateralised in the posterior hippocampus and right lateralised in the anterior 

hippocampus for verbal memory, possibly indicating ipsi- and contralateral 

functional reorganisation, respectively. In addition, left TLE patients showed 

overall greater posterior compared to anterior hippocampal activation. Whereas 

the pattern of activation in the anterior hippocampus was related to the side of 

pathology, with left TLE patients showing right lateralisation and right/bilateral 

TLE patients showing bilateral activation, lateralisation in  the posterior 

hippocampus was related to the underlying pathology. Apart from one patient, 

those with mesial pathology showed right lateralisation of memory in the posterior 

hippocampus, whereas those with cortical pathology showed left lateralisation. 
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Further investigation on a larger patient sample should be carried out to confirm 

these preliminary findings.  

This pilot study demonstrates the feasibility of the language/memory fMRI 

protocol to investigate language and memory networks in paediatric patients with 

TLE. The protocol provides additional information on hippocampal and temporal 

lobe activations which cannot be addressed with language fMRI alone. In 

addition, this protocol produces activation in those specific regions at the 

individual level and is therefore useful for clinical purposes. In this respect, this 

combined language/memory fMRI paradigm could improve prognostication of 

verbal memory outcome after surgery for TLE, at the individual level. 

7 Future directions 

Following the successful pilot of this protocol in a small sample of children with 

TLE, confirmation of the findings are required by administering the protocol to a 

larger patient sample. In addition, correlation analyses between the amount of 

brain activation and memory scores would elucidate whether functional 

reorganisation reflects an efficient mechanism to preserve memory function. For 

example, if functional reorganisation is associated with preserved memory 

performance, the neuro-cognitive plasticity is considered efficient. Moreover, 

comparing ipsilateral and contralateral reorganisation in terms of memory decline 

after surgery will indicate whether, similarly to the adult population, ipsilateral 

reorganisation is more efficient than contralateral reorganisation. Overall, with a 

larger sample size, correlational analyses could be carried out with memory 

scores providing evidence of the efficiency of memory lateralisation.  

Further work is required to validate the ability of the protocol to predict memory 

impairments after surgery by investigating long-term post-surgical outcome. In 

addition, a follow-up study would allow the identification of the pre-operative 

variables that best predict memory outcome, such as memory LIs in the anterior 

versus the posterior hippocampus. Furthermore, following the present findings 

regarding the role of posterior hippocampi to subserve memory in paediatric TLE, 

further work is needed to test whether sparing this structure during surgery limits 

memory decline. 
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Chapter 8 

General Discussion 

 

This final chapter will provide a summary of the main findings from the present 

study (section 1). The clinical implications of these findings will then be discussed 

(section 2), wherein I will describe and document the relevance of the results for 

patients and the implication for ongoing assessments of memory function in TLE 

patients. I will close this chapter with methodological critiques (section 3), 

suggestions for further research (section 4), and final conclusions (section 5).  
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1 Summary of Findings 

1.1 Paediatric Temporal Lobe Epilepsy  

Temporal Lobe Epilepsy (TLE) is a common form of epilepsy in children and is 

characterised by poor learning and memory abilities. Surgical intervention 

involving the removal of the temporal lobe structural lesion and variable portions 

of the hippocampus is often proposed in cases of intractable focal TLE. Such 

intervention is associated with memory decline post-surgery, more particularly in 

verbal learning and memory, as a result of the removal of critical regions 

subserving these functions.   

Pre-operative behavioural and neuroimaging assessments are critical to provide 

a focused diagnosis of the status of memory function and to identify the risks of 

such intervention on cognitive outcome. More specifically, the contribution of 

these assessments to surgical decision-making in paediatric TLE is to 1) 

characterise the status of learning and memory functions in relation to broader 

cognitive functions, such as intellectual status, 2) establish the pattern of 

lateralisation of language and memory functions, and 3) predict cognitive 

outcome post-surgery. 

Unfortunately, such assessments are hampered by a lack of adequate tests 

available. The complexity of childhood TLE, as opposed to adult TLE, is related 

to the more widespread cognitive dysfunction often seen in patients with early 

onset of epilepsy, less evidence of material-specific memory impairments, as well 

as the greater potential for reorganisation of function afforded by brain plasticity 

in the younger brain. These observations suggest that the nature of impairments 

cannot be inferred from adult models, and instead, adequate tests and paradigms 

(both neuropsychological and neuroimaging) should be employed for a 

comprehensive assessment of the patient’s profile prior to surgical intervention.   
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1.2 Aims  

The research reported in this thesis arose from a lack of adequate measures 

(behavioural and neuroimaging) for the clinical assessment of memory in children 

with TLE, as well as from a limited understanding of the developmental trajectory 

of learning in typically-developing children, and of the associated neural network 

supporting memory in children. The latter is important in the clinical setting for 

establishing a standard against which performance of patients can be compared 

to. 

The main aims of this thesis were: 1) to develop behavioural protocols for the 

assessment of learning and memory (Chapter 2), to administer the said protocols 

to a large sample of typically-developing children (N=130; Chapter 3) to provide 

an indication of the normal developmental trajectory of verbal and non-verbal 

learning and memory, and to compare the performance of a small group of 

patients with TLE with that of the healthy controls using the same protocols (N=6; 

Chapter 4), and 2) to develop an fMRI paradigm for the investigation of language 

and memory networks (Chapter 5), to administer this protocol to a group of 

healthy children and adolescents to identify the neural network supporting 

memory (N=27; Chapter 6), and  to  pilot this same fMRI protocol  in the small 

group of patients (N=5) who were candidates for temporal lobe surgery  (Chapter 

7).  

1.3 Development of Protocols 

1.3.1 Behavioural: The Pair Games 

The ability to identify and characterise specific memory impairments in TLE is 

dependent upon the sensitivity and specificity of the neuropsychological 

instruments. Investigation of memory impairments as a function of side of 

pathology provides an indication of lateralisation of memory impairments (verbal 

versus non-verbal memory) associated with unilateral pathology in the left versus 

the right temporal lobe. Unfortunately, many of the standardised memory tools do 

not allow delineation of memory impairments and are confounded by the effects 

of 1) input modality (auditory versus visual), levels of semantic structure 
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(semantic versus non-semantic), and 3) memory processes (recall versus 

recognition).  

In order to provide an improved assessment of the lateralisation of memory 

impairments, a novel verbal and non-verbal memory test (The Pair Games) was 

designed based upon theoretical models of memory (Chapter 2). Several 

variables that were potentially confounded, were controlled for in the 

development of the Pair Games, permitting balanced comparisons between the 

subtests. For each subtest containing different types of information, the paired-

associate paradigm was used to assess learning over three consecutive trials, 

followed by delayed recall and recognition after a 15-minute delay. The five 

subtests consist of: Spoken Words, Written Words, Pseudowords, Objects, and 

Designs.  

Few tests provide pure measures of memory and performance of participants 

usually depends on multiple processes. Attentional deficits, for example, can 

contribute to low performance on a memory test. However, the Pair Games was 

designed to be a balanced paradigm controlling for the effects of factors, such as 

attention, by encouraging deep-encoding processes. The Pair Games therefore 

aims to distinguish selective memory impairments from global cognitive and 

learning deficits, and provides a purer measure of memory and learning than 

currently available. 

In addition, the Pair Games has the potential to provide an indication of 

lateralised memory impairments within the context of input modality, and access 

to semantic versus non-semantic representations.  In these respects, the Pair 

Games offers a more controlled assessment to identify specific memory 

impairments leading to a clearer diagnosis of the patient’s memory profile than 

currently available prior to surgery, and a quantifiable prognosis of outcome post-

surgery.   

1.3.2 Neuroimaging: Combined Language/Memory fMRI Protocol 

Pre-operative functional mapping is performed in patients with TLE using 

functional Magnetic Resonance Imaging (fMRI) in order to determine the 

territories of eloquent tissue subserving critical cognitive functions prior to 

surgical intervention. Language mapping is widely carried out in adult and 
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paediatric patients, whereas to this day, memory mapping has been performed 

only in adults. Memory fMRI protocols developed for adults that assess 

recognition-based memory may not be sensitive enough to capture the processes 

dependent on the hippocampus versus the parahippocampal regions, whilst other 

paradigms, such as the Remember/Know paradigm, may not be suitable for 

children due to their complexity.  

A combined language and memory fMRI protocol was developed as part of this 

research (Chapter 5) in order to map the critical regions subserving both 

language and verbal memory within one scanning session. This time-, and cost-

effective protocol investigates the neural networks of both functions and sheds 

light on how the two systems interact. The language task consists of an overt 

verb generation test whereby participants are asked to generate a verb for each 

noun heard over the headphone. This noun/verb generation phase also provides 

a measure of encoding the nouns into memory.  The memory task entails recall-

based retrieval of the nouns presented during the language task. This retrieval is 

guided by word-stem cues to allow event-related examination of the neural 

network specific to successful memory.  

As a result of the language task serving the encoding stage of memory formation, 

this protocol enables the examination of neural correlates of both memory 

encoding and memory retrieval networks. Together, the features of this combined 

language/memory fMRI protocol are particularly relevant for the clinical setting 

and the prediction of cognitive outcome after surgery in paediatric patients with 

TLE.  

Two versions of the behavioural and fMRI protocols allow investigation of patients 

at two time points (i.e. pre- and post-operative) to investigate the potential impact 

of surgery on cognitive and neural changes, and on the trajectory of behavioural 

and functional changes that occur with age.  

1.4 Memory in Typically-Developing Children 

These novel behavioural and neuroimaging protocols were administered to 

typically-developing children to examine the trajectory of learning and memory 

(Chapter 3) and the neural network supporting memory (Chapter 6).  
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1.4.1 Behavioural Assessment 

1.4.1.1 Developmental Trajectory 

The developmental trajectory of learning and memory was examined across the 

wide age range (8 to 18 years old). The study demonstrated increases in learning 

performance with increasing age, across all subtests of the Pair Games. Age-

related improvement in learning gain (increases in performance from the first to 

the third learning trial) was shown for non-semantic subtests only (Pseudowords 

and Designs), possibly reflecting an increase in the usage or efficacy of 

mnemonic strategies with age (e.g. deep encoding strategies).  

Increases in scores of delayed recall were demonstrated only for the Spoken 

Words subtest, thus providing evidence of age-related recall abilities specific to 

auditory verbal memory. However, there was no age-related difference in 

recognition scores for that subtest, indicating that the age-effect reflects a 

difference in accessibility, but not availability of the relevant auditory verbal 

information. For the other subtests, improvement in recognition was observed 

with increasing age, and this improvement paralleled age-related decreases in 

“familiar errors” (familiar items that are paired with another item from the list – i.e. 

lures). This finding indicates age-related improvement in recollection-based 

recognition specifically, and reduced reliance on familiarity.   

These findings suggest that the Pair Games paradigm captures age-related 

differences and documents developmental changes in learning and memory. 

These findings highlight the clinical relevance of the paradigm by revealing the 

developmental trajectory of learning and memory and interpreting deficits in TLE.  

Moreover, different memory profiles emerge depending on the age at which the 

pathology first occurred and the stage of development reached prior to the onset 

of pathology. The protracted development of the hippocampus and its functions, 

and the relatively late emergence of episodic memory in childhood, suggest that 

the above variables need to be taken into account to guide the formulation and 

the risks to memory and learning in TLE candidates for surgery. 

1.4.1.2 Information Processing  

The balanced nature of the Pair Games permits comparison between different 

subtests and examination of the influence of specific variables on learning and 
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memory. The variables of interest are material type, input modality, and level of 

semantic structure. 

Non-verbal materials were better learned and were less susceptible to loss after 

a delay than verbal materials, providing evidence of greater strength of memory 

traces for configural information. However, this was dependent on the level of 

semantic access such that learning and memory for designs was better than that 

for pseudowords (i.e. comparison of performance within non-semantic items), but 

there was no difference between learning and memory for objects versus written 

words (i.e. comparison of performance within semantic categories).  These 

discrepant results may possibly reflect access to dual-coding processes, and 

reliance on both verbal and visual coding of semantic items.  

Similarly, verbal information presented in the visual modality (Written Words) was 

better learned than that presented in the auditory modality (Spoken Words). 

However, this discrepancy was not present for delayed recall and recognition, 

suggesting that performance became more balanced during the period of 

consolidation.  

Significant discrepancy was also exhibited for learning and recognition 

performance on semantic (Written Words and Objects) and non-semantic 

subtests (Pseudowords and Designs). The discrepancy for learning was greater 

than that shown for recognition, again suggesting that the differences diminished 

over the consolidation process. 

These findings indicate that different types of information are processed 

differently in typically-developing children, and that behavioural differences are 

mainly observed at the early stage of memory formation with reduced differences 

after consolidation.   

1.4.2 Neuroimaging Assessment 

1.4.2.1 Memory Network 

Neural correlates of the memory encoding network irrespective of performance 

(investigated with block analysis) involved the left posterior hippocampus, 

reflecting the binding of information. Successful encoding (investigated with 

event-related analysis) was associated with activation in semantic-related brain 
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regions (i.e. right posterior superior temporal lobe and left anterior temporal lobe) 

and deactivation of regions supporting phonological processing of words (i.e. 

right supramarginal gyrus), providing evidence of the benefits of deep-encoding 

for later retrieval. Such semantic processing at encoding for subsequent retrieval 

was previously postulated with regards to the behavioural findings for items that 

push the boundaries of new learning (i.e. Pseudowords and Designs) (Chapter 3, 

section 4.4, page 104) and for which performance is particularly dependent on 

the efficacy of mnemonic strategies, such as deep encoding.  

For memory retrieval (investigated with event-related analysis), activation was 

found in the left temporal lobe and in the hippocampus bilaterally. This protocol 

identifies memory-related activation in the mesial and neocortical regions of the 

temporal lobes, and thus provides critical information for the prediction of memory 

outcome after surgery in TLE. 

1.4.2.2 Age-Related Effects in the Hippocampus  

The study demonstrated an age-related effect in the hippocampus for retrieval, 

whereby older children recruited the right hippocampus more than younger 

children during successful retrieval of words. This observation possibly reflects 

age-related improvement in binding processes which are dependent on the 

hippocampus.  

Different levels of recruitment of the hippocampus across the age range can be 

indicative of developmental changes in the use of mnemonic strategies or of 

functional development and the recruitment of different brain regions with 

increasing age. Such age-related effects can have implications for the neural 

representation of memory in children with TLE, depending on the age at seizure 

onset.   

1.4.2.3 Relationship between Memory and Language Lateralisation 

Lateralisation indices (LI) were calculated to provide measures of hemispheric 

lateralisation for language and memory, enabling direct comparison between 

these functions. Language is typically lateralised to the left hemisphere and it is 

generally assumed that language and verbal memory are co-lateralised, although 

this is rarely examined.  
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In the present study, co-lateralisation of function was directly investigated. 

Whereas left lateralisation for language was observed in every child, lateralisation 

for memory was more varied across individuals with some children showing left 

lateralisation, others showing right lateralisation, and some demonstrating 

bilateral representation. Correlational analyses between language and memory LI 

demonstrated the absence of a relationship between the two, suggesting that 

these functions are not co-lateralised in typically-developing children.  

More specifically, whereas LI in Broca’s area was significantly and positively 

related to LI in the hippocampus during the language task, language LI in Broca’s 

area was not related to memory LI in the hippocampus. Moreover, these 

lateralisation indices were not significantly related to other variables such as IQ, 

handedness and age. 

Together, these findings suggest independence of language and memory 

lateralisation and indicate that information related to language lateralisation 

cannot be used to predict memory lateralisation. Instead, memory fMRI should be 

carried out in the clinical setting alongside language fMRI.  

1.5 Memory in Paediatric TLE 

The behavioural and fMRI protocols developed as part of this thesis were also 

piloted in a small sample of children with TLE who were candidates for surgery 

(N=6 for the behavioural protocol and N=5 for the fMRI protocol). Out of the 6 

patients, 3 were diagnosed with left TLE, 2 with right TLE, and 1 with bilateral 

TLE. The underlying aetiology varied between mesial and predominantly cortical 

pathology; 4 patients were diagnosed with Hippocampal Sclerosis (HS) and 2 

with primarily neocortical pathology (1 with a porencephalic cyst and 1 with 

Dysembryoplastic Neuroepithelial Tumour (DNET) in the temporal lobe). 

