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Abstract

Software development is tremendously benefited from the Internet by having online

code corpora that enable instant sharing of source code and online developer’s

guides and documentation. Nowadays, duplicated code (i.e., code clones) not only

exists within or across software projects but also between online code repositories

and websites. We call them “online code clones.” They can lead to license

violations, bug propagation, and re-use of outdated code similar to classic code

clones between software systems. Unfortunately, they are difficult to locate and fix

since the search space in online code corpora is large and no longer confined to a

local repository.

This thesis presents a combined study of code similarity and online code

clones. We empirically show that many code snippets on Stack Overflow are

cloned from open source projects. Several of them become outdated or violate their

original license and are possibly harmful to reuse. To develop a solution for finding

online code clones, we study various code similarity techniques to gain insights

into their strengths and weaknesses. A framework, called OCD, for evaluating code

similarity and clone search tools is introduced and used to compare 34 state-of-the-

art techniques on pervasively modified code and boiler-plate code. We also found

that clone detection techniques can be enhanced by compilation and decompilation.

Using the knowledge from the comparison of code similarity analysers, we

create and evaluate Siamese, a scalable token-based clone search technique via

multiple code representations. Our evaluation shows that Siamese scales to large-

scale source code data of 365 million lines of code and offers high search precision

and recall. Its clone search precision is comparable to seven state-of-the-art clone
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detection tools on the OCD framework. Finally, we demonstrate the usefulness of

Siamese by applying the tool to find online code clones, automatically analyse clone

licenses, and recommend tests for reuse.



Impact Statement

The knowledge and methods of software analysis presented in this thesis are

beneficial to software quality improvement and could have impacts on both software

engineering research and industry.

The phenomenon of code duplication, i.e., code cloning, is well-known in both

research and industry, although sometimes with different terms used to describe it.

There are two camps of beliefs that clones lead to bug propagation and degrades

software maintenance, and that clones rarely relate to bugs and do not affect

software quality. However, they both agree that clones have to be made explicit.

This thesis strengthens the body of knowledge in code clone research by studying a

new type of code clones, a cloning activity to and from online sources such as Stack

Overflow programming Q&A website.

The thesis shows that the result of such cloning for which we call online code

clones, have at least two issues: outdated code and software license incompatibility.

Since Stack Overflow is a popular website with 7.6 million users, the issues from

online code cloning can affect a large number of programmers around the world.

The findings lead to an urgent need to mitigate the issues, both by research and

Stack Overflow itself.

On the research side, the thesis develops a scalable code clone search technique

and a tool called Siamese, to provide a scalable solution to locate online code clones

from large source code corpora. The thesis demonstrates that Siamese can be put

to use to efficiently locate clones between Stack Overflow and a hundred open

source projects. The technique can incorporate automated license analysis to detect

violations of software licenses and has a potential to be transformed to a cloud
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service that offers real-time checks for online code clones in any software projects.

On the industry side, the thesis calls for action from Stack Overflow to mitigate

the issues of outdated code and software license violations. The survey results in

the thesis clearly show that Stack Overflow users are aware of the issues and some

of them need a guideline from Stack Overflow. Moreover, the website must collect

the origin of the source code examples to check for their newer version and their

original software license.

Lastly, the comparison of 34 code similarity analysers presented in the thesis

is the largest in existence and potentially an invaluable guide for future users of

similarity detection in source code. The findings can be used both in academia and

outside academia on any studies or projects related to code similarity.
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Chapter 1

Introduction

Code similarity is extensively exploited in software engineering research. One

of the well-known applications is code clone detection, i.e., finding duplicated

pieces of code in software. Code cloning occurs by programmers duplicating

source code with or without further alterations. The reasons for cloning are varied,

such as creating multiple versions of the software, reuse of a well-written code

template, or adapting a functionality from existing code [Kapser and Godfrey,

2008]. Code cloning results in redundant pieces of code, which may lead to

software maintenance issues [Juergens et al., 2009]. On the contrast, several studies

have shown that clones are not always harmful and can possibly be beneficial in

some situations [Kapser and Godfrey, 2006, Saini et al., 2016b]. In any case,

clone researchers agree that code clones have to be made explicit to manage them

properly. Thus, a large number of tools have been invented in both research and

industry to detect clones. The latest clone survey by Rattan et al. [2013] reports 74

clone detection tools found in the literature.

Another area of code similarity research is software plagiarism detection.

Software plagiarism is caused by code cloning with malicious intent to hide the

ownership of the copied code [Duric and Gasevic, 2013]. It is a concern in both

education and industry, and it can cause serious legal consequences. For example,

Oracle declared enormous damage of nine billion dollars to the US Federal Circuit

court claiming that Google has plagiarised their Java APIs in the Android operating

system [Jeong, 2018].
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Code similarity detection is also used to find software license violations.

It has been reported in research that software license conflicts occur by code

cloning [German et al., 2009, An et al., 2017]. Since each software project has

a license which may differ from another, a careless code cloning from a strictly-

licensed project to a permissively-licensed project will create a license violation.

There are several cases in which such cloning produce serious legal issues [Gross,

2007, Lee, 2008, Economy, 2009]. A well-known case is when Linksys (now Cisco)

violated the GPL license by reusing the Linux kernel and BusyBox in their closed-

source WRT54G router [Hemel et al., 2011]. Software companies usually prevent

this issue by performing code clone detection and license analysis between their

software and open source software projects, a service offered by software auditing

companies such as Black Duck Software.

With the rise of the Internet, several large-scale online code corpora such as

GitHub (an online code repository and versioning system) or Stack Overflow (a

popular programming Q&A website) containing possibly millions or billion lines

of code, introduces several challenges to code similarity detection.

First, code can be cloned from anywhere. In the past, code cloning is confined

to within or between software projects. Nowadays, online corpora such as GitHub

and Stack Overflow have become rich sources of code examples. Since code can be

freely and quickly accessed online, code cloning becomes easier than before. The

issues from code cloning are also escalated by the ever-growing size of code bases

available online. One might copy and reuse code snippets from GitHub projects

without checking their original licenses, which may lead to legal issues. Sometimes

a code fragment is put online without its original license, so the user of the code will

never be aware of a potential violation. Also, code examples on Stack Overflow

may be outdated and harmful for reuse because they are not tested or updated as

frequently as in software projects.

Second, to detect clones in such large-scale source code data, a scalable code

clone or code similarity tool is a necessity. The classical code clone and code

plagiarism detection tools are not scalable enough to efficiently report similar code
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artefacts in very large code corpora. For example, Tata Consultancy Services (TCS)

faced difficulty when they tried to detect clones within their COBOL systems with

many million lines of code [Sajnai, 2016]. The tools they used, CloneDR (a

commercial tree-based clone detector) and Simian (a text-based clone detector),

could not scale to such a large code base. The primary challenge of measuring

similarity of source code on the Internet-scale is the quadratic execution time from

n-to-n pairwise comparisons of code fragments or the expensive tree or graph

comparisons in traditional code similarity detection approaches. Thus, we are

seeking a scalable approach that reduces or avoids such comparisons while still

accurately locate similar code fragments.

Third, although a few scalable clone detection tools have been recently

proposed in the literature (e.g., Hummel et al. [2010], Sajnani et al. [2015, 2016],

Svajlenko and Roy [2017], Saini et al. [2018]), the human effort to inspect pieces

of code is yet limited [Miller, 1956]. As a result, a clone detector that reports a

large number of clone pairs to a human investigator are not practically helpful in

a case of licensing violation check, finding bug fixes, or plagiarism detection in

programming submissions on large-scale source code data. The investigator needs

a tool similar to the Google search engine that ranks the results by their relevance

to a given code query so that she can investigate only a few top n cloned candidates.

Code clone search engine, which receives a piece of code as a query and a returns a

ranked list of clones, is more suitable than clone detectors for these tasks. Moreover,

most of the existing code clone detection tools do not support incremental updates

in code bases. When a new software project arrives, or an existing project receives

updates, the clone detection process has to be restarted. It is preferred to initially

store a large amount of code from online sources permanently in a database once,

and update them regularly. The clone queries can be done at any time and as many

times as needed.

Fourth, online code snippets may not be a complete method or code block.

We found that many answers in Stack Overflow posts contained just a fragment

of code, which is not even parseable. This hinders code similarity measurement
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approaches that rely on complete code structure, e.g., tree-based or graph-based

approaches. Hence, some of the existing code similarity techniques do not work in

this situation.

1.1 Problem Statements of the Thesis
The thesis covers several interconnected topics surrounding code similarity and

code clones in large-scale source code data. The problems that this thesis tackles

are discussed below.

There are several studies on issues of code cloning from Stack Overflow to

software projects, such as security vulnerability [Acar et al., 2016], low-quality

code examples [Abdalkareem et al., 2017, Zhang et al., 2018], or license violations

[An et al., 2017]. However, there is limited work in the other direction of cloning,

i.e., code cloning from software projects to Stack Overflow. The thesis asks the

following questions.

Why and how code snippets appear on Stack Overflow?

What are the issues from cloned code snippets on Stack Overflow?

To offer a service for detecting code cloning to and from online sources

such as Stack Overflow or GitHub, we need a tool with scalability. Based on

the literature, index-based techniques offer high scalability [Hummel et al., 2010,

Sajnani et al., 2016], but still suffer from low detection accuracy on clones with

challenging modifications such as added, deleted, or relocated statements (type-3

clones) [Svajlenko et al., 2014b]. The thesis asks the question.

Can we improve index-based clone search techniques to find clones

with challenging code modifications while at the same time preserve

scalability?

On the evaluation side, the existing studies of comparing code similarity

analysers contain a small set of tools, mostly clone detectors, e.g., Bellon et al.

[2007], Roy and Cordy [2009a], Svajlenko and Roy [2014, 2016]. There are

several tools and techniques besides clone and plagiarism detectors, such as string
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matching, information retrieval, and compression methods that can locate similar

code fragments. A broader comparison of code similarity analysers would be useful

not only for clone and plagiarism detection study but also for studies that are based

on code similarity. The thesis asks

How can we build a framework to fairly compare any code similarity

tools and techniques on the same data set?

How well the code similarity tools perform compared to each other on

such a framework?

Lastly, several modern code clone detection tools still do not have high recall

(i.e., the number of retrieved clones over all the clones in a code corpus) on clones

with a lot of modifications [Svajlenko et al., 2014b]. Kononenko et al. [2014]

perform a study using code compilation as a code normalisation process to increase

clone detection recall. They show that additional clones are found by the approach.

We take one step further and ask, along the same lines, a question:

Can we use compilation and decompilation to improve recall in code

clone detection?

To answer these questions, the thesis embarks on a journey combined with

several empirical studies and evaluations of code similarity detection techniques, as

will be discussed later in this thesis.

1.2 Goal and Objectives
The goal of this thesis is to study code cloning in large-scale source code data and

develop a scalable clone search approach to address challenges from such cloning.

To achieve the goal, the following objectives are set.

1. To study the problems of online code cloning between Stack Overflow and

open source projects. By performing this empirical study, we can gain

insights into how programmers clone code between online sources and the

ramifications of doing so.
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2. To create a general framework for comparing code similarity tools and clone

search techniques. With the framework, we can use it to study the strengths

and weaknesses of the state-of-the-art code similarity tools. The framework

can also be used as a benchmark to evaluate future code similarity tools.

3. To propose an enhancement to code clone detection using compilation and

decompilation.

4. To invent a scalable code clone search approach that facilitates the study of

online code cloning and other studies related to large-scale code similarity

detection.

1.3 Contributions
The contributions of this thesis are:

1. This thesis establishes the existence of online code clones and classifies code

snippets that have been cloned to Stack Overflow into seven patterns of online

code cloning.

2. The thesis studies two issues from online code clones on Stack Overflow

including outdated code and license violations. The findings show an urgent

need for online clone detection, which focuses on code that is cloned to and

from websites instead of software.

3. This thesis presents OCD, a framework for a fair comparison of code similar-

ity analysers on a data set with pervasive code modifications. The complete

ground truth provided by the framework allows an evaluation of traditional

error measures such as precision and recall, and query-based measures such

as precision-at-n, average r-precision or mean average precision.

4. The thesis compares 34 code similarity analysers, the largest number of

tools to date. This comparison is possibly a valuable guideline for software

engineers and researchers to select the right code similarity analyser for their

tasks at hand, and how to tune them to gain optimal performance.
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5. This thesis shows that compilation/decompilation can be used as an effective

code normalisation for clone detection. This is the first study that detects

clones after compilation/decompilation. The findings show that more clones

can be detected by compiling and decompiling software projects before

performing code clone detection.

6. This thesis develops and evaluates Siamese, an incremental and scalable code

clone search system. Siamese is suitable for code clone search on a large-

scale source code data with high precision and recall.

7. The thesis demonstrates potential applications of Siamese to empirical soft-

ware engineering studies.

1.4 Thesis Organisation
Chapter 2 surveys the literature on code similarity. It begins by analysing the

publications in the 10-year period from 2008 – 2017 and moves to discuss in

detail three research areas involving code similarity including code clones, software

plagiarism, and software license compatibility. Then, it explains existing code sim-

ilarity detection techniques. The chapter ends by presenting existing benchmarks

for comparing code similarity analysers and discussing scalable code similarity and

code search techniques.

Chapter 3 presents a study of awareness of Stack Overflow developers to the issues

of outdated and license-violating code snippets via two online surveys. It explains

how the online surveys are conducted and discuss the results. The findings show

that several code snippets on Stack Overflow are cloned from software projects or

external sources and may be problematic for reuse.

Chapter 4 confirms the findings from the Stack Overflow online surveys. It

performs an empirical study of online code clone detection between Stack Overflow

and open source projects. The chapter establishes evidence of code cloning to and

from Stack Overflow and studies the ramifications of such cloning. It shows that an

automated tool that can check for code clones from Stack Overflow or other online

code corpora is essential.
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Chapter 5 introduces the OCD framework for comparing code similarity analysers

and explains its structure. The chapter performs an empirical study by using

the framework to compare 34 state-of-the-art code similarity analysers on several

scenarios of code modifications. Besides being a valuable guideline for future code

similarity studies, the chapter reveals that a few string similarity techniques offer

comparable results to dedicated code similarity tools, which is a useful insight we

adopt for the development of our scalable clone search tool.

Chapter 6 complements the findings in Chapter 5 about using compilation and

decompilation to enhance code similarity detection. The chapter extends the

technique to three real-world Java projects and shows that it helps the tool to find

more clones. Although the approach is useful to code clone detection in general,

we do not adopt it for our scalable clone search tool due to its restrictions to only

compilable code.

Chapter 7 explains the architecture of Siamese, a scalable and incremental code

clone search engine incorporating multiple code representations and query reduc-

tion for an accurate clone retrieval. The chapter evaluates the accuracy of Siamese

on the OCD framework compared to seven state-of-the-art clone detectors and

evaluates the scalability of Siamese on a large data set of 25,000 Java projects.

The chapter ends by showing that the tool’s incremental update can tremendously

save time when the code index needs updates.

Chapter 8 demonstrates how Siamese can be used in code similarity research.

It shows three applications including online code clone detection, checking for

software license compatibility of clones, and reusing of test cases. The chapter

ends by showing a web-based version of Siamese.

Chapter 9 proposes the future work and concludes the thesis.



Chapter 2

Literature Survey

This chapter provides the background on code similarity, which is a fundamental

concept underpinning several applications in software engineering research. The

chapter presents the latest trend of code similarity research by analysing the number

of publications involving code similarity in major software engineering venues in

the past ten years (2008–2017) and discusses in detail three research areas that

strongly involve code similarity: code clones detection, software plagiarism, and

software license violations. Then, a wide range of techniques and tools to measure

code similarity are explained in brief detail, including the benchmarks to compare

their performance. The chapter moves to discuss emerging techniques to measure

code similarity in a large-scale source code corpora. It then describes code search

and clone search techniques that efficiently locate relevant code fragments based on

querying a code index.

2.1 The Spectrum of Program Similarity
Similarity of computer programs1 can be measured at three different levels. As

depicted in Figure 2.1, Zhang et al. [2012] explain that two programs can be similar

at the level of purpose, algorithm, or implementation. To give a simple example, two

programs that sort numbers in ascending order are similar at the purpose level. They

are similar at the algorithm level if they share the same sorting algorithm. Lastly, if

the two programs decide to implement the algorithm in the same way, they are also

1We use the term “program” and “software” synonymously in this thesis with the same meaning
of a collection of coded instructions to perform a specific task on a computer.
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Figure 2.1: Spectrum of program similarity [Zhang et al., 2012]

similar at the level of implementation. Nevertheless, judging if two programs share

the same purpose or the same behaviours (i.e., algorithm) is very difficult or even

undecidable in general [Koschke, 2007]. Thus, most of the established software

similarity measurements have been performed at the implementation level.

Measuring software similarity at the implementation level can also be achieved

on different representations of the software: source code, compiled code, syntax

tree, or software metrics extracted from the software. In this thesis, we focus on

assessing similarity of software based on its source code. Hence, when we use the

term “code similarity”, we mainly refer to software similarity at the implementation

level represented by the software’s source code.

Code similarity is adopted in several research areas and is named differently,

such as code clones, software plagiarism, copy-and-paste code, similar code, code

duplication, or software redundancy. Nonetheless, the key idea is the same.

