
Adaptive regularization for Lasso models in the context of

non-stationary data streams

Ricardo Pio Monti1,2,*, Christoforos Anagnostopoulos1, and Giovanni Montana3

1Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
2Gatsby Computational Neuroscience Unit, UCL, London, W1T 4JG, UK

3WMG, University of Wawrick, Coventry, CV4 7AL, UK
*Corresponding author: r.monti@ucl.ac.uk

Abstract

Large scale, streaming datasets are ubiquitous in modern machine learning. Streaming
algorithms must be scalable, amenable to incremental training and robust to the presence of non-
stationarity. In this work we consider the problem of learning `1 regularized linear models in the
context of streaming data. In particular, the focus of this work revolves around how to select the
regularization parameter when data arrives sequentially and the underlying distribution is non-
stationary (implying the choice of optimal regularization parameter is itself time-varying). We
propose a framework through which to infer an adaptive regularization parameter. Our approach
employs an `1 penalty constraint where the corresponding sparsity parameter is iteratively
updated via stochastic gradient descent. This serves to reformulate the choice of regularization
parameter in a principled framework for online learning. The proposed method is derived for
linear regression and subsequently extended to generalized linear models. We validate our
approach using simulated and real datasets, concluding with an application to a neuroimaging
dataset.

Keywords: `1 regularization, adaptive filtering, time-varying sparsity, non-stationary data streams
Running head: Adaptive regularization for streaming Lasso models

1 Introduction

We are interested in learning `1 regularized regression models in the context of streaming, non-
stationary data. There has been significant research relating to the estimation of such models in
a streaming data context [3, 4]. However a fundamental aspect that has been overlooked is the
selection of the regularization parameter. The choice of this parameter dictates the severity of the
regularization penalty. While the underlying optimization problem remains convex, distinct choices
of such a parameter yield models with vastly different characteristics. This poses significant concerns
from the perspective of model performance and interpretation. It therefore follows that selecting
such a parameter is an important problem that must be addressed in a data-driven manner.

Many solutions have been proposed through which to select the regularization parameter in a
non-streaming context. For example, stability based approaches have been proposed in the context of
linear regression [18]. Other popular alternatives include cross-validation and information theoretic
techniques [9]. However, in a streaming setting such approaches are infeasible due to the limited
computational resources available. Moreover, the statistical properties of the data may vary over
time; a common manifestation being concept drift [1]. This complicates the use of sub-sampling
methods as the data can no longer be assumed to follow a stationary distribution. Furthermore,
as we argue in this work, it is conceivable that the optimal choice of regularization parameter may
itself vary over time. It is also important to note that traditional approaches such as change-point
detection cannot be employed as there is no readily available pivotal quantity. It therefore follows
that novel methodologies are required in order to tune regularization parameters in an online setting.

Applications involving streaming datasets are abundant, ranging from finance [8] to cyber-
security [11] and neuroscience [13, 14]. In this work we are motivated by the latter application,
where penalized regression models are often employed to decode statistical dependencies across
spatially remote brain regions, referred to as functional connectivity [28]. A novel avenue for neuro-
scientific research involves the study of functional connectivity in real-time [30, 22]. Such research

1

faces challenges due to the non-stationary as well as potentially high dimensional nature of neu-
roimaging data [21, 24]. In order to address these challenges, many of the proposed methods to date
have employed fixed sparsity parameters. However, such choices are typically justified only by the
methodological constraints associated with updating the regularization parameter, as opposed to for
biological reasons.

In order to address these issues we propose a framework through which to learn an adaptive
sparsity parameter in an online fashion. The proposed framework, named Real-time Adaptive Pe-
nalization (RAP), is capable of iteratively learning time-varying regularization parameters via the
use of adaptive filtering. Briefly, adaptive filtering methods are semi-parametric methods which
employ information from recent observations to tune a parameter of interest. In this manner, adap-
tive filtering methods are capable of handling temporal variation which cannot easily be modeled
explicitly [10]. The contributions of this work can be summarized as follows:

1. We propose and validate a framework through which to tune a time-varying sparsity parameter
for `1 regularized linear models in real-time.

2. The proposed framework is subsequently extended to the context regularized generalized linear
models.

3. An empirical validation is provided using both synthetic and real datasets together with an
application to a neuroimaging dataset.

The remainder of this manuscript is organized as follows. Related work is discussed in Section 2.
We formally describe our problem in Section 3 and the proposed framework is introduced in Section
4. We provide empirical evidence based on real and simulated data in Section 5.

2 Related work

Regularized methods have established themselves as popular and effective tools through which to
handle high-dimensional data [9]. Such methods employ regularization penalties as a mechanism
through which to constraint the set of candidate solutions, often with the goal of enforcing spe-
cific properties such as parsimony. In particular, `1 regularization is widely employed as a convex
approximation to the combinatorial problem of model selection.

However, the introduction of an `1 penalty requires the specification of the associated regulariza-
tion parameter. The task of tuning such a parameter has primarily been studied in the context of
non-streaming, stationary data. Stability selection procedures, introduced by [18], effectively look
to by-pass the selection of a specific regularization parameter by instead fitting multiple models
across sub-sampled data. Variables are subsequently selected according to the proportion of all
models in which they are present. In this manner, stability selection is able to provide important
theoretical guarantees, albeit while incurring an additional computational burden. Other popular
approaches involve the use of cross-validation or information theoretic techniques. However, such
methods cannot be easily adapted to handle streaming data.