1.5.1 Behavioural Assessment 

The applicability of the Pair Games in the clinical setting was verified by testing 

the ability of the Pair Games to provide a refined identification of learning and 

memory impairments (Chapter 4). The overall pattern of dysfunction was better 

differentiated with the Pair Games than with standardised tests of memory.  
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Lateralisation of memory impairments were investigated in relation to the side of 

pathology. Previous researchers have struggled to document lateralisation of 

memory deficits in childhood TLE, possibly as a result of several confounding 

factors. First, early onset seizures may be related to more widespread pathology 

affecting both verbal and non-verbal memory functions. Second, the immature 

brain is associated with more efficient neural plasticity possibly leading to 

reorganisation of high-priority functions, such as speech and language,  at the 

expense of other cognitive functions, a phenomenon referred to as the  “crowding 

effect”. Third, early pathology may cause a change and/or an arrest in the 

trajectory of development of hemispheric specialisation. Mindful of the fact that 

previous investigations have converged on reduced material-specificity of 

impairments in childhood compared to adult TLE, but cognisant of the need to 

control for factors that influence the pattern of memory lateralisation, the Pair 

Games was designed to provide a balanced test of memory and learning for 

paediatric patients undergoing evaluation for epilepsy surgery.  

Results from a pilot study on paediatric patients with TLE indicated that the Pair 

Games was able to identify material-specific deficits in 4 out of 6 patients, 

consistent with the side of pathology.  Thus, patients with left-sided TLE showed 

verbal memory deficits, whilst those with right-sided TLE showed non-verbal 

memory impairments.   This finding provides evidence of the utility of the Pair 

Games for investigations of lateralised memory deficits associated with unilateral 

TLE. However, despite the sensitivity of the Pair Games to detect material-

specific deficits, memory and learning patterns were not as clear and consistent 

in young patients with TLE as in adult patients.   Furthermore, factors such as 

age at onset of seizures, and status of cognitive development prior to onset of 

brain insult were found to influence memory profiles.   

Comparison between distinct memory processes, namely, learning, recall and 

recognition, provides behavioural evidence pointing to the underlying 

neuropathology. The ability of the Pair Games to identify restrictions in different 

aspects of memory was put to test in a small group of patients.  Overall, the Pair 

Games identified deficits in memory and learning more often and more clearly 

than the standardised test of memory currently available for children.  

Methodological caveats cannot be completely ruled out however. Although the 

design of the Pair Games was based on a theoretical framework to balance the 
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subtests as much as possible, these were nevertheless not equated for difficulty 

level, nor for variations in conceptual modes of processing. Given this caveat, it is 

possible that some of the differences in performance may have been influenced 

by the absence of equal weighting of the subtests in terms of difficulty. This is in 

contrast to other tests of memory, such as the Doors and People Test, wherein 

the processes of recognition and recall are equated in terms of difficulty 

(Baddeley et al., 1994). However, standardised scores reduce the effects of this 

limitation to some extent. In addition, material-specific effects in patients were 

investigated by comparing the discrepancy between verbal and non-verbal 

scores with the discrepancy observed in the normative sample. This approach 

also accounted for differences in difficulty levels between subtests.  

Together, the findings reported in this thesis provide support for face validity of 

the Pair Games for diagnosis of specific memory and learning deficits in children 

with TLE. In addition to improved identification of material-specific memory 

deficits compared to standardised tests, the results of the pilot patient study of 

Pair Games highlighted the effects of age at onset of seizures on learning and 

memory profiles. However, these observations remain speculative at this stage 

and further investigation on larger sample sizes is necessary to confirm these 

results.   

1.5.2 Neuroimaging Assessment 

To test the clinical utility of fMRI protocols for identifying memory networks in TLE 

patients, hypotheses were based in part on the adult TLE literature, but also on 

our understanding of the effects of early brain injury on brain organisation for 

language and memory (Chapter 7).  

Consistent with our prior hypotheses, children with TLE exhibited more bilateral 

representation of language and memory compared to their typically-developing 

controls. In addition, language and memory functions were not co-lateralised to 

one hemisphere, and right-sided lateralisation for memory was observed in some 

cases even when language was lateralised to the left hemisphere. This finding 

highlights the need to administer memory fMRI for the prediction of memory 

outcome rather than extrapolating the status of memory lateralisation from 

language fMRI. 
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Another finding related to the site of hippocampal activation, whereby compared 

to healthy controls, patients with left-sided TLE activated a more posterior region 

of the hippocampus, possibly as a result of intra-mesial temporal reorganisation 

for memory processes. This finding is consistent with that reported in adult TLE 

studies (Bonelli et al., 2013; Sidhu et al., 2015; Sidhu et al., 2016) and with  

reports of the influence of early onset seizures on posterior hippocampal 

activation during memory tasks (Sidhu et al., 2015). The present study also 

demonstrated contralateral reorganisation of verbal memory retrieval as a 

function of side of pathology, whereby patients with left TLE showed right 

lateralisation and those with right or bilateral TLE showed symmetric bilateral 

activation in the anterior hippocampus. 

Moreover, the findings suggest contralateral reorganisation of verbal memory 

from left to right medial temporal regions. In cases with left or bilateral Mesial 

Temporal Sclerosis (MTS), memory activation is predominantly in the right MTL, 

whereas in cases with left neocortical abnormality, the memory activation 

remains in the left side.  This observation is consistent with the suggested role of 

hippocampal pathology in the reorganisation of cognitive functions (Liegeois et 

al., 2004; Knecht, 2004). 

This combined language/memory fMRI protocol provides successful mapping of 

language and memory networks in children with TLE and, more specifically, 

identifies prominent activations in temporal lobes, both in the MTL and lateral 

regions, and thus provides useful clinical information for predicting outcome after 

surgery in the temporal lobe. 

2 Clinical Implications 

2.1 Improved Diagnosis 

The Pair Games designed as part of this research was based on theoretical 

models of memory and the existing literature (Chapter 2). The balanced nature of 

the Pair Games provides a refined diagnosis and identification of specific 

impairments in patients with TLE for an improved understanding of their cognitive 

profiles. The development of the Pair Games may have clinical implications for 
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assessment of memory and learning in patient groups with known or suspected 

MTL pathology beyond those with TLE, for example patients with Alzheimer’s 

Disease.  

2.1.1 Implications for Cognitive Intervention 

A better understanding of the memory profile of each individual patient can 

provide useful information about their strengths and weaknesses, which can in 

turn inform methods of cognitive intervention. The aim of cognitive rehabilitation 

for memory is not to restore, but to compensate for the deficits (Farina et al., 

2015) in order to improve everyday functioning. In this respect, precise diagnosis 

is essential for the implementation of an individualised cognitive intervention 

programme. Compensatory strategies based on preserved cognitive abilities may 

be particularly useful to reduce the adverse effects of temporal lobe surgery on 

memory outcome (Mosca et al., 2014), with this being particularly relevant to 

children who have greater adaptive capabilities compared to adults. For example, 

visual strategies (e.g. visual imagery) can be implemented to support verbal 

memory in cases where non-verbal memory is preserved. Similarly, a patient who 

exhibits specific impairments in auditory verbal memory, but not in verbal memory 

for information presented in the visual modality, can learn to encode verbal 

information via the visual coding system to improve performance. Likewise, 

because patients with hippocampal damage tend to have better recognition than 

recall memory, recognition-based training could be applied as cognitive 

remediation. These techniques would be most relevant to children and 

adolescents who are in the education system and benefit from consistent 

exposure to the learning environment. Unfortunately, the evidence in paediatric 

TLE for effective improvement of memory is sparse (see Joplin et al., 2018 for a 

review) and rehabilitation methods warrant further investigation. 

2.2 Improved Prediction of Cognitive Outcome 

Improved diagnosis has implications for accurate prognosis of cognitive outcome 

after surgery. Memory fMRI carried out in adult TLE predicts the risk of cognitive 

impairments post-surgery (Bonelli et al., 2010; Powell et al., 2008b; Richardson 

et al., 2004). In childhood TLE, verbal memory decline is often reported after 

surgery, particularly when surgery is in the left temporal lobe (see Lah, 2004 for a 
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review). However, there is high variability in verbal memory outcome, and this 

could be related to the integrity of the left temporal lobe and the extent of surgical 

removal. Memory fMRI can therefore be useful in identifying eloquent regions 

within the temporal lobes and the potential for memory support (Gleissner et al., 

2005). 

The combined language/memory fMRI protocols (Chapter 5) identify neural 

activity at the individual level in surgical candidates. The findings from the present 

study, both in typically-developing children (Chapter 6) and in children with TLE 

(Chapter 7), demonstrated that in contrast to adults, language and memory 

functions are not co-lateralised in children. This finding is important inasmuch as 

it demonstrates that prediction of memory outcome cannot be extrapolated from 

language fMRI, but needs to be based on memory fMRI protocols that engage 

the specialised functions of the MTL.  

Combined neuroimaging assessments in the form of activation asymmetries,  and 

pre-operative neuropsychological evaluations of memory have proved effective in  

predicting memory decline after temporal lobe resection in adult TLE (Baxendale 

et al., 2006; Bonelli et al., 2010; Lineweaver et al., 2006). It is anticipated that 

administering both the Pair Games and the combined fMRI protocols at the pre-

operative level will provide improved diagnosis of language and memory status in 

individual patients, and also provide prognostic indicators of outcome after 

temporal lobe surgery in paediatric TLE. Table 8.1 provides a representation of 

information gathered from both protocols for each patient. Together, the 

behavioural and fMRI protocols can identify those who are at particular risk of 

learning and memory decline after surgery, which has critical implications for 

surgical decision-making. In this respect, Case 3 seems at particular risk of 

decline due to bilateral damage, bilateral activation on memory fMRI, and most 

importantly, because this patient already exhibits verbal memory impairments at 

the pre-operative level, without enough tissue on the right temporal lobe to 

salvage verbal memory. The data reported in Table 8.1 indicates that early 

pathology, even when it is unilateral, has seemingly bilateral effects and cognition 

in general is reduced.  
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Table 8.1 Information gathered from behavioural and neuroimaging protocols for each 

patient.  

 
Side of 

pathology 

Verbal memory 

lateralisation 

left versus right   

Memory deficit 
verbal versus 

non-verbal 

Contralateral 
deficit  

Case 1 Right  Right Non-verbal  

Case 2 Right  Bilateral Non-verbal Verbal  

Case 3 Bilateral  Bilateral Verbal  

Case 4 Left  Right Verbal  

Case 5 Left  Right Verbal  

Case 6 Left N/A Verbal  Non-verbal 

 

A recent study demonstrated higher risk of post-operative memory decline in 

adult patients who show limited pre-operative cognitive reserve (i.e. significantly 

low non-verbal memory in the left TLE group) (Baxendale & Thompson, 2018). In 

the present cohort, two patients showed additional contralateral memory deficit 

(Cases 2 and 6). Similarly to adults, this profile could be indicative of greater risk 

of post-operative memory decline as a result of reduced functional reserve 

(Chelune, 1995); this should be taken into consideration when predicting post-

operative memory deterioration. However, a cautionary note pertains to the 

difficulty to make such comparisons between adult and child studies and make 

predictions in children based on adult data. More paediatric research studies are 

critical for the advancement of prediction of cognitive outcome.  

A further cautionary note relates to the role of intellectual status in paediatric 

patients, particularly those with early onset of pathology. These protocols are 

most informative when used for the pre-surgical assessment of memory in 

children who exhibit IQ levels within the normal range. Patients with low IQ show 

a more distributed pattern of neural activation, in which case such predictions are 

less pertinent. Ojemann and colleagues conducted intracranial stimulation during 

object naming in high and low functioning participants and showed more 

widespread activations in low functioning compared to higher functioning 

individuals (Ojemann, 1991). A similar relationship may hold between ability and 

the neural organisation of memory, with less focal memory network integrity in 

those with lower intellectual status. The current protocols are therefore pertinent 

to focal pathology that has not interfered with network establishment and is 

associated with some evidence of hemispheric specialisation. It is in this specific 
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context of focal pathology that it is important to predict which specific aspect of 

memory is at risk of impairment.  

2.3 Lateralisation of Memory  

The Pair Games provides a better investigation of lateralisation of memory 

function, and as demonstrated in this thesis (Chapter 4), is able to identify 

material-specific impairments not captured with standardised tests.  

As mentioned above, irrespective of side of pathology, there are complaints 

about verbal learning and memory problems in childhood TLE. Several factors 

may contribute to this observation. First, these complaints may be the result of 

the vulnerability of the auditory-verbal system (discussed in section 2.4, page 

265), which is also demonstrated in typically-developing children in the present 

research (Chapter 3). Second, the susceptibility of acoustic verbal information to 

forgetting (discussed in section 2.5, page 265) makes auditory memory tests non-

comparable to non-verbal memory tests (Chapters 3 and 4). Whereas the 

Spoken Words subtest of the Pair Games does not provide an indication of 

deficits related to left-sided pathology specifically, the Written Word subtest 

provides more evidence of material-specificity of impairment and may therefore 

be better suited for such investigation. Third, this observation may be a result of 

insensitivity of tests to capture material-specific impairments. As discussed 

above, comparison between verbal and non-verbal memory has been hampered 

by confounding effects. Diagnostic tools are generally not sensitive to capture 

non-verbal memory impairments and are not sensitive to right-sided pathology 

(Jones-Gotman et al., 1993), misleading the interpretation of lateralisation of 

memory dysfunction. For example, non-verbal memory is often assessed through 

recognition which is considerably easier than recall, reducing the ability to 

capture non-verbal memory impairments.   

In contrast, as a result of its balanced nature, the Pair Games was able to identify 

non-verbal memory impairments in patients with right-sided pathology and 

captured material-specific deficits in both left and right TLE (Chapter 4). Despite 

less clear lateralisation of memory dysfunction in children compared to adult TLE 

as a result of early onset of seizures, the pattern of memory impairments may be 

less sporadic than reported in the literature. In addition, with the standardised 
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tests, clear predictions cannot be drawn from the non-verbal memory subtests 

whereas the Pair Games provides tables of verbal and non-verbal memory 

outcome predictions versus IQ. These clinical values highlight the strengths of 

the Pair Games over standardised tests.  

2.4 Vulnerability of Verbal Memory to Temporal Lobe 

Pathology  

The literature suggests behavioural differences in verbal and non-verbal memory 

abilities. Verbal memory is intrinsically related to academic attainment and 

intellectual status in children (Catroppa & Anderson, 2007; Hainlen, 1995). In 

addition, visuospatial memory shows a higher peak during adolescence than 

verbal memory (Murre et al., 2013). Consistent with these findings, the present 

study showed poorer verbal compared to non-verbal learning scores in typically-

developing children (Chapter 3). It is possible that verbal learning is dependent 

on other cognitive abilities more so than non-verbal learning, especially during 

school-age years.  

Considering the higher incidence of verbal over non-verbal memory complaints in 

childhood TLE (Fuentes & Smith, 2015; Law et al., 2017), examination of the 

profile of verbal memory in the typically-developing population is critical for a 

better understanding of dysfunctions, particularly in patients. As such, the lower 

efficiency of the verbal memory system in typically-developing children may 

indicate that this aspect of memory is more vulnerable in patients with temporal 

lobe pathology than non-verbal memory. This finding also underlines the value of 

standard scores in the investigation of material-specific impairments in order to 

account for lower verbal memory baseline. Examining raw scores, as opposed to 

standard scores, may contribute to null findings regarding material specificity of 

dysfunction as a result of inadequate comparisons between verbal and non-

verbal memory.  

2.5 Auditory Verbal Memory: Susceptibility to Forgetting  

In typically-developing children, retention of auditory verbal information is age-

dependent whereby younger children forget more auditory information after a 
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delay than older children (Chapter 3). In addition, children with TLE are 

susceptible to forgetting auditory verbal information after a delay, irrespective of 

side and site of neuropathology (Chapter 4). This susceptibility of auditory 

memory to forgetting is observed in young healthy children and in children with 

TLE, and may provide an indication of characteristics that are specific to auditory 

memory. 

Because of the acoustic and temporal characteristics of auditory stimuli, storage 

of their representations requires the transformation of the acoustic sequence into 

a subvocal motor sequence. Long-term auditory memory requires subvocal 

reproduction of speech sounds by means of the oromotor system and, in this 

respect, is closely related to speech (Schulze et al., 2012). It is possible that the 

development of long-term auditory memory parallels speech development, and 

early onset of seizures impedes the development of these functions, leading to 

impairments in both language abilities and auditory verbal memory. An 

implication of the above is that younger children and children with TLE may find it 

difficult to store lasting representations of auditory information. The relationship 

between the development of speech and auditory verbal memory warrants further 

investigation. As a result of these acoustic and temporal characteristics, tests of 

auditory verbal memory are not comparable to those of non-verbal memory which 

are presented in the visual modality, and may not be suitable for the examination 

of lateralisation of memory function.   

2.6 Advantages of Non-Semantic Subtests 

Whereas memory for familiar stimuli (words and objects) can rely on previously 

stored representations, memory for non-semantic stimuli (pseudowords and 

designs) must rely on newly established representations. In this respect, non-

semantic subtests push the boundaries of new learning. The establishment of 

these new representations may depend on mnemonic strategies at encoding. As 

such, age-related improvement in learning gain for non-semantic subtests 

observed in typically-developing children may reflect the development of 

mnemonic strategies with age (Chapter 3).  