2.2 Recent Publications in Code Similarity
Code similarity has always been crucial to software engineering research with

consistent numbers of publications in major venues. We studied the trend of

academic publications in code similarity by collecting the papers in the past ten

years (2008–2017) from eight highly-respected conferences and journals in soft-

ware engineering. The venues included the International Conference on Software

Engineering (ICSE), the joint meeting on Foundations of Software Engineering

(ESEC/FSE), the international conference on Automated Software Engineering
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Figure 2.2: Publications relating to code similarity in major software engineering venues
in the past 10 years

(ASE), the International Conference on Mining Software Repositories (MSR), the

International Conference on Software Maintenance and Evolution (ICSME), the

IEEE Transactions on Software Engineering (TSE) journal, the ACM Transactions

on Software Engineering and Methodology (TOSEM) journal, and the Empirical

Software Engineering (EMSE) journal. The paper collection was performed

on dblp computer science bibliography (i.e., http://dblp.uni-trier.de)

using the searches of keywords “clone/cloning”, “similar”, “duplicate/duplication”,

“copy”, “redundant/redundancy” in their respective conference proceeding and

journal issue pages. Then, we manually checked the papers to confirm their

relevance to code similarity. We found 116 papers in total. A breakdown in

years and venues is shown in Figure 2.2. As we can see from the distribution of

papers in the chart, the concept of code similarity consistently appears in software

engineering publications across several conferences and journal from 2008 to 2017.

The majority of the publications (103 out of 116) focuses on code clones and their

effects on software quality. The highest number of code similarity papers spikes in

2014, especially in ICSME which contains ten papers about code clones.

The topics discussed in the publications can be categorised into eight groups

(as visualised in Figure 2.3): code similarity and clone detection techniques, clone

http://dblp.uni-trier.de
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Figure 2.3: Topics of code similarity publications

management, clone oracle and tool evaluation, code search, empirical study of code

clones, software license violations, software plagiarism, and other applications of

code similarity. The highest number of papers fall into code similarity and clone

detection techniques (43), followed by empirical studies of code clones (32), and

clone management including refactoring and maintenance of clones in software

(22). Although code cloning is a dominant topic in the analysed literature, we also

found topics of software plagiarism (2), software license violations (2), code search,

and other applications of code similarity (5) such as identifying bugs, automated

transplantation, establishing software traceability, and software testing.

We select some papers from the 116 retrieved papers to discuss in this chapter.

Nonetheless, they are not the only literature we reviewed, several other relevant

publications from other sources are also discussed in this chapter and other chapters

according to their relevance to the topic.

2.3 Research Areas Involving Code Similarity
Here, we discuss three research areas that involve code similarity in length. We

start with code clones, then move to software plagiarism. Then, we present software

license violations, a side-effect of code cloning. Finally, we end the discussion by
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briefly explaining the other applications of code similarity to software engineering.

2.3.1 Code Clones

Code clones are fragments of code that are similar. Code clone study is an

active research field in software engineering and is a dominant application of code

similarity. Code cloning occurs by programmers duplicating source code with or

without modifications [Roy et al., 2009] and it is a common activity found in

software development. Amount of clones in software may be used as a proxy to

measure software quality [Fowler, 1999]. We refer the reader to a survey by Roy

and Cordy [2007], Koschke [2007], Roy et al. [2009], and Rattan et al. [2013] for

comprehensive discussions on software clone detection research.

The intention behind code cloning can vary from unintentional use of coding

idioms [Kapser and Godfrey, 2006] to reusing well-written code in order to preserve

functionality and performance [Kamiya et al., 2002]. Software development

industry has utilised code cloning intensively. Roy et al. [2009] and Davey et al.

[1995] reported that a substantial percentage (7–23% and 20–30% respectively) of

a software module contains clones. Baxter et al. [1998] similarly found that on

average 12.7% of code in the commercial software project used in their study are

clones. Interestingly, the number may increase dramatically during the past decade

due to the rise of the Internet, which enables fast access and sharing of source code.

A recent large-scale study by Lopes et al. [2017] shows that 70% of the code on

GitHub are clones.

2.3.1.1 Code Clone Definitions

There are several definitions of when two code fragments become clones. Kamiya

et al. [2002] state that code clones come from two portions of code that are either

“identical” or “similar”. Baxter et al. [1998] gives a stricter definition of clones

as two program fragments that are identical to each other, and call two fragments

which are not identical as “near-miss clones.” Li et al. [2006] use the term “copy-

pasted code” instead of clones to explain duplicated code segments. Bellon et al.

[2007] refer to a clone pair as “two code fragments form a clone pair if they are
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similar enough according to a given definition of similarity.” Roy et al. [2009]

describe code clones as a result of “reusing code fragments by copying and pasting

with or without minor adaptation.” An alternative definition of clone pair from

Jiang et al. [2007a] is “two code fragments having similar tree representation to

some level of similarity”.

Since the term “similarity” that appears in many of the clone definitions above

has been independently defined by researchers, it is generally varied and open to

interpretation by each particular clone detection method. The unit of measurement

(i.e., code fragment, code snippet, or code portion) is also vague. Two code

fragments can be either lines of code [Harris, 2003], a code block between two

braces (i.e., { and }) [Cordy and Roy, 2011, Roy and Cordy, 2008, Li et al., 2006,

Sajnani et al., 2016], a function [Cordy and Roy, 2011, Roy and Cordy, 2008, Jiang

et al., 2007a], or the whole program [Zhang et al., 2012, Carzaniga et al., 2015].

As a result, each tool and technique treats code fragments differently based on

suitability to their algorithms.

2.3.1.2 Code Clone Terminology

In this thesis, we use the following well-accepted terminology [Roy et al., 2009,

Sajnani et al., 2016, Bellon et al., 2007, Roy et al., 2009, Davey et al., 1995, Carter

et al., 1993] regarding code clones.

Code fragment is a segment of code represented by a triple consisting of the

source file, the starting and the ending line.

Clone pair is a pair of code fragments and an associated type of similarity,

i.e., Type-1, -2, -3 or -4.

Type-1 clones are literally identical code fragments except for differences in

formatting such as white spaces, layouts, and comments (as shown in Figure 2.4).

Type-2 clones are syntactically identical code fragments except for differences

in identifiers, literals, types, and formatting (as shown in Figure 2.5).

Type-3 clones are similar fragments with modified, relocated, added, or

removed statements (as shown in Figure 2.6).

Type-4 clones are code fragments that may not be syntactically similar but
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/* Clone#1 */

private int[] sort1 (int[] n) {

for (int i=n.length -1; i>=0; i--)

for (int j=1; j<=i; j++) {

if (n[j] < n[j-1]) {

int tmp = n[j-1];

n[j-1] = n[j];

n[j] = tmp;

}

}

return n;

}

/* Clone#2 */

private int[] sort1 (int[] n) {

for (int i=n.length -1; i>=0; i--)

for (int j=1; j<=i; j++) {

if (n[j] < n[j-1]) {

int tmp = n[j-1];

n[j-1] = n[j]; n[j] = tmp;

}} return n;

}

Figure 2.4: Type-1 clone pair with only differences in formatting

/* Clone#1 */

private int[] sort1 (int[] n) {

for (int i=n.length -1; i>=0; i--)

for (int j=1; j<=i; j++) {

if (n[j] < n[j-1]) {

int tmp = n[j-1];

n[j-1] = n[j];

n[j] = tmp;

}

}

return n;

}

/* Clone#2 */

private double[] sort2 (double[] arr) {

for (int i=arr.length -1; i>=0; i--)

for (int j=1; j<=i; j++) {

if (arr[j] < arr[j-1]) {

double temp = arr[j-1];

arr[j-1] = arr[j]; arr[j] = temp;

}

} return arr;

}

Figure 2.5: Type-2 clone pair with different data types, variables and formatting

share the same semantic. Figure 2.7 shows a Type-4 clone pair of two sorting

algorithms that are implemented independently. They are syntactically different

but they share the same semantic based on input and output.

Clone class (i.e., clone group, clone cluster) is a set of code fragments that

every two elements in the set form a clone pair.

/* Clone#1 */

private int[] sort1 (int[] n) {

for (int i=n.length -1; i>=0; i--)

for (int j=1; j<=i; j++) {

if (n[j] < n[j-1]) {

int tmp = n[j-1];

n[j-1] = n[j];

n[j] = tmp;

}

}

return n;

}

/* Clone#2 */

private int[] sort3 (int[] arr) {

int i=arr.length; int j=1;

while (i < arr.length) {

while (j < i) {

if (arr[j] < arr[j - 1]) {

int temp = arr[j - 1];

arr[j - 1] = arr[j];

arr[j] = temp;

}

j++;

}

i--;

}

return arr;

}

Figure 2.6: Type-3 clone pair with modified/added/deleted/relocated statements
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/* Clone#1 -- Bubble sort */

private int[] sort1 (int[] n) {

for (int i=n.length;i>=0;i--)

for (int j=1;j<=i;j++) {

if (n[j]<n[j-1]) {

int tmp = n[j-1];

n[j-1] = n[j];

n[j] = tmp;

}

}

return n;

}

/* Clone#2 -- Insertion sort */

private static int[] sort4(int[] n) {

ArrayList <Integer> s =

new ArrayList <Integer >();

for (int i = 0; i < n.length; i++) {

for (int j = 0; j < s.size(); j++) {

if (n[i] > s.get(j)) {

s.add(j + 1, n[i]);

break;

}

}

}

return n;

}

Figure 2.7: Type-4 clone pair with clearly distinct code structure but share the same seman-
tic based on input/output. The clone fragment on the left implements bubble
sort algorithm while the clone fragment on the right implements insertion sort.

Syntactic clones: We may call Type-1, Type-2, and Type-3 clones as syntactic

clones because they mostly preserve the semantic of the originals while differ at

syntactic level [Kim et al., 2011]. Syntactic clones are commonly found in software

systems as suggested by empirical clone studies. Li et al. [2006] discovered that

identifier renaming (Type-1 and Type-2) accounts for 65–67% of clones residing

in Linux and FreeBSD, and 23–27% of cloned fragments contain inserted, deleted,

or modified statements (Type-3). Svajlenko et al. [2014a] analysed IJaDataset 2.0

[ASE group, 2018], a large Java data set (25,000 subject systems, 365M SLOC),

and found 6.2 million clone pairs of Type-1 to Type-3. Interestingly, 6.1 million

pairs are Type-3.

Semantic clones: For Type-4 clone pairs, they may not resemble the same

syntax and only contain an equivalent program semantic. Hence, they are some-

times called semantic clones [Funaro et al., 2010]. Since program equivalence is

generally undecidable, detecting Type-4 clone has to be bounded within subsets of

program behaviours, such as measuring semantic similarity of two pieces of code

based on pre- and post-conditions [Bellon et al., 2007], or measuring similarity of

core values in their executions [Zhang et al., 2012] or over multiple states from

an execution [Carzaniga et al., 2015]. Semantic clones also cover the problem of

plagiarism at an algorithmic level [Zhang et al., 2012].

Simions are Type-4 clones with a stricter definition. They must be created
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independently without copying and pasting from another code [Juergens et al.,

2011].

2.3.1.3 Are Clones Good or Bad?

The question of “are code clones good or bad?” have been a debated problem in

clone research community for quite a long time. Clones are initially believed to be

one of code smells, which increase complications in project maintenance [Fowler,

1999]. This is because code cloning increases a software project size and, at

the same time, increase the cost to maintain the software. If a fault is found

in a single instance of cloned code, all cloned fragments have to be located and

updated [Kamiya et al., 2002, Bellon et al., 2007]. Li et al. [2006] has found 49

bugs in Linux and 31 in FreeBSD originating from clones. Moreover, duplicated

code exists because of lack of procedural abstraction or inheritance [Ducasse et al.,

1999]. Juergens et al. [2009] empirically showed that inconsistent changes in code

clones could lead to faults by analysing four industrial and one open source projects.

A large-scale study by Mondal et al. [2018] using two clone detectors on twelve

software systems in Java, C, and C#. They analysed the clones using eight code

stability metrics adopted from the previous studies and found that cloned code is

less stable than non-cloned code.

On the contrary, several empirical clone studies have shown that clones are

not always bad. Aversano et al. [2007] and Thummalapenta et al. [2010] report

that most of their detected code clones are changed consistently, or they evolve

independently. Kapser and Godfrey [2006, 2008] show that code clones are not

always harmful and can be beneficial in several cases, such as when building

software to support a set of hardware or platforms. Krinke [2008] argues that

cloned code is more stable than non-cloned code, based on number of changes

to the systems, in his empirical study of clone evolution of five software systems

over 200 weeks. Along the same lines, Rahman et al. [2010, 2012] argue that the

belief of code smells originating from code clones are not entirely accurate. Their

empirical study on four C open source projects over ten thousand snapshots show

that most of code clones do not cause bugs in software. 80% of bugs in three
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projects contain no cloned code at all and larger clone groups do not associate with

more bugs than smaller ones. Code with clones may even contain fewer defects than

the one without clones. Göde and Harder [2011] studied change frequency of clone

genealogies over revisions of three software projects and found that 87.8% of the

clones were rarely changed (never or once). Among the changed clones, only 3%

contained high-severity problems. A large-scale study of 4,421 open source Java

projects by Saini et al. [2016b] found no statistically significant difference in code

quality between cloned and non-cloned code for 24 out of the selected 27 software

metrics.

It seems, at least for now, that there is no definite answer to the question “are

code clones good or bad?” Code clones may or may not introduce complications

into software maintenance based on several contexts, such as the languages and

types of software projects being analysed (e.g., one version vs. multiple versions

of hardware drivers) [Kapser and Godfrey, 2006] or how consistent the changes are

applied to the clones [Aversano et al., 2007, Juergens et al., 2011]. Nonetheless,

clone researchers agree that we need to make clones in software explicit so that

an appropriate clone management process can be carried out [Chatterji et al., 2016].

2.3.1.4 Clone Management

The second largest portion (19%) of code similarity research in the past ten years

is clone management, i.e., how to maintain and reduce risks from clones within

software projects. A survey of clone research community [Chatterji et al., 2016]

shows that researchers believe that clone management is useful for maintenance

tasks which affect long-term system quality. Kim et al. [2005] studied clone

genealogies in two Java projects and reported that many clones are not long-lived

and aggressive clone refactoring may not always be beneficial. Duala-Ekoko and

Robillard [2008] create CloneTracker, an Eclipse plug-in, to support programmers

in monitoring clones in a software project. Wang et al. [2012] take a preventive

approach by predicting the harmfulness of clones at a time of cloning using

machine learning techniques. Nguyen et al. [2012] create a comprehensive clone

management tool called JSync that offers code clone detection, code consistency
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validation, clone synchronising and clone merging. Zhang and Kim [2017] reuse

tests among clones to detect bugs from inconsistent clone updates. Their approach

automatically transplants non-tested clone fragments in place of another clone

fragment with a test case to test them.

Some researchers focus on clone refactoring. Bazrafshan and Koschke [2013]

discovered that clone removals happened both deliberately and accidentally. They

also found that some clone refactorings were not complete and a clone detection

is needed for checking of non-refactored clones. Tsantalis et al. [2015] assess

a possibility of clone refactoring by using nesting structure tree (NST) matching

and statement mapping based on program dependence graph. Similarly, Wang and

Godfrey [2014] develop an approach to recommend clones for refactoring based

on a decision tree classifier. There are a few automated techniques introduced

to facilitate clone refactoring. Li and Thompson [2008, 2011], and Brown and

Thompson [2010] present semi-automatic clone refactoring tools with programmers

in-the-loop for Erlang and Haskell. Tsantalis et al. [2017] use Lambda expressions

to refactor Java clones automatically. Lin et al. [2014] present an approached

called MCIDiff (Multi-Clone-Instances Differencing) to show differences among

instances of clones in the same clone group to the programmers. MCIDiff Eclipse

plug-in shows high precision and recall of clone difference summary, which helps

facilitating clone refactoring decision.

2.3.1.5 Patterns of Code Cloning

Kapser and Godfrey [2003] performed an empirical study of code clones in

subsystems of Linux file system to understand why code clones happen, and how

they are created. They defined seven types of clone taxonomy: 1) copied code

blocks in the same function, 2) comparable functions in the same file, 3) copied

functions between files within the same directory, 4) copied functions between

files across different directories, 5) whole-file clone (possibly with some changes),

6) code blocks across files, and 7) need for initialisation and finalisation code

fragments of data or function.

Later, they performed a follow-up study [Kapser and Godfrey, 2006, 2008] by
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Group Pattern Description

Forking Hardware variation Cloning to create a new driver for a hardware
family

Platform variation Cloning to port software to a new platform
Experimental variation Cloning to experiment with pre-existing code

Templating Boiler-plating Cloning due to language inexpressiveness
API/library protocols Cloning of an ordered set of API-related pro-

cedure calls
General language/

algorithmic idioms
Cloning of well-written solutions

Parameterized code Cloning by changing identifier names

Customisation Bug workarounds Cloning and fixing a bug (when one cannot
modify the original code)

Replicate and specialise Cloning and adapting of code

Exact matches Cross-cutting concerns Cloning of some functionalities across differ-
ent locations (e.g., logging and debugging)

Verbatim snippets Cloning of small repetitive fragments of logic
(e.g., branching control)

Table 2.1: Code cloning patterns by Kapser and Godfrey [2008]

analysing three systems for recurrence of cloning behaviours and discovered eleven

patterns of code cloning, which are categorised into four main groups, as listed in

Table 2.1. The patterns explain why or how code clones are created. The four main

groups include forking, templating, customisation, and exact matches.