Online learning with the `1 constraints has also been studied extensively and many computa-
tionally efficient algorithms are available. A stochastic gradient descent algorithm is proposed by
[3]. More generally, online learning of regularized objective functions has been studied extensively
by [4] who propose a general class of computationally efficient methods based on proximal gradient
descent. The aforementioned methods all constitute important advances in the study of sparse on-
line learning algorithms. However, a fundamental issue that has been overlooked corresponds to the
selection of the regularization parameters. As such, current methodologies are rooted on the assump-
tion that the regularization parameter remains fixed. It follows that the regularization parameter
may itself vary over time, yet selecting such a parameter in a principled manner is non-trivial. The
focus of this work is to present and validate a framework through which to automatically select and
update the regularization parameter in real-time. The framework presented in this work is therefore
complementary and can be employed in conjunction with many of the preceding techniques. In a
similar spirit to the methods proposed in this manuscript, [7] propose a method for selecting the
regularization parameter in the context of sequential data but do not consider non-stationary data,
which is the explicit focus of this work. We further consider the extension to general linear models,
leading to a wider range of potential applications.

More generally, the automatic selection of hyper-parameters has recently become an active topic
in machine learning [27]. Interest in this topic has been catalyzed by the success of deep learning

2

algorithms, which typically involve many such hyper-parameters. Sequential model based optimiza-
tion (SMBO) methods such as Bayesian optimization employ a probabilistic surrogate to model the
generalization performance of learning algorithms as samples from a Gaussian process [27], leading
to expert level performance in many cases. It follows that such methods may be employed to tune
regularization parameters in the context of penalized linear regression models. However, there are
several important differences between the SMBO framework and the proposed framework. The most
significant difference relates to the fact that the proposed framework employs gradient information
in order to tune the regularization parameter while SMBO methods such as Bayesian optimization
are rooted in the use of a probabilistic surrogate model. This allows the SMBO framework to be
applied in a wide range of settings while the proposed framework focuses exclusively on Lasso re-
gression models. However, as we describe in this work, the use of gradient information makes the
RAP framework ideally suited in the context of non-stationary, streaming data. This is in contrast
to SMBO techniques, which typically assume the data is stationary.

3 Preliminaries

In this section we introduce the necessary ingredients to derive the proposed framework. We begin
formally defining the problem addressed in this work in Section 3.1. Adaptive filtering methods are
introduced in Section 3.2.

3.1 Problem set-up

In this work we are interested in streaming data problems. Here it is assumed that pairs (Xt, yt)
arrive sequentially over time, where Xt ∈ Rp×1 corresponds to a p-dimensional vector of predictor
variables and yt is a univariate response. The objective of this work is to learn time-varying linear
regression models∗ from which to accurately predict future responses, yt+1, from predictors, Xt+1.
An `1 penalty, parameterized by λ ∈ R+, is introduced in order to encourage sparse solutions as
well as to ensure the problem is well-posed from an optimization perspective. This corresponds to
the Lasso model introduced by [29]. For a given choice of regularization parameter, λ, time-varying
regression coefficients can be estimated by minimizing the following convex objective function:

Lt(β, λ) =

t∑
i=1

wi
(
yi −XT

i β
)2

+ λ||β||1, (1)

where wi > 0 are weights indicating the importance given to past observations [1]. Typically, wi
decay monotonically in a manner which is proportional to the chronological proximity of the ith
observation. For example, weights wi may be tuned using a fixed forgetting factor or a sliding
window. We refer readers to [10] for a detailed overview of sliding window and forgetting factor
methods.

In a non-stationary context, the optimal estimates of regression parameters, β̂t, may vary over
time. The same argument can be posed in terms of the selected regularization parameter, λ. For
example, this may arise due to changes in the underlying sparsity or changes in the signal-to-
noise ratio. While there exists a wide range of methodologies through which to update regression
coefficients in a streaming fashion, the choice of regularization parameter has been largely ignored.
As such, the primary objective of this work is to propose a framework through which to learn time-
varying regularization parameter in real-time. The proposed framework seeks to iteratively update
the regularization parameter via stochastic gradient descent and is therefore conceptually related to
adaptive filtering theory [10], which we introduce below.

3.2 Adaptive filtering

Filtering, as defined in [10], is the process through which information regarding a quantity of interest
is assimilated using data measured up to and including time t. In many real-time applications, the
quantity of interest is assumed to vary over time. The task of a filter therefore corresponds to
effectively controlling the rate at which past information is discarded. Adaptive filtering methods
provide an elegant method through which to handle a wide range of non-stationary behavior without
having to explicitly model the dynamic properties of the data stream.

∗We note that the proposed framework will be extended to Generalized Linear Models (GLMs) in Section 4.3.
For clarity we first formulate our approach in the context of linear regression.

3

The simplest filtering methods discard information at a constant rate, for example determined
by a fixed forgetting factor. More sophisticated methods are able to exploit gradient information
to determine the aforementioned rate. Such methods are said to be adaptive as the rate at which
information is discarded varies over time. It follows that the benefits of adaptive methods are
particularly notable in scenarios where the quantity of interest is highly non-stationary.

To further motivate discussion, we briefly review filtering in the context of fixed forgetting factors
for streaming linear regression. In such a scenario, it suffices to store summary statistics for the
mean and sample covariance. For a given fixed forgetting factor r ∈ (0, 1], the sample mean can be
recursively estimated as follows:

X̄t =

(
1 − 1

ωt

)
X̄t−1 +

1

ωt
Xt, (2)

where ωt is a normalizing constant defined as:

ωt =

t∑
i=1

rt−i = r · ωt−1 + 1. (3)

Similarly, the sample covariance can be learned iteratively:

St =

(
1− 1

ωt

)
St−1 +

1

ωt
(Xt − X̄t)

T (Xt − X̄t). (4)

It is clear that the value of r directly determines the adaptivity of a filter as well as its sus-
ceptibility to noise. However, in many practical scenarios the choice of r presents a challenge as
it assumes some knowledge about the degree of non-stationarity of the system being modeled as
well as an implicit assumption that this is constant [10]. Adaptive filtering methods address these
issues by allowing r to be tuned online in a data-driven manner. This is achieved by quantifying the
performance of current parameter estimates for new observations, Xt+1. Throughout this work we
denote such a measure by C(Xt+1).