In addition, tests of non-semantic items show an association between learning 

gain and intellectual status in typically-developing children. This finding has 
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clinical relevance in that a patient with high IQ might be at risk of deficits in new 

learning; a risk not picked up with tests of semantic items (i.e. most standardised 

tests). In that respect, non-semantic tests may serve as more sensitive indicators 

of damage to critical regions subserving memory.  

2.7 Separate Learning/Recognition from Recall Abilities 

The findings from Chapter 3 suggest that learning and recognition memory are 

distinct from the recall memory process. Learning and recognition are intrinsically 

related to age, and similar effects of intellectual status indicate that learning and 

recognition are related to the maturation and acquisition of knowledge that 

increases with age. As children develop, they learn and form new semantic 

associations. Similarly, age-related effects shown for recognition can be 

understood as stronger associations made at encoding which influence 

recognition performance at retrieval.   

On the other hand, recall (the ability to bring back to mind something that is no 

longer present) does not vary with age across childhood and adolescence. In 

addition, once it is established the ability to recall is not dependent on item 

features. As such, children and adolescents recall the same amount of 

information irrespective of the input modality (auditory versus visual) and of the 

degree of semantic access (semantic versus non-semantic). The distinction 

between the processes of recall and recognition has implication for the design of 

memory research studies and suggests the importance of using recall memory 

tasks. Recognition tasks are often employed to assess memory impairments in 

children with TLE in the clinical setting whereas recall memory is often ignored. 

Without testing recall, researchers only have a partial understanding of the 

memory system, and are neglecting what is arguably the most relevant aspect of 

memory for epileptic patients. In this respect, the fMRI protocol developed and 

discussed in Chapter 5 investigated neural correlates of recall.  



Chapter 8: General discussion 
 

 

268        Buck 
 

2.8 Material-specific Asymmetry of the Hippocampal 

Learning System 

The left hemisphere mediates verbal memory and the right hemisphere 

visuospatial memory (Milner, 1971; Saykin & Robinson, 1992). The findings from 

the present study suggest, however, that the hippocampal learning system may 

not be as clearly lateralised as the neocortical learning system as previously 

reported, at least in the case of paediatric cohorts. This may explain why 

neuroimaging findings are not always consistent regarding lateralisation of 

hippocampal activation. Casasanto et al. (2000) posited that whereas 

hemispheric laterality for memory appears material-dependent in other regions of 

the MTL, the hippocampus may show less lateralised activation (Casasanto et 

al., 2000). The findings from the present study are consistent with this notion. In 

Chapter 6, the results showed high inter-individual variability in lateralisation of 

hippocampal activation in typically-developing children (for event-related 

analyses), whereas the lateralisation of activation in other brain regions was more 

consistent. Further research on factors affecting hemispheric specialisation of the 

hippocampus may help reconcile neuropsychological findings that support the 

material-specific role of the hippocampal system, with conflicting neuroimaging 

findings. 

The specialisation of the hippocampus may depend on the ease of access to 

semantic representations. As such, during memory processing, semantic 

materials (e.g. words and objects) may be integrated into material-specific 

representations stored in neocortical regions, whereas non-semantic materials 

(e.g. pseudowords and abstract designs) may struggle to become associated 

with cortical representations, and instead may rely on both hippocampi for 

processing. The findings reported in Chapter 4 showed material-specific 

impairments in children with TLE well-characterised with the semantic subtests of 

the Pair Games (Written Words and Objects), but not with the non-semantic 

subtests (Pseudowords and Designs). The ability to form representations of new 

material (i.e. non-semantic items) is a putative property of the hippocampus. With 

repeated exposures, these new representations gradually become integrated into 

the neocortical system through hippocampal-neocortical interactions (Davis et al., 

2009). It is possible that, at least in children and adolescents, the hippocampal 

learning system has not yet acquired a clear asymmetry, and that representations 
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of new material (e.g. pseudowords and designs) have not yet become anchored 

as material-specific. The material-specific process of these representations may 

arise once they are integrated into the neocortical learning system through 

hippocampal-neocortical interactions. 

The present findings therefore suggest lateralisation of the neocortical learning 

system and/or hippocampal-neocortical interactions for semantic items in children 

with TLE, but an absence of lateralisation of the hippocampal learning system for 

non-semantic items. This interpretation remains speculative at this stage and 

warrants further research. 

2.9 Emerging Co-Lateralisation of Function with Age 

Models of hemispheric specialisation posit that language and verbal memory 

functions are co-lateralised to the left hemisphere (e.g. Milner, 1971). However, 

the trajectory of the emergence of hemispheric specialisation for distinct cognitive 

functions is not well-established and it is possible that different functions may 

show lateralisation at different stages of development, thereby influencing the 

emergence of co-lateralisation of functions.  

Whereas co-lateralisation of verbal memory and language is reported in adults 

(e.g. Pirmoradi et al., 2016; Sepeta et al. 2016), the same pattern was not found 

in patients or indeed in typically-developing children (Chapters 6 and 7). It is 

possible that co-lateralisation of language and memory gains strength across 

development. Whereas there is no evidence of developmental trajectory of 

hippocampal lateralisation in the present cohort, it is possible that the age range 

(8 to 18 years) does not cater to the slow process of hemispheric specialisation. 

Therefore the process may be slow for some functions but not for others. It may 

be that recollective processes that are dependent on the hippocampus are slow 

to develop, in contrast to speech and language. This has implications for the 

understanding of material-specific impairments in patients with brain damage 

acquired early in life. The little evidence of material-specific impairments in 

children with unilateral brain damage may be associated with the observation that 

MTL functions are not clearly lateralised in the immature brain. Further 

investigation into the development of co-lateralisation of functions would shed 

light on the underlying mechanisms of material-specificity of dysfunction. 
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2.10 Ipsilateral Functional Reorganisation  

Consistent with the adult TLE literature, the present findings demonstrated an 

intrahemisphere posterior shift in hippocampal activation in children with left TLE 

(Chapter 7) compared to anterior hippocampal activation in typically-developing 

children (Chapter 6). This posterior hippocampal activation shift may be 

compensatory to protect against deficits in delayed recall. In the present cohort, 

the two patients with left TLE showed posterior hippocampal activation, whereas 

similar to the controls, the two patients with right TLE showed anterior 

hippocampal activation. The patient with bilateral TLE showed increased anterior 

hippocampal recruitment compared to controls and showed significant 

impairment in verbal delayed recall, to a greater extent than the other patients 

(Chapter 4). This observation may be attributable to bilateral pathology of the 

hippocampus severely affecting delayed recall, in conjunction with absence of 

functional reorganisation to support the function. This finding warrants further 

investigation, and larger patient cohorts are needed to further examine the 

compensatory value of posterior hippocampal activation to guard against 

impaired delayed recall at the pre-operative level.  

Although the assessment in the present study was carried out at the pre-

operative level only, this finding is in line with the functional adequacy model. 

This model posits that the capacity of the ipsilateral MTL regions to support 

memory predicts memory outcome following temporal lobectomy (Chelune, 

1995). Adult TLE studies have supported this model (Baxendale et al., 2000; 

Bonelli et al., 2010; Helmstaedter et al., 2011b), and the present work suggests 

similar observations in the paediatric population. Post-operative evaluation is 

needed to adequately assess this hypothesis. If the finding is upheld, then there 

would be a strong argument for tailoring the temporal lobe resections to spare the 

posterior portion of the hippocampus.   

This finding also indicates the importance of examining ipsilateral reorganisation 

alongside contralateral reorganisation to investigate the mechanisms that support 

memory in the injured brain and to address the question of memory outcome and 

the factors that influence it. For example, it is possible that a shift in activation to 

posterior portions of the hippocampus occurs as a consequence of 

disconnections from the anterior temporal lobe. Functional connectivity analysis 
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of fMRI data identifies brain regions that are temporally correlated and, as such, 

examines connectivity between regions within a functional network. Examining 

changes in ipsilateral functional connectivity might help us understand the 

mechanism underlying functional reorganisation of the memory network, and 

possibly shed light on the posterior shift in hippocampal activation in children with 

TLE.  

2.11    Hippocampal Activation in fMRI Studies 

Assessing fMRI of MTL functions has been more difficult than other cognitive 

functions. Whereas fMRI paradigms are very efficient at localising language and 

motor functions, localising memory function is more challenging. Several 

neuropsychological and technical factors contribute to this difficulty. The nature of 

the study material influences which cortical areas are recruited, however, the 

functional integrity of the MTL, and the hippocampus in particular, is crucial for 

episodic memory regardless of which type of material is being recalled. Based on 

the theoretical assumption, and evidence from patients with bilateral hippocampal 

damage of early onset (Patai et al., 2016) that the hippocampus supports recall 

processes and is involved in the relational binding of information, researchers 

who are particularly interested in assessing the functionality of the hippocampus 

should consider tasks involving recall and/or those that encourage binding (see 

Chapter 6, section 4.2, page 202). This can be achieved through the use of 

strategy at encoding, such as relational binding, which influences hippocampal 

activation (Becker et al., 2017; Heckers et al., 2002).  

In the present study, the auditory verbal recall task was selected due to its 

applicability to ecological memory functioning, even though other tasks may have 

shown more robust hippocampal activation. Towgood et al. (2015) compared 

seven memory fMRI protocols in TLE, and demonstrated that the “hometown 

walking” paradigm, which requires imagining a familiar route, produced the best 

reliability of magnitude of activation.The selection of the task must be pertinent to 

the clinical aim of the study. If the aim is to assess the functionality of the 

hippocampus, then a task like the hometown walking paradigm may be pertinent. 

However, if the aim is to assess the ability of the hippocampus to support 

memory, then a verbal memory paradigm involving recall, as in the present study, 

is better suited.  
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Localisation of memory function is also made difficult due to technical factors, 

such as susceptibility artefacts. These artefacts are particularly prominent in the 

anterior temporal lobe, producing detrimental effects on MTL activation (see 

Chapter 1, section 4.5.2.2, page 24). The negative effects of these technical 

factors can be overcome (or at least accounted for) by adjusting the sequence 

parameters and optimising data collection (Chapter 5, section 2.6, page 153), 

such as applying a slice tilt which optimises the BOLD sensitivity in the MTL 

(Weiskopf et al., 2006). These technical considerations should be taken into 

account in combination with the task selection that is critical for MTL activation. 

2.12 Inter-individual Variability in Memory LI: Implications 

for TLE  

In Chapter 6, the results yielded large inter-individual variability in memory 

lateralisation in healthy children, particularly for activation reflecting successful 

memory (as shown in event-related analyses). This inter-individual variability 

might reflect that there is not a clear “typical” pattern of hippocampal memory 

activity to which a patient case might be compared to assess pathology. On the 

other hand, activation yielded from block-analyses showed less inter-individual 

variability and the majority of healthy controls were left lateralised. Such block-

related activation in TLE may therefore be more suited for comparison to a 

“typical” network. Block analyses may be more informative for the comparison to 

controls, in order to capture the large reorganisation patterns in patients, whereas 

event-related analyses may be too “focal” to be able to compare to a control 

group. However, it is important to note that the questions that are pertinent to 

hemispheric specialisation (left versus right) and functional segregation of the 

hippocampus (anterior versus posterior), as well as the application of event-

related analyses, are driven by intellectual ability levels. In cases of low 

intellectual ability, these questions and sophisticated analyses are not pertinent. 

Alternatively, within-subject analyses of fMRI data, such as MVPA which 

examines the distributed pattern of activation across voxels, may provide 

important information regarding each patient’s pattern of activation, without the 

necessity to compare to a “typical” network. This would provide more information 
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on each individual’s memory representation, providing crucial clinical information 

before temporal lobe resection.  

3 Limitations 

3.1 Sample Selection 

Children from the normative sample were recruited through East London schools 

and may therefore not be fully representative of the general population. However, 

measures of Socio-Economic Status (SES) were obtained and these showed that 

the current sample ranged across the whole spectrum of SES (from 1 to 10). 

All six TLE patients included in the pilot cohort were under medication at the time 

of the study. In addition to the seizures, antiepileptic drugs (AEDs) interfere with 

normal brain development and alter cognitive profiles in a heterogeneous manner 

across individuals (Marsh et al., 2006). It is therefore difficult to rule out the 

effects of medication and other clinical factors on the behavioural and 

neuroimaging analyses conducted in the present work. It would be relevant to 

validate these novel protocols in adult patients who tend to demonstrate clearer 

cognitive profiles, and material-specific impairments. In addition, comparison 

between paediatric and adult patients would shed light on the impact of age at 

seizure onset on the behavioural profiles and neural networks associated with 

TLE. 

Overall, the ultimate impetus of the present work is to improve diagnosis and 

prediction of outcome at the individual level. Presenting data from individual 

patients to show clinical validity is therefore critical at this stage. It would, 

however, also be informative to provide group-level findings in order to draw 

inferences and apply findings to other cases. Group analyses on larger cohorts 

with these protocols would shed light on the behavioural and neural mechanisms 

affected in TLE and in turn contribute to advances in epilepsy research.  
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3.2 Additional Neuropsychological Tests 

Including additional neuropsychological tests would have been useful to test the 

influence of executive functions, such as attention, on performance on the Pair 

Games versus standardised tests. Additional cognitive tests would have been of 

interest, however, this would have considerably extended the length of testing 

which would have made it difficult to conduct the testing on school premises. The 

main focus of this thesis was on memory and priority was therefore given to the 

assessment of memory and intellectual functioning.  

3.3 Technical Limitations in fMRI 

Technical limitations often occurring in memory functional imaging studies include 

signal dropout of the MTL as a result of magnetic inhomogeneity. However, 

sequence parameters were adapted to improve signal in the MTL and data 

quality in those specific regions was tested (Chapter 5). In addition, overt speech 

is associated with motion artefact inside the scanner which may impede signal 

quality. Overt response in the present study has the strong advantage that in-

scanner memory performance can be recorded for event-related analyses. 

Retrospective motion correction (i.e. FIACH) was applied to the data in order to 

remove such artefact, but it would be useful to consider methods of online motion 

correction and reduce speech-related artefacts for future studies involving overt 

responses. Moreover, low statistical thresholds were used for analyses due to the 

nature of individual-level analyses and the difficulty obtaining robust activation in 

the MTL. Whereas such low thresholds may be problematic for interpretation 

(e.g. false positives), this study remains exploratory and the preliminary findings 

may be promising indicators for future work.  

4 Directions for Future Research 

4.1 Memory Reorganisation as an Efficient Mechanism? 

Correlation analyses between functional reorganisation (ipsilateral and 

contralateral) and memory scores would elucidate whether such reorganisation 
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reflects an efficient mechanism to preserve memory function in the context of 

brain pathology. Is the increased posterior hippocampal activation observed in 

paediatric TLE an efficient mechanism to help preserve memory? Several adult 

studies have reported such findings, supporting the functional adequacy model, 

whereby greater activation in ipsilateral MTL was correlated with better memory 

performance (Bigras et al., 2013; Bonelli et al., 2013; Limotai et al., 2018; 

Vannest et al., 2008). For example, greater left hippocampal activation was 

associated with better verbal memory in left TLE patients. Future research to 

examine the efficiency of such adaptive recruitments, particularly in the paediatric 

population, is necessary.  

4.2 Long-Term Post-Operative Outcome 

The ultimate goal of this research is to reduce the risks of cognitive decline after 

temporal lobe surgery in children with TLE. Two protocols were developed for this 

purpose, and further work is now required to test the predictive value of these 

protocols, by assessing long-term cognitive outcome in patients who have 

undergone surgery. This work is currently being undertaken by a PhD student, Dr 

Filipa Bastos. Filipa is increasing the sample size of epilepsy patients and is 

conducting a follow-up evaluation with both protocols in patients who have now 

undergone surgery. Post-operative assessment is carried out 4 months- and 12-

months post-surgery in order to capture the trajectory of behavioural and neural 

changes. The ability of the Pair Games and the novel fMRI protocol to predict 

these changes will be investigated and compared to standardised measures.  

When conducting these analyses on changes between pre- and post-operative 

performance, it is important to take into account any development that would 

have happened within that elapsed period of time. It is therefore crucial to have 

good measure of the patients’ baseline performance prior to surgical intervention, 

because their post-operative profile will depend on their baseline performance 

prior to surgery.  
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4.3 Influence of Hippocampal Volume 

Relating functional MRI and behavioural findings to hippocampal volume 

measurements would provide an indication of the structure-function relationship 

of hippocampal development and on the contribution of hippocampal volume to 

memory performance in both typically-developing children and paediatric TLE. 