2.3.2 Software Plagiarism

Another well-established application of code similarity is detecting software pla-

giarism. While the term “plagiarism” is commonly used in the context of written

text in natural languages such as reports, essays, theses, or conference and journal

papers, it can be applied to any kind of data [Clough, 2000]. In computer science,

plagiarism occurs in program source code [Cosma and Joy, 2008]. Unfortunately,

automated plagiarism detection tools for natural text such as Turnitin [2015] cannot

perform well on detecting plagiarised source code [Weber-Wulff et al., 2012]. Due

to inherent differences in source code and natural text, one cannot just reuse the

detection method for natural text on source code.

Plagiarism of programming assignments has been occurring in higher educa-

tion, such as in a university, for several decades. There were attempts to alleviate
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this problem since the 1970s [Ottenstein, 1976, Donaldson et al., 1981, Grier,

1981, Berghel and Sallach, 1984]. A survey by Cosma and Joy [2008] found that

approximately 50% of UK academics who taught at least one programming course

believe that an act of copying source code from someone else and submitting as their

own (with or without changes) without an acknowledgement is plagiarism. Another

survey [Daniela et al., 2012] from students and faculty staffs shows that students’

work have been plagiarised at least once and the plagiarised documents are either

computer programs or homework assignments. Most of the students (72%) state

that they use solutions from their peers to inspire their answers and only 10 percent

of the surveyed students never look at solutions from their classmates. However,

more than 20 percent of the staffs do not want to perform any plagiarism checking,

and 12 percent of the staff carry out no checking at all. More than half of the staffs

(72%) admit that an automated tool can raise their incentive of plagiarism check

in programming submissions. The best solution seems to be a combination of an

effective grading method plus an efficient detection tool.

Similar to education, plagiarism in commercial computer programs has been

occurring for decades. Dated back in the 1980s, there were a few lawsuits regarding

plagiarism of computer programs. One example is a case between SAS Institute and

S&H Computer Systems [SAS Institute, Inc. v. S&H Computer Systems, 1985].

SAS Institute sued S&H Computer Systems for copying its statistical analysis

program SAS running on IBM computers. A similar case occurred between Whelan

Associates and Jaslow Dental Labor [Whelan Associates v. Jaslow Dental Labor,

1985]. Since then, the problem of plagiarism in commercial software persists

until the present, e.g., Computer Associates Int’l, Inc. v. Altai, Inc. [1992], Com-

puware Corp. v. International Business Machines (IBM) [2002], Oracle America,

Inc. v. Google Inc. [2012].

Due to an early age of computer law in the 1990s, the problem of software

copyright was controversial. In the United States, Hamilton and Sabety [1997]

describe that the court defines copyright of software to cover both literal copy and

non-literal copy. Literal copying of user interface, source code, and object code
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infringes copyrights, so any attempt to copy and reuse them causes issues. On

the contrast, the scope of non-literal copying is controversial. They suggest that

algorithms, data structures, hardware drivers, and programming languages are not

copyrightable. Nonetheless, a data processing component including a collection

of data structures and algorithms to achieve a specific task by the software is

copyrightable but has to be scrutinised with strong computer science concepts in

mind.

Consequences of software plagiarism have caused IT companies to suffer from

revenue loss due to their products being copied. In a global landscape, the cost

of global PC software piracy in 2010 is as high as 58.8 billion dollars [Business

Software Alliance (BSA), 2011]. One of the prominent cases is Oracle America,

Inc. v. Google Inc. [2011]. Oracle sued Google in August 2010 for violating their

copyright of Java APIs by copying parts of code from 12 source files and 37 Java

specifications and use them to develop the Android operating system. Google

defended that the copied code was too minimal, or “de minimis”, to be counted

as copyright infringement [Sprigman, 2015]. However, as of now, this case is still

in progress, and Oracle declared enormous damage of nine billion dollars [Jeong,

2018].

Plagiarism can also occur in mobile applications. With the rapid growth of

mobile phone usage, the number of mobile applications has been increasing sharply.

There are approximately more than one million applications available in Apple App

Store and Google Play store in 2014 [Adjust, 2014, Viennot et al., 2014]. This vast

number attract plagiarisers to reverse engineer mobile applications by decompiling

an original app (especially Android), make alterations, repackage, and submit it to

the same or different app store for malicious purposes. The worst of all, normal

applications are converted to malware [Crussell et al., 2013, Zhang et al., 2014,

Zhou and Jiang, 2012]. Chen et al. [2014] discovered that 13.51% of applications

from five different Android markets in China, Europe, and America are clones.

These clones can divert 10% of user and 14% advertisement viewing rate from the

original which may generate a substantial drop in revenue to the real application
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owners [Gibler et al., 2013].

2.3.3 Software License Compatibility

Software licenses strongly involve code similarity. There are studies focusing

on software licensing conflicts among clones [An et al., 2017, German et al.,

2009]. Since each software project has its own license which may be different

from another, a careless code cloning from one project to another possibly creates

a license conflict, which produces serious legal consequences [Gross, 2007, Lee,

2008, Hemel et al., 2011, Economy, 2009].

A study of software licensing evolution among six free and open source

software systems (FOSS) [Di Penta et al., 2010] shows that a change of software

license, i.e., license evolution, affects software usage in both positive and negative

way. It can prohibit users from reusing the software due to licensing incompatibility.

On the other hand, it also sometimes encourages distribution and reuse of a software

system and increasing numbers of developers involved. An empirical study of code

siblings (i.e., clones among different systems that come from the same source)

[German et al., 2009] reported up to 2,208 siblings between BSD kernels and Linux

kernel with different licenses.

There are several automated tools for software license identification available,

such as FOSSology, Ohcount, Open Source License Checker (OSLC), and Ninka.

FOSSology [Gobeille, 2008] deploys Binary Symbolic Alignment Matrix (bSAM)

pattern matching algorithm to match software licenses. Ohcount [Verprauskus,

2016] is a code line counter that also detects software license with regular expres-

sions. OSLC [Oksanen and Kupsu, 2016] tool stores a database of software licenses

and matches license from source code files in a subject software system by using

Heckel’s algorithm of isolating textual differences [Heckel, 1978]. Ninka [German

et al., 2010] uses a sentence-matching method for license identification, which

outperforms the other three tools. The authors applied Ninka to analyse license

of 0.8 million source code files in Debian and found that GPLv2+ was the most

popular license.
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2.3.4 Other Applications of Code Similarity

The applications of code similarity are not only limited to code clone and plagiarism

detection but also span to several research areas under the umbrella of software

engineering. Here, we discuss a few selected applications based on code similarity.

2.3.4.1 Automated Program Repair

Code similarity can be exploited to find candidates for program repair. Carzaniga

et al. [2015] present a technique for a self-healing system that automatically

fixes itself when a failure occurs by replacing a buggy part of code by another

redundant and non-failing alternative. They propose a model to measure software

redundancy by computing similarity of action logs derived from executions of two

code fragments. Code fragments that are redundant in their behaviours are useful in

building a self-healing system. Barr et al. [2014] present and validate the concept of

“plastic surgery hypothesis”, meaning that one can write new code just by reusing

and combining existing code statements from the same codebase. This hypothesis

supports the ideas of automated program repair and genetic improvement that reuses

existing code to fix a problematic portion of a program or to adapt existing code to

match with new specifications. The experiment shows that many commits can be

recreated from existing code. Interestingly, 30% of code changes from commit

logs can be assembled from existing code in the same file, and 9% are from within

the same package. Ke et al. [2015] search for semantically similar code from a

code database using a search query of input-output specifications extracted from an

existing code fragment. The authors use this code search technique to find repair

candidates of faulty programs. They show that a tool incorporating semantic code

search combined with automatic program repair techniques, called SearchRepair,

fixes 97.3% of bugs in six programs in their study.

2.3.4.2 Finding Redundant Implementations

Kawrykow and Robillard [2009] use code similarity to find cases of API imitation

(i.e., writing the same code that is already provided by the APIs) and perform a

study on ten Java projects. They rely on an abstraction of a method body (i.e.,
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a set of the fields, methods, and types that are called by the method) to find a

match between methods in a software project and methods in APIs. They found

400 cases of API imitations in 10 popular Java open source projects. By removing

the imitations, the developers could improve the quality of the software by saving

a large number of methods calls. Bauer et al. [2014] introduce a technique to

find unintentional re-implementations based on similarity of identifiers in Java

projects. The proof-of-concept tool found seven cases of re-implementations in

three Java open source projects. The authors later extended the concept to use latent

semantic indexing (LSI) and code clone detector (ConQAT) [Bauer et al., 2016].

They found that the two techniques complemented each other and the detected re-

implementations were considered relevant by practitioners.

2.3.4.3 Software Test Improvement

Carzaniga et al. [2014] utilise redundancy among Java methods to improve software

testing. Redundant methods are used to create cross-checking oracles, i.e., check

the validity of tested code by replacing a method call by a call to its semantically

similar method. Jalbert and Bradbury [2010] propose a way to find important

bug patterns in concurrent software by performing code clone detection between

software and manually-created code fragments of bug patterns.

2.4 Existing Code Similarity Detection Techniques

and Tools
A significant amount of work in code similarity is dedicated to techniques for

locating similar pieces of code and their applications to software developments.

Since the 1970s, there are myriad of tools and techniques created for code similarity

measurement. The comprehensive lists of tools and techniques can be found in

the papers by Roy and Cordy [2007], Koschke [2007], Rattan et al. [2013] and

Ragkhitwetsagul et al. [2018a]. Code similarity detection tools employ different

approaches to detect similar code fragments inside a program or among programs.

Similar to a survey of clone detection techniques by Roy et al. [2009], the

approaches and tools for code similarity presented in this thesis are categorised
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into different groups based on the level of abstraction of the source program, such

as metric-based, text-based, token-based, tree-based, or graph-based techniques.

Since Roy et al.’s survey is from 2009, we also add more tools and techniques

that are later introduced after the survey such as compile code-based and model-

based techniques. Moreover, we augment the list by including techniques from

other research areas (e.g., Kolmogorov complexity, Software Bertillonage, and

information retrieval). Some tools are hybrid, i.e., they are a combination of several

approaches, so they will be discussed in multiple sections related to each specific

part of their techniques in this chapter.

2.4.1 Metric-based Approaches

Metric-based approaches, such as software measures, are used to compute software

similarity in the early years of development in code similarity measurement. Unfor-

tunately, because of its superficial measurement and lack of structural understanding

of programs, later it has been overshadowed by newer and more sophisticated

techniques. We discuss a few metric-based approaches in this thesis as follows.

One of the earliest software plagiarism detection systems by Ottenstein [1976]

bases on Halstead complexity measures [Halstead, 1977]. It discovered one pla-

giarised pair out of 47 student submissions. Donaldson et al. [1981] continued the

work using software parameters to search for copying in FORTRAN assignments

by introducing eight finer-grained software metrics. Moreover, to increase accuracy,

the structure of a program was captured using a sequence of statement ordering.

Grier [1981] created a tool called Accuse that computed 20 software parameters,

of which seven are critical for calculating a correlation score, to detect plagiarism

in Pascal assignments. Berghel and Sallach [1984] showed that using only four

Halstead’s software parameters was not efficient for measuring software similarity

since it produced many false positives. They introduced program profile, i.e., a

tuple of 15 selected parameters, as a solution. Faidhi and Robinson [1987] evaluated

previous approaches based on software parameters and found that the accuracy were

limited. They proposed a new approach of using empirical analysis, i.e., an analysis

that aimed to understand intrinsic characteristics of a subject being tested. The two
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authors proposed empirical metrics contained 28 measures to capture both general

and inherent features of a program.

Nevertheless, these metrics-based approaches are found to be less effective

compared to newer approaches and are no longer suitable for locating similar code

in software projects. An empirical study [Kapser and Godfrey, 2003] found that

metric-based approach performed better in finding small function clones, while

a more sophisticated CCFinder clone detector performed better on larger ones.

Moreover, the metric-based approach could only locate very similar clones, but

CCFinder was more flexible on finding clones with modifications.

2.4.2 Text-based Approaches

Text-based approaches computes code similarity by comparing two sequences of

strings. It can locate clones created by copying and pasting without alteration (Type-

1), while suffers from finding clones having syntactic or semantic modifications

(Type-2, -3, or -4). Additional techniques have to be included in the similarity com-

putation process to allow flexibility in detecting syntactic and semantic similarity.

The methods and tools based on textual comparisons are listed below.

2.4.2.1 Longest Common Subsequence (LCS)

Longest common subsequence (LCS) [Bergroth et al., 2000] is a string matching

algorithm based on edit distance. It finds a similar segment between two strings

based on the number of insertions and deletions to be made. LCS is initially

proposed to compare amino acid sequences [Needleman and Wunsch, 1970], but

the algorithm can generally be applied to any string comparison including source

code. There are several variations of LCS algorithms, e.g., Needleman and Wunsch

[1970], Hirschberg [1977], Hunt and Szymanski [1977], Apostolico and Guerra

[1987].

There are a few code similarity detection tools implementing LCS. NiCad

[Cordy and Roy, 2011, Roy and Cordy, 2008] is a clone detector that compare

lines of source code. The tool employs TXL grammar [Cordy, 2006] to parse and

precisely transform specific parts of code. Many phases occur during NiCad’s clone
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detection process including code pretty-printing, code abstraction, code normalisa-

tion, and code filtering. In the similarity computation phase, NiCad applies LCS to

compare pre-processed lines of code from two programs. Furthermore, LCS is also

adopted by Plague [Whale, 1990], YAP [Wise, 1992], and CoP [Luo et al., 2014].

Besides LCS, other string matching techniques are also adopted for computing

code similarity. Duploc [Ducasse et al., 1999] locates duplicated code inside

a software project using an undefined line-based string matching technique and

visually reports the matches with a comparison matrix. Simian [Harris, 2003]

is a clone detection tool based on line-by-line textual comparisons with abilities

to detect clones having identifier renaming. Lastly, PMD’s Copy/Paste Detector

[CPD] relies on string matching using the Karp-Rabin algorithm.

Most of the text-based tools discover cloned or plagiarised code fragments that

are identical or very similar with only minor alterations. However, they cannot

effectively detect similar code with added, deleted, or relocated statements [Cosma

and Joy, 2012]. According to a study by Roy et al. [2009], most of the text-based

tools can fully or partially locate Type-1 clones. However, they, except NiCad, fail

to discover clones of Type-2, Type-3, and Type-4.

2.4.3 Token-based Approaches

Token-based approaches take one step of abstraction up from the source code text

and convert a program into tokens. A stream or a set of the tokens are used as

an abstract representation of the program. The tokens may be normalised (i.e.,

being replaced with a more abstract representative token) to get rid of all textual

differences and to capture only the structure of the program. Several similarity

measurements are then applied on the tokens. The token-based approach is the

most popular approach in code similarity due to its simplicity, flexibility, and

scalability in code matching. Some selected tools and techniques that rely on a

token representation of source code are discussed below.
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2.4.3.1 Normalised Tokens

Normalised tokens offer an advantage of overlooking changes in formatting and

identifiers. The token normalisation enables cross-language clone detection because

it normalises code written in different programming languages to a set of common

abstracted tokens. We adopt an example of normalised tokens from Gitchell and

Tran [1999] here for an illustration purpose.

A code fragment

for (i = 0; i < max; i++)

can be converted to a normalised token sequence

TKN-FOR TKN-LPAREN TKN-ID-I TKN-EQUALS TKN-ZERO ... TKN-RPAREN

where the token TKN-FOR represents the keyword for, the token TKN-LPAREN

represents the left parenthesis (, the token TKN-ID represents the variable i, and so

on. Program similarity is then computed based on this token representation. There

are numerous tools based on this idea but with different definitions of tokens, and

similarity measures.

Plague, a tool introduced by Whale [1990], captures program structure and

finds plagiarism in programming assignments. The Plague tool creates a structure

profile of programs and filters out dissimilar programs using the profiles. Then,

among the remaining programs, Plague generates tokens from them. The tool

compares the tokens using Heckel’s algorithm [Heckel, 1978] due to its robustness

to statement relocations over LCS. Joy and Luck [1999] created Sherlock tool and

integrated it into their programming course management system [Joy et al., 2005].

Sherlock performs incremental comparison by making five different comparisons

ranging from a textual to token-based comparison. Sim [Gitchell and Tran, 1999]

utilises normalised tokens and transforms a statement into a token stream of pre-

defined tokens. Then, the token streams from two programs are compared using a

string alignment algorithm.

Similarly, YAP (Yet Another Plague) is a plagiarism detection tool based on

tokens. The latest version, YAP3 [Wise, 1996], changes its internal algorithm
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from LCS in the original YAP [Wise, 1992], and Heckel’s algorithm [Heckel,

1978] in YAP2 to Running-Karp-Rabin Greedy-String-Tiling. (RKS-GST) [Wise,

1993]. A program is parsed into tokens first. Then, all tokens are included in

a tile and compared by finding a maximal match between them. JPlag [Prechelt

et al., 2002] implements a Greedy-String-Tiling (GST) string comparison method

similar to YAP3. It enhances precision by converting a program into a token

string with better semantic meaning, e.g., BEGIN METHOD is used in JPlag instead

of just OPEN BRACE in YAP3. Using the GST, two token strings are searched for the

maximum contiguous match. The Karp-Rabin pattern matching is executed first to

find substrings with the same hash value, and the GST is later applied to the results

for finer-grained textual comparison.