A popular approach is to define C(Xt+1) to be the residual error on unseen data [10]. In such a
setting, it is clear that C(Xt) depends on current estimates of sufficient statistics such as St, and is

therefore a function of the forgetting factor, r. Then assuming ∂C(Xt+1)
∂r can be efficiently calculated,

our parameter of interest can be updated in a stochastic gradient descent framework:

rt+1 = rt − ε
∂C(Xt+1)

∂r

∣∣∣∣
r=rt

(5)

where ε is a small step-size parameter which determines the learning rate. The objective of this
work therefore corresponds to extending adaptive filtering methods to the domain of learning a
time-varying regularization parameter for Lasso regression models.

4 Methods

As noted previously, the choice of parameter λ dictates the severity of the regularization penalty.
Different choices of λ result in vastly different estimated models. While several data-driven ap-
proaches are available for selecting λ in an offline setting, such methods are typically not feasible for
streaming data for two reasons. First, limited computational resources pose a practical restriction.
Second, data streams are often non-stationary and rarely satisfy iid assumptions required for meth-
ods based on the bootstrap [1]. Moreover, it is important to note that traditional methods such as
change point detection cannot be employed due to the absence of a readily available pivotal quantity
for λ.

We begin by outlining the RAP framework in the linear regression setting in Section 4.1. Section
4.2 outlines the resulting algorithm and computational considerations. In Section 4.3 we extend the
RAP framework to the setting of GLMs.

4.1 Proposed framework

We propose to learn a time-varying sparsity parameter in an adaptive filtering framework. This
allows the proposed method to relegate the choice of sparsity parameter to the data. Moreover, by
allowing λt to vary over time the proposed method is able to naturally accommodate datasets where
the underlying sparsity may be non-stationary.

4

We define the empirical objective to be the look-ahead negative log-likelihood, defined as:

Ct+1 = C(Xt+1, yt+1) = ||yt+1 −Xt+1β̂t(λt)||22, (6)

where we write β̂t(λt) to emphasize the dependence of the estimated regression coefficients on the
current value of the regularization parameter, λt. Following Section 3.2, the regularization parameter
can be iteratively updated as follows:

λt+1 = G(λt) = λt − ε
∂Ct+1

∂λt
. (7)

We note that for convenience we write ∂Ct+1

∂λt
to denote the derivate of Ct+1 with respect to λ

evaluated at λ = λt (i.e, ∂Ct+1

∂λ |λ=λt). We note that λt is bounded below by zero, in which case no

regularization is applied, and above by λmaxt = maxj

{
|
∑t
i=1 wiyiXi,j |

}
, in which case all regression

coefficients are zero [6].
The proposed framework requires only the specification of an initial sparsity parameter, λ0,

together with a stepsize parameter, ε. In this manner the proposed framework effectively replaces
a fixed sparsity parameter with a stepsize parameter, ε. This is desirable as the choice of a fixed
sparsity parameter is difficult to justify in the context of streaming, non-stationary data. Moreover,
any choice of λ is bound to be problem specific. In comparison, we are able to interpret ε as a
stepsize parameter in a stochastic gradient descent scheme. As a result, there are clear guidelines
which can be followed when selecting ε [2].

Once the regularization parameter has been updated, estimates for the corresponding regression
coefficients can be obtained by minimizing Lt+1(β, λt+1), for which there is a wide literature available
[3, 4]. The challenge in this work therefore corresponds to efficiently calculating the derivative in
equation (7). Through the chain rule, this can be decomposed as:

∂Ct+1

∂λt
=
∂Ct+1

∂β̂t
· ∂β̂t
∂λt

. (8)

The first term in equation (8) can be obtained by direct differentiation. In the case of the second
term, we leverage the results of [5] and [26] who demonstrate that the Lasso solution path is piecewise

linear as a function of λ. By implication, ∂β̂t
∂λt

must be piecewise constant. Furthermore, there is a

simple, closed-form solution for ∂β̂t
∂λt

.

Proposition 1. [Adapted from [26]] In the context of `1 penalized linear regression models, the

derivative ∂β̂t
∂λt

is piecewise constant and can be obtained in closed form.

Proof. For any choice of regularization parameter, λ, we write β̂t(λ) to denote the minimizer of
equation (1). Recall that the objective, Lt(β, λ), is non-smooth due to the presence of the `1
penalty. As a result, the sub-gradient of Lt(β, λ) must satisfy:

∇β (Lt(β, λ)) |β=β̂t(λ) = −XT
1:tWy1:t +XT

1:tWX1:tβ̂t(λ) + λ sign(β̂t(λ)) 3 0, (9)

where we W is a diagonal matrix with elements wi and we write X1:t to denote a matrix where
the ith row is Xi. It is important to note that equation (9) holds for any choice of λ, however, the

corresponding estimate of regression coefficients, β̂t(λ), will necessarily change. Further, taking the
derivative with respect to the regularization parameter λ yields:

∂

∂λ

(
∇βLt(β, λ)|β=β̂t(λ)

)
= 0

=
∂β̂t(λ)

∂λ
∇2
β
Lt(β̂t(λ), λ) + sign(β̂t(λ))

=
∂β̂t(λ)

∂λ

(
XT

1:tWX1:t

)
+ sign(β̂t(λ)).

Rearranging yields:

∂β̂t(λ)

∂λ
= −

(
XT

1:tWX1:t

)−1
sign(β̂t(λ)) = −(St)

−1 sign(β̂t(λ)). (10)

5

From Proposition 1 we have that the derivative, ∂Ct+1

∂λt
, can be computed in closed form. More-

over, we note that the derivative in equation (10) is only non-zero over the active set of regression

coefficients, At = {i : (β̂t(λt))i 6= 0}, and zero elsewhere. In practice we must therefore consider two
scenarios:

• the active set is non-empty (i.e., At 6= ∅). In this case equation (10) is well-defined.