For example, correlations between left/right hippocampal volume and verbal/non-

verbal memory performances would shed light on the contribution of structural 

measures to performance. Such analyses would be pertinent in the TLE cohort in 

order to identify the influence of ipsilesional and contralesional hippocampal 

volume in the lateralisation of hippocampal activation. Additionally, it would be 

interesting to correlate the degree of hippocampal volume loss to the degree of 

memory impairment in these patients, as well as identifying the pattern of 

memory impairment (e.g. verbal versus non-verbal) based on the side of 

hippocampal volume loss.  

5 Final Conclusions 

As a result of the detrimental effects of temporal lobe seizures on the protracted 

development of the neural systems subserving learning and memory, children 

with TLE are particularly susceptible to learning and memory impairments. In 

paediatric TLE, the profile of cognitive dysfunction is not very clear due to several 

factors, one of which being early onset seizures interfering with the normal 

hemispheric specialisation process. Given the heterogeneity of profiles in 

paediatric TLE and the differences with adult TLE, diagnosis, surgical decision-

making, and prediction of outcome cannot be extrapolated from adult studies and 

should instead rely on paediatric studies and the use of neuropsychological and 

fMRI tools developed for that purpose.  

Two novel protocols were developed as part of this thesis: a behavioural protocol 

(the “Pair Games”) and a neuroimaging protocol. The Pair Games provides better 

informed neurocognitive diagnosis than standardised tests with better 

understanding of the nature of the memory deficit and the underlying processing 

impairment. Specific learning and memory deficits can be related to the neural 

systems subserving the functions, and in turn provide evidence of the underlying 

neuropathology which is critical for surgical decision-making. The advantages of 
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the Pair Games are 1) a balanced paradigm allowing comparison between verbal 

and non-verbal learning and memory, 2) assessment of learning, delayed recall 

and recognition within one protocol, 3) paired-associate learning paradigm to 

assess cognitive processes that are dependent on the hippocampal network, and 

4) the use of a tablet-based application permitting controlled administration 

process and child-friendly approach to cognitive testing.  

The combined language/memory fMRI also provides crucial information regarding 

the lateralisation and localisation of language and memory functions, as well as 

the interaction between them. The advantages of this fMRI protocol are 1) 

functional mapping of language and memory within one scanning, 2) assessment 

of both encoding- and retrieval-related neural networks, 3) the use of recall-based 

retrieval to increase hippocampal recruitment, and 4) overt responses allowing 

the investigation of neural networks that support successful memory specifically. 

Together, these protocols provide more precise information on the cognitive 

profile of surgical candidates and on the neural networks subserving functions at 

risk, and hence offer better guide for surgical decision-making. 
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Table A.1 Objects subtest version A 

 

Table A.2 Objects subtest version B 

 

 

 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

    

 

 
Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 

 
 
 

  

 

 

 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 
     

 

Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 
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Table A.3 Designs subtest version A 

 

 

Table A.4 Designs subtest version B 

 

 

 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

     

 

Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 

     

 

 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

     

 

Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 
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Table A.5 Pseudowords subtest version A 

 

 

 

 

 

 

Table A.6 Pseudowords subtest version B 

 

 

 

 

 

 

 

 

 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

bame  ree wime    lim      dif      daf  figo   dod bollan     bab    

 
Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 

bumi    mima mulo     soto pag     pam peton   lass      sarb   sib 

 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

bepa   chessa  wike    nim         vot     fot  nissa    sus fing    bib      

 

Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 

woot    dep cugo    boko tav     vav teson   russ      corb   roo 



 

 
 

3
1
4

          B
u
c
k
 

A
p
p

e
n
d

ix
 A

 

Table A.7 Written Words subtest version A 

 

Table A.8 Written Words subtest version A 

 
 

 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

hill  bed waist    road      lemon      fruit  soldier   noodle boat     honey    

 

Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 

frost     picture knee    pot coach     van dummy   pocket      breakfast   stone 
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Table A.9 Spoken Words subtest version A 

 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

bag    pin uncle    square knife     fork face   jacket pool   wood 

 

Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 

garbage  market teacher   bubble fox       rabbit  girl     barrel turtle    smoke 

 

Table A.10 Spoken Words subtest version A 

 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

cousin   egg flame   queen koala      mouse towel    school      valley      pound 

 

Pair 6 Pair 7 Pair 8 Pair 9 Pair 10 

shirt   water   forest     plug  aunt    woman cream     page  park     head 
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Table A.11 Standard Scores and their Classifications 

Standard score Classification 

130 or above Exceptionally high 

120 -129 High 

110 – 119 High average 

90 – 109 Average 

80 – 89 Low average 

71 – 79 Low 

70 or below Exceptionally low 
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Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

1 58 67 61 62 81 31 82 88 82 95 102

2 59 68 61 63 82 32 83 88 83 96 103

3 60 69 62 64 82 33 83 89 84 97 103

4 61 69 63 65 83 34 84 90 84 98 104

5 61 70 63 66 84 35 85 91 85 99 105

6 62 71 64 67 84 36 86 91 86 100 106

7 63 72 65 68 85 37 86 92 86 101 106

8 64 72 66 70 86 38 87 93 87 103 107

9 64 73 66 71 87 39 88 93 88 104 108

10 65 74 67 72 87 40 89 94 89 105 108

11 66 74 68 73 88 41 90 95 89 106 109

12 67 75 68 74 89 42 90 95 90 107 110

13 68 76 69 75 89 43 91 96 91 108 111

14 68 76 70 76 90 44 92 97 91 109 111

15 69 77 71 77 91 45 93 97 92 110 112

16 70 78 71 78 91 46 94 98 93 111 113

17 71 78 72 79 92 47 94 99 94 112 113

18 72 79 73 81 93 48 95 99 94 114 114

19 72 80 74 82 94 49 96 100 95 115 115

20 73 80 74 83 94 50 97 101 96 116 115

21 74 81 75 84 95 51 98 101 97 117 116

22 75 82 76 85 96 52 98 102 97 118 117

23 75 82 76 86 96 53 99 103 98 119 118

24 76 83 77 87 97 54 100 103 99 120 118

25 77 84 78 88 98 55 101 104 99 121 119

26 78 84 79 89 99 56 101 105 100 122 120

27 79 85 79 90 99 57 102 105 101 123 120

28 79 86 80 92 100 58 103 106 102 125 121

29 80 86 81 93 101 59 104 107 102 126 122

30 81 87 81 94 101 60 105 108 103 127 123

Raw scores to standard scores Ages 8 through 9Raw scores to standard scores Ages 8 through 9
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Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

61 105 108 104 128 123 92 130 129 126 162 145

62 106 109 104 129 124 93 131 130 127 163 146

63 107 110 105 130 125 94 131 131 127 164 147

64 108 110 106 131 125 95 132 131 128 165 147

65 109 111 107 132 126 96 133 132 129 166 148

66 109 112 107 133 127 97 134 133 130 167 149

67 110 112 108 134 127 98 134 133 130 169 149

68 111 113 109 136 128 99 135 134 131 170 150

69 112 114 109 137 129 100 136 135 132 171 151

70 112 114 110 138 130

71 113 115 111 139 130

72 114 116 112 140 131

73 115 116 112 141 132

74 116 117 113 142 132

75 116 118 114 143 133

76 117 118 115 144 134

77 118 119 115 145 135

78 119 120 116 147 135

79 120 120 117 148 136

80 120 121 117 149 137

82 122 122 119 151 138

83 123 123 120 152 139

84 123 124 120 153 139

85 124 124 121 154 140

86 125 125 122 155 141

87 126 126 122 156 142

88 127 127 123 158 142

89 127 127 124 159 143

90 128 128 125 160 144

91 129 129 125 161 144

Raw scores to standard scores Ages 8 through 9 Raw scores to standard scores Ages 8 through 9
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Learning 

gain 

Learning 

gain 

Raw Raw 

-30 36 53 60 51 59 0 64 74 81 80 81

-29 37 54 61 52 60 1 65 74 82 81 82

-28 38 55 61 53 61 2 66 75 82 82 83

-27 39 55 62 54 61 3 67 76 83 83 84

-26 39 56 63 55 62 4 68 76 84 84 84

-25 40 57 63 56 63 5 69 77 85 85 85

-24 41 57 64 57 64 6 70 78 85 86 86

-23 42 58 65 58 64 7 70 78 86 86 86

-22 43 59 65 59 65 8 71 79 87 87 87

-21 44 59 66 60 66 9 72 80 87 88 88

-20 45 60 67 61 67 10 73 80 88 89 89

-19 46 61 68 61 67 11 74 81 89 90 89

-18 47 61 68 62 68 12 75 82 89 91 90

-17 48 62 69 63 69 13 76 82 90 92 91

-16 49 63 70 64 69 14 77 83 91 93 92

-15 50 63 70 65 70 15 78 84 92 94 92

-14 51 64 71 66 71 16 79 84 92 95 93

-13 52 65 72 67 72 17 80 85 93 96 94

-12 53 65 73 68 72 18 81 86 94 97 95

-11 54 66 73 69 73 19 82 86 94 98 95

-10 54 67 74 70 74 20 83 87 95 99 96

-9 55 67 75 71 75 21 84 88 96 100 97

-8 56 68 75 72 75 22 85 88 96 101 98

-7 57 69 76 73 76 23 85 89 97 102 98

-6 58 70 77 74 77 24 86 90 98 103 99

-5 59 70 77 75 78 25 87 90 99 104 100

-4 60 71 78 76 78 26 88 91 99 105 100

-3 61 72 79 77 79 27 89 92 100 106 101

-2 62 72 80 78 80 28 90 92 101 107 102

-1 63 73 80 79 81 29 91 93 101 108 103

Raw scores to standard scores Ages 8 through 9

Pseudo-

words

Raw scores to standard scores Ages 8 through 9

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Spoken 

Words

Written 

Words
Objects Designs
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Learning 

gain 

Learning 

gain 

Raw Raw 

30 92 94 102 109 103 60 120 114 123 137 126

31 93 94 103 110 104 61 121 114 124 138 126

32 94 95 104 111 105 62 122 115 125 139 127

33 95 96 104 111 106 63 123 116 125 140 128

34 96 96 105 112 106 64 124 116 126 141 129

35 97 97 106 113 107 65 125 117 127 142 129

36 98 98 106 114 108 66 126 118 127 143 130

37 99 98 107 115 109 67 127 118 128 144 131

38 100 99 108 116 109 68 128 119 129 145 132

39 100 100 108 117 110 69 129 120 130 146 132

40 101 100 109 118 111 70 130 121 130 147 133

41 102 101 110 119 112 71 130 121 131 148 134

42 103 102 111 120 112 72 131 122 132 149 134

43 104 102 111 121 113 73 132 123 132 150 135

44 105 103 112 122 114 74 133 123 133 151 136

45 106 104 113 123 115 75 134 124 134 152 137

46 107 104 113 124 115

47 108 105 114 125 116

48 109 106 115 126 117

49 110 106 115 127 117

50 111 107 116 128 118

51 112 108 117 129 119

52 113 108 118 130 120

53 114 109 118 131 120

54 115 110 119 132 121

55 115 110 120 133 122

56 116 111 120 134 123

57 117 112 121 135 123

58 118 112 122 136 124

59 119 113 123 136 125

Written 

Words

Raw scores to standard scores Ages 8 through 9

Spoken 

Words
Objects Designs

Pseudo-

words

Spoken 

Words

Raw scores to standard scores Ages 8 through 9

Written 

Words
Objects Designs

Pseudo-

words
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Delayed 

recall 

Delayed 

recall 

Raw Raw 

-50 12 43 39 38 45 -20 73 86 78 78 82

-49 14 45 40 40 46 -19 75 87 80 79 83

-48 16 46 41 41 47 -18 77 89 81 81 84

-47 18 47 43 42 49 -17 79 90 82 82 86

-46 20 49 44 44 50 -16 81 91 84 83 87

-45 22 50 45 45 51 -15 83 93 85 85 88

-44 25 52 47 46 52 -14 85 94 86 86 89

-43 27 53 48 48 54 -13 87 96 87 87 90

-42 29 54 49 49 55 -12 89 97 89 89 92

-41 31 56 51 50 56 -11 91 99 90 90 93

-40 33 57 52 52 57 -10 93 100 91 91 94

-39 35 59 53 53 58 -9 95 101 93 93 95

-38 37 60 54 54 60 -8 97 103 94 94 97

-37 39 62 56 56 61 -7 99 104 95 95 98

-36 41 63 57 57 62 -6 101 106 97 96 99

-35 43 64 58 58 63 -5 103 107 98 98 100

-34 45 66 60 60 65 -4 105 109 99 99 102

-33 47 67 61 61 66 -3 107 110 101 100 103

-32 49 69 62 62 67 -2 109 111 102 102 104

-31 51 70 64 64 68 -1 111 113 103 103 105

-30 53 72 65 65 70 0 113 114 105 104 106

-29 55 73 66 66 71 1 115 116 106 106 108

-28 57 74 68 67 72 2 117 117 107 107 109

-27 59 76 69 69 73 3 119 118 109 108 110

-26 61 77 70 70 74 4 121 120 110 110 111

-25 63 79 72 71 76 5 123 121 111 111 113

-24 65 80 73 73 77 6 125 123 113 112 114

-23 67 82 74 74 78 7 127 124 114 114 115

-22 69 83 76 75 79 8 129 126 115 115 116

-21 71 84 77 77 81 9 131 127 116 116 118

Raw scores to standard scores Ages 8 through 9

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Raw scores to standard scores Ages 8 through 9

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words
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Delayed 

recall 

Raw 

10 133 128 118 118 119

11 135 130 119 119 120

12 137 131 120 120 121

13 139 133 122 122 122

14 141 134 123 123 124

15 143 136 124 124 125

16 145 137 126 125 126

17 147 138 127 127 127

18 149 140 128 128 129

19 151 141 130 129 130

Raw scores to standard scores Ages 8 through 9

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words
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Recognition Recognition

Raw Raw 

-30 52 47 29 60 66 0 66 63 48 73 77

-29 53 48 30 60 67 1 66 63 49 73 77

-28 53 48 31 61 67 2 66 64 50 74 78

-27 54 49 31 61 68 3 67 64 50 74 78

-26 54 49 32 62 68 4 67 65 51 75 78

-25 55 50 32 62 68 5 68 65 52 75 79

-24 55 50 33 62 69 6 68 66 52 75 79

-23 55 51 34 63 69 7 69 66 53 76 79

-22 56 51 34 63 69 8 69 67 53 76 80

-21 56 52 35 64 70 9 70 67 54 77 80

-20 57 52 36 64 70 10 70 68 55 77 81

-19 57 53 36 65 70 11 70 68 55 78 81

-18 58 53 37 65 71 12 71 69 56 78 81

-17 58 54 38 65 71 13 71 69 57 78 82

-16 58 55 38 66 71 14 72 70 57 79 82

-15 59 55 39 66 72 15 72 70 58 79 82

-14 59 56 39 67 72 16 73 71 59 80 83

-13 60 56 40 67 72 17 73 71 59 80 83

-12 60 57 41 68 73 18 74 72 60 81 83

-11 61 57 41 68 73 19 74 72 60 81 84

-10 61 58 42 68 74 20 74 73 61 81 84

-9 62 58 43 69 74 21 75 73 62 82 84

-8 62 59 43 69 74 22 75 74 62 82 85

-7 62 59 44 70 75 23 76 75 63 83 85

-6 63 60 45 70 75 24 76 75 64 83 85

-5 63 60 45 71 75 25 77 76 64 84 86

-4 64 61 46 71 76 26 77 76 65 84 86

-3 64 61 46 71 76 27 77 77 66 84 87

-2 65 62 47 72 76 28 78 77 66 85 87

-1 65 62 48 72 77 29 78 78 67 85 87

Pseudo-

words

Raw scores to standard scores Ages 8 through 9

Spoken 

Words

Raw scores to standard scores Ages 8 through 9

Spoken 

Words

Written 

Words
Objects Designs

Written 

Words
Objects Designs

Pseudo-

words
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Recognition Recognition

Raw Raw 

30 79 78 67 86 88 60 92 94 87 99 98

31 79 79 68 86 88 61 93 94 87 99 98

32 80 79 69 87 88 62 93 95 88 100 99

33 80 80 69 87 89 63 93 95 88 100 99

34 81 80 70 87 89 64 94 96 89 100 100

35 81 81 71 88 89 65 94 96 90 101 100

36 81 81 71 88 90 66 95 97 90 101 100

37 82 82 72 89 90 67 95 97 91 102 101

38 82 82 73 89 90 68 96 98 92 102 101

39 83 83 73 90 91 69 96 98 92 103 101

40 83 83 74 90 91 70 97 99 93 103 102

41 84 84 74 90 91 71 97 99 94 103 102

42 84 84 75 91 92 72 97 100 94 104 102

43 85 85 76 91 92 73 98 100 95 104 103

44 85 85 76 92 93 74 98 101 96 105 103

45 85 86 77 92 93 75 99 101 96 105 103

46 86 86 78 93 93 76 99 102 97 106 104

47 86 87 78 93 94 77 100 102 97 106 104

48 87 87 79 93 94 78 100 103 98 106 104

49 87 88 80 94 94 79 100 103 99 107 105

50 88 88 80 94 95 80 101 104 99 107 105

51 88 89 81 95 95 81 101 104 100 108 106

52 89 89 81 95 95 82 102 105 101 108 106

53 89 90 82 96 96 83 102 105 101 109 106

54 89 90 83 96 96 84 103 106 102 109 107

55 90 91 83 96 96 85 103 106 103 109 107

56 90 91 84 97 97 86 104 107 103 110 107

57 91 92 85 97 97 87 104 107 104 110 108

58 91 92 85 98 97 88 104 108 104 111 108

59 92 93 86 98 98 89 105 108 105 111 108

Raw scores to standard scores Ages 8 through 9

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Raw scores to standard scores Ages 8 through 9