Code Clone Finder (i.e., CCFinder, CCFinderX, ccfx), created by Kamiya et al.

[2002], extracts tokens from an original program and transforms them to normalised

tokens using predefined language-specific transformation rules, e.g., variables are

replaced with special token $. Then, a suffix tree is created from the normalised

token stream, and a tree-matching algorithm is used to find clones. Besides clones,

the authors introduce several supporting metrics such as a length of code portion, a

population of clone class, a deflation rate from removing clones, and a radius, i.e.,

maximum length from each file to its top ancestor. NiCad [Cordy and Roy, 2011,

Roy and Cordy, 2008], as previously discussed, not only utilises LCS text-based

approach, but also integrates tokens in its code abstraction and code normalisation

phases. The tool applies TXL grammar to convert a specific part of code into

abstracted or normalised tokens before a comparison. Similarly, iClones [Göde

and Koschke, 2009] is a token-based tool that offers a capability to locate clones

over several revisions of a software system. CP-Miner [Li et al., 2006], a data-

mining-based clone detection tool, uses tokens to avoid identifier and data type

renaming before performing a clone detection using data mining algorithms. Li

and Thompson [2008] use tokens and suffix trees to locate clone candidates before

applying a finer-grained clone filter using an AST-based technique.
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2.4.3.2 N-Gram

n-gram (k-gram, q-gram, or k-shingle) is a contiguous sequence of n-size substrings

of a given string. Given a string S and a number n, S [i, i + n− 1] is an n-gram of

S starting at the i-th character. The size of n can be varied and carefully chosen to

suit the task. n-grams are suitable for partial matching in text [Li et al., 2007] and

code [Schleimer et al., 2003]. It is extensively utilised in computational linguistics

since it provides an ability to predict the next item in the sequence by probabilistic

model [Hindle et al., 2012]. It is also adopted in code plagiarism and clone detection

in combination with normalised tokens [Schleimer et al., 2003]. After a stream of

tokens is created, the token stream is parsed into a stream of consecutive n-grams.

Then, the tool performs its comparison based on the n-grams. Tools that utilise

n-grams are as follows.

MOSS [Aiken, 2015], a well-known software plagiarism detector, relies on

the concept of n-gram, and a document fingerprinting algorithm called winnow-

ing [Schleimer et al., 2003]. The algorithm converts a source code string into n-

grams, computes a hash sequence of all n-grams, and creates a sliding window

over the sequence to choose a fingerprint. The set of fingerprints is compared

with the fingerprints from other programs for similarity. Burrows et al. [2007]

present a solution to software plagiarism that scales to large code repositories

using a combination of n-grams, multiple local alignment, and an inverted index.

A normalised token stream, which is derived from the original source code, is

converted into a set of n-grams (with n = 4) and added into an inverted index.

After the inverted index has been created, one can give a suspected source code

as a query to search for similar code fragment candidates. Then, the multiple

local alignment [Morgenstern et al., 1998] is executed for fine-grained similarity

computation. Likewise, Smith and Horwitz [2009] present a hybrid approach of

finding code clones by applying a fingerprinting technique to code blocks. n-grams

are first created from the source code files. Then, a fingerprint, which captures

unique characteristics of the program, is obtained by concatenating k-least frequent

n-grams. The approach can report clone clusters by grouping clones that have
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similarity scores within a specific threshold. It can also query clones of a given

source code fragment by using rank ordering. Duric and Gasevic [2013] discover

flaws in JPlag which is caused by overly abstracted and unnecessary tokens. A

hybrid tool called Source Code Similarity Detector System (SCSDS) is proposed to

fix the problems. The authors invent a new tokenising technique with finer-grained

token definitions to avoid false positive results. The tool offers higher detection

accuracy by combining two similarity measures: the RKR-GST and winnowing. It

computes a total similarity using weighted scores from the two algorithms.

2.4.4 Tree-based Approaches

Tree-based approaches can partially handle structural code modifications when

locating similar programs. Usually, an Abstract Syntax Tree (AST) is used to

represent program structure. To compare with another program, tree or subtree

similarity of two ASTs is computed. Tools utilising ASTs can accurately locate a

specific segment of code in the program by traversing the tree. Hence, it can find

location-specific cloned/plagiarised code. However, it has a significant drawback of

high computational complexity. A comparison of two ASTs with N nodes can have

an upper bound of O(N3) [Baxter et al., 1998]. Tree-based tools typically integrate

some heuristics or optimising mechanisms to lower their computational complexity.

CloneDR [Baxter et al., 1998] is among the first that deploys tree-based

techniques in clone detection by using ASTs and hashing to locate clones. The

tool creates an AST from a source code file and hashes its subtrees into different

buckets. The hashing reduces the number of comparisons extensively from the

number of programs (N) to the number of bucket B, where B << N (e.g., the

authors choose B = N
10 ). Clones are discovered within each bucket using subtree

comparisons. It can find near-miss clones (i.e., clones with slight modifications)

by utilising a special hash function that ignores identifiers. Deckard [Jiang et al.,

2007a] incorporates several optimisation techniques into their tree-based algorithm.

To circumvent a computational obstacle of tree similarity measure, it uses a

characteristic vector to approximate an AST, which offers much lower complexity

in similarity comparison. Characteristic vectors of all candidate programs are



2.4. Existing Code Similarity Detection Techniques and Tools 60

clustered using Locality Sensitivity Hashing (LSH) [Slaney and Casey, 2008] based

on Euclidean distance. The clusters collect clones that fall within a specified

similarity threshold.

Li and Thompson [2008] employ a tree-based structure called annotated

abstract syntax tree (AAST) to filter clone candidates detected by a token-based

technique. AAST encodes information of Erlang/OTP code fragments’ locations

and binding structure information. AASTs of the clone candidates are used to

decompose the clones into small syntactic units, which are then matched for clones

using consistent variable renaming. Brown and Thompson [2010] create a clone

detection tool for Haskell and embed it in a refactoring framework called HaRe.

The tool uses abstract syntax trees for finding clones in Haskell code bases. The

tool has high precision but is not scalable due to complexity in their clone detection

algorithm.

Falke et al. [2008] leverage the linear-time clone detection using suffix trees

by transforming a syntax tree structure (AST or parse tree) to a suffix tree using

preorder traversal. Then, post-processing is done to decompose the reported clones,

which can be a segment of syntactically incomplete code, into smaller complete

syntactic clones. Their suffix tree technique locates only Type-1 and Type-2 clones.

An empirical evaluation shows that the technique is 60–80% faster than typical

AST-based techniques.

Tree-based approaches give more flexibility of measuring syntactic and seman-

tic code similarity over text and token-based approaches. They are robust against

identifier renaming and formatting changes while capture structure of programs.

They can detect Type-1, Type-2, and some Type-3 clones. A significant drawback

of the approaches is the complexity of tree comparisons, making it not scalable.

Thus, various optimisation techniques have been employed to improve the speed

of similarity computation. Although offering some flexible matchings, tree-based

approaches are still susceptible to heavy structural changes such as changing of

statements, e.g., for to while, if-else to case, or heavy code block relocations.
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2.4.5 Graph-based Approaches

A graph-based structure is adopted to capture the semantics of a program and

ignore the programming language literals and syntaxes. Graph-based code simi-

larity detection can cope with all minor changes in formatting, identifiers, basic

block relocations, and loop- or conditional-statement replacements. Unfortunately,

like trees, graphs inherently suffer from the time complexity in measuring their

similarity. The algorithms for graph-based software comparison are mostly NP-

complete [Liu et al., 2006, Crussell et al., 2012, Krinke, 2001, Chae et al., 2013].

Thus, optimisation techniques to circumvent this computational complexity are

incorporated into the graph matching process. In clone and plagiarism detection,

two specific types of graph, i.e., program dependence graph (PDG), and control

flow graph (CFG) are often used to represent programs.

2.4.5.1 Program Dependence Graph (PDG)

PDG is a directed graph which captures data and control dependencies in a program.

Krinke [2001] introduces an approach on finding similar code using a special type of

program dependence graph (PDG) called fine-grained program dependence graph

combining AST and PDG characteristics. A similarity measure, called maximal

similar subgraphs, chooses a pair of starting vertices between 2 graphs and then

keeps including new similar vertices and edges until reaching the limit of inclusion

(k-limit). The approach relies on weighted subgraphs, which gives a higher priority

to subgraphs with more data dependencies. An evaluation shows that the approach

achieves high precision and recall at the same time. However, it cannot handle

large projects due to its high computational time [Bellon et al., 2007]. Komondoor

and Horwitz [2001] also detect clones using PDG, but with a different technique.

They rely on program slicing [Weiser, 1984] to locate code clones. A program is

initially converted to its PDG representation. Backward slicing is then deployed to

find subgraph isomorphism based on the slices, resulting in clone fragments of two

programs, and forward slicing is added to increase accuracy. The experiment shows

that their approach can detect different types of clones including non-contiguous

(having gaps), reordered, and intertwined clones. However, it has a serious
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drawback of running time. Liu et al. [2006] create a tool called GPLAG for software

plagiarism detection based on PDGs. A execution time limit is used to filter out

unusually long graph isomorphic computations. Moreover, an optimisation by

applying lossless and lossy filters helps to reduce running time. Gabel et al. [2008]

tackle the computational limitation in PDG-based clone detection by converting

PDG subgraphs of the program being analysed into abstract syntax trees. Then,

approximate tree-based similarity using characteristic vectors, used by Deckard, is

applied to detect clones. An evaluation shows that their PDG-AST technique locates

more clones than using the Deckard’s pure AST technique. Moreover, it scales to a

large Linux code with 7M SLOC.

2.4.5.2 Control Flow Graph (CFG)

Chae et al. [2013] presents a graph-based approach to detect software plagiarism

by using static analysis to extract features from a program and represent them as

a graph, without a need to analyse the source code. The authors develop an API-

based control flow graph (A-CFG), which shows the relationships of API calls and

the sequences of calls within a program, and use Random Walk with Restart (RWR)

algorithm to generate a score vector of each A-CFG. Finally, cosine similarity is

used to calculate a similarity score between two vectors. Chen et al. [2014] use

CFG to represent behaviours of a program. They find cloned Android applications

based on a special type of CFG called 3D-CFG (discussed in the next section).

Graph-based approaches offer the highest flexibility to clone and plagiarism

detection and produces high precision and recall. Similar to the tree-based

approaches, it can narrow down the scope of detection to a specific segment

of code. The graph-based approaches outperform token-based methods when it

comes to highly modified code [Li et al., 2006]. As reported by Roy et al. [Roy

et al., 2009], graph-based tools can detect code clones of Type-1 to Type-4. The

technique can also be applied to both source [Liu et al., 2006, Krinke, 2001] and

compiled code [Chae et al., 2013]. Nevertheless, it suffers from high computational

complexity like the tree-based approaches, and requires add-on optimisations to

feasibly work in practice.



2.4. Existing Code Similarity Detection Techniques and Tools 63

2.4.6 Compile Code-based Approaches

Recently, the horizon of program similarity detection has expanded from source

code to compiled code which allows a detection process to be purely performed

on executable files. It is specifically beneficial when the source code is absent.

In the past few years, there are several studies regarding detecting cloned and

plagiarised programs or mobile applications based on their compiled code files, i.e.,

Java bytecode or C binary code, including Chae et al. [2013], Chen et al. [2014],

Gibler et al. [2013], Crussell et al. [2013], Tian et al. [2014], Tamada et al. [2004],

Myles and Collberg [2004], Lim et al. [2009], Zhang et al. [2012], McMillan et al.

[2012], Luo et al. [2014], Zhang et al. [2014] and [Crussell et al., 2012].

A number of the compiled code-based tools for program theft detection are

based on software watermarks, i.e., a piece of value intentionally planted in a

program for an identification purpose. The watermark can be created in both static

and dynamic fashion. Collberg et al. [2004] introduce a software watermarking

technique using a dynamic path-based approach. A watermark is implanted into a

program in its runtime branch structure. The method is robust against several attacks

and can be applied to either Java bytecode or native Intel IA-32 code. However,

the method adds overheads to the program and slows it down by some degrees.

Software birthmark is later introduced as a replacement for software watermarking.

Instead of embedding a special value into a program used in watermarking tech-

nique, software birthmark aims to discover inherent characteristics of a program

to identify its originality. So, no change or overhead embedded information has

to be made to the software at all. Software birthmark can be extracted in either

a static or dynamic manner. Lim et al. [2009] detect Java program theft using

software birthmarks created from control flow information of software executables.

Their method extracts a flow path which is a sequence of instructions obtained from

a control flow graph of a program. They detect similar behaviours between two

programs by using semi-global alignment to match flow paths of any two programs.

Besides software watermark and birthmark, directed acyclic graph (DAG) is

selected by Luo et al. [2014] to build a resilient detector for obfuscated code called
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CoP. The tool applies semantic similarity measure with some levels of fuzziness

to overcome obfuscations. Each binary program is converted into a DAG. Linearly

independent paths are created from these DAGs using depth-first search. A linearly

independent path is chosen from a plaintiff program to find a match of semantically

equivalent blocks in DAGs of suspicious programs using LCS. Many optimisations

are applied to the LCS algorithm to deal with obfuscation. The experiment shows

that CoP has higher accuracy compared to other source-based similarity tools

(MOSS, JPLag), and binary-based tools (Bdiff2, and DarunGrim23).

Hemel et al. [2011] create Binary Analysis Tool (BAT) to find software license

violations in binaries code. The tool deploys several techniques to detect clones

between software binaries including matching of string literals, compressed files

similarity using normalised compression distance (NCD), and binary deltas. The

tool’s evaluation on the ground truth of ten known binaries shows considerably high

precision and recall.

Lastly, Zhang et al. [2014] propose a method, claimed to be the first, to discover

plagiarism at the algorithm level. It is a hybrid method requiring source code of a

plaintiff program and binary code of a suspected one. The main idea to locate a

signature of the program, i.e., core values. The core values capture crucial runtime

values inherently related to that program. The similarity computation phase applies

LCS over two core value sequences.

The approach of analysing compiled code for program similarity detection

has shown to be a promising solution. It has a benefit to commercial software

plagiarism detection with absence of the source code of the suspected program.

Importantly, compiled executables mostly remove all formatting differences (Type-

1), automatically normalise variables (Type-2), and mainly capture the semantics of

the programs. Thus, they are supposed to detect all types of clone, especially Type-3

and Type-4 clones. Moreover, the evaluation shows that it outperforms source-based

techniques [Luo et al., 2014].

Besides detection, there are studies that try to enhance the performance of

2Bdiff tool: http://sourceforge.net/projects/bdiff/
3DarunGrim tool: http://www.darungrim.org/
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existing tools by looking for more clones from the compiled version of the code

such as Jimple code [Selim et al., 2010], bytecode [Chen et al., 2014, Kononenko

et al., 2014], or assembler code [Davis and Godfrey, 2010]. Using these compiler-

based intermediate representation for clone detection gives satisfying results mainly

by increasing recall of the tools. We also investigate the use of compilation and

decompilation as a method to enhance code clone detection in this thesis (see

Chapter 6).

2.4.7 Model-based Approaches

Models, which are used extensively in the design and development of embedded

systems, can be cloned as well. Due to their inherent differences from source

code, a dedicated technique is required to detect duplications in models. Deis-

senboeck et al. [2008] is among the first to present a clone detection approach

for MATLAB/Simulink/TargetLink models. Their approach is based on subgraph

similarity with a heuristic to reduce the number of pairwise comparisons, and a

model splitting method to increase scalability. Later, Pham et al. [2009] develop a

clone detector for MATLAB/Simulink models called ModelCD. The tool consists

of two techniques to detect model clones: eScan (for exactly-matched clones) and

aScan (for approximately-matched clones). The eScan uses canonical labeling

as an optimisation technique for graph isomorphism computation. For aScan, an

approximate matching of graphs is done using Exas, a vector-based representation

and feature extraction method [Nguyen et al., 2009a]. The clones are grouped using

locality-sensitive hashing (LSH) [Slaney and Casey, 2008]. Pairwise comparisons

are performed only between items within the same group. A comparison of

ModelCD to Deissenboeck’s approach shows that both tools offer 100% precision

on exactly-matched clones, while ModelCD reports additional clone pairs and clone

groups.

Alalfi et al. [2012] target near-miss clones in Simulink models. They create

SIMONE, a near-miss model clone detector, based on the foundation of the NiCad

source-based clone detection tool. SIMONE relies on the Simulink TXL grammar

to parse Simulink model files which contain the textual serialisation of the models.
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The tool sorts and renames model components (e.g., blocks, lines, ports, branches)

to detect near-miss model clones. A comparison of SIMONE to ConQAT, a well-

known open source clone detection tool created by CQSE4, on three models show

that SIMONE can find some challenging Type-3 clone pairs that are missed by

ConQAT.

2.4.8 Other Approaches

Besides the previously presented six approaches, there are techniques that adopt

from other research areas such as information theory, information retrieval, data

mining, and machine learning. These techniques show promising results and open

more possibilities in code similarity measurement. We discuss some of the work

here.

Davies et al. [2013] introduce a method called Sofware Bertillonage to find

matches between software archives in either binary or source form. The authors

apply Bertillonage method, i.e., a biometric-based forensic analysis technique to

identify a person used in the 19th-century France, to software. The method generates

quick, easy, and efficient software fingerprints (or signatures) for similarity compar-

isons. The authors rely on anchored class signatures generated from subject class

files or source files to represent a program. Each anchored class signature consists

of tokens of class names, method names, and field signatures. These signatures

are compared using the Jaccard coefficient, inclusion, and containment similarity.