• the active set is empty. In this case we follow the LARS algorithm and take a step in the

direction of the most correlated predictor: ĵ = argmax
j

{
|
∑t
i=1 wiyiXi,j |

}
. As such, we define

the gradient as follows: (
∂β̂(λ)

∂λ

)
k

= δk,ĵ sign

([
t∑
i=1

wiyiXi,k

])
,

where δ is the dirac-delta function. As such, all entries of ∂β̂(λ)
∂λ will be zero except for the

entry corresponding to the most correlated predictor.

4.2 Streaming Lasso regression

At each iteration, a new pair (Xt+1, yt+1) is received and employed to update both the time-varying

regularization parameter, λt, as well as the corresponding estimate of regression coefficients, β̂t(λt).

The former involves computing the derivative ∂Ct+1

∂λ1
as outlined in Section 4.1. The latter involves

solving a convex optimization problem which can be addressed in a variety of ways. In this work
we look to iteratively estimate regression coefficients using coordinate descent methods [6]. Such
methods are easily amenable to streaming data and allow us to exploit previous estimates as warm
starts. In our experience, the use of warm starts leads to convergence within a handful of iterations.
Pseudo-code detailing the proposed RAP framework is given in Algorithm 1.

Algorithm 1 Real-time Adaptive Penalization

Require: ε ∈ R+ and r ∈ (0, 1]
1: for t← 1 . . . t, . . . do
2: receive new (Xt+1, yt+1)

3: compute ∂β̂t(λ)
∂λt

using equation (10)

4: set ∂Ct+1

∂λt
= ∂Ct+1

∂β̂t(λ)

∂β̂t(λ)
∂λt

5: update λt+1 = λt − ε∂Ct+1

∂λt

6: β̂t+1(λt+1) = argmin
β
{Lt+1(β, λt+1)}

4.2.1 Computational considerations

With respect to the computational and memory demands, the major expense incurred when calcu-

lating ∂β̂t(λ)
∂λt

involves inverting the sample covariance matrix. The need to compute and store the
inverse of the sample covariance is undesirable in the context of high-dimensional data. As a result,
the following approximation is also considered:

∂β̂t(λ)

∂λt
≈ − (diag (St))

−1
sign

(
β̂t(λ)

)
. (11)

Such approximations are frequently employed in streaming or large data applications [4]. The ap-
proximate update therefore has a time and memory complexity that is proportional to the cardinality
of the active set, At. In practice, we find that the empirical performance between the use of the
exact and approximate gradients to be small (see for example Figure 2 and Table 1). This may
be due to the fact that in the context of highly non-stationary data it is often difficult to obtain a
reliable estimate of the sample covariance, St, implying that a diagonal approximate may suffice.

6

4.3 Extension to Generalized Linear Models

While the preceding sections focused on linear regression, we now extend the proposed framework to
a wider class of GLM models. As such, we assume that observations yt follow an exponential family
distribution such that E[yt] = µt and Var(yt) = Vt. In the context of GLMs, it is assumed that a
(potentially non-linear) link function is employed to relate the mean, µt, to a linear combination of
predictors:

ηt = g(µt) = XT
t βt−1. (12)

We note that when yt is assumed to follow a Gaussian distribution we recover linear regression
as described in Section 4.1. Conversely, if yt follows a Binomial distribution we obtain streaming
logistic regression. The log-likelihood of an observed response, yt, can be expressed as [15]:

l(yt; θt) =
ytθt − b(θt)

a(φ)
+ c(yt, φ), (13)

where a(·), b(·) and c(·) are functions which vary according to the distribution of the response and
θt = θ(βt) is the corresponding canonical parameter. Throughout this work it is assumed that the
dispersion parameter, φ, is known and fixed.

Analogously to equation (1), we estimate `1 regularized regression coefficients by minimizing the
re-weighted negative log-likelihood objective:

Lt(β, λ) = −
t∑
i=1

wi [yi θ(βi)− b{θ(βi)}] + λ||β||1, (14)

where wi are weights as before. In the remainder of this manuscript we focus on two popular cases,
detailed below, but we note that the proposed framework can be employed in a much wider range
of settings.

Case 1. Normal linear regression. In the case of linear regression we have that g(·) is the identity

such that θt+1 = XT
t+1β̂t(λt) and Ct+1 is defined as in Section 4.1.

Case 2. Logistic regression. In this case we have that g(·) is the logistic function. As before

θt+1 = XT
t+1β̂t(λt) and the negative log-likelihood is defined as:

Ct+1 = C(Xt+1, yt+1) = −yt+1Xt+1β̂t(λt) + log
(

1 + eX
T
t+1β̂t(λt)

)
.

Proposition 2. [Adapted from [25]] In the context of `1 penalized GLM models, the derivative ∂β̂t(λ)
∂λt

is also available in closed form as follows:

∂β̂t(λ)

∂λt
= −

(
XT

1:tWX1:t

)−1
sign(β̂t(λ)) (15)

where W is a diagonal matrix with entries wiV
−1
i

(
∂µi
∂ηi

)
.

Proof. The proof is closely related to that of Proposition 1. A full derivation is provided in Appendix
A.

Remark 1. We note that applying the RAP framework in the context of GLMs requires only minor
modifications from the procedure detailed Algorithm 1.

5 Empirical results

In this section we empirically demonstrate the capabilities of the proposed framework via a series
of simulations. We begin by considering the performance of the RAP algorithm in the context
of stationary data. This simulation serves to demonstrate that the proposed method is capable of
accurately tracking the regularization parameter. We then study the performance of RAP algorithm
in the context of non-stationary data. Throughout this simulation study the RAP algorithm is
benchmarked against two offline methodologies: cross-validation and SMBO. In the context of SMBO
methods, we study the performance against Bayesian optimization methods. Here a Gaussian process
with a square exponential kernel was employed as a surrogate model together with the expected
improvement acquisition function.