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words
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Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

1 65 69 67 72 72 31 84 87 86 98 99

2 66 70 67 73 73 32 85 88 87 99 100

3 66 70 68 74 74 33 86 89 87 100 101

4 67 71 69 75 75 34 86 89 88 101 101

5 68 72 69 75 76 35 87 90 88 101 102

6 68 72 70 76 77 36 88 91 89 102 103

7 69 73 70 77 77 37 88 91 90 103 104

8 70 73 71 78 78 38 89 92 90 104 105

9 70 74 72 79 79 39 90 92 91 105 106

10 71 75 72 80 80 40 90 93 92 106 107

11 72 75 73 81 81 41 91 94 92 107 108

12 72 76 74 82 82 42 92 94 93 107 109

13 73 76 74 82 83 43 92 95 94 108 109

14 73 77 75 83 84 44 93 95 94 109 110

15 74 78 76 84 85 45 93 96 95 110 111

16 75 78 76 85 85 46 94 97 96 111 112

17 75 79 77 86 86 47 95 97 96 112 113

18 76 80 78 87 87 48 95 98 97 113 114

19 77 80 78 88 88 49 96 98 97 114 115

20 77 81 79 88 89 50 97 99 98 114 116

21 78 81 79 89 90 51 97 100 99 115 117

22 79 82 80 90 91 52 98 100 99 116 117

23 79 83 81 91 92 53 99 101 100 117 118

24 80 83 81 92 93 54 99 102 101 118 119

25 81 84 82 93 93 55 100 102 101 119 120

26 81 84 83 94 94 56 101 103 102 120 121

27 82 85 83 95 95 57 101 103 103 120 122

28 83 86 84 95 96 58 102 104 103 121 123

29 83 86 85 96 97 59 102 105 104 122 124

30 84 87 85 97 98 60 103 105 105 123 125

Raw scores to standard scores Ages 10 through 11 Raw scores to standard scores Ages 10 through 11
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Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

61 104 106 105 124 125 91 123 124 124 150 152

62 104 106 106 125 126 92 124 125 125 151 153

63 105 107 106 126 127 93 124 125 126 152 154

64 106 108 107 127 128 94 125 126 126 152 155

65 106 108 108 127 129 95 126 127 127 153 156

66 107 109 108 128 130 96 126 127 128 154 157

67 108 109 109 129 131 97 127 128 128 155 157

68 108 110 110 130 132 98 128 128 129 156 158

69 109 111 110 131 133 99 128 129 130 157 159

70 110 111 111 132 133 100 129 130 130 158 160

71 110 112 112 133 134

72 111 113 112 133 135

73 111 113 113 134 136

74 112 114 114 135 137

75 113 114 114 136 138

76 113 115 115 137 139

77 114 116 115 138 140

78 115 116 116 139 141

79 115 117 117 140 141

80 116 117 117 140 142

81 117 118 118 141 143

82 117 119 119 142 144

83 118 119 119 143 145

84 119 120 120 144 146

85 119 120 121 145 147

86 120 121 121 146 148

87 120 122 122 146 149

88 121 122 123 147 149

89 122 123 123 148 150

90 122 124 124 149 151

Raw scores to standard scores Ages 10 through 11 Raw scores to standard scores Ages 10 through 11
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 Learning 

gain 

Learning 

gain 

Raw Raw 

-30 56 56 62 38 62 0 77 75 82 74 81

-29 57 56 62 39 62 1 78 76 83 75 82

-28 57 57 63 40 63 2 78 77 83 76 82

-27 58 58 64 42 64 3 79 77 84 78 83

-26 59 58 64 43 64 4 80 78 85 79 84

-25 59 59 65 44 65 5 80 79 85 80 84

-24 60 60 66 45 65 6 81 79 86 81 85

-23 61 60 66 46 66 7 82 80 87 82 86

-22 62 61 67 48 67 8 83 81 87 84 86

-21 62 62 68 49 67 9 83 81 88 85 87

-20 63 62 69 50 68 10 84 82 89 86 88

-19 64 63 69 51 69 11 85 83 89 87 88

-18 64 64 70 52 69 12 85 83 90 88 89

-17 65 64 71 54 70 13 86 84 91 90 90

-16 66 65 71 55 71 14 87 85 91 91 90

-15 66 65 72 56 71 15 88 85 92 92 91

-14 67 66 73 57 72 16 88 86 93 93 92

-13 68 67 73 58 73 17 89 87 93 94 92

-12 69 67 74 60 73 18 90 87 94 96 93

-11 69 68 75 61 74 19 90 88 95 97 94

-10 70 69 75 62 75 20 91 89 96 98 94

-9 71 69 76 63 75 21 92 89 96 99 95

-8 71 70 77 64 76 22 92 90 97 100 96

-7 72 71 77 66 77 23 93 91 98 102 96

-6 73 71 78 67 77 24 94 91 98 103 97

-5 73 72 79 68 78 25 95 92 99 104 97

-4 74 73 79 69 79 26 95 93 100 105 98

-3 75 73 80 70 79 27 96 93 100 106 99

-2 76 74 81 72 80 28 97 94 101 108 99

-1 76 75 81 73 80 29 97 95 102 109 100

Raw scores to standard scores Ages 10 through 11 Raw scores to standard scores Ages 10 through 11

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words
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Learning 

gain 

Learning 

gain 

Raw Raw 

30 98 95 102 110 101 60 119 115 122 146 120

31 99 96 103 111 101 61 120 116 123 147 121

32 99 97 104 112 102 62 121 116 124 148 122

33 100 97 104 114 103 63 121 117 125 150 122

34 101 98 105 115 103 64 122 118 125 151 123

35 102 99 106 116 104 65 123 118 126 152 124

36 102 99 106 117 105 66 123 119 127 153 124

37 103 100 107 118 105 67 124 120 127 154 125

38 104 101 108 120 106 68 125 120 128 156 126

39 104 101 108 121 107 69 125 121 129 157 126

40 105 102 109 122 107 70 126 122 129 158 127

41 106 102 110 123 108 71 127 122 130 159 127

42 106 103 110 124 109 72 128 123 131 160 128

43 107 104 111 126 109 73 128 124 131 162 129

44 108 104 112 127 110 74 129 124 132 163 129

45 109 105 112 128 111 75 130 125 133 164 130

46 109 106 113 129 111 76 130 126 133 165 131

47 110 106 114 130 112 77 131 126 134 166 131

48 111 107 114 132 112 78 132 127 135 168 132

49 111 108 115 133 113 79 132 128 135 169 133

50 112 108 116 134 114 80 133 128 136 170 133

51 113 109 116 135 114 81 134 129 137 171 134

52 113 110 117 136 115 82 135 130 137 172 135

53 114 110 118 138 116 83 135 130 138 174 135

54 115 111 118 139 116

55 116 112 119 140 117

56 116 112 120 141 118

57 117 113 120 142 118

58 118 114 121 144 119

59 118 114 122 145 120

Raw scores to standard scores Ages 10 through 11 Raw scores to standard scores Ages 10 through 11

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words
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Delayed 

recall 

Delayed 

recall 

Raw Raw 

-50 17 37 58 28 44 -20 70 80 87 72 88

-49 18 38 59 30 45 -19 72 81 88 74 90

-48 20 39 60 31 47 -18 74 83 89 75 91

-47 22 41 61 33 48 -17 76 84 90 77 93

-46 24 42 62 34 49 -16 77 86 91 78 94

-45 26 44 63 36 51 -15 79 87 92 80 96

-44 27 45 64 37 52 -14 81 89 92 81 97

-43 29 47 65 39 54 -13 83 90 93 83 99

-42 31 48 66 40 55 -12 85 91 94 84 100

-41 33 50 67 41 57 -11 86 93 95 85 102

-40 35 51 68 43 58 -10 88 94 96 87 103

-39 36 52 69 44 60 -9 90 96 97 88 105

-38 38 54 70 46 61 -8 92 97 98 90 106

-37 40 55 71 47 63 -7 93 99 99 91 108

-36 42 57 72 49 64 -6 95 100 100 93 109

-35 43 58 73 50 66 -5 97 102 101 94 111

-34 45 60 73 52 67 -4 99 103 102 96 112

-33 47 61 74 53 69 -3 101 105 103 97 114

-32 49 63 75 55 70 -2 102 106 104 99 115

-31 51 64 76 56 72 -1 104 107 105 100 117

-30 52 65 77 58 73 0 106 109 106 102 118

-29 54 67 78 59 75 1 108 110 107 103 120

-28 56 68 79 61 76 2 110 112 108 105 121

-27 58 70 80 62 78 3 111 113 109 106 123

-26 60 71 81 63 79 4 113 115 110 107 124

-25 61 73 82 65 81 5 115 116 111 109 126

-24 63 74 83 66 82 6 117 118 112 110 127

-23 65 76 84 68 84 7 118 119 112 112 129

-22 67 77 85 69 85 8 120 120 113 113 130

-21 68 78 86 71 87 9 122 122 114 115 132

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Raw scores to standard scores Ages 10 through 11 Raw scores to standard scores Ages 10 through 11

Pseudo-

words

Spoken 

Words

Written 

Words
Objects Designs
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Delayed 

recall 

Raw 

10 124 123 115 116 133

11 126 125 116 118 135

12 127 126 117 119 136

13 129 128 118 121 138

14 131 129 119 122 139

15 133 131 120 124 141

16 135 132 121 125 142

17 136 133 122 127 144

18 138 135 123 128 145

19 140 136 124 129 147

20 142 138 125 131 148

21 143 139 126 132 150

22 145 141 127 134 151

23 147 142 128 135 153

24 149 144 129 137 154

25 151 145 130 138 156

Raw scores to standard scores Ages 10 through 11

Spoken 

Words
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Words
Objects Designs
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Recognition Recognition

Raw Raw 

-30 42 42 36 63 68 0 57 57 53 76 78

-29 42 43 37 63 69 1 58 58 54 76 79

-28 43 43 38 64 69 2 58 59 55 77 79

-27 43 44 38 64 69 3 59 59 55 77 79

-26 44 44 39 65 70 4 60 60 56 78 80

-25 44 45 39 65 70 5 60 60 56 78 80

-24 45 45 40 66 70 6 61 61 57 79 80

-23 45 46 40 66 71 7 61 61 57 79 81

-22 46 46 41 66 71 8 62 62 58 79 81

-21 46 47 42 67 71 9 62 62 59 80 81

-20 47 47 42 67 72 10 63 63 59 80 82

-19 47 48 43 68 72 11 63 63 60 81 82

-18 48 48 43 68 72 12 64 64 60 81 82

-17 48 49 44 69 73 13 64 64 61 82 83

-16 49 49 44 69 73 14 65 65 61 82 83

-15 49 50 45 69 73 15 65 65 62 82 83

-14 50 50 45 70 74 16 66 66 62 83 84

-13 51 51 46 70 74 17 66 66 63 83 84

-12 51 51 47 71 74 18 67 67 64 84 84

-11 52 52 47 71 75 19 67 67 64 84 85

-10 52 52 48 72 75 20 68 68 65 85 85

-9 53 53 48 72 75 21 69 68 65 85 85

-8 53 53 49 73 76 22 69 69 66 85 86

-7 54 54 49 73 76 23 70 69 66 86 86

-6 54 54 50 73 76 24 70 70 67 86 86

-5 55 55 51 74 77 25 71 70 68 87 87

-4 55 55 51 74 77 26 71 71 68 87 87

-3 56 56 52 75 77 27 72 71 69 88 87

-2 56 56 52 75 78 28 72 72 69 88 88

-1 57 57 53 76 78 29 73 72 70 89 88

Raw scores to standard scores Ages 10 through 11 Raw scores to standard scores Ages 10 through 11
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Pseudo-

words

Spoken 

Words

Written 

Words
Objects Designs
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Words
Objects
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Recognition Recognition

Raw Raw 

30 73 73 70 89 88 60 89 88 87 102 98

31 74 73 71 89 89 61 90 89 88 102 98

32 74 74 72 90 89 62 90 89 89 103 99

33 75 75 72 90 89 63 91 90 89 103 99

34 75 75 73 91 90 64 91 91 90 104 99

35 76 76 73 91 90 65 92 91 90 104 100

36 76 76 74 92 90 66 92 92 91 105 100

37 77 77 74 92 91 67 93 92 91 105 100

38 77 77 75 92 91 68 93 93 92 105 101

39 78 78 76 93 91 69 94 93 93 106 101

40 79 78 76 93 92 70 94 94 93 106 101

41 79 79 77 94 92 71 95 94 94 107 102

42 80 79 77 94 92 72 95 95 94 107 102

43 80 80 78 95 93 73 96 95 95 108 102

44 81 80 78 95 93 74 97 96 95 108 103

45 81 81 79 95 93 75 97 96 96 108 103

46 82 81 79 96 94 76 98 97 96 109 103

47 82 82 80 96 94 77 98 97 97 109 104

48 83 82 81 97 94 78 99 98 98 110 104

49 83 83 81 97 95 79 99 98 98 110 104

50 84 83 82 98 95 80 100 99 99 111 105

51 84 84 82 98 95 81 100 99 99 111 105

52 85 84 83 98 96 82 101 100 100 111 105

53 85 85 83 99 96 83 101 100 100 112 106

54 86 85 84 99 96 84 102 101 101 112 106

55 86 86 85 100 97 85 102 101 102 113 106

56 87 86 85 100 97 86 103 102 102 113 107

57 88 87 86 101 97 87 103 102 103 114 107

58 88 87 86 101 98 88 104 103 103 114 107

59 89 88 87 101 98 89 104 103 104 114 108

Raw scores to standard scores Ages 10 through 11Raw scores to standard scores Ages 10 through 11
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Recognition

Raw 

90 105 104 104 115 108

91 106 104 105 115 108

92 106 105 106 116 109

93 107 105 106 116 109

94 107 106 107 117 109

95 108 107 107 117 110

96 108 107 108 117 110

97 109 108 108 118 110

98 109 108 109 118 111

99 110 109 110 119 111

100 110 109 110 119 111

Raw scores to standard scores Ages 10 through 11

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words
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Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

1 55 60 59 61 72 31 79 78 79 89 97

2 56 61 60 61 73 32 79 79 80 90 97

3 56 61 61 62 74 33 80 79 80 91 98

4 57 62 61 63 75 34 81 80 81 92 99

5 58 63 62 64 76 35 82 80 82 93 100

6 59 63 63 65 76 36 83 81 82 94 101

7 60 64 63 66 77 37 83 82 83 95 101

8 60 64 64 67 78 38 84 82 83 95 102

9 61 65 65 68 79 39 85 83 84 96 103

10 62 65 65 69 80 40 86 83 85 97 104

11 63 66 66 70 80 41 87 84 85 98 105

12 63 67 67 71 81 42 87 84 86 99 105

13 64 67 67 72 82 43 88 85 87 100 106

14 65 68 68 73 83 44 89 86 87 101 107

15 66 68 69 74 84 45 90 86 88 102 108

16 67 69 69 75 84 46 90 87 89 103 109

17 67 70 70 76 85 47 91 87 89 104 109

18 68 70 71 77 86 48 92 88 90 105 110

19 69 71 71 78 87 49 93 89 91 106 111

20 70 71 72 78 88 50 94 89 91 107 112

21 71 72 72 79 88 51 94 90 92 108 113

22 71 73 73 80 89 52 95 90 93 109 113

23 72 73 74 81 90 53 96 91 93 110 114

24 73 74 74 82 91 54 97 92 94 111 115

25 74 74 75 83 92 55 98 92 95 112 116

26 75 75 76 84 92 56 98 93 95 112 117

27 75 76 76 85 93 57 99 93 96 113 118

28 76 76 77 86 94 58 100 94 96 114 118

29 77 77 78 87 95 59 101 95 97 115 119

30 78 77 78 88 96 60 102 95 98 116 120

Raw scores to standard scores Ages 12 through 13 Raw scores to standard scores Ages 12 through 13
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Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