The results from an experiment confirm that Bertillonage method is effective and

scalable in locating similar code between different software archives within Maven

repository.

Chen et al. [2004] introduce a new way of plagiarism detection using Kol-

mogorov complexity [Li and Vitáanyi, 2008]. They create a tool called Software In-

tegrity Diagnosis (SID) system. The authors invent a TokenCompress compression

algorithm to reduce the size of duplicated code before doing the modified version

of Lempel-Ziv (LZ) data compression. The authors approximate the distance d(x,y)

between two programs (x and y) using Kolmogorov complexity by

4https://www.cqse.eu/en/products/conqat/overview

https://www.cqse.eu/en/products/conqat/overview
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d(x,y) ≈ 1−
Comp(x)−Comp(x|y)

Comp(xy)
(2.1)

where Comp(x) represents a compressed version of program x. An experiment

shows that SID offers the same performance as MOSS and JPlag. Moreover, SID

produces better results in a case of code insertion and boiler-plate code.

McMillan et al. [2012] choose Latent Semantic Indexing (LSI) techniques

mainly used in information retrieval to find similar Java software applications.

Similarly, Cosma and Joy [2012] create a tool called PlaGate [Cosma, 2008] for

source code plagiarism using Latent Semantic Analysis (LSA). The two major

benefits of LSA is being language agnostic and its independence from a parser.

Data mining technique is adapted to clone detection by Li et al. [2006]. The

tool called CP-Miner is a hybrid tool with several optimisations. It converts a

program into tokens to avoid literal changes. Then Closed Sequential Pattern

Matching (CloSpan), a data mining algorithm based on frequent subsequence

mining, is applied to the token sequences. It includes multiple pruning methods

as a post-process to remove false positives caused by too-small clone fragments,

overlapped fragments, or clones with a large gap.

Chen et al. [2014] propose an efficient and scalable technique to detect cloned

apps across different Android markets based on centroid, a geometric characteristic

of a program. A 3D-CFG and its centroid are derived from an application bytecode.

A similarity between two applications is derived8 from a distance of the two

centroids extracted from the applications. The technique is found to be very fast and

accurate with a very low false positive and false negative rate for cloned application

detection. Moreover, it is highly scalable since the number of pairwise comparisons

is decreased to only a few top results (eight as is chosen by the authors).

White et al. [2016] and Li et al. [2017] apply deep learning techniques to clone

detection. They both create a probabilistic model by training on a corpus of labelled

clone data. The trained model can classify if two Java code fragments are clones.

White et al.’s technique is based on tree structure, called olive trees, while Li’s
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technique is based on token frequency. Both techniques have shown to perform

well in an evaluation compared to the state-of-the-art clone detectors.

2.5 Benchmarks for Comparing Code Similarity

Tools
Although there are a large number of clone detectors, plagiarism detectors, and

code similarity detectors invented in the research community, there are relatively

few studies that compare and evaluate their performances.

Burd and Bailey [2002] compared five clone detectors, CCFinder, CloneDR,

Covet, JPlag, and Moss, for preventive maintenance tasks. Bellon et al. [2007]

presented and used a framework for comparing and evaluating six clone detectors:

Dup, CloneDr, CCFinder, Duplix, CLAN, and Duploc. The clone oracle is created

by Bellon, one of the authors, by manually looking at 2% of the merged clone pairs

from the six participating tools. The Bellon’s framework has later been used in

several studies for evaluating code clone detection tools (e.g., Wang et al. [2013b],

Svajlenko and Roy [2014], Koschke et al. [2006]).

Later, Roy et al. [2009] performed a thorough evaluation of clone detection

tools and techniques covering a wider range of tools. However, they compare the

tools and techniques using the evaluation results obtained from the tools’ published

papers without an experiment. In the same year, Roy and Cordy [2009a] created a

mutation/injection-based automatic framework for evaluating code clone detection

tools by applying mutation operators to create clones. The framework imitates

code changes made to clones of Type-1 to Type-3. Hage et al. [2010] compare

five plagiarism detectors in term of their features and performances against 17

code modifications. Biegel et al. [2011] compare three code similarity measures

to identify code that need refactoring. Svajlenko and Roy [2014] compared recall

of eleven clone detectors based on four different clone benchmarks including

the Bellon’s Framework, their modified version of Bellon’s Framework, another

extension of Bellon’s Framework [Murakami et al., 2014], and their Mutation and

Injection Framework.



2.6. Scalable Code Similarity Measurement and Code Search Techniques 69

Svajlenko et al. [2014b] build BigCloneBench, possibly the largest clone

benchmark available to date. The benchmark is created from IJaDataset

2.0 [ASE group, 2018] of 25,000 Java systems. It contains 2.9 million files with

8 million manually validated clone pairs of Type-1 up to Type-4. Its manually-

confirmed clone oracle is created by searching for methods containing keywords

and source code patterns of 43 functionalities. Later, Svajlenko and Roy [2016]

develop a clone evaluation framework, called BigCloneEval, that automatically

measures clone detectors’ recall on the BigCloneBench data set.

2.6 Scalable Code Similarity Measurement and Code

Search Techniques

Scalable code similarity detector is vital in the era of Internet-driven software

development. With the rise of the Internet, the amount of source code freely

available online increases exponentially. This phenomenon intensifies code cloning,

software plagiarism, and software license violations since source code can be easily

accessed on the web. Scalable code similarity detection methods are required to

tackle this challenge of ever-growing online source code data. We pick some of the

new and interesting scalable tools from the literature to discuss their strengths and

weaknesses here.

2.6.1 Scalable Clone Detection

Hummel et al. [2010] is among the first to present clone detection tool for Type-1

and Type-2 clones that is incremental and scalable using index-based techniques. A

clone index is created from source code sequence hashes. The tool evaluation shows

that it returns clones for a file in 42M SLOC Eclipse code base within 1 second. The

tool can be distributed to gain even higher scalability. Lavoie et al. [2010] propose

a new version of a dynamic programming algorithm called DP-matching and use

it for clone fragment similarity calculation on a graphic processing unit (GPU).

However, the evaluation results show that their GPU-based approach only slightly

increases the performance of DP-matching from its CPU-based approach. Livieri
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et al. [2010] present a scalable approach for clone detection using n-gram matching.

Their evaluation of a tool implementing the idea, called Yocca, shows that it is more

scalable than CCFinder and Simian. However, the authors only discuss scalability

and did not report the clone detection accuracy of the tool.

Inoue et al. [2012] propose a system called Ichi Tracker that leverages the

power of three code search engines: Google Code Search, Koders5, and SPARS/R6.

The system is designed for tracking an origin and evolution of source code. Never-

theless, the Google Code Search and Koders are no longer available, which severely

affects the usability of the system. Koschke [2014] presented a scalable inter-

system clone detection using a suffix-tree-based algorithm. The author evaluated

the use of index-based hashes of n-gram tokens to speed up the clone detection

process and concluded that building an index was worthwhile only if it is reused

multiple times. Moreover, he showed that software metrics and a learned decision

tree increase the clone detection’s precision. Ohmann and Rahal [2014] propose

an approach, called Program It Yourself (PIY), for efficient source code plagiarism

detection using parallel execution and clustering algorithms. PIY relies on n-grams

to create document vectors and compare them using Manhattan and cosine distance

metrics. Its efficiency in large-scale data is dramatically enhanced by including

parallel execution and clustering methods. However, the biggest dataset tested with

PIY contains approximately 23,000 files which is still relatively small compared to

the current large-scale source data that can exceed millions or hundred millions of

source code files.

Tamersoy et al. [2014] show an efficient approach for large-scale malware

detection based on association graphs. The authors propose a method to estimate

machine and program co-occurrence strength using MinHashing algorithm [Rajara-

man and Ullman, 2011] and locality-sensitive hashing (LSH) [Slaney and Casey,

2008] and implement a tool called AESOP. The study analyses large amount of data

from the Symantec Norton’s Community Watch containing 11 million machines

and 43 million files. Nonetheless, the approach needs source code data that

5http://code.openhub.net
6http://sel.ist.osaka-u.ac.jp/SPARS/index.html.en
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contain associations between the code and their owners, which do not always exist.

Keivanloo et al. [2014] presents a code search system aiming to find working code

examples. It tackles the problem of current code search systems that rely on API

names as search keywords by proposing abstract programming solution extraction

approach. Its evaluation on IJaDataset 2.0 shows that the approach outperforms an

industrial Ohloh Code search engine on finding working code examples. However,

the query set in the evaluation is limited to only 15 queries, and the comparison of

the two systems is performed on a different data set, which makes the findings

not generalised. Svajlenko et al. [2014b] present a large-scale clone detection

solution by utilising classic clone detectors. The authors introduce a scalable non-

deterministic algorithm called shuffling framework. The framework partitions the

dataset into small subsets that fit with the tool’s input size and environments. The

experimental results show that the framework can enable Simian and NiCad to

execute against large datasets. However, the framework suffers from problems of

clone-line mismatches, high generation time of inverted index, and a bottleneck

from sequential subset generation.

Sajnani et al. [2016] create a scalable code detection tool called SourcererCC.

The tool is a token-based detector based on an optimised inverted index to scalably

retrieve clone pair candidates within a short amount of time. The authors incorpo-

rate two filtering heuristics, sub-block overlap and token position, to dramatically

reduce the number of pairwise comparisons. The tool reports high recall and

precision compared to several state-of-the-art clone detectors. It also scales to the

IJaDataset 2.0, which contains 250M lines of Java source code. Nishi and Damevski

[2018] extend SourcererCC using adaptive prefix filtering to obtain higher clone

detection scalability.

Svajlenko and Roy [2017] adopted Sajnani’s sub-block heuristic into their

scalable clone detector, CloneWorks. The tool’s scalability is enhanced using parti-

tioning of input code fragments to look for clones that fit within an allowed memory

limit. They use a slightly modified version of Jaccard similarity to detect clones.

CloneWorks offers high precision and recall of Type-1, Type-2, and Type-3 clones
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on BigCloneBench compared to iClones, NiCad, and SourcererCC. CloneWorks

gives a much faster detection speed than SourcererCC on BigCloneBench. The tool

finishes its clone detection in 4 hours (conservative configurations) and 10 hours

(aggressive configurations) compared to 110 hours by SourcererCC.

Oreo is a scalable clone detector created by [Saini et al., 2018] that integrates

deep learning, information retrieval, and software metrics. By training a deep neural

network model on 24 software metrics of cloned and non-cloned pairs reported by

SourcererCC from 50,000 GitHub projects, the tool is capable of detecting a large

number of challenging Type-3 and Type-4 clone pairs. Oreo completes a clone

detection on IJaDataset 2.0 within about a day.

2.6.2 Code Search

Internet-scale code search is an emerging field of research to find source code data

on the Internet for code reuse, bug fixing, or program comprehension [Gallardo-

Valencia and Sim, 2009].

There are several tools available for code search. One can use Google as a code

search engine by choosing the search keywords from desired functionalities [Sim

et al., 2011]. There are also dedicated code search engines such as Krugle,

searchcode, Codata, or Black Duck Open Hub Code Search (formerly known as

Koders) that take programming language structure into account while searching.

Researchers also create code search techniques and tools for their studies and some

of them are later opened for free of use.

Linstead et al. [2009] invented Sourcerer, a source code retrieval system on the

Internet-scale with million lines of code. Bajracharya et al. [2010] use structural

semantic indexing (SSI) to return code examples based on similarity of API usage.

The evaluation of 346 jar files from the Eclipse framework shows that SSI-based

search schemes are preferred over the baseline schemes which do not include usage

similarity in the search. They used the tool to collect and analysed 4,632 Java

projects from SourceForge and Apache. Martie et al. [2017] reflect that code search

is an iterative process where information seekers need to keep adapting their search

queries until they find relevant results. They present two tools, CodeLikeThis
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(CLT) and CodeExchange (CE), to facilitate iterative code search and perform a

user study to show that the tools could improve code search experience. Niu et al.

[2017] improve the ranking schema of code results by applying a learning-to-rank

machine learning algorithm. They found that the approach outperforms five existing

ranking schemas based on the normalised discounted cumulative gain (NDCG) by

at least 35.65%. The work by Gu et al. [2018] uses deep learning techniques

called CODEnn (Code-Description Embedding Neural Network) to match code

snippets and natural language descriptions in the query using joint high-dimensional

embedding vectors.

We refer the readers to a book by Sim and Gallardo-Valencia [2013] which

presents a comprehensive list of code search studies including the motivation and

behaviours of programmers to search for code, a user study on Internet-scale code

search, and the infrastructures and techniques for code and software component

search engines.

2.6.2.1 Code Clone Search

In this thesis, we focus on a specific kind of code search called code clone search.

Code clone search is a special case of code search where a piece of code is given

as a query instead of natural text keywords. By executing the query, a clone search

system returns a list of clones of the query. Code clone search differs from code

clone detection because it is query-centric. Instead of looking for a complete set

of clone pairs or clone groups in given code corpora as in clone detection, a clone

search tool retrieves only clones that are associated with the query. Due to the

similarity between code clone detection and clone search and the limited number of

clone search tool available, sometimes clone detectors are also used to search for

similar code. Here, we discuss techniques that are dedicatedly invented for clone

search.

Lee et al. [2010] search for clone using structural similarity based on R*Tree

indexing structure. The technique searches for clones within 492 open source

projects in less than a second. Exemplar [Grechanik et al., 2010] leverages program

analysis with information retrieval to search for highly relevant applications. The
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tool searches for similar applications based on similarity of their API calls. A user

study with 39 professional Java programmers showed that Exemplar outperformed

the SourceForge search module in searching for relevant applications. Portfolio

[McMillan et al., 2011] uses multiple techniques including natural language pro-

cessing, PageRank, and spreading activation network to find relevant functions and

projects. Keivanloo et al. presented a real-time code clone search which utilises

ontologies to expand the search keywords [Keivanloo et al., 2012]. The authors

also present other variations of real-time clone search system using multi-level

indexing [Keivanloo et al., 2011], and abstract programming solutions [Keivanloo

et al., 2014].

Ishio et al. [2017] present a scalable approach for detecting clone-and-own

software packages using b-bit minwise hashing technique. Then, an aggregated file

similarity is applied to rank the returned search components. The technique gives

a recall score of 0.907 in the evaluation. Kim et al. [2018] create a FaCoy code-

to-code search system that leverages the information on Stack Overflow to expand

the keywords in the search query. The tool aims for searching semantically similar

code. The evaluation shows that the technique can return code snippets with similar

runtime behaviours to the query snippet and are useful for patch recommendations.

2.7 Chapter Summary
This chapter provides a literature survey of the related work on code similarity

including code clones, software plagiarism detection, and software license viola-

tions. We also discuss the existing code similarity detection techniques and the

newly emerging scalable approaches. The chapter ends with the benchmarks for

comparing code similarity tools and scalable code clone search techniques.

The next chapter will present an empirical study that motivates the thesis author

to invent an approach for a scalable clone search engine. It will present two online

surveys of Stack Overflow users regarding the issues of outdated code and software

license incompatibility, which are caused by code cloning.



Chapter 3

Awareness and Experience of

Developers to Outdated and

License-Violating Code on Stack

Overflow: An Online Survey

The chapter discusses two problems of outdated code and software license viola-

tions caused by code cloning to and from Stack Overflow, a popular Q&A website,

via two online surveys. The chapter presents the methodology used to perform the

surveys and analyse the results. The findings show that the two issues occasionally

occur on Stack Overflow and the survey participants suffer from them. The survey

results suggest that some guidelines from Stack Overflow and/or an automated

support system are needed to mitigate the problems.

3.1 Motivation
Recent research shows that outdated third-party code and software license conflicts

are ramifications of code cloning. Xia et al. [2014] report that a large number of

open source systems reuse outdated third-party libraries from popular open source

projects. Using outdated code has detrimental effects to software since they may

introduce vulnerabilities. On the other hand, German et al. [2009] found that code

cloning leads to software license conflicts among different systems. Incorporating
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code with incompatible license into software is also troublesome, since it may lead

to legal issues.

The Internet encourages fast and easy code cloning by sharing and copying

source code to and from online sources. Developers nowadays do not only clone

code from local software projects, but also from online sources, especially Stack

Overflow [Acar et al., 2016, Abdalkareem et al., 2017, An et al., 2017, Yang et al.,

2017]. Unfortunately, a number of code snippets on Stack Overflow are found to

be problematic. Acar et al. [2016] discovered that many code snippets provided

as solutions on Stack Overflow are workarounds and occasionally contain defects

or vulnerabilities. They performed a user study and found that although Stack

Overflow helped developers to solve Android programming problems quicker, the

website offered less secure code than books or the official Android documentation.

Only 17% of the Stack Overflow discussion threads that the participants visited

during the study contained secure code snippets. They found that a problematic

code fragment copied from Stack Overflow by participants in their study also

occurs in 187,291 Android apps from Google Play. In addition, An et al. [2017]

investigated clones between 399 Android apps and Stack Overflow posts and found

1,226 code snippets that were reused from 68 Android apps. Importantly, they

observed 1,279 cases of potential license violations from such cloning.

Asking and answering questions on Stack Overflow involves source code

snippets, either in a question, an answer, or both. While many code examples

are written from scratch, several of them are copied from other sources. Since

Stack Overflow is a website, the code examples are rarely tested and updated as in

typical software projects. Hence, the copied code snippets might not be up-to-date

with their originals. Besides, some snippets are copied from software systems with

stricter licenses than the Stack Overflow’s Attribution-ShareAlike 3.0 Unported (CC

BY-SA 3.0).