7

5.1 Simulation settings

In order to thoroughly test the performance of the RAP algorithm, we look to generate synthetic data
were we are able to control both the underlying structure as well as the dimensionality of the data.
In this work, the covariates Xt were generated according to a multivariate Gaussian distribution
with a block covariance structure. This introduced significant correlations across covariates, thereby
increasing the difficultly of the regression task. Formally, the data simulation process followed that
described by [16]. This involved sampling each covariate as follows:

Xt ∼ N (0,Σ),

where Σ ∈ Rp×p is a block diagonal matrix consisting of five equally sized blocks. Within each block,
the off-diagonal entries were fixed at 0.8, while the diagonal entries were fixed to be one. Having
generated covariates, Xt, a sparse vector of regression coefficients, β, was simulated. This involved
randomly selecting a proportion, ρ, of coefficients and randomly generating their values according
to a standard Gaussian distribution. All remaining coefficients were set to zero. Given simulated
covariates, Xt, and a vector of sparse regression coefficients β, the response was simulated according
to an exponential family distribution with mean parameter µt = g−1(Xtβ). In this manner, data
was generated from both a Gaussian as well as Binomial distributions. In case of the former, we
therefore have that yt ∼ N (XT

t β, 1), while in the case of logistic regression we have that yt follows
a Bernoulli distribution with mean σ(XT

t β) where σ(·) denotes the logistic function.
In this manner, it is possible to generate piecewise stationary data, {(yt, Xt) : t = 1, . . . , T}.

When studying the performance of the RAP algorithm in the context of stationary data, it sufficed
to simulate one such dataset. In order to quantify performance in the context of non-stationary data,
we concatenate multiple piece-wise stationary datasets, resulting in datasets with abrupt changes.
We note that for each piece-wise stationary dataset distinct regression coefficients, with varying
sparse supports, where simulated. We note that in the non-stationary setting the block structure
was randomly permuted at each iteration to avoid covariates sharing the same set of correlated
variables.

5.2 Performance metrics

In order to assess the performance of the RAP algorithm we consider various metrics. In the context
of stationary data, our primary objective is to demonstrate that the proposed method is capable of
tracking the regularization parameter when benchmarked against traditional methods such as cross-
validation. As a result, we consider the difference in `1 norms of the regression model estimated by
each algorithm. This is defined as:

∆ = ||β(λCV)||1 − ||β(λRAP)||1, (16)

where we write λCV and λRAP to denote the regularization parameters selected by cross-validation
and RAP algorithms respectively. We choose to employ the `1 norm (as opposed to directly consid-
ering the sparsity parameter, λ) as there is a one-to-one relationship between λ and the `1 norm.
This serves to bypass any potential issues arising from scaling or other idiosyncrasies.

In the context of non-stationary data we are interested in two additional metrics. The first
corresponds to the negative log-likelihood of each new unseen observations, Ct+1, initially defined
in equation (6). Secondly, we also consider the correct recovery of the sparse support of βt. In this
context, we treat the recovery of the support of βt as a binary classification problem and quantify
the performance using the F score; defined as the harmonic mean between the precision and recall
of a classification algorithm.

5.3 Stationary data

We begin by demonstrating that the RAP framework is capable of accurately tracking the regular-
ization parameter in the context of stationary data. In particular, we study the performance of the
RAP algorithm as the dimensionality of regression coefficients, p, increases.

Data was generated as described in Section 5.1 and the dimensionality of the covariates, Xt,
was varied from p = 10 through to p = 100. For each value of p, datasets consisting of n = 300
observations where randomly generated. The regularization parameter was first estimated using
K = 10 fold cross-validation. The RAP algorithm was subsequently employed and the difference
in `1 norm, defined in equation (16), was then computed. In case the of the RAP algorithm, each
observation was studied once in a streaming fashion. Due to the stationary nature of the data, it

8

was not imperative to discard past observations in this setting. As a result, the sample covariance
matrix was estimated using a fixed forgetting factor of r = 1 in these experiments. Given such a
choice of r, the updates for the regularization parameter are equivalent to those proposed by [7] in
the case of linear regression. The initial choice for the regularization parameter, λ0, was randomly
sampled from a uniform distribution, U [0, 1]. Both normal linear and logistic regression were studied
in this manner.

The difference in selected regularization parameters over N = 500 simulations is visualized in
Figure 1. It is reassuring to note that, for both linear and logistic regression, the differences are
both small in magnitude as well as centered around the origin. This serves to indicate the absence
of a large systematic bias. However, we note that there is higher variance in the context of logistic
regression.

5.4 Non-stationary data

While Section 5.3 provided empirical evidence demonstrating that the RAP framework can be ef-
fectively employed to track regularization parameters in a stationary setting, we are ultimately
interested in streaming, non-stationary datasets. As a result, in this simulation we study the perfor-
mance of the proposed framework in the context of non-stationary data. As in Section 5.3 we study
the properties of the RAP algorithm in the context of linear and logistic regression.

While there are a multitude of methods through which to simulate non-stationary data, in this
simulation study we chose to generate data with piece-wise stationary covariance structure. As a
result, the underlying covariance alternated between two regimes: a sparse regime where the response
was driven by a reduced subset of covariates and a dense regime where the converse was true. Thus,
pairs (yt, Xt) of response and predictors were simulated in a piece-wise stationary regimes. The
dimensionality of the covariates was fixed at p = 20, implying that Xt ∈ R20. Changes occurred
abruptly every 100 observations and two change-points were considered, resulting in 300 observations
in total.

Covariates, Xt, were simulated as described in Section 5.1 within two alternating regimes; dense
and sparse. The block-covariance structure remained fix within each regime (i.e., for 100 observa-
tions). Within the dense regime, a proportion ρ1 = 0.8 of regression coefficients were randomly
selected and their values sampled from a standard Gaussian distribution. All remaining coefficients
were set to zero. Similarly, in the case of the sparse regime, ρ2 = 0.2 regression coefficients were
randomly selected with remaining coefficients set to zero. The regression coefficients remained fixed
within each regime.