61 102 96 98 117 121 91 126 114 118 146 145

62 103 96 99 118 122 92 127 114 119 147 146

63 104 97 100 119 122 93 128 115 119 147 147

64 105 98 100 120 123 94 129 115 120 148 147

65 106 98 101 121 124 95 129 116 120 149 148

66 106 99 102 122 125 96 130 117 121 150 149

67 107 99 102 123 126 97 131 117 122 151 150

68 108 100 103 124 126 98 132 118 122 152 151

69 109 101 104 125 127 99 133 118 123 153 151

70 110 101 104 126 128 100 133 119 124 154 152

71 110 102 105 127 129

72 111 102 106 128 130

73 112 103 106 129 130

74 113 103 107 130 131

75 114 104 107 130 132

76 114 105 108 131 133

77 115 105 109 132 134

78 116 106 109 133 135

79 117 106 110 134 135

80 117 107 111 135 136

81 118 108 111 136 137

82 119 108 112 137 138

83 120 109 113 138 139

84 121 109 113 139 139

85 121 110 114 140 140

86 122 111 115 141 141

87 123 111 115 142 142

88 124 112 116 143 143

89 125 112 117 144 143

90 125 113 117 145 144

Raw scores to standard scores Ages 12 through 13 Raw scores to standard scores Ages 12 through 13
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Learning 

gain 

Learning 

gain 

Raw Raw 

-30 42 66 47 57 56 0 68 82 71 81 79

-29 43 66 48 58 57 1 69 83 71 82 80

-28 44 67 49 59 58 2 70 83 72 83 81

-27 45 68 50 59 58 3 71 84 73 84 82

-26 46 68 50 60 59 4 72 84 74 85 83

-25 47 69 51 61 60 5 72 85 75 86 83

-24 48 69 52 62 61 6 73 86 75 86 84

-23 48 70 53 63 62 7 74 86 76 87 85

-22 49 70 53 64 62 8 75 87 77 88 86

-21 50 71 54 64 63 9 76 87 78 89 86

-20 51 71 55 65 64 10 77 88 78 90 87

-19 52 72 56 66 65 11 78 88 79 90 88

-18 53 72 57 67 65 12 79 89 80 91 89

-17 54 73 57 68 66 13 79 89 81 92 90

-16 54 74 58 68 67 14 80 90 82 93 90

-15 55 74 59 69 68 15 81 90 82 94 91

-14 56 75 60 70 69 16 82 91 83 95 92

-13 57 75 60 71 69 17 83 92 84 95 93

-12 58 76 61 72 70 18 84 92 85 96 93

-11 59 76 62 73 71 19 85 93 85 97 94

-10 60 77 63 73 72 20 85 93 86 98 95

-9 60 77 64 74 72 21 86 94 87 99 96

-8 61 78 64 75 73 22 87 94 88 99 97

-7 62 78 65 76 74 23 88 95 89 100 97

-6 63 79 66 77 75 24 89 95 89 101 98

-5 64 80 67 77 76 25 90 96 90 102 99

-4 65 80 68 78 76 26 91 96 91 103 100

-3 66 81 68 79 77 27 91 97 92 104 100

-2 66 81 69 80 78 28 92 98 93 104 101

-1 67 82 70 81 79 29 93 98 93 105 102

Raw scores to standard scores Ages 12 through 13 Raw scores to standard scores Ages 12 through 13
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Words
Objects Designs

Pseudo-
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words
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Learning 

gain 

Learning 

gain 

Raw Raw 

30 94 99 94 106 103 60 120 115 118 130 126

31 95 99 95 107 104 61 121 116 118 131 127

32 96 100 96 108 104 62 121 116 119 132 128

33 97 100 96 108 105 63 122 117 120 133 128

34 97 101 97 109 106 64 123 117 121 134 129

35 98 101 98 110 107 65 124 118 121 135 130

36 99 102 99 111 107 66 125 118 122 135 131

37 100 103 100 112 108 67 126 119 123 136 132

38 101 103 100 113 109 68 127 119 124 137 132

39 102 104 101 113 110 69 128 120 125 138 133

40 103 104 102 114 111 70 128 121 125 139 134

41 103 105 103 115 111 71 129 121 126 139 135

42 104 105 103 116 112 72 130 122 127 140 135

43 105 106 104 117 113 73 131 122 128 141 136

44 106 106 105 117 114 74 132 123 128 142 137

45 107 107 106 118 114 75 133 123 129 143 138

46 108 107 107 119 115 76 134 124 130 144 139

47 109 108 107 120 116 77 134 124 131 144 139

48 109 109 108 121 117 78 135 125 132 145 140

49 110 109 109 122 118 79 136 125 132 146 141

50 111 110 110 122 118

51 112 110 110 123 119

52 113 111 111 124 120

53 114 111 112 125 121

54 115 112 113 126 121

55 115 112 114 126 122

56 116 113 114 127 123

57 117 113 115 128 124

58 118 114 116 129 125

59 119 115 117 130 125

Raw scores to standard scores Ages 12 through 13 Raw scores to standard scores Ages 12 through 13
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Written 

Words
Objects Designs
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words
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Words
Objects Designs
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words
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Delayed 

recall 

Delayed 

recall 

Raw Raw 

1 60 53 55 69 77 31 77 70 74 89 93

2 60 54 56 70 77 32 78 71 75 90 93

3 61 54 56 71 78 33 78 72 75 90 94

4 62 55 57 71 78 34 79 72 76 91 94

5 62 55 57 72 79 35 80 73 77 92 95

6 63 56 58 73 79 36 80 73 77 92 95

7 63 57 59 73 80 37 81 74 78 93 96

8 64 57 59 74 80 38 81 74 79 94 96

9 64 58 60 75 81 39 82 75 79 94 97

10 65 58 61 75 81 40 83 76 80 95 97

11 66 59 61 76 82 41 83 76 80 95 98

12 66 59 62 77 83 42 84 77 81 96 99

13 67 60 63 77 83 43 84 77 82 97 99

14 67 61 63 78 84 44 85 78 82 97 100

15 68 61 64 79 84 45 85 79 83 98 100

16 69 62 65 79 85 46 86 79 84 99 101

17 69 62 65 80 85 47 87 80 84 99 101

18 70 63 66 81 86 48 87 80 85 100 102

19 70 63 66 81 86 49 88 81 86 101 102

20 71 64 67 82 87 50 88 81 86 101 103

21 71 65 68 82 87 51 89 82 87 102 103

22 72 65 68 83 88 52 90 83 88 103 104

23 73 66 69 84 88 53 90 83 88 103 104

24 73 66 70 84 89 54 91 84 89 104 105

25 74 67 70 85 89 55 91 84 89 105 105

26 74 68 71 86 90 56 92 85 90 105 106

27 75 68 72 86 91 57 92 86 91 106 107

28 76 69 72 87 91 58 93 86 91 106 107

29 76 69 73 88 92 59 94 87 92 107 108

30 77 70 73 88 92 60 94 87 93 108 108

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Raw scores to standard scores Ages 12 through 13 Raw scores to standard scores Ages 12 through 13
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Spoken 

Words

Written 
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Objects Designs



 

 
 

3
3
8
          B

u
c
k
 

A
p
p

e
n
d

ix
 C

 

1
2
-1

3
 y

e
a
rs

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delayed 

recall 

Delayed 

recall 

Raw Raw 

61 95 88 93 108 109 91 112 105 112 128 125

62 95 88 94 109 109 92 113 106 113 129 125

63 96 89 95 110 110 93 113 106 114 129 126

64 97 90 95 110 110 94 114 107 114 130 126

65 97 90 96 111 111 95 115 108 115 131 127

66 98 91 96 112 111 96 115 108 116 131 127

67 98 91 97 112 112 97 116 109 116 132 128

68 99 92 98 113 112 98 116 109 117 132 128

69 99 92 98 114 113 99 117 110 118 133 129

70 100 93 99 114 113 100 117 110 118 134 129

71 101 94 100 115 114

72 101 94 100 116 115

73 102 95 101 116 115

74 102 95 102 117 116

75 103 96 102 118 116

76 103 97 103 118 117

77 104 97 104 119 117

78 105 98 104 119 118

79 105 98 105 120 118

80 106 99 105 121 119

81 106 99 106 121 119

82 107 100 107 122 120

83 108 101 107 123 120

84 108 101 108 123 121

85 109 102 109 124 121

86 109 102 109 125 122

87 110 103 110 125 123

88 110 103 111 126 123

89 111 104 111 127 124

90 112 105 112 127 124

Raw scores to standard scores Ages 12 through 13

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Raw scores to standard scores Ages 12 through 13
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Words

Written 

Words
Objects Designs
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words



   

 
  

A
p
p

e
n
d

ix
 C

 

1
2
-1

3
 y

e
a
rs

 

B
u
c
k
          3

3
9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recognition Recognition

Raw Raw 

-30 15 -11 13 35 48 0 37 16 35 53 63

-29 16 -10 14 36 49 1 38 17 36 53 63

-28 16 -10 14 36 49 2 38 18 36 54 64

-27 17 -9 15 37 50 3 39 19 37 55 64

-26 18 -8 16 37 50 4 40 20 38 55 65

-25 19 -7 17 38 51 5 41 21 39 56 65

-24 19 -6 17 39 51 6 41 22 39 56 66

-23 20 -5 18 39 52 7 42 23 40 57 66

-22 21 -4 19 40 52 8 43 24 41 58 67

-21 21 -3 20 40 53 9 44 24 42 58 67

-20 22 -2 20 41 53 10 44 25 42 59 68

-19 23 -1 21 42 54 11 45 26 43 59 68

-18 24 0 22 42 54 12 46 27 44 60 69

-17 24 1 22 43 55 13 46 28 45 61 69

-16 25 1 23 43 55 14 47 29 45 61 70

-15 26 2 24 44 55 15 48 30 46 62 70

-14 27 3 25 44 56 16 49 31 47 62 71

-13 27 4 25 45 56 17 49 32 48 63 71

-12 28 5 26 46 57 18 50 33 48 64 72

-11 29 6 27 46 57 19 51 34 49 64 72

-10 30 7 28 47 58 20 52 35 50 65 73

-9 30 8 28 47 58 21 52 35 50 65 73

-8 31 9 29 48 59 22 53 36 51 66 74

-7 32 10 30 49 59 23 54 37 52 67 74

-6 32 11 31 49 60 24 55 38 53 67 74

-5 33 12 31 50 60 25 55 39 53 68 75

-4 34 13 32 50 61 26 56 40 54 68 75

-3 35 13 33 51 61 27 57 41 55 69 76

-2 35 14 34 52 62 28 57 42 56 70 76

-1 36 15 34 52 62 29 58 43 56 70 77

Raw scores to standard scores Ages 12 through 13 Raw scores to standard scores Ages 12 through 13
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Recognition Recognition

Raw Raw 

30 59 44 57 71 77 60 81 71 79 89 92

31 60 45 58 71 78 61 82 72 80 89 92

32 60 46 59 72 78 62 82 73 81 90 93

33 61 46 59 73 79 63 83 74 81 91 93

34 62 47 60 73 79 64 84 75 82 91 94

35 63 48 61 74 80 65 85 76 83 92 94

36 63 49 61 74 80 66 85 77 84 92 95

37 64 50 62 75 81 67 86 78 84 93 95

38 65 51 63 76 81 68 87 79 85 94 96

39 66 52 64 76 82 69 88 80 86 94 96

40 66 53 64 77 82 70 88 80 87 95 97

41 67 54 65 77 83 71 89 81 87 95 97

42 68 55 66 78 83 72 90 82 88 96 98

43 68 56 67 79 84 73 90 83 89 97 98

44 69 57 67 79 84 74 91 84 89 97 99

45 70 57 68 80 85 75 92 85 90 98 99

46 71 58 69 80 85 76 93 86 91 98 100

47 71 59 70 81 86 77 93 87 92 99 100

48 72 60 70 82 86 78 94 88 92 100 101

49 73 61 71 82 87 79 95 89 93 100 101

50 74 62 72 83 87 80 96 90 94 101 102

51 74 63 73 83 88 81 96 91 95 101 102

52 75 64 73 84 88 82 97 91 95 102 103

53 76 65 74 85 89 83 98 92 96 103 103

54 77 66 75 85 89 84 99 93 97 103 104

55 77 67 75 86 90 85 99 94 98 104 104

56 78 68 76 86 90 86 100 95 98 104 105

57 79 68 77 87 91 87 101 96 99 105 105

58 79 69 78 88 91 88 101 97 100 106 106

59 80 70 78 88 92 89 102 98 101 106 106

Raw scores to standard scores Ages 12 through 13 Raw scores to standard scores Ages 12 through 13
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Recognition

Raw 

90 103 99 101 107 107

91 104 100 102 107 107

92 104 101 103 108 108

93 105 102 103 109 108

94 106 102 104 109 109

95 107 103 105 110 109

96 107 104 106 110 110

97 108 105 106 111 110

98 109 106 107 112 110

99 110 107 108 112 111

100 110 108 109 113 111

Raw scores to standard scores Ages 12 through 13
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Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

1 63 61 67 65 75 31 83 78 84 85 93

2 64 61 67 66 76 32 84 79 85 86 94

3 64 62 68 66 77 33 84 80 85 87 95

4 65 63 68 67 77 34 85 80 86 87 95

5 66 63 69 68 78 35 86 81 86 88 96

6 66 64 70 68 78 36 86 81 87 89 96

7 67 64 70 69 79 37 87 82 87 89 97

8 68 65 71 70 80 38 88 82 88 90 98

9 68 66 71 70 80 39 88 83 89 91 98

10 69 66 72 71 81 40 89 84 89 91 99

11 70 67 72 72 81 41 90 84 90 92 99

12 70 67 73 72 82 42 91 85 90 93 100

13 71 68 74 73 83 43 91 85 91 93 101

14 72 68 74 74 83 44 92 86 91 94 101

15 72 69 75 75 84 45 93 86 92 95 102

16 73 70 75 75 84 46 93 87 93 96 102

17 74 70 76 76 85 47 94 88 93 96 103

18 74 71 76 77 86 48 95 88 94 97 104

19 75 71 77 77 86 49 95 89 94 98 104

20 76 72 78 78 87 50 96 89 95 98 105

21 76 73 78 79 87 51 97 90 96 99 105

22 77 73 79 79 88 52 97 91 96 100 106

23 78 74 79 80 89 53 98 91 97 100 107

24 78 74 80 81 89 54 99 92 97 101 107

25 79 75 80 81 90 55 99 92 98 102 108

26 80 75 81 82 90 56 100 93 98 102 108

27 80 76 82 83 91 57 101 93 99 103 109

28 81 77 82 83 92 58 101 94 100 104 109

29 82 77 83 84 92 59 102 95 100 104 110

30 82 78 83 85 93 60 103 95 101 105 111

Raw scores to standard scores Ages 14 through 15 Raw scores to standard scores Ages 14 through 15
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Words

Written 

Words
Objects Designs

Pseudo-

words

61 103 96 101 106 111 91 123 113 119 126 129

62 104 96 102 106 112 92 124 114 119 127 130

63 105 97 102 107 112 93 125 114 120 127 130

64 105 98 103 108 113 94 125 115 120 128 131

65 106 98 104 108 114 95 126 116 121 129 132

66 107 99 104 109 114 96 127 116 122 129 132

67 107 99 105 110 115 97 127 117 122 130 133

68 108 100 105 110 115 98 128 117 123 131 133

69 109 100 106 111 116 99 129 118 123 131 134

70 109 101 106 112 117 100 129 118 124 132 135

71 110 102 107 112 117

72 111 102 108 113 118

73 111 103 108 114 118

74 112 103 109 114 119

75 113 104 109 115 120

76 113 105 110 116 120

77 114 105 111 117 121

78 115 106 111 117 121

79 115 106 112 118 122

80 116 107 112 119 123

81 117 107 113 119 123

82 117 108 113 120 124

83 118 109 114 121 124

84 119 109 115 121 125

85 119 110 115 122 126

86 120 110 116 123 126

87 121 111 116 123 127

88 121 111 117 124 127

89 122 112 117 125 128

90 123 113 118 125 129

Raw scores to standard scores Ages 14 through 15 Raw scores to standard scores Ages 14 through 15
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Learning 

gain 

Learning 

gain 

Raw Raw 

-30 47 62 47 55 51 0 71 79 72 80 75

-29 48 63 47 56 52 1 71 80 72 81 75

-28 49 63 48 57 53 2 72 80 73 82 76

-27 49 64 49 58 53 3 73 81 74 83 77

-26 50 64 50 59 54 4 74 81 75 84 78

-25 51 65 51 59 55 5 75 82 76 84 79

-24 52 65 52 60 56 6 75 82 77 85 79

-23 53 66 52 61 57 7 76 83 77 86 80

-22 53 67 53 62 57 8 77 83 78 87 81

-21 54 67 54 63 58 9 78 84 79 88 82

-20 55 68 55 64 59 10 79 85 80 89 83

-19 56 68 56 64 60 11 79 85 81 89 83

-18 57 69 57 65 60 12 80 86 82 90 84

-17 57 69 57 66 61 13 81 86 82 91 85

-16 58 70 58 67 62 14 82 87 83 92 86

-15 59 71 59 68 63 15 82 87 84 93 87

-14 60 71 60 69 64 16 83 88 85 94 87

-13 60 72 61 69 64 17 84 89 86 94 88

-12 61 72 62 70 65 18 85 89 87 95 89

-11 62 73 62 71 66 19 86 90 87 96 90

-10 63 73 63 72 67 20 86 90 88 97 90

-9 64 74 64 73 68 21 87 91 89 98 91

-8 64 74 65 74 68 22 88 91 90 99 92

-7 65 75 66 74 69 23 89 92 91 99 93

-6 66 76 67 75 70 24 90 92 92 100 94

-5 67 76 67 76 71 25 90 93 92 101 94

-4 68 77 68 77 72 26 91 94 93 102 95

-3 68 77 69 78 72 27 92 94 94 103 96

-2 69 78 70 79 73 28 93 95 95 104 97

-1 70 78 71 79 74 29 93 95 96 104 98

Raw scores to standard scores Ages 14 through 15 Raw scores to standard scores Ages 14 through 15
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Written 