A study in this chapter is motivated by several discussion threads about out-

dated answers and license of code on Stack Overflow, e.g., meta.stackexchange.

com/questions/131495, meta.stackexchange.com/questions/11705,

meta.stackexchange.com/questions/131495
meta.stackexchange.com/questions/131495
meta.stackexchange.com/questions/11705
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meta.stackexchange.com/questions/12527, meta.stackexchange.com/

questions/25956, and meta.stackoverflow.com/questions/321291. In

these discussion threads, Stack Overflow users express their concerns about the two

problems, and there is no clear solution yet. To gain insights into the problems, this

chapter resorts to a study using two online surveys of Stack Overflow developers

who 1) regularly answer programming questions with code snippets and 2) regularly

reuse code snippets from Stack Overflow. We aim to assess the developers’

awareness and experience to outdated code and software license violations caused

by code cloning to and from Stack Overflow.

3.2 Stack Overflow: A Popular Programming Q&A

Website
Stack Overflow is a popular online programming community with 7.6 million

users, 14 million questions, and 23 million answers1. It allows programmers to

ask questions and give answers to programming problems. It is a gold mine

for software engineering research and has been put to use in several studies.

Regarding developer-assisting tools, Seahawk is an Eclipse plug-in that searches

and recommends relevant code snippets from Stack Overflow [Ponzanelli et al.,

2013]. A follow-up work, Prompter, by Ponzanelli et al. [2014] achieves the same

goal but with improved algorithms.

The code snippets on Stack Overflow are mostly examples or solutions to

programming problems. Hence, several code search systems use whole or partial

data from Stack Overflow as their code search databases, e.g., Keivanloo et al.

[2014], Park et al. [2014], Stolee et al. [2014], Subramanian and Holmes [2013],

Diamantopoulos and Symeonidis [2015]. Furthermore, Treude and Robillard

[2016] use machine learning techniques to extract insight sentences from Stack

Overflow and use them to improve API documentation.

Another research area is knowledge extraction from Stack Overflow. Nasehi

et al. [2012] studied what makes a good code example by analysing answers from

1Data as of 21 August 2017 from https://stackexchange.com/sites

meta.stackexchange.com/questions/12527
meta.stackexchange.com/questions/25956
meta.stackexchange.com/questions/25956
meta.stackoverflow.com/questions/321291
https://stackexchange.com/sites
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Stack Overflow. Similarly, Yang et al. [2016] report the number of reusable code

snippets on Stack Overflow across various programming languages. Wang et al.

[2013a] use Latent Dirichlet Allocation (LDA) topic modelling to analyse questions

and answers from Stack Overflow so that they can automatically categorise new

questions. There are also studies trying to understand developers’ behaviours

on Stack Overflow, e.g., Movshovitz-Attias et al. [2013], Bosu et al. [2013],

Choetkiertikul et al. [2015] and Rosen and Shihab [2016].

3.3 Terminology
In this chapter, we use the term “answerers” to refer to Stack Overflow users who

actively answer questions, which is measured by their reputation. The answerers

gain a reputation from giving a helpful answer to a question and receiving votes

from other users. The reputation reflects trust they gain from other users and also

the quality of their answers.

We use the term “visitors” to refer to developers who visit Stack Overflow

when they encounter programming problems. They copy code snippet(s) in a solu-

tion that is relevant to their problems and reuse them with or without modifications.

We use the term “(potentially) license-violating code snippets” or “code

with (potential) license conflicts” interchangeably to refer to Stack Overflow

cloned code snippets that violate or potentially violate the original license by not

including the original license statement in the cloned snippets. These code snippets

are automatically covered by the Stack Overflow CC BY-SA 3.0 license instead,

which may or may not conflict with their original licenses.

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA

3.0)2 is a license that allows the licensed content to be freely shared and adapted.

However, users of the content must give attribution to the original source by

providing a link to the license and state whether changes were made to the copied

content. Moreover, the derivative of the content has to also be under CC BY-SA 3.0

license. Stack Overflow applies CC BY-SA 3.0 to all content on the website3.

2https://creativecommons.org/licenses/by-sa/3.0/
3https://stackoverflow.com/legal/terms-of-service/public

https://creativecommons.org/licenses/by-sa/3.0/
https://stackoverflow.com/legal/terms-of-service/public
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3.4 Contributions
This chapter makes the following primary contributions:

1. Awareness of Stack Overflow answerers to outdated and potentially

license-violating code on Stack Overflow: We performed an online survey

and collected answers from 201 highly-ranked Stack Overflow answerers. We

found that the answerers occasionally cloned code snippets from open source

projects to Stack Overflow answers. While they were aware of outdated code

snippets in their answers, 19% of the participants rarely or never fixed the

code. 99% of the answerers never included a software license in their snippets

and 69% never checked for license conflicts.

2. Awareness of Stack Overflow visitors to outdated and potentially license-

violating code on Stack Overflow We performed another online survey of

87 Stack Overflow visitors. 66% of the Stack Overflow visitors experienced

problems from reusing Stack Overflow code snippets, including outdated

code. They were generally not aware of the CC BY-SA 3.0 license, and more

than half of them never checked for license compatibility when reusing Stack

Overflow code snippets.

3.5 Research Methodology
We followed the principles of survey research by Pfleeger and Kitchenham [2001]

and Kitchenham and Pfleeger [2002] by setting a specific and measurable objective,

designing and scheduling the survey, selecting participants, analysing the data, and

reporting the results. We now discuss each of them in detail.

3.5.1 Survey Objective

The survey is conducted to answer the following five research questions.

1. RQ1 (Sources of Stack Overflow Answer Snippets): Where are the code

snippets in Stack Overflow answers from?

2. RQ2 (Answerers’ Awareness to Outdated Code): Are Stack Overflow

answerers aware of outdated code in their answers?
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3. RQ3 (Answerers’ Awareness to Potential License Violations): Are Stack

Overflow answerers aware of potential software license violations caused by

code snippets in their answers?

4. RQ4 (Visitors’ Problems from Stack Overflow Code Snippets): What are

the problems Stack Overflow visitors have experienced from reusing code

snippets on Stack Overflow?

5. RQ5 (Visitors’ Awareness to Potential License Violations): Are Stack

Overflow visitors aware of or experienced code with license conflicts on Stack

Overflow?

3.5.2 Survey Design and Schedule

The study was conducted using unsupervised online surveys. We designed the

surveys using Google Forms and created two versions of the survey: the answerer

survey and the visitor survey. Both surveys were completely anonymous, and the

participants could decide to leave at any time. They did not collect any sensitive

personal information from the participants and were approved for an ethical waiver

by the designated ethics officer in the Computer Science Department at University

College London (UCL). The complete version of the two surveys can be found in

Appendix A.2 and Appendix A.3.

3.5.2.1 The answerer survey

The survey contained 11 questions: 7 Likert’s scale questions, 3 yes/no questions,

and one open-ended question for additional comments. The first two questions were

mandatory while the other 9 questions would be shown to the participants based on

their previous answers. The survey collected information about the participants’

software development experience, their experience of answering Stack Overflow

questions, sources of the Stack Overflow snippets they used to answer questions,

awareness of outdated code in their answers, their concerns regarding license when

cloning code snippets to Stack Overflow, and their additional feedbacks. The survey

was open for participation for 50 days, from 25th July 2017 to 12th September 2017,

before we collected and analysed the responses.
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Table 3.1: The Stack Overflow answerer taken the surveys

Target group Reputation Sent emails Answers Rate

Answerer Group 1 963,731–7,674 300 117 39%
Answerer Group 2 7,636–6,999 307 84 27%

Total – 607 201 33%

3.5.2.2 The visitor survey

The survey consisted of 16 questions: 9 Likert’s scale questions, 3 yes/no questions,

2 multiple-choice questions, and 2 open-ended questions. The first four questions

were mandatory while the other twelve questions would be shown to the participants

based on their previous answers. The survey collected information about the

participants’ software development experience, the importance of Stack Overflow

in their opinion, their reasons for reusing Stack Overflow snippets, problems they

faced from Stack Overflow code snippets, their awareness to software license of

code examples on Stack Overflow, and their additional feedbacks. The survey was

open for participation for two months, from 25th July 2017 to 25th September 2017,

before we collected and analysed the responses.

3.5.3 Participant Selection

The participants of the answerer and the visitor survey did not overlap. We used the

following methods to select the participants for our two surveys.

3.5.3.1 The answerer survey

We selected the participants for our answerer survey based on their Stack Overflow

reputation. On Stack Overflow, a user’s reputation reflects how much the commu-

nity trusts them. A user earns reputation when he or she receives upvotes for good

questions and useful answers. For example, they gain reputation when they receive

an upvote for their question (+5) or their answer (+10), or when their answer is

accepted (+15)4. Thus, the reputation score is an indicator of Stack Overflow user’s

skills and their involvement in asking and answering questions on the site.

The participants were invited to take the survey via email addresses publicly

4Stack Overflow Reputation: https://stackoverflow.com/help/whats-reputation

https://stackoverflow.com/help/whats-reputation
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available on their Stack Overflow and GitHub profiles. We selected the answerers

based on their all-time reputation ranking5. Then, we separated them into two

groups (see Table 3.1) with roughly 300 participants in each group so that we can

compare and contrast the results between them. The first group had a reputation

from 963,731 (the highest ranked user) to 7,674 and the second group had a

reputation from 7,636 to 6,999. We sent out 300 and 307 emails (excluding

undelivered ones) to the two groups respectively.

3.5.3.2 The visitor survey

We adopted non-probability convenient sampling to invite participants for the

visitor survey. To take the visitor survey, the participants must had visited Stack

Overflow for solving programming tasks at least once. The participants were

invited to take the survey via five channels. The first channel was via the the

thesis author’s social media post (Facebook) inviting software developers who had

experience in copying code snippets from Stack Overflow to take the survey. The

second channel was a popular technology news and media community in Thailand

called blognone.com which attracted a high number of Thai software developers.

We posted an invitation to the visitor survey in a discussion forum mentioning

the requirements to take the survey. The third channel collected answers from

the University of Molise in Italy, where a colleague of the thesis author works.

The last two channels are the comp.lang.java.programmer group and the Software

Engineering Facebook page. The number of participants taken the survey is shown

in Table 3.2.

3.5.4 Data Analysis

Google Forms provide a helpful summary of responses from the online surveys,

which we partially relied on when analysing the answers. In addition, we also

performed a manual analysis of the results. For the visitor survey, the results

were collected separately from each group. Thus, we downloaded the responses

in comma-separated values (CSV) files and merged the results before the analysis.

5Stack Overflow Users (data as of 25th July 2017): https://stackoverflow.com/users?
tab=Reputation&filter=all

https://stackoverflow.com/users?tab=Reputation&filter=all
https://stackoverflow.com/users?tab=Reputation&filter=all
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Table 3.2: The Stack Overflow visitors taken the survey

Group Answers

Social media (Facebook posts) 47
Blognone.com 32
University of Molise 6
comp.lang.java.programmer 3
Software Engineering Facebook page 1

Total 89

> 10 Years
59%

5-10 Years
29%

3-5 Years
11%

1-2 Years
1%

How long have you been working on developing software? (Group 1)

(a) Group 1

>10 Years
50.0%

5-10 Years
28.6%

3-5 Years
20.2%

<1 Year
1.2%

How long have you been working on developing software? (Group 2)
(b) Group 2

Figure 3.1: Experience of the Stack Overflow answerers

3.6 Results and Discussions
We collected and analysed the results after we closed the surveys on 12th and 25th

September 2017. We now discuss the results from the answerer survey followed by

the visitor survey.

3.6.1 The answerer survey

We received 117 answers (39% response rate) from the first group and 84 answers

(27% response rate) from the second group of Stack Overflow answerers. The

response rate from both groups was high considering other online surveys in

software engineering [Punter et al., 2003].

3.6.1.1 General Information

The majority of users in both groups are experienced developers with more than 10

years of experience or between 5 to 10 years as depicted in Figure 3.1. There are

59% of the answerers in Group 1 and 50% of the answerers in Group 2 that have
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Figure 3.2: Frequency of answering questions
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Figure 3.3: Frequency of answering questions with code snippet(s)

more than 10 years of software development experience.

The participants are active users and regularly answer questions on Stack

Overflow (see Figure 3.2). Ninety-six (82%) and fifty-one (61%) of answerers from

Group 1 and Group 2 answer questions at least once a week. More than half of

the answerers very frequently (81–100% of the time) or frequently (61–80% of the

time) include code snippets in their answers. To break down into two groups as

depicted in Figure 3.3, Group 1 very frequently (48.7%) and frequently (27.4%)

provide code examples when answering. Likewise, Group 2 follows the same trend

(very frequently for 32.1% and frequently for 36.9%). Interestingly, there is one

participant in the first group who never includes code snippet in his/her answer.

Thus, the results after this question are from 116 participants of the first group.
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3.6.1.2 RQ1: Sources of Stack Overflow Answer Snippets

Where are the code snippets in Stack Overflow answers from?

To answer this research question, we asked the participants for the original source

of their code examples. We provided six options (allowing more than one answer)

including 1) I copied them from my own personal projects, 2) I copied them from

my company’s projects, 3) I copied them from open source projects, 4) I wrote the

new code from scratch, 5) I copied the code from the question and modified it for

the answer, and 6) Others. The answers are shown in Figure 3.4. Participants in

Group 1 mainly write new code from scratch (116) or copy from the code snippets

in question and modify it for the answer (112), followed by copying from their

personal projects (105), open source projects (77), other sources (59), and company

projects (48). For Group 2, the main source is also writing code from scratch

(83), followed by copying from personal projects and modifying from the question

(77), open source projects (56), other sources (40), and company projects (31).

There are 133 answerers out of the total 201 from the two groups who have cloned

code snippets from open source projects into their answers at least once. We are

interested in this type of clones and will investigate further in the later RQs.

To answer RQ 1, we found that answering questions by writing the new code

from scratch is the most popular choice for Stack Overflow answerers followed

by modifying the code in question or copying from personal projects. Other less

popular choices include copying code from open source projects and other sources.

Copying code from company projects is the least popular choice.

3.6.1.3 RQ2: Answerers’ Awareness to Outdated Code

Are Stack Overflow answerers aware of outdated code in their answers?

Half of the top answerers on Stack Overflow are aware of outdated code in their

answers. Seventy-one participants (61.2%) of Stack Overflow answerers in Group

1 have been notified of outdated code in at least one of their answers. The ratio drops

to forty participants (47.1%) in Group 2. We asked a follow-up question regarding
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Figure 3.4: Sources of code snippets in Stack Overflow answers

the frequency of being notified of outdated code in their answers. We found that

only 0.9% and 5.2% of the answerers in Group 1 have frequently or occasionally

been notified. The answerers in Group 2 have very frequently and occasionally been

notified for 2.4% and 3.5% respectively. Please note that we found inconsistencies

between the answers to these two questions. The percentage of participants who

have “Never” been notified of outdated code in their Stack Overflow answers are

38.8% and 52.9% for Group 1 and Group 2 respectively. However, the answers for

the frequency of being notified equal to “Never” decrease to 28.4% and 43.5% for

Group 1 and 2 respectively (see Figure 3.5 and Figure 3.6).

We then asked the participants who have been notified of their outdated code

(83 and 48 participants from Group 1 and 2 respectively) a follow-up question
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Figure 3.5: Percentage of answerers who are notified of outdated code in their Stack
Overflow answers.
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Figure 3.6: Frequency of being notified of outdated code in the answerers’ answers.

“how frequently did you fix your outdated code on Stack Overflow?” The answers,

depicted in Figure 3.7, show that more than half of them frequently fix the outdated

code snippets. However, there are 17 (19.8%) and 9 (18.8%) participants in Groups

1 and 2 who rarely, very rarely, or never fix their code.

Regarding the issue of outdated code, one participant expresses their concern

in the open comment question:
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Frequently
14.6%

Very Frequently
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How frequently did you fix your outdated code on Stack Overflow? (Group 2)(b) Group 2

Figure 3.7: Frequency of the answerers fixing their outdated code.
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The main problem for me/us is outdated code, esp. as old answers have

high Google rank so that is what people see first, then try and fail. Thats

why we’re moving more and more of those examples to knowledge base

and docs and rather link to those.

On the other hand, another participant does not worry about his/her outdated

code and how he/she handles them:

On the matter of deprecation, I almost entirely use .NET which has

got different versions of the framework. Therefore, code deprecation

is not often a problem since what is deprecated on one version of the

framework may be the only way of solving a given problem on an older

version of the framework. I may also have to add that questions I tend

to answer are about how to solve general coding problems so they are

not usually subject to deprecation.

To answer RQ 2, Stack Overflow answerers are aware of outdated code in their

answers. Nonetheless, there are approximately 19% of the answerers who rarely or

never fix their outdated code for which they have been notified.

3.6.1.4 RQ3: Answerers’ Awareness to Potential License Violations

Are Stack Overflow answerers aware of potential software license violations

caused by code snippets in their answers?

As shown in Figure 3.8, more than half of the answerers in both groups, 72 (62.1%)

and 53 (62.3%) respectively, are aware that Stack Overflow apply CC BY-SA 3.0 to

content in the posts, including code snippets, while the rest of 44 (37.9%) and 32

(37.6%) are not.