In order to benchmark the performance of the proposed RAP framework, streaming penalized
Lasso models were also estimated using a fixed and stepwise constant sparsity parameters. As a
result, the RAP algorithm was benchmarked against three distinct offline methods for selecting the
regularization parameter. In the case of a fixed sparsity parameter, K = 10 fold cross-validation as
well as Bayesian optimization were employed. Finally, cross-validation was also employed to learn a
stepwise constant regularization parameter. This was achieved by performing cross-validation for the
data within each regime. Such an approach requires knowledge of the piece-wise stationary nature
of the data that would not typically be available, and we therefore refer to it as the Stepwise Oracle
method. Moreover, the offline nature of each of these methods, dictated that the entire dataset
should be analyzed simultaneously (as opposed to in a streaming fashion by the RAP algorithm).
As such, they serve to provide a benchmark but would be infeasible in the context of streaming data.

Further, we also study the performance of the RAP framework in three distinct settings. First,
we study the use of the exact gradient update provided in equation (10) as well as the approximate
gradient update described in equation (11). These two settings both employ a fixed forgetting
factor to iteratively estimate the covariance matrix as detailed in equation (4) where we set the
fixed forgetting factor to be r = 0.95. Finally, we also consider the scenario where past information
is not discarded. This corresponds to setting r = 1 as in Section 5.3 and is equivalent to the
update described by [7] in the case of linear regression. This benchmark serves to demonstrate the
importance of discarding past observations.

Results for N = 500 simulations are shown in Figure 2. The estimated time-varying regulariza-
tion parameter for both the linear and logistic regression models is shown on the left panels. These
results provide evidence that the RAP algorithm is able to reliably track the piece-wise constant
regularization parameters selected by the Stepwise Oracle using cross-validation (shown in red). We
note that there is some lag directly after each change occurs, however, the estimated regression
parameters is able to adapt thereafter. However, this is not the case when past information is not
discarded, corresponding to the use of r = 1 as a forgetting factor. This is to be expected as informa-

9

Table 1: Detailed results for simulation involving non-stationary data over N = 500 independent
iterations. We report the mean negative log-likelihood, C̄t, as well as the mean F -score, F̄t. Standard
errors are provided in brackets.

Linear regression Logistic regression

Algorithm ĀCt F̄t C̄t F̄t
Fixed (CV) 0.58 (0.05) 0.49 (0.05) 0.25 (0.07) 0.49 (0.04)

Fixed (SMBO) 0.63 (0.05) 0.50 (0.07) 0.26 (0.08) 0.49 (0.05)
Stepwise Oracle 0.51 (0.04) 0.56 (0.04) 0.21 (0.06) 0.53 (0.04)
RAP (No forget) 0.63 (0.03) 0.47 (0.05) 0.28 (0.05) 0.46 (0.04)

RAP 0.47 (0.04) 0.64 (0.06) 0.19 (0.04) 0.58 (0.03)
RAP (Approx) 0.48 (0.05) 0.63 (0.07) 0.20 (0.04) 0.55 (0.05)

tion is averaged across several distinct regimes meaning the regression model is misspecified. Figure
2 also shows the mean negative log-likelihood over unseen samples, Ct+1. We note there are abrupt
spikes every 100 observations, corresponding to the abrupt changes in the underlying dependence
structure. Detailed results are provided in Table 1. We note that the proposed framework is able to
outperform the alternative offline approaches. In the case of the offline cross-validation and SMBO,
this is to be expected as a fixed choice of regularization parameter is misspecified.

6 Application to fMRI data

In this section we present an application of the RAP algorithm to task-based functional MRI (fMRI)
data. This data corresponds to time-series measurements of blood oxygenation, a proxy for neuronal
activity, taken across a set of spatially remote brain regions. Our objective in this work is to quantify
pairwise statistical dependencies across brain regions, typically referred to as functional connectivity
within the neuroimaging literature [28].

While traditional analysis of functional connectivity was rooted on the assumption of stationarity,
there is growing evidence to suggest this is not the case [12]. This particularly true in the context of
task-based fMRI studies. Several methodologies have been proposed to address the non-stationary
nature of fMRI data [21], many of which are premised on the use of penalized regression models such
as those studied in this work. While such methods have made important progress in the study of
non-stationary connectivity networks, they have typically employed fixed regularization parameters.
This is difficult to justify in the context of non-stationary data and plausible biological justifications
are not readily available. The RAP algorithm is therefore ideally suited to both accurately estimating
non-stationary connectivity structure as well as providing insight regarding whether the assumption
of a fixed sparsity parameter is reasonable.

6.1 Estimating connectivity via Lasso regressions

Estimating functional connectivity networks is fundamentally a statistical challenge. A functional
relationship is said to exist across two spatially remote brain regions if their corresponding time-
series share some statistical dependence. While this can be quantified in a variety of ways, a popular
approach is the use of Lasso regression models to infer the conditional independence structure of a
particular node. In such an approach, the time-series of a given node is regressed against the time-
series of all remaining nodes. A functional relationship is subsequently inferred between the target
node and all remaining nodes associated with a non-zero regression coefficient. The connectivity
structure across all nodes can then be inferred via a neighborhood selection approach [17]. The
proposed RAP framework can directly be incorporated into such a model, resulting in time-varying
conditional dependence structure where the underlying sparsity parameter is also inferred.

6.2 HCP Emotion Task Data

Emotion task data from the Human Connectome Project (HCP) was studied with 20 subjects
selected at random. During the task participants were presented with blocks of trials that either
required them to decide which of two faces presented on the bottom of the screen match the face
at the top of the screen, or which of two shapes presented at the bottom of the screen match the
shape at the top of the screen. The faces had either an angry or fearful expression while the shapes
represented the emotionally neutral condition. Twenty regions were selected from an initial subset

10

of 84 brain regions based on the Desikan-Killiany atlas. Data for each subject therefore consisted of
n = 175 observations across p = 20 nodes.