Words
Objects Designs

Pseudo-

words
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Words
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Learning 

gain 

Learning 

gain 

Raw Raw 

30 94 96 97 105 98 60 118 113 121 130 122

31 95 96 97 106 99 61 119 113 122 131 123

32 96 97 98 107 100 62 119 114 123 132 124

33 97 98 99 108 101 63 120 114 124 133 124

34 97 98 100 109 101 64 121 115 125 134 125

35 98 99 101 109 102 65 122 116 126 134 126

36 99 99 101 110 103 66 122 116 126 135 127

37 100 100 102 111 104 67 123 117 127 136 128

38 100 100 103 112 105 68 124 117 128 137 128

39 101 101 104 113 105 69 125 118 129 138 129

40 102 101 105 114 106 70 126 118 130 139 130

41 103 102 106 114 107

42 104 103 106 115 108

43 104 103 107 116 109

44 105 104 108 117 109

45 106 104 109 118 110

46 107 105 110 119 111

47 108 105 111 119 112

48 108 106 111 120 113

49 109 107 112 121 113

50 110 107 113 122 114

51 111 108 114 123 115

52 111 108 115 124 116

53 112 109 116 124 116

54 113 109 116 125 117

55 114 110 117 126 118

56 115 110 118 127 119

57 115 111 119 128 120

58 116 112 120 129 120

59 117 112 121 129 121

Raw scores to standard scores Ages 14 through 15 Raw scores to standard scores Ages 14 through 15
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Delayed 

recall 

Delayed 

recall 

Raw Raw 

-50 46 44 18 55 44 -20 81 81 72 83 81

-49 47 45 20 56 46 -19 82 82 74 84 82

-48 48 46 22 57 47 -18 84 83 75 85 84

-47 49 47 23 58 48 -17 85 84 77 86 85

-46 50 48 25 59 49 -16 86 85 79 87 86

-45 51 50 27 60 50 -15 87 87 81 88 87

-44 53 51 29 61 52 -14 88 88 82 89 89

-43 54 52 31 62 53 -13 90 89 84 89 90

-42 55 53 32 63 54 -12 91 90 86 90 91

-41 56 55 34 64 55 -11 92 92 88 91 92

-40 57 56 36 64 57 -10 93 93 90 92 94

-39 59 57 38 65 58 -9 94 94 91 93 95

-38 60 58 39 66 59 -8 95 95 93 94 96

-37 61 60 41 67 60 -7 97 97 95 95 97

-36 62 61 43 68 62 -6 98 98 97 96 98

-35 63 62 45 69 63 -5 99 99 99 97 100

-34 65 63 47 70 64 -4 100 100 100 98 101

-33 66 64 48 71 65 -3 101 101 102 99 102

-32 67 66 50 72 66 -2 103 103 104 100 103

-31 68 67 52 73 68 -1 104 104 106 101 105

-30 69 68 54 74 69 0 105 105 108 102 106

-29 71 69 56 75 70 1 106 106 109 102 107

-28 72 71 57 76 71 2 107 108 111 103 108

-27 73 72 59 77 73 3 109 109 113 104 110

-26 74 73 61 77 74 4 110 110 115 105 111

-25 75 74 63 78 75 5 111 111 116 106 112

-24 76 76 65 79 76 6 112 113 118 107 113

-23 78 77 66 80 78 7 113 114 120 108 114

-22 79 78 68 81 79 8 115 115 122 109 116

-21 80 79 70 82 80 9 116 116 124 110 117
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Objects Designs

Pseudo-
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Raw scores to standard scores Ages 14 through 15 Raw scores to standard scores Ages 14 through 15
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Delayed 

recall 

Raw 

10 117 118 125 111 118

11 118 119 127 112 119

12 119 120 129 113 121

13 120 121 131 114 122

14 122 122 133 115 123

15 123 124 134 115 124

16 124 125 136 116 126

17 125 126 138 117 127

18 126 127 140 118 128

19 128 129 142 119 129

Raw scores to standard scores Ages 14 through 15
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Recognition Recognition

Raw Raw 

-30 18 22 29 23 66 0 39 41 47 43 77

-29 19 23 29 24 67 1 39 42 47 44 77

-28 19 23 30 24 67 2 40 43 48 44 77

-27 20 24 30 25 67 3 41 43 48 45 78

-26 21 25 31 26 68 4 41 44 49 46 78

-25 21 25 32 26 68 5 42 44 50 46 78

-24 22 26 32 27 68 6 43 45 50 47 79

-23 23 27 33 28 69 7 43 46 51 48 79

-22 24 27 33 28 69 8 44 46 51 48 79

-21 24 28 34 29 69 9 45 47 52 49 80

-20 25 28 35 30 70 10 45 48 53 50 80

-19 26 29 35 30 70 11 46 48 53 50 80

-18 26 30 36 31 70 12 47 49 54 51 81

-17 27 30 36 32 71 13 47 50 54 52 81

-16 28 31 37 32 71 14 48 50 55 52 81

-15 28 32 38 33 71 15 49 51 56 53 82

-14 29 32 38 34 72 16 49 52 56 54 82

-13 30 33 39 34 72 17 50 52 57 54 82

-12 30 34 39 35 72 18 51 53 57 55 83

-11 31 34 40 36 73 19 52 53 58 56 83

-10 32 35 41 36 73 20 52 54 59 56 83

-9 32 36 41 37 73 21 53 55 59 57 84

-8 33 36 42 38 74 22 54 55 60 58 84

-7 34 37 42 38 74 23 54 56 60 58 84

-6 34 37 43 39 75 24 55 57 61 59 85

-5 35 38 44 40 75 25 56 57 62 60 85

-4 36 39 44 40 75 26 56 58 62 60 85

-3 36 39 45 41 76 27 57 59 63 61 86

-2 37 40 45 42 76 28 58 59 63 62 86

-1 38 41 46 42 76 29 58 60 64 62 86

Raw scores to standard scores Ages 14 through 15 Raw scores to standard scores Ages 14 through 15
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Recognition Recognition

Raw Raw 

30 59 61 65 63 87 60 80 80 83 83 97

31 60 61 65 64 87 61 80 80 83 84 97

32 60 62 66 64 87 62 81 81 84 84 97

33 61 62 66 65 88 63 82 82 84 85 98

34 62 63 67 66 88 64 82 82 85 86 98

35 62 64 68 66 88 65 83 83 86 86 98

36 63 64 68 67 89 66 84 84 86 87 99

37 64 65 69 68 89 67 84 84 87 88 99

38 64 66 69 68 89 68 85 85 87 88 100

39 65 66 70 69 90 69 86 86 88 89 100

40 66 67 71 70 90 70 86 86 89 90 100

41 67 68 71 70 90 71 87 87 89 90 101

42 67 68 72 71 91 72 88 87 90 91 101

43 68 69 72 72 91 73 88 88 90 92 101

44 69 69 73 72 91 74 89 89 91 92 102

45 69 70 74 73 92 75 90 89 92 93 102

46 70 71 74 74 92 76 90 90 92 94 102

47 71 71 75 74 92 77 91 91 93 94 103

48 71 72 75 75 93 78 92 91 93 95 103

49 72 73 76 76 93 79 92 92 94 96 103

50 73 73 77 76 93 80 93 93 95 96 104

51 73 74 77 77 94 81 94 93 95 97 104

52 74 75 78 78 94 82 95 94 96 98 104

53 75 75 78 78 94 83 95 94 96 98 105

54 75 76 79 79 95 84 96 95 97 99 105

55 76 77 80 80 95 85 97 96 98 100 105

56 77 77 80 80 95 86 97 96 98 100 106

57 77 78 81 81 96 87 98 97 99 101 106

58 78 78 81 82 96 88 99 98 99 102 106

59 79 79 82 82 96 89 99 98 100 102 107

Raw scores to standard scores Ages 14 through 15 Raw scores to standard scores Ages 14 through 15
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Recognition

Raw 

90 100 99 101 103 107

91 101 100 101 104 107

92 101 100 102 104 108

93 102 101 102 105 108

94 103 102 103 106 108

95 103 102 104 106 109

96 104 103 104 107 109

97 105 103 105 108 109

98 105 104 105 108 110

99 106 105 106 109 110

100 107 105 107 110 110

Raw scores to standard scores Ages 14 through 15

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words



   

 
  

B
u
c
k
          3

5
1

 

A
p
p

e
n
d

ix
 C

 

1
6
-1

8
 y

e
a
rs

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning 

Raw 

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Learning 

Raw 

Spoken 

Words
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Words
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Pseudo-

words

1 50 45 7 49 62 31 72 67 43 76 84

2 51 46 8 50 63 32 73 68 44 77 85

3 52 46 10 51 64 33 73 69 45 77 86

4 52 47 11 52 64 34 74 69 46 78 86

5 53 48 12 53 65 35 75 70 47 79 87

6 54 49 13 54 66 36 75 71 49 80 88

7 55 49 14 54 67 37 76 71 50 81 89

8 55 50 16 55 67 38 77 72 51 82 89

9 56 51 17 56 68 39 78 73 52 83 90

10 57 52 18 57 69 40 78 74 53 84 91

11 57 52 19 58 70 41 79 74 54 84 91

12 58 53 20 59 70 42 80 75 56 85 92

13 59 54 21 60 71 43 81 76 57 86 93

14 60 55 23 61 72 44 81 77 58 87 94

15 60 55 24 61 72 45 82 77 59 88 94

16 61 56 25 62 73 46 83 78 60 89 95

17 62 57 26 63 74 47 83 79 62 90 96

18 63 57 27 64 75 48 84 80 63 91 97

19 63 58 29 65 75 49 85 80 64 92 97

20 64 59 30 66 76 50 86 81 65 92 98

21 65 60 31 67 77 51 86 82 66 93 99

22 65 60 32 68 78 52 87 83 67 94 100

23 66 61 33 69 78 53 88 83 69 95 100

24 67 62 34 69 79 54 88 84 70 96 101

25 68 63 36 70 80 55 89 85 71 97 102

26 68 63 37 71 81 56 90 85 72 98 102

27 69 64 38 72 81 57 91 86 73 99 103

28 70 65 39 73 82 58 91 87 75 100 104

29 70 66 40 74 83 59 92 88 76 100 105

30 71 66 42 75 83 60 93 88 77 101 105

Raw scores to standard scores Ages 16 through 18 Raw scores to standard scores Ages 16 through 18
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Learning 

Raw 

Spoken 
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Written 

Words
Objects Designs

Pseudo-

words
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Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

61 93 89 78 102 106 91 115 111 113 129 128

62 94 90 79 103 107 92 116 112 115 130 129

63 95 91 80 104 108 93 116 113 116 130 130

64 96 91 82 105 108 94 117 114 117 131 130

65 96 92 83 106 109 95 118 114 118 132 131

66 97 93 84 107 110 96 119 115 119 133 132

67 98 94 85 107 111 97 119 116 121 134 132

68 99 94 86 108 111 98 120 116 122 135 133

69 99 95 87 109 112 99 121 117 123 136 134

70 100 96 89 110 113 100 122 118 124 137 135

71 101 97 90 111 113

72 101 97 91 112 114

73 102 98 92 113 115

74 103 99 93 114 116

75 104 100 95 115 116

76 104 100 96 115 117

77 105 101 97 116 118

78 106 102 98 117 119

79 106 102 99 118 119

80 107 103 100 119 120

81 108 104 102 120 121

82 109 105 103 121 121

83 109 105 104 122 122

84 110 106 105 123 123

85 111 107 106 123 124

86 111 108 108 124 124

87 112 108 109 125 125

88 113 109 110 126 126

89 114 110 111 127 127

90 114 111 112 128 127

Raw scores to standard scores Ages 16 through 18 Raw scores to standard scores Ages 16 through 18
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Learning 

gain 

Learning 

gain 

Raw Raw 

-30 39 53 42 46 50 0 66 75 69 72 72

-29 40 54 43 47 51 1 67 76 70 72 72

-28 41 55 44 48 52 2 68 77 71 73 73

-27 42 56 45 49 52 3 69 77 72 74 74

-26 43 56 46 49 53 4 70 78 73 75 74

-25 44 57 47 50 54 5 71 79 74 76 75

-24 45 58 48 51 55 6 72 80 75 77 76

-23 46 59 48 52 55 7 73 80 76 78 76

-22 47 59 49 53 56 8 73 81 77 78 77

-21 47 60 50 54 57 9 74 82 77 79 78

-20 48 61 51 54 57 10 75 83 78 80 79

-19 49 61 52 55 58 11 76 83 79 81 79

-18 50 62 53 56 59 12 77 84 80 82 80

-17 51 63 54 57 60 13 78 85 81 83 81

-16 52 64 55 58 60 14 79 85 82 84 81

-15 53 64 56 59 61 15 80 86 83 84 82

-14 54 65 57 60 62 16 81 87 84 85 83

-13 55 66 57 60 62 17 81 88 85 86 84

-12 55 67 58 61 63 18 82 88 86 87 84

-11 56 67 59 62 64 19 83 89 87 88 85

-10 57 68 60 63 64 20 84 90 87 89 86

-9 58 69 61 64 65 21 85 91 88 90 86

-8 59 69 62 65 66 22 86 91 89 90 87

-7 60 70 63 66 67 23 87 92 90 91 88

-6 61 71 64 66 67 24 88 93 91 92 89

-5 62 72 65 67 68 25 89 93 92 93 89

-4 63 72 66 68 69 26 90 94 93 94 90

-3 64 73 67 69 69 27 90 95 94 95 91

-2 64 74 67 70 70 28 91 96 95 96 91

-1 65 75 68 71 71 29 92 96 96 96 92

Raw scores to standard scores Ages 16 through 18 Raw scores to standard scores Ages 16 through 18
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 Learning 

gain 

Learning 

gain 

Raw Raw 

30 93 97 97 97 93 60 120 119 124 123 114

31 94 98 97 98 93 61 121 120 125 124 115

32 95 99 98 99 94 62 122 120 126 125 115

33 96 99 99 100 95 63 123 121 127 125 116

34 97 100 100 101 96 64 124 122 127 126 117

35 98 101 101 101 96 65 124 123 128 127 117

36 98 101 102 102 97 66 125 123 129 128 118

37 99 102 103 103 98 67 126 124 130 129 119

38 100 103 104 104 98 68 127 125 131 130 120

39 101 104 105 105 99 69 128 126 132 131 120

40 102 104 106 106 100 70 129 126 133 131 121

41 103 105 107 107 101

42 104 106 107 107 101

43 105 107 108 108 102

44 106 107 109 109 103

45 107 108 110 110 103

46 107 109 111 111 104

47 108 109 112 112 105

48 109 110 113 113 105

49 110 111 114 113 106

50 111 112 115 114 107

51 112 112 116 115 108

52 113 113 117 116 108

53 114 114 117 117 109

54 115 115 118 118 110

55 116 115 119 119 110

56 116 116 120 119 111

57 117 117 121 120 112

58 118 118 122 121 113

59 119 118 123 122 113

Raw scores to standard scores Ages 16 through 18 Raw scores to standard scores Ages 16 through 18
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Delayed 

recall 

Delayed 

recall 

Raw Raw 

-50 -9 7 -4 40 44 -20 59 66 60 77 84

-49 -7 9 -2 41 46 -19 61 68 63 78 85

-48 -4 11 0 43 47 -18 64 70 65 79 86

-47 -2 13 2 44 48 -17 66 72 67 80 88

-46 0 15 4 45 50 -16 68 74 69 82 89

-45 3 17 7 46 51 -15 70 76 71 83 90

-44 5 19 9 48 52 -14 73 78 73 84 92

-43 7 21 11 49 54 -13 75 80 76 85 93

-42 9 23 13 50 55 -12 77 82 78 87 94

-41 12 25 15 51 56 -11 79 84 80 88 96

-40 14 27 17 52 58 -10 82 86 82 89 97

-39 16 29 19 54 59 -9 84 88 84 90 98

-38 18 31 22 55 60 -8 86 89 86 91 100

-37 21 33 24 56 61 -7 88 91 88 93 101

-36 23 35 26 57 63 -6 91 93 91 94 102

-35 25 37 28 58 64 -5 93 95 93 95 103

-34 27 39 30 60 65 -4 95 97 95 96 105

-33 30 41 32 61 67 -3 97 99 97 97 106

-32 32 43 35 62 68 -2 100 101 99 99 107

-31 34 44 37 63 69 -1 102 103 101 100 109

-30 36 46 39 65 71 0 104 105 104 101 110

-29 39 48 41 66 72 1 106 107 106 102 111

-28 41 50 43 67 73 2 109 109 108 104 113

-27 43 52 45 68 75 3 111 111 110 105 114

-26 45 54 48 69 76 4 113 113 112 106 115

-25 48 56 50 71 77 5 116 115 114 107 117

-24 50 58 52 72 79 6 118 117 117 108 118

-23 52 60 54 73 80 7 120 119 119 110 119

-22 54 62 56 74 81 8 122 121 121 111 120

-21 57 64 58 76 82 9 125 123 123 112 122
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Delayed 

recall 

Raw 

10 127 125 125 113 123

11 129 127 127 115 124

12 131 129 129 116 126

13 134 131 132 117 127

14 136 133 134 118 128

15 138 134 136 119 130

16 140 136 138 121 131

17 143 138 140 122 132

18 145 140 142 123 134

19 147 142 145 124 135
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Recognition Recognition