Almost every answerer in both groups, 114 out of 116 (98%) and 84 out of

85 (99%) respectively, do not include license statement in their code snippets (as

shown in Figure 3.9). Some of the participants explained the reason in the open

comment question which we summarised into three groups as follows. First, they

choose to post only their own code or code that is adapted from the question. The
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Figure 3.8: Awareness of answerers to Stack Overflow CC BY-SA 3.0 license
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Figure 3.9: Software license in Stack Overflow code snippets.

code is then automatically subjected to Stack Overflow’s CC BY-SA 3.0 without

any explicit licensing statement. Second, they copy the code from their company,

or open source projects that they know are permitted to be publicly distributed.

Hence, no license statement is required. Third, some answerers believe that code

snippets in their answers are too small to claim any intellectual property and fall

under the Fair Use concept, i.e., a copy of copyrighted content that is for a limited

or transformative purpose and will not be considered an infringement6.

While almost nobody explicitly includes a software license in their snippets,

many participants include a statement on their profile page that all their answers are

under a certain license. For example,

6The concept of fair use is enforced in the United States. Nonetheless, not every country in the
world has this concept, and some countries have their own interpretation of fair use.
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Figure 3.10: Frequency of the answerers checking license of their code snippets against
Stack Overflow’s CC BY-SA 3.0.

All code posted by me on Stack Overflow should be considered public

domain without copyright. For countries where public domain is

not applicable, I hereby grant everyone the right to modify, use and

redistribute any code posted by me on Stack Overflow for any purpose.

It is provided “as-is” without warranty of any kind.

Many participants either declare their snippets to be public domain, or they

grant additional licenses, e.g., Apache 2.0 or MIT/Expat.

We asked the answerers a follow-up question of how frequently they checked

for conflicts between software license of the code snippets they copied to their

answers and Stack Overflow’s CC BY-SA 3.0. As shown in Figure 3.10, 80 (69%)

and 58 (69%) answerers from Group 1 and Group 2 did not perform the checking.

There are only approximately 10% of the answerers who frequently check for

license conflicts when they copy code snippets to Stack Overflow.

To answer RQ3, approximately 62% of our participants are aware of CC

BY-SA 3.0 license enforced by Stack Overflow. However, 98 to 99 percent of

the answerers never include software license in their Stack Overflow snippets.

Sixty-nine percent never check for potential license conflicts when they copy code

snippets to Stack Overflow answers.
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3.6.1.5 Open Comments

To acquire additional insights, we invited every answerer for additional comments

regarding their concerns of answering Stack Overflow (SO) with code snippets.

Some interesting comments are selected and discussed below. The full set of

answers can be found in Appendix A.1.

• Comment 1: The answerer addresses a concern of programmers reusing

his/her code snippets without understanding them. Moreover, he or she

discusses problems from low-quality snippets or outdated code containing

security issues on Stack Overflow.

The real issue is less about the amount the code snippets on

SO than it is about the staggeringly high number of software

“professionals” that mindlessly use them without understanding

what they’re copying, and the only slightly less high number of

would-be professionals that post snippets with built-in security

issues. A related topic is beginners who post (at times dangerously)

misleading tutorials online on topics they actually know very

little about. Think PHP/MySQL tutorials written 10+ years after

mysql * functions were obsolete, or the recent regex tutorial

that got posted the other day on HackerNew (https://news.

ycombinator.com/item?id=14846506). They’re also full of

toxic code snippets.

• Comment 2: The answerer suggests that a guidance from Stack Overflow

regarding software license of code snippets will be beneficial.

When I copy code it’s usually short enough to be considered “fair

use” but I am not a lawyer or copyright expert so some guidance

from SO would be helpful. I’d also like the ability to flag/review

questions that violate these guidelines.

• Comment 3: Similar to comment 1, the answerer addresses a concern of

reusing Stack Overflow code snippets without understanding.

https://news.ycombinator.com/item?id=14846506
https://news.ycombinator.com/item?id=14846506
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My only concern, albeit minor, is that I know people blindly copy

my code without even understanding what the code does.

• Comment 4: As shown in RQ2, the answerer discusses a problem from

outdated Stack Overflow code snippets and his/her solution.

The main problem for me/us is outdated code, esp. as old answers

have high Google rank so that is what people see first, then try and

fail. Thats why we’re moving more and more of those examples to

knowledge base and docs and rather link to those.

• Comment 5: The answerers gives insights into the quality of the Stack

Overflow code snippets.

Lot of the answers are from hobbyist so the quality is poor. Usually

they are hacks or workarounds (even MY best answer on SO is a

workaround).

3.6.2 The visitor survey

To answer RQ4 and RQ5, we used another online survey, the visitor survey, to

ask Stack Overflow visitors about their experiences of outdated code and their

awareness to software license of Stack Overflow code snippets. We received 89

answers from 5 groups of Stack Overflow visitors. We combined the results and

presented them in a single group as shown below.

3.6.2.1 General Information

As illustrated in Figure 3.11, 24 and 21 participants (27% and 24% respectively)

from the Stack Overflow visitor survey have over 10 years and 5–10 years of

experience respectively. There are 19 participants (21%) who have 3–5 years, 18

(20%) who have 1–2 years, and 7 (8%) participants who have less than a year of

programming experience.
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How long have you been working on developing software?

> 10 Years
27%

5-10 Years
24%

3-5 Years
21%

1-2 Years
20%

<1 Year
8%

Figure 3.11: Experience of the Stack Overflow visitors
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Figure 3.12: Rankings of the resources developers use to solve programming problems

3.6.2.2 Where do the developers search for programming solutions?

We asked the participants to rank five options, without a tie, that they will choose

to find programming solutions. The given five options include books, official

documentation, Stack Overflow, online repositories (e.g., GitHub), and others. The

results are displayed in Figure 3.12. We found that 47 out of 89 participants rank

Stack Overflow as the 1st option to search for programming solutions, followed by

official documentation (33), online repositories (6), other resources (5), and books

(1).

Since Stack Overflow is among the first resources the visitors rely on to

solve programming tasks, we asked the participants how frequently they reuse
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How frequently do or did you copy source code snippets from Stack Overflow?

Never
2%

1-2 times/year
4%

1-2 times/month
29%

1-2 times/week
30%

3-6 times/week
25%

Everyday
9%

Figure 3.13: Frequency of copying code from Stack Overflow

code snippets from answers on Stack Overflow. According to the results (see

Figure 3.13), we found that 57 (64%) participants actively reusing code snippets

from Stack Overflow. Eight participants (9%) copy Stack Overflow code every day,

22 (25%) do copying 3-6 times a week, 27 (30%) do copying once or twice a week.

There are 2 participants (2%) who never copy the code from Stack Overflow. Thus,

the results after this question are from the 87 participants who used to copy code

from Stack Overflow.

To understand why the participants choose to copy code snippets from Stack

Overflow, we asked them to rate four reasons in Likert’s scale (Strongly agree,

Agree, Undecided, Disagree, Strongly disagree). The four reasons include 1)

They are easy to find by searching the web, 2) They solve problems similar to my

problems with minimal changes, 3) The context of questions and answers helped

me understand the code snippets better, 4) The voting mechanism and accepted

answers helped to filter good code from bad code. The answers are depicted in

Figure 3.14. More than 80% of the participants agree with all the four reasons. We

observed only two “Disagree” and zero “Strongly disagree” answer for “Helpful

context”, the lowest disagreement among the four reasons. This means most of

them agree that the context of questions and answers on Stack Overflow help them

understand the code snippet better.

To sum up, Stack Overflow is ranked higher than official documentation,

online repositories, and books as the resource to look for programming solutions.

Developers rely on Stack Overflow answers because they are easy to search for
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Figure 3.14: Why did you copy and reuse code snippets from Stack Overflow?

on the web. Moreover, 64% of the participants reuse code snippets from Stack

Overflow at least once a week. They copy code snippets from Stack Overflow

because the snippets can be found easily from a search engine, solve similar

problems to their problems, provide helpful context, and offer voting mechanism

and marking answers as accepted.

3.6.2.3 RQ4: Visitors’ Problems from Stack Overflow Code Snip-

pets

What are the problems Stack Overflow visitors experienced from reusing code

snippets on Stack Overflow?

We asked the visitors whether they have had any problem with reusing Stack

Overflow code snippets and how often did the problems occur. Fifty-seven out

of eighty-seven participants (66%) experienced a problem from reusing Stack

Overflow snippets (see Figure 3.15). Among the fifty-seven participants, two

participants found problems in more than 80% of the reused code snippets. Eight

and sixteen faced problems from at least sixty and forty percent of the reused

snippets.

The problems from reusing Stack Overflow code snippets (illustrated in
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3057

Yes No

Have you ever found any problems from reusing Stack Overflow code snippets?

7

24 16

8
2

> 80% of reused snippets
61-80% of reused snippets
41-60% of reused snippets
21-40% of reused snippets
<= 20% of reused snippets

Figure 3.15: Number of visitors who experienced a problem from reusing Stack Overflow
code snippets and the frequency.
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Others (e.g. buggy code)
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Figure 3.16: Problems from reusing Stack Overflow code snippets

Figure 3.16) include incorrect solutions, i.e., the code claims to solve the problem

in the question while it does not (28 out of 57 ≈ 49% participants reported this);

outdated solutions, i.e., the code may work with the older versions of the library

or API, but not the one they are using (39 out of 57 ≈ 68% participants reported

this); mismatched solutions, i.e., the code solves the problem in the question, but it

is not exactly the right solution for their problem (40 out of 57 ≈ 70% participants

reported this); and buggy code (1 out of 57 ≈ 2% participants reported this).

Stack Overflow visitors rarely report the problems back to the discussion

threads (as can be seen in Figure 3.17). Among the 57 participants who encounter

problems from Stack Overflow snippets, 36 of them (63.2%) never report the

problems. Fourteen participants who reported the problems did so by writing a

comment (10), down-voting the answer (8), contacting the answerer (2), and posting
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How frequently did you report the problems back to the Stack Overflow discussion threads?

Never
63%

Very rarely
14%

Rarely
14%

Occasionally
5%

Frequently
2%

Very frequently
2%

Figure 3.17: Frequency of Stack Overflow visitors reporting the problems back to Stack
Overflow discussion threads
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Figure 3.18: Options that Stack Overflow visitors choose to report the problems from Stack
Overflow snippets

the new and correct answer (2) as summarised in Figure 3.18.

To answer RQ4, our survey results show that 57 out of 87 Stack Overflow

visitors encountered a problem with reusing Stack Overflow code snippets. Ten

participants experienced issues from more than 80% of the copied snippets, and six-

teen participants faced problems for 40–60% of the reused snippets. The problems

ranked by frequency include mismatched solutions (40), outdated solutions (39),

incorrect solutions (28), and buggy code (1). Sixty-three percent of the participants

never report the problems back to Stack Overflow.

3.6.2.4 RQ5: Visitors’ Awareness to Potential License Violations

Are Stack Overflow visitors aware of or experienced code with license conflicts on

Stack Overflow?

As depicted in Figure 3.19, 74 out of 87 (85%) Stack Overflow visitors are not

aware, at the time of copying the code, that Stack Overflow applies CC BY-SA 3.0
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Were you aware, at the time of copying the code, that Stack Overflow apply Creative Commons Attribution-
ShareAlike 3.0 Unported (CC BY-SA 3.0) to content in the posts, including code snippets?

7413

Yes No

Figure 3.19: Awareness of Stack Overflow visitor to CC BY-SA 3.0 license

How often did you give attribution (adding a link to a Stack Overflow question/answer) as required by CC BY-SA 
3.0 in the code where you used the snippet?

Never
62% Very rarely

5%

Rarely
18%

Occasionally
5%

Frequently
8%

Very frequently
2%

Figure 3.20: Attributions to Stack Overflow when reusing code snippets

to content in the posts, including code snippets. As a consequence, 62% of the

visitors never give an attribution, which is required by CC BY-SA 3.0, to a Stack

Overflow post they copied the code from (the complete statistics can be found from

Figure 3.20).

Sixty-nine Stack Overflow visitors (79%) who adopted code from Stack

Overflow never check if the code snippet originated from a different source (e.g., an

open source project) with an incompatible license to their projects (see Figure 3.21).

Fifty-seven participants (66%) never check for potential license conflicts at

all when reusing Stack Overflow code (see Figure 3.22). Lastly, 9% of the

participants experienced legal issues by reusing code snippets on Stack Overflow

(see Figure 3.23). We did not expect that any participant encountered legal issues

as we are not aware of such cases being reported in the literature. It would be

interesting to follow up on the kind of legal issues that have been encountered,

however, as we designed the survey to be anonymous, it was not possible to contact

the participants for further details.

To answer RQ5, 85% of the participants are not aware of Stack Overflow CC

BY-SA 3.0 license, and 62% never give attributions to the Stack Overflow posts

from which they copied the code snippets. We found that 66% of the visitors never
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Have you ever checked if the Stack Overflow code snippet originated from a different source (e.g. an open source 
project) with an incompatible license to your project?

6918

Yes No

Figure 3.21: Checking for the original license of Stack Overflow code snippets

How often did you check for licensing conflicts of code snippets from Stack Overflow and your project(s) before 
using them?

Never
66%

Very rarely
13%

Rarely
7%

Occasionally
7%

Frequently
8%

Figure 3.22: Checking for license conflicts from reusing Stack Overflow snippets

check for potential software license conflicts between Stack Overflow code snippets

and their projects. Nine percent of the participants encountered legal issues.

3.6.3 Overall Discussion

By separating the answerers into two groups according to their reputation, we

observed some similarities and differences in their responses. The sources of code

snippets in Stack Overflow answers are similar in both groups. The answerers

mainly write the code snippets from scratch aiming to answer the question. The

frequencies of copying from each source, i.e., personal projects, company projects,

How frequently did you have legal problems by copying code snippets from Stack Overflow?

Never
90%

Very rarely
3%

Rarely
3%

Occasionally
2%

Frequently
1%

Figure 3.23: Legal issues found from reusing Stack Overflow code snippets
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open source projects, writing from scratch, modifying from the questions, and

others, also follow the same proportions for both group.

The main difference we found are the responses regarding outdated code. The

answerers in Group 1 have a more substantial percentage (61.2%) of being notified

about the outdated code in their answers than Group 2 (47.1%). This may be caused

by the amount of their Stack Overflow answers. Since Group-1 answerers have a

higher reputation than Group-2 answerers, they possibly have given more answers

on Stack Overflow. The higher amount of answers hence increase the chance

of the code being outdated. Interestingly, although the percentage of outdated

code notifications in Group 2 is lower, the percentage of the answerers who very

frequently fixed their outdated code is higher than for Group 1.

Regarding the software license, the responses from the two groups agree with

each other. The answerers in both groups show the same level of awareness to

Stack Overflow CC BY-SA 3.0 license (62.1% and 62.3%). Similarly, the answerers

in both groups neither include software license in their code snippets (98% and

99%) nor check of potential license conflicts between their code snippet’s and Stack

Overflow CC BY-SA 3.0 (69% and 69%).

The visitors’ survey confirms the findings from the previous studies that Stack

Overflow code snippets can be problematic [Acar et al., 2016, An et al., 2017].

Sixty-six percent of the visitors experienced a problem from reusing Stack Overflow

code snippets ranging from incorrect solutions, outdated solutions, mismatched

solutions, to buggy code. Although they are aware of the issues, half of them

(56%) never report back to the Stack Overflow discussions. On the other hand,

the visitors rarely give attributions to Stack Overflow when they reuse code snippets

from the website, similar to the findings reported by Baltes et al. [2017]. The visitors

are generally not aware of the CC BY-SA 3.0 license and more than half of them

never check for potential license incompatibility when reusing Stack Overflow code

snippets. We also found that 9% of the participants encountered legal issues by

copying the code from Stack Overflow.
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3.7 Threats to Validity
There are some potential threats to validity in this chapter. We separately discuss

them in two aspects: internal and external validity.

3.7.1 Internal Validity

We only invited 607 developers to participate in the answerer survey. If all the

developers are invited, which is almost impossible considering 7.6 million users

on Stack Overflow, the results may be different. Nevertheless, we mitigate this

threat to internal validity by selecting the participants based on their Stack Overflow

reputation. This targeted participant selection ensures that we invite developers who

have been actively involved in asking and answering questions on the site for an

extended period of time, and refrain from inviting new users who merely answer a

question or two. The highest reputation user invited to our survey answered 33,933

questions, and the lowest reputation user in our survey answered 116 questions.

The results from the answerer survey may not be completely accurate espe-

cially for RQ1 about the sources of code snippets in the Stack Overflow answers. It

is socially not acceptable to copy code from a company in most cases. Even when

a survey is anonymous, some answerers may hesitate to admit that.

We selected the participants for the visitor survey based on convenient sam-

pling which could suffer from bias and outliers. We mitigate the threat by inviting

different groups of participants ranging from the author’s social media, technology

news and media community, software engineering community (on Facebook),

Java programmer discussion thread (comp.lang.java.programmer), and from the

University of Molise.

3.7.2 External Validity

While the reputation is a good proxy to reflect the number and the quality of

answers the developers have given, it might not cover all kinds of answerers and

their experience on Stack Overflow. The answerers who have reputation lower than

6,999 were not invited to our study and their awareness and experience may differ

from our findings. Hence, our conclusions may not be generalised to all Stack
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Overflow answerers.