6.3 Results

Data for each subject was analyzed independently where the time-varying estimates of the con-
ditional dependence structure for each node were estimated as described in Section 6.1. A fixed
forgetting factor of r = .95 was employed throughout with a stepsize parameter ε = .025. The exact
gradient was employed when updating the sparsity parameter at each iteration.

The mean sparsity parameter over all subjects is shown in the top panel of Figure 3. We observe
decreased sparsity parameters for blocks in which subjects were presented with emotional (i.e.,
angry or fearful) faces (top panel, purple shaded areas) as compared to blocks in which subjects
were shown neutral shapes (top panel, green shaded areas). The oscillation in sparsity parameter is
highly correlated with task onset. When inspecting the networks estimated using the time varying
sparsity parameter (bottom panel), we find strong coupling amongst many of the regions during
the emotion processing blocks (A and C) compared to a clearly sparser network representation for
blocks that require no emotion processing (i.e., neutral shapes, block B). This is to be expected as
the selected regions are core hubs involved with emotion processing; therefore explaining the higher
network activity during the emotion task.

7 Conclusion

In this work we have presented a framework through which to learn time-varying regularization
parameters in the context of streaming generalized linear models. An approximate algorithm is
also provided to address issues concerning computational efficiency. We present two simulation
studies which demonstrate the capabilities of the RAP framework. These simulations show that
the proposed framework is capable of tracking the regularization parameter both in a stationary as
well as non-stationary setting. Finally, we present an application to task-based fMRI data, which is
widely accepted to be non-stationary [12].

Future work will involve extending the RAP framework to consider alternative regularization

schemes. In particular an `2 penalty could also be incorporated as the derivative, ∂β̂t(λ)∂λ , is available
in closed form. Finally, the methods presented in this manuscript have been motivated by the study
of fMRI data. It is often the case that such data is collected across multiple subjects, possibly in
real-time [19]. Due to the high-dimensional and non-stationary nature of fMRI data, it is imperative
that share information across subjects in order to more reliably estimate the associated networks
[23] and future work will seek to incorporate recent advances [20].

References

[1] Charu Aggarwal. Data streams: models and algorithms, volume 31. Springer Science & Business
Media, 2007.

[2] Leon Bottou. Online learning and stochastic approximations. On-line learning in neural net-
works, 17(9):142, 1998.

[3] Leon Bottou. Large-scale machine learning with stochastic gradient descent. In COMP-
STAT’2010, pages 177–186. Springer, 2010.

[4] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

[5] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.
The Annals of statistics, 32(2):407–499, 2004.

[6] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

[7] Pierre Garrigues and Laurent El Ghaoui. An homotopy algorithm for the lasso with online
observations. In Advances in neural information processing systems, pages 489–496, 2009.

[8] Wolfgang Härdle, Weining Wang, and Lining Yu. Tenet: Tail-event driven network risk. Journal
of Econometrics, 192(2):499–513, 2016.

11

[9] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity:
the lasso and generalizations. CRC Press, 2015.

[10] Simon Haykin. Adaptive filter theory. Pearson, 2008.

[11] Nicholas Heard, David Weston, Kiriaki Platanioti, and David Hand. Bayesian anomaly detection
methods for social networks. The Annals of Applied Statistics, 4(2):645–662, 2010.

[12] Matthew Hutchison, Thilo Womelsdorf, Elena Allen, Peter Bandettini, Vince Calhoun, Maurizio
Corbetta, Stefania Della Penna, Jeff H Duyn, Gary H Glover, and Javier Gonzalez-Castillo.
Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage, 80:360–
378, 2013.

[13] Romy Lorenz, Ricardo Pio Monti, Ines Violante, Christoforos Anagnostopoulos, Aldo Faisal,
Giovanni Montana, and Robert Leech. The automatic neuroscientist: A framework for opti-
mizing experimental design with closed-loop real-time fmri. NeuroImage, 129:320–334, 2016.

[14] Romy Lorenz, Iines Violante, Ricardo Pio Monti, Giovanni Montana, Adam Hampshire, and
Robert Leech. Dissociating frontoparietal brain networks with neuroadaptive bayesian opti-
mization. Nature communications, 9(1):1227, 2018.

[15] Peter. McCullagh and John Nelder. Generalized linear models, volume 37. CRC press, 1989.

[16] Brian McWilliams, Christina Heinze, Nicolai Meinshausen, Gabriel Krummenacher, and Hasta-
giri Vanchinathan. LOCO: Distributing ridge regression with random projections. arXiv
preprint arXiv:1406.3469, 2014.

[17] Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with
the lasso. The Annals of Statistics, pages 1436–1462, 2006.

[18] Nicolai Meinshausen and Peter Bühlmann. Stability selection. Journal of the Royal Statistical
Society: Series B, 72(4):417–473, 2010.

[19] Reed Montague, Gregory Berns, Jonathan Cohen, Samuel McClure, Guiseppe Pagnoni, Mukesh
Dhamala, Michael Wiest, Igor Karpov, Richard King, Nathan Apple, and Ronald Fisher. Hyper-
scanning: simultaneous fMRI during linked social interactions. NeuroImage, 16(4):1159–1164,
2002.

[20] Ricardo Pio Monti and Aapo Hyvärinen. A unified probabilistic model for learning latent factors
and their connectivities from high-dimensional data. arXiv preprint arXiv:1805.09567, 2018.

[21] Ricardo Pio Monti, Peter Hellyer, David Sharp, Robert Leech, Christoforos Anagnostopoulos,
and Giovanni Montana. Estimating time-varying brain connectivity networks from functional
MRI time series. NeuroImage, 103:427–443, 2014.