Raw Raw 

-30 12 20 -53 37 -4 0 34 40 -17 53 22

-29 13 21 -52 37 -3 1 34 40 -16 54 23

-28 13 22 -51 38 -2 2 35 41 -15 54 24

-27 14 22 -50 38 -2 3 36 42 -14 55 25

-26 15 23 -48 39 -1 4 36 42 -12 55 26

-25 15 24 -47 39 0 5 37 43 -11 56 27

-24 16 24 -46 40 1 6 38 44 -10 56 27

-23 17 25 -45 40 2 7 39 44 -9 57 28

-22 18 26 -44 41 3 8 39 45 -8 57 29

-21 18 26 -42 42 4 9 40 46 -6 58 30

-20 19 27 -41 42 5 10 41 46 -5 59 31

-19 20 27 -40 43 5 11 42 47 -4 59 32

-18 21 28 -39 43 6 12 42 47 -3 60 33

-17 21 29 -38 44 7 13 43 48 -2 60 34

-16 22 29 -36 44 8 14 44 49 0 61 35

-15 23 30 -35 45 9 15 44 49 1 61 35

-14 23 31 -34 45 10 16 45 50 2 62 36

-13 24 31 -33 46 11 17 46 51 3 62 37

-12 25 32 -32 46 12 18 47 51 4 63 38

-11 26 33 -30 47 12 19 47 52 6 64 39

-10 26 33 -29 48 13 20 48 53 7 64 40

-9 27 34 -28 48 14 21 49 53 8 65 41

-8 28 35 -27 49 15 22 49 54 9 65 42

-7 28 35 -26 49 16 23 50 55 10 66 42

-6 29 36 -24 50 17 24 51 55 12 66 43

-5 30 37 -23 50 18 25 52 56 13 67 44

-4 31 37 -22 51 19 26 52 57 14 67 45

-3 31 38 -21 51 20 27 53 57 15 68 46

-2 32 38 -20 52 20 28 54 58 16 68 47

-1 33 39 -18 53 21 29 55 58 18 69 48

Raw scores to standard scores Ages 16 through 18 Raw scores to standard scores Ages 16 through 18

Spoken 

Words

Written 

Words
Objects Designs

Pseudo-

words

Pseudo-

words

Spoken 

Words

Written 

Words
Objects Designs



 

 
 

3
5
8
          B

u
c
k
 

A
p
p

e
n
d

ix
 C

 

1
6
-1

8
 y

e
a
rs

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recognition Recognition

Raw Raw 

30 55 59 19 70 49 60 77 78 55 86 75

31 56 60 20 70 49 61 78 79 56 87 76

32 57 60 21 71 50 62 78 80 57 87 77

33 57 61 22 71 51 63 79 80 58 88 78

34 58 62 24 72 52 64 80 81 60 88 79

35 59 62 25 72 53 65 81 82 61 89 79

36 60 63 26 73 54 66 81 82 62 89 80

37 60 64 27 73 55 67 82 83 63 90 81

38 61 64 28 74 56 68 83 84 64 91 82

39 62 65 30 75 57 69 83 84 66 91 83

40 62 66 31 75 57 70 84 85 67 92 84

41 63 66 32 76 58 71 85 86 68 92 85

42 64 67 33 76 59 72 86 86 69 93 86

43 65 68 34 77 60 73 86 87 70 93 86

44 65 68 36 77 61 74 87 88 72 94 87

45 66 69 37 78 62 75 88 88 73 94 88

46 67 69 38 78 63 76 89 89 74 95 89

47 68 70 39 79 64 77 89 89 75 95 90

48 68 71 40 80 64 78 90 90 76 96 91

49 69 71 42 80 65 79 91 91 78 97 92

50 70 72 43 81 66 80 91 91 79 97 93

51 70 73 44 81 67 81 92 92 80 98 94

52 71 73 45 82 68 82 93 93 81 98 94

53 72 74 46 82 69 83 94 93 82 99 95

54 73 75 48 83 70 84 94 94 84 99 96

55 73 75 49 83 71 85 95 95 85 100 97

56 74 76 50 84 71 86 96 95 86 100 98

57 75 77 51 84 72 87 96 96 87 101 99

58 75 77 52 85 73 88 97 97 88 102 100

59 76 78 54 86 74 89 98 97 90 102 101

Raw scores to standard scores Ages 16 through 18 Raw scores to standard scores Ages 16 through 18
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Recognition

Raw 

90 99 98 91 103 101

91 99 98 92 103 102

92 100 99 93 104 103

93 101 100 94 104 104

94 102 100 96 105 105

95 102 101 97 105 106

96 103 102 98 106 107

97 104 102 99 106 108

98 104 103 100 107 108

99 105 104 102 108 109

100 106 104 103 108 110
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Table D.1 Ability-Memory Discrepancies: Differences between IQ and 

Index Scores Required For Statistical Significance at p=0.05 

 VIQ PIQ 

General Memory 26.38 28.91 
Learning 22.87 22.83 
Learning gain 21.12 23.56 
Delayed recall 24.68 26.88 
Recognition 26.44 28.36 

Verbal Learning 25.80 26.64 
Non-verbal Learning 26.23 24.90 
Verbal Learning Gain 24.22 26.59 
Non-verbal Learning Gain 25.69 27.26 
Verbal Delayed recall 29.48 31.10 
Non-verbal Delayed recall 28.25 31.24 
Verbal Recognition 28.59 28.92 
Non-verbal Recognition 30.41 31.57 

 

Table D3 Memory Process Discrepancies: Differences between Index 

Scores of Different Memory Domains Required For Statistical 

Significance at p=0.05 

 Verbal 
items  

Non-verbal 
items 

Learning vs Delayed 
recall 

32.02 32.49 

Delayed recall vs 
Recognition 

29.35 32.37 

 

Table D2 Ability-Memory Discrepancies: frequency of statistical 

differences in the standardisation sample (%) 

 VIQ PIQ 

General Memory 9.23 6.92 
Learning 12.31 6.15 
Learning gain 9.23 6.15 
Delayed recall 8.46 3.08 
Recognition 4.62 3.08 

Verbal Learning 8.46 8.46 
Non-verbal Learning 8.46 7.69 
Verbal Learning Gain 12.31 4.62 
Non-verbal Learning Gain 8.46 6.92 
Verbal Delayed recall 9.23 2.31 
Non-verbal Delayed recall 8.46 5.38 
Verbal Recognition 5.38 3.85 
Non-verbal Recognition 6.15 3.08 

 

Table D4 Memory Process Discrepancies: frequency of statistical 

differences in the standardisation sample (%) 

 Verbal 
items  

Non-verbal 
items 

Learning vs Delayed 
recall 

5.38 6.92 

Delayed recall vs 
Recognition 

5.38 4.62 

 

 



   

 
  

B
u
c
k
          3

6
1

 

A
p
p

e
n
d

ix
 D

 

 
Table D5 Material Discrepancies: Differences Between Verbal and 
Non-verbal Index Scores Required For Statistical Significance at 

p=0.05 
 All items Semantic 

items only 
Non-semantic 

items only 

Learning 19.62 27.74 27.65 
Learning gain 25.37 37.61 36.38 
Delayed recall 25.06 36.56 36.43 
Recognition 16.18 17.86 31.95 

 

 

Table D7 Semantic Discrepancies: Differences Between Semantic and 
Non-Semantic Index Scores Required For Statistical Difference at 

p=0.05 
 All items Verbal 

items only 
Non-verbal 
items only 

Learning 17.54 24.96 26.88 
Learning gain 27.55 35.20 41.33 
Delayed recall 29.51 37.79 41.51 
Recognition 16.60 31.27 25.30 

 

 

Table D9 Modality Discrepancies: Differences Between Auditory and 
Non-verbal Scores Required For Statistical Significance at p=0.05 

Learning 26.11 
Learning gain 35.47 
Delayed recall 42.14 
Recognition 24.97 

 

Table D6 Material Discrepancies: frequency of statistical differences in 
the standardisation sample (%) 

 All items Semantic 
items only 

Non-semantic 
items only 

Learning 9.23 8.46 6.15 
Learning gain 5.38 6.92 5.38 
Delayed recall 6.15 6.92 4.62 
Recognition 13.08 14.62 10.00 

 

 
 

Table D8 Semantic Discrepancies: frequency of statistical differences 
in the standardisation sample (%) 

 All items Verbal 
items only 

Non-verbal 
items only 

Learning 10.77 9.23 5.38 
Learning gain 3.85 3.85 3.08 
Delayed recall 6.15 4.62 4.62 
Recognition 13.85 6.15 11.54 

 

 

Table D10 Modality Discrepancies: frequency of statistical differences 
in the standardisation sample (%) 

Learning 7.69 
Learning gain 6.15 
Delayed recall 6.15 
Recognition 14.62 
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Table E1 Summary of case 1 performance on the WMS-IV 

Case 1 
 Immediate 

recall  
Delayed 

recall  

Scaled scores 

Logical Memory 5 7 
Word Pairs 11 11 
Designs 7 6 
Visual Reproduction 12 8 

Standard 
scores 

Verbal material   91 

Non-verbal material  89 

Overall  91 86 

 
 

Table E2 Summary of case 1 performance on the Pair Games (Standard scores) 

 
 

Table E3 Summary of case 2 performance on the CMS 

Case 2 
 Immediate 

recall 
Learning 

Delayed 
recall 

Delayed 
recognition 

Scaled scores 

Word Pairs 5 5 7 11 
Stories 8  8 8 
Dots 5 5 7  
Faces 9  9  

Standard 
scores 

Verbal material  78  85 97 

Non-verbal material 82  88  

Overall   69   

 
Table E4 Summary of case 2 performance on the Pair Games (Standard scores) 

 
 
 

Case 1 
 

Learning Learning gain 
Delayed 

recall 
Delayed 

recognition 

Separate tasks 

Spoken words 98 111 82 106 

Written words 86 97 86 91 

Pseudowords 86 93 97 110 

Objects 73 106 60 103 

Designs 101 80 101 108 

Overall  89 97 85 104 

Material 
Verbal  86 95 91 101 

Non-verbal 87 93 81 105 

Concept  
Semantic  80 101 73 97 

Non-semantic 94 86 99 109 

Modality of 
presentation 

Auditory 98 111 82 106 

Visual  86 97 86 91 

Case 2 
 

Learning Learning gain 
Delayed 

recall 
Delayed 

recognition 

Separate tasks 

Spoken words 76 93 59 91 

Written words 80 119 105 104 

Pseudowords 79 93 71 93 

Objects 42 97 104 79 

Designs 78 72 101 86 

Overall  71 95 88 91 

Material 
Verbal  80 106 88 98 

Non-verbal 60 84 102 85 

Concept 
Semantic  61 108 104 92 

Non-semantic 78 82 86 89 

Modality of 
presentation 

Auditory 76 93 59 91 

Visual  80 119 105 104 
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Table E5 Summary of case 3 performance on the CMS 

Case 3 
 Immediate 

recall 
Learning 

Delayed 
recall 

Delayed 
recognition 

Scaled scores 

Word Pairs 7 7 9 11 
Stories 6  5 6 
Dots 8 8 7  
Faces 14  9  

Standard 
scores 

Verbal material  78  82 91 

Non-verbal material 106  88  

Overall   85   

 
 

Table E6 Summary of case 3 performance on the Pair Games (Standard scores) 

 
 

Table E7 Summary of case 4 performance on the CMS 

Case 4 
 Immediate 

recall 
Learning 

Delayed 
recall 

Delayed 
recognition 

Scaled scores 

Word Pairs 4 4 8 10 
Stories 8  8 7 
Dots 5 5 5  
Faces 10  9  

Standard 
scores 

Verbal material  75  88 91 

Non-verbal material 85  82  

Overall   66   

 
 

Table E8 Summary of case 4 performance on the Pair Games (Standard scores) 

 

 
 

Case 3 
 

Learning Learning gain 
Delayed 

recall 
Delayed 

recognition 

Separate tasks 

Spoken words 76 102 149 106 

Written words 98 104 46 104 

Pseudowords 103 100 84 110 

Objects 89 124 82 103 

Designs 95 80 89 97 

Overall  92 102 90 104 

Material 
Verbal  101 102 65 107 

Non-verbal 92 102 85 100 

Concept 
Semantic  93 114 64 104 

Non-semantic 99 90 86 104 

Modality of 
presentation 

Auditory 76 102 149 106 

Visual  98 104 46 104 

Case 4 
 

Learning Learning gain 
Delayed 

recall 
Delayed 

recognition 

Separate tasks 

Spoken words 96 128 42 22 

Written words 89 110 80 35 

Pseudowords 98 103 88 82 

Objects 98 110 95 109 

Designs 88 110 103 101 

Overall  94 108 82 70 

Material 
Verbal  94 106 84 58 

Non-verbal 93 100 99 105 

Concept 
Semantic  94 110 88 72 

Non-semantic 93 96 95 92 

Modality of 
presentation 

Auditory 96 128 42 22 

Visual  89 110 80 35 
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Table E9 Summary of case 5 performance on the CMS 

Case 5 
 Immediate 

recall 
Learning 

Delayed 
recall 

Delayed 
recognition 

Scaled scores 

Word Pairs 12 10 13 11 
Stories 11  11 10 
Dots 13 14 12  
Faces 13  11  

Standard 
scores 

Verbal material  109  112 103 

Non-verbal material 118  109  

Overall   112   

 
 

Table E10 Summary of case 5 performance on the Pair Games (Standard scores) 

 
 

Table E11 Summary of case 6 performance on the CMS 

Case 6 
 Immediate 

recall 
Learning 

Delayed 
recall 

Delayed 
recognition 

Scaled scores 

Word Pairs 6 6 8 3 
Stories 6  9 9 
Dots 7 8 7  
Faces 7  9  

Standard 
scores 

Verbal material  75  91 75 

Non-verbal material 82  88  

Overall   82   

 
 

Table E12 Summary of case 6 performance on the Pair Games (Standard scores) 

Case 5 
 

Learning Learning gain 
Delayed 

recall 
Delayed 

recognition 

Separate tasks 

Spoken words 117 84 106 106 

Written words 118 75 105 104 

Pseudowords 103 114 97 93 

Objects 116 69 125 103 

Designs 131 89 89 108 

Overall  117 86 104 103 

Material 
Verbal  110 95 101 98 

Non-verbal 123 79 107 105 

Concept 
Semantic  117 72 115 104 

Non-semantic 117 101 93 100 

Modality of 
presentation 

Auditory 117 84 106 106 

Visual  118 75 105 104 

Case 6 
 

Learning Learning gain 
Delayed 

recall 
Delayed 

recognition 

Separate tasks 

Spoken words 76 102 82 106 

Written words 66 97 86 91 

Pseudowords 71 79 110 92 

Objects 89 115 104 79 

Designs 66 89 89 75 

Overall  74 96 94 89 

Material 
Verbal  69 88 98 92 

Non-verbal 77 102 96 77 

Concept 
Semantic  78 106 95 85 

Non-semantic 69 84 99 84 

Modality of 
presentation 

Auditory 76 102 82 106 

Visual  66 97 86 91 
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