[22] Ricardo Pio Monti, Romy Lorenz, Rodrigo Braga, Christoforos Anagnostopoulos, Robert Leech,
and Giovanni Montana. Real-time estimation of dynamic functional connectivity networks.
Human Brain Mapping, 38(1):202–220, 2016.

[23] Ricardo Pio Monti, Christoforos Anagnostopoulos, and Giovanni Montana. Learning population
and subject-specific brain connectivity networks via mixed neighborhood selection. The Annals
of Applied Statistics, 11(4):2142–2164, 2017.

[24] Ricardo Pio Monti, Romy Lorenz, Peter Hellyer, Robert Leech, Christoforos Anagnostopoulos,
and Giovanni Montana. Decoding time-varying functional connectivity networks via linear
graph embedding methods. Frontiers in computational neuroscience, 11:14, 2017.

[25] Mee Young Park and Trevor Hastie. L1-regularization path algorithm for generalized linear
models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):
659–677, 2007.

[26] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths. The Annals of Statistics,
pages 1012–1030, 2007.

[27] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. IEEE Proceedings, 104(1):148–175,
2016.

12

[28] Steven Smith, Karla Miller, Gholamreza Salimi-Khorshidi, Matthew Webster, Christian Beck-
mann, Thomas Nichols, Joseph Ramsey, and Mark Woolrich. Network modelling methods for
fMRI. NeuroImage, 54(2):875–891, 2011.

[29] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B, pages 267–288, 1996.

[30] Nikolaus Weiskopf. Real-time fMRI and its application to neurofeedback. NeuroImage, 62(2):
682–692, 2012.

Appendix A Proof of Proposition 2

For a given regularization parameter, λ, the corresponding vector of estimated regression coefficients,
β̂(λ), can be computed by minimizing the non-smooth objective, Lt(β, λ), provided in equation (14).
The sub-gradient is defined as:

∇βLt(β, λ) = −XT
1:tW (y1:t − µ)

∂η

∂µ
+ λ sign(β) (17)

We write µ to denote the vector of predicted means, µi = g−1(ηi) = g−1(XT
i β) and ∂η

∂µ to denote a

vector with entries ∂ηi
∂µi

. Note that in the case of normal linear regression we have that µi = ηi = XT
i β

and we therefore recover equation (9).
As in Proposition 1, we have that for any choice of regularization parameter, the sub-gradient

evaluated at β̂t(λ) must satisfy:
∇βLt(β, λ)|β=β̂t(λ) 3 0.

We therefore compute the derivative with respect to λ in order to obtain:

∂

∂λ

(
∇βLt(β, λ)|β=β̂t(λ)

)
= 0 (18)

=
∂

∂λ

(
−XT

1:tW (y1:t − µ)
∂η

∂µ

)
+ sign(β̂t(λ)) (19)

= XT
1:tW

∂µ

∂λ

∂η

∂µ
+ sign(β̂t(λ)) (20)

= XT
1:tWX1:t

∂β̂t(λ)

∂λ
+ sign(β̂t(λ)) (21)

where equation (21) follows from the fact that:

∂µ

∂λ
=
∂µ

∂η

∂η

∂β̂t(λ)

∂β̂t(λ)

∂λ
=
∂µ

∂η
X1:t

∂β̂t(λ)

∂λ
.

Rearranging equation (21) yields the result.

13

List of Tables

1 Detailed results for simulation involving non-stationary data over N = 500 indepen-
dent iterations. We report the mean negative log-likelihood, C̄t, as well as the mean
F -score, F̄t. Standard errors are provided in brackets. 10

14

List of Figures

1 Violin plots visualizing the difference in selected regularization parameters as a func-
tion of the dimensionality, p, for linear (left) and logistic regression (right). We note
that the difference in estimated `1 norms is both small and centered around the origin,
indicating the absence of large systematic bias. Note the difference in y-axis across
panels. 16

2 Simulation results when estimating regularized streaming linear and logistic regression
models. Results for linear and logistic regression are shown across the first and second
rows respectively. The left panels plot the mean regularization parameter as estimated
by the RAP algorithm as well as the optimal piece-wise constant value selected by
a Stepwise Oracle using cross-validation. The right panels plot the mean negative
log-likelihood, Ct+1, over time. We note that the RAP algorithms outperform the
offline alternatives. We note that results for SMBO are omitted for clarity. Detailed
results are provided in Table 1. 17

3 Top: the mean sparsity parameter is shown as a function of time. The background
color indicates the nature of the task at hand (green indicates neutral task while blue
indicates the emotion task). Bottom: estimated networks visualizing the estimated
connectivity structure at three distinct points in time. Edge colors indicate the nature
of the dependence (blue indicates a positive dependence, red a negative dependence). 18

15

Figure 1: Violin plots visualizing the difference in selected regularization parameters as a function
of the dimensionality, p, for linear (left) and logistic regression (right). We note that the difference
in estimated `1 norms is both small and centered around the origin, indicating the absence of large
systematic bias. Note the difference in y-axis across panels.

16

Figure 2: Simulation results when estimating regularized streaming linear and logistic regression
models. Results for linear and logistic regression are shown across the first and second rows respec-
tively. The left panels plot the mean regularization parameter as estimated by the RAP algorithm
as well as the optimal piece-wise constant value selected by a Stepwise Oracle using cross-validation.
The right panels plot the mean negative log-likelihood, Ct+1, over time. We note that the RAP al-
gorithms outperform the offline alternatives. We note that results for SMBO are omitted for clarity.
Detailed results are provided in Table 1.

17

Figure 3: Top: the mean sparsity parameter is shown as a function of time. The background
color indicates the nature of the task at hand (green indicates neutral task while blue indicates the
emotion task). Bottom: estimated networks visualizing the estimated connectivity structure at three
distinct points in time. Edge colors indicate the nature of the dependence (blue indicates a positive
dependence, red a negative dependence).

18