At least 39% of the participants in the visitor survey are from Thailand

(blognone.com and some of the thesis author’s contacts). Due to the working

culture, answers from this group of developers may only represent software

developers in Thailand. Similarly, our findings from the visitor survey may

not be generalised to all Stack Overflow visitors. We alleviate this concern by

inviting participants from other groups, e.g., the University of Molise in Italy,

the comp.lang.java.programmer group, and the Software Engineering Facebook

group. Nonetheless, due to the fewer number of the participants from the other

groups compared to the thesis author’s contacts and blognone.com, the results may

still suffer from biases.

3.8 Chapter Summary
This chapter presents the results from two online surveys of Stack Overflow answer-

ers and visitors regarding their awareness and experience of outdated and potentially

license-violating code snippets from answering and reusing code snippets on Stack

Overflow.

The next chapter will apply code clone detection to empirically investigate the

two issues of outdated code and software license incompatibility of code snippets

on Stack Overflow. It will present code clones found between Stack Overflow and

111 open source projects, analyse the findings, and compare to the results from the

surveys in this chapter.



Chapter 4

An Empirical Study of Online Code

Clones and Their Toxicity

This chapter strengthens the results in the previous chapter by empirically studying

online code clones, i.e., clones between software projects and Stack Overflow, and

the two issues of outdated code and software license incompatibility. The chapter

starts by discussing an experiment of online code clone detection between Stack

Overflow and 111 open source projects. Then, it moves to present an analysis

of the detected online code clones and their classifications. The chapter ends

by describing potential problems from reusing outdated or license-violating Stack

Overflow cloned code snippets.

4.1 Motivation
Similar to the previous chapter, a study in this chapter is motivated by the two

issues of outdated code and license-violating code snippets on Stack Overflow.

The process of posting and answering questions on Stack Overflow that involves

the reuse (copying) of source code can be considered code cloning. Similar to

traditional clones within software projects, software license violations from code

cloning also happens within the context of online Q&A websites such as Stack

Overflow. An et al. [2017] showed that 1,279 cloned snippets between Android apps

and Stack Overflow potentially violate software licenses. Security is also among the

main concerns when the code is copied from an online source. For example, Stack



4.1. Motivation 104

Overflow helps developers to solve Android programming problems more quickly

than other resources while, at the same time, offers less secure code than books or

the official Android documentation [Acar et al., 2016].

4.1.1 Online Code Clones

We call code snippets that are copied from software systems to online Q&A

websites (such as Stack Overflow) and vice versa as “online code clones.” There

are two directions in creating online code clones: (1) code is cloned from a software

project to a Q&A website as an example; or (2) code is cloned from a Q&A website

to a software project to obtain a functionality, perform a particular task, or fixing a

bug.

Similar to classic code clones, i.e., clones between software systems, online

code clones can lead to license violations, bug propagation, an introduction of

vulnerabilities, and re-use of outdated code. Unfortunately, online clones are

difficult to locate and fix since the search space in online code corpora is larger

and no longer confined to a local repository.

The previous chapter discusses a survey 201 high-reputation Stack Overflow

answerers. The results of such a survey show that online code cloning occurs

on Stack Overflow. Stack Overflow answerers frequently clone code from other

locations, such as their personal projects, company projects, and open source

projects, to Stack Overflow as a solution or as additional materials to a solution.

The code cloning activity on Stack Overflow is obviously beneficial considered the

popularity of Stack Overflow and its influence on software development [Ponzanelli

et al., 2013, 2014, Park et al., 2014]. On the other hand, there is also a downside

caused by low quality, defective, and harmful code snippets that are reused without

awareness by millions of users [Zhang et al., 2018, Acar et al., 2016, Fischer et al.,

2017].

As shown in the previous chapter (and copied below), a participant in our

survey expresses his/her concerns about this:

The real issue is less about the amount the code snippets on SO than it

is about the staggeringly high number of software “professionals” that
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mindlessly use them without understanding what they’re copying, and

the only slightly less high number of would-be professionals that post

snippets with built-in security issues. A related topic is beginners who

post (at times dangerously) misleading tutorials online on topics they

actually know very little about. Think PHP/MySQL tutorials written

10+ years after mysql * functions were obsolete, or the recent regex

tutorial that got posted the other day on HackerNew (https://news.

ycombinator.com/item?id=14846506). They’re also full of toxic

code snippets.

Although this activity of online code cloning is well-known, there are only a

few empirical studies on the topic [An et al., 2017, Abdalkareem et al., 2017, Baltes

et al., 2017], especially on finding the origins of the clones on Q&A websites. In this

chapter, we tackle this challenge of establishing the existence of online code clones

on Stack Overflow, investigate how they occur, and study the potential effects to

software reusing them. Therefore, we mined Stack Overflow posts, detected online

code clones, and analysed the clones to reveal “toxic code snippets.”

4.1.2 Toxic Code Snippets

Toxic code snippets mean code snippets that, after incorporating into software, the

cost of paying back the technical debt exceeds the value it generates in the long run.

Stack Overflow code snippets cloned from open source software or online sources

can become toxic when they are (1) outdated, (2) violating their original software

license, (3) exhibiting code smells, or (4) having security vulnerabilities.

In this chapter, we focus on the first two forms of toxic code snippets, outdated

code and license-violating code, as these two problems are still underexplored

compared to code smells [Tufano et al., 2015] and vulnerabilities [Acar et al., 2016,

Fischer et al., 2017]. Moreover, as shown by the survey results in Chapter 3, Stack

Overflow answerers and visitors expressed their concerns about these two problems.

Outdated code snippets can be harmful since they are not up-to-date with their

originals and may contain defects. License-violating code can be harmful because

it leads to legal problems. Code snippets from open source projects usually fall

https://news.ycombinator.com/item?id=14846506
https://news.ycombinator.com/item?id=14846506
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/* Code in Stack Overflow post ID 22315734 */

public int compare(byte[] b1,int s1,int l1, ...) {

try {

buffer.reset(b1,s1,l1); /* parse key1 */

key1.readFields(buffer);

buffer.reset(b2,s2,l2); /* parse key2 */

key2.readFields(buffer);

} catch (IOException e) {

throw new RuntimeException(e);

}

return compare(key1,key2); /* compare them */

}

/* WritableComparator.java (2014-11-21) */

public int compare(byte[] b1,int s1,int l1, ...) {

try {

buffer.reset(b1,s1,l1); /* parse key1 */

key1.readFields(buffer);

buffer.reset(b2,s2,l2); /* parse key2 */

key2.readFields(buffer);

buffer.reset(null,0,0); /* clean up reference */

} catch (IOException e) {

throw new RuntimeException(e);

}

return compare(key1, key2); /* compare them */

}

Figure 4.1: An example of the two code fragments of WritableComparator.java. The
one from the Stack Overflow post 22315734 (left) is outdated when compared
to its latest version in the Hadoop code base (right). Its Apache v.2.0 license is
also missing.

under a specific software license, e.g., GNU General Public License (GPL). If they

are cloned to Stack Overflow answers without the license, and then flow to other

projects with conflicting licenses, legal issues may occur.

We would like to motivate the readers by giving two examples of toxic code

snippets discovered by our study. The first example is an outdated and potentially

license-violating online code clone fragment in an answer to a Stack Overflow ques-

tion regarding how to implement RawComparator in Hadoop1. Figure 4.1 shows—

on the left—a code snippet embedded as a part of the accepted answer. The snippet

shows how Hadoop implements the compare method in its WritableComparator

class. The code snippet on the right shows another version of the same method,

but at this time extracted from the latest version (as of 3rd October 2017) of

1http://stackoverflow.com/questions/22315734

http://stackoverflow.com/questions/22315734
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Hadoop. We can see that they both are highly similar except a line containing

buffer.reset(null,0,0); which was added on 21st November 2014. The added

line is intended for cleaning up the reference in the buffer variable and avoid

excess heap usage (issue no. HADOOP-113232). While this change has already

been introduced into the compare method several years ago, the code example in

Stack Overflow post is still unchanged. In addition, the original code snippet of

WritableComparator class in Hadoop is distributed with Apache license version

2.0 while its cloned instance on Stack Overflow contains only the compare method

and ignores its license statement on top of the file. There are two potential issues for

this. First, the code snippet may appear to be under Stack Overflow’s CC BY-SA

3.0 instead of its original Apache license. Second, if the code snippet is copied and

incorporated into another software project with a conflicting license, a legal issue

may arise.

The second motivating example of outdated online code clones with more

disrupting changes than the first one can be found in an answer to a Stack Overflow

question regarding how to format files sizes in a human-readable form. Figure 4.2

shows—on the left—a code snippet to perform the task from the StringUtils class

in Hadoop. The code snippet on the right shows another version of the same

method, but at this time extracted from the latest version of Hadoop. We can see

that they are entirely different. The humanReadableInt method is rewritten on 5th

February 2013 to solve an issue of a race condition (issue no. HADOOP-92523).

The two toxic code snippets in our examples have been posted on 11th March

2014 and 9th April 2009 respectively. They have already been viewed 259 and 2,886

times4 at the time of writing this chapter (3rd October 2017). Our calculation finds

that there will be a new viewer of the first toxic snippet approximately every 5 days

compared to almost every day for the second one. Considering the popularity of

Stack Overflow, which has more than 50 million developers visiting each month5,

2https://issues.apache.org/jira/browse/HADOOP-11323
3https://issues.apache.org/jira/browse/HADOOP-9252
4The number of views is for the whole Stack Overflow post but we use it as a proxy of the number

of views the accepted answer receives because the question and the answer of the two motivation
examples have a short gap of posting time (within the same day and four days after).

5Data as of 21st August 2017 from: https://stackoverflow.com

https://stackoverflow.com
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/* Code in Stack Overflow post ID 801987 */

public static String humanReadableInt(long number) {

long absNumber = Math.abs(number);

double result = number;

String suffix = "";

if (absNumber < 1024) {

} else if (absNumber < 1024 * 1024) {

result = number / 1024.0;

suffix = "k";

} else if (absNumber < 1024 * 1024 * 1024) {

result = number / (1024.0 * 1024);

suffix = "m";

} else {

result = number / (1024.0 * 1024 * 1024);

suffix = "g";

}

return oneDecimal.format(result) + suffix;

}

/* StringUtils.java (2013-02-05) */

public static String humanReadableInt(long number) {

return TraditionalBinaryPrefix.long2String(number,"",1);

}

Figure 4.2: An example of the two code fragments of StringUtils.java. The one from
the Stack Overflow post 801987 (left) is outdated when compared to its latest
version in the Hadoop code base (right). The toxic code snippet is outdated
code and has race conditions.

one toxic code snippet on Stack Overflow can spread and grow to hundreds or

thousands of copies within only a year or two.

While research has mostly focused on reusing code snippets from Stack

Overflow (e.g., Keivanloo et al. [2014], An et al. [2017], Yang et al. [2016]), fewer

studies have been conducted on finding the origins of code examples copied to

Stack Overflow. Finding the origins of code examples reveals the problem of toxic

code snippets caused by outdated code and software license violations. It is equally

important to studying the effects of reusing Stack Overflow code snippets because

it gives insights into the root cause of the problem and lays a foundation of an

automatic technique to detect and report toxic code snippets on Stack Overflow to

developers in the future.

4.2 Contributions
This chapter makes the following primary contributions:
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1. A manual study of online code clones: To empirically confirm the findings

from the surveys, we used two clone detection tools to discover 2,289 similar

code snippet pairs between 72,365 Java code snippets obtained from Stack

Overflow’s accepted answers and 111 Java open source projects from the

curated Qualitas corpus [Tempero et al., 2010]. We manually classified all

of them.

2. An investigation of toxic code snippets on Stack Overflow: Our study

shows that from the 2,289 online clones, at least 328 have been copied

from open source projects or external online sources to Stack Overflow, and

potentially violating software licenses. For 153 of them, we found evidence

that they have been copied from a specific open source project. 100 of them

were found to be outdated.

3. An online code clone oracle: The 2,289 manually investigated and validated

online clone pairs are available for download6 and can be used as a clone

oracle.

4.3 Empirical Study
We performed an empirical study of online code clones between Stack Overflow

and 111 Java open source projects to answer the following research questions:

4.3.1 Research Questions

RQ1 (Online code clones): To what extent is source code cloned between

Stack Overflow and open source projects? We quantitatively measured the

number of online code clones between Stack Overflow and open source

projects to understand the scale of the problem.

RQ2 (Patterns of online code clones): How do online code clones occur?

We categorised online clones into seven categories allowing insights into how

online code clones are created.

6https://ucl-crest.github.io/cloverflow-web
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Figure 4.3: The Experimental framework

RQ3 (Outdated online code clones): Are online code clones up-to-date

compared to their counterparts in the original projects? We were interested

in the outdated Stack Overflow code examples since users are potentially

reusing them.

RQ4 (Software license violation): How often do license conflicts occur

between Stack Overflow clones and their originals? We investigated whether

the reuse of online code clones can cause software developers to violate

licenses.

To answer these four research questions, we perform an empirical study to

study the online code clones between Stack Overflow and open source projects and

their toxicity.

4.3.2 Online Code Clone Detection

We support the motivation and confirm the findings from the surveys in Chapter 3

by performing code clone detection between Stack Overflow answers and 111 Java
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open source projects. We designed the study in 6 phases as depicted in Figure 4.3

where we build different data sets to answer RQ1 to RQ4.

4.3.2.1 Phase 1: Clone Identification

We rely on two source code data sets in this chapter: Java code snippets in answers

on Stack Overflow and open source projects from the Qualitas corpus [Tempero

et al., 2010], as detailed next.

Stack Overflow: We extracted Java code snippets from a snapshot of a Stack

Overflow dump7 in January 2016. The data dump is in XML, and it contains

information about posts (questions and answers). We were interested in code

snippets embedded in posts which were located between <code>...</code> tags.

A Stack Overflow thread contains a question and several answers. An answer

can also be marked as an accepted answer by the questioner if the solution fixes

his/her problem. We collected Java code snippets using two criteria. First, we only

focused on code snippets in accepted answers. We chose the snippets in accepted

answers because they actually solved the problems in the questions. Moreover, they

are usually displayed just below the questions which makes them more likely to

be reused than other answers. Second, we were only interested in code snippets

of at least ten lines. Although the minimum clone size of six lines is usual in

clone detection [Bellon et al., 2007, Wang et al., 2013b, Koschke et al., 2006], we

empirically found that snippets of six lines contain a large number of boiler-plate

code of getters/setters, equal or hashCode methods, which are not interesting for

the study. Each snippet was extracted from the dump and saved to a file. Moreover,

we filtered out irrelevant code snippets that were part of the accepted answers but

were not written in Java by using regular expressions and manual checking. Finally,

we obtained 72,365 Java code snippets containing 1,840,581 lines8 of Java source

code. The median size of the snippets is 17 lines.

Open source systems: We selected the established Qualitas corpus [Tempero

et al., 2010]. It is a curated Java corpus that has been used in several software

7https://archive.org/details/stackexchange
8Measured by cloc: https://github.com/AlDanial/cloc

https://archive.org/details/stackexchange
https://github.com/AlDanial/cloc
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Table 4.1: Stack Overflow and Qualitas datasets

Data set No. of files SLOC

Stack Overflow 72,365 1,840,581
Qualitas 166,709 19,614,083

engineering studies [Taube-Schock et al., 2011, Beckman et al., 2011, Vasilescu

et al., 2011, Omar et al., 2012]. The projects in the corpus represent various domains

of software systems ranging from programming languages to visualisation. We

selected the release 20130901r of the Qualitas corpus containing 112 Java open

source projects. This release contains projects with releases no later than 1st

September 2013. We intentionally chose an old corpus from 2013 since we are

interested in online code clones in the direction from open source projects to Stack

Overflow. The 20130901r snapshot provides Java code that is more than 2 years

older than the Stack Overflow snapshot, which is sufficiently long for a number

of code snippets to be copied onto Stack Overflow and also to observe if clones

become outdated. Out of 112 Qualitas projects, there is one project, jre, that does

not contain Java source code due to its licensing limitation [Tempero et al., 2010]

and is removed from the study. This resulted in 111 projects analysed in the study,

for a total of 166,709 Java files containing 19,614,083 lines of code (see Table 4.1).

The median project size is 60,667 lines of code.

Clone Detection Tools: We use clone detection to discover online code

clones. There are a number of restrictions in terms of choosing the clone

detection tools for this chapter. The main restriction is due to the nature of

code snippets posted on Stack Overflow, as most of them are incomplete Java

classes or methods. Hence, a detector must be flexible enough to process code

snippets that are not compilable or not complete blocks. Moreover, since the

amount of code that has to be processed is in a scale of millions line of code (as

shown in Table 6.1), a clone detector must be scalable enough to report clones

in a reasonable amount of time. We have tried 7 state-of-the-art clone detectors

including Simian [Harris, 2003], SourcererCC [Sajnani et al., 2016], NiCad [Roy

and Cordy, 2008], CCFinder [Kamiya et al., 2002], iClones [Göde and Koschke,
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2009], DECKARD [Jiang et al., 2007a], and PMD’s Copy/Paste Detector [CPD]

against the Stack Overflow and Qualitas datasets. NiCad failed to parse 44,960

Stack Overflow snippets while PMD CPD failed to complete the execution due

to lexical errors. iClones could complete its execution but skipped 367 snippets

due to malformed blocks in Stack Overflow data sets. CCFinder reported 8

errors while processing the two data sets. Although Simian, SourcererCC, and

DECKARD could successfully report clones, we decided to choose only Simian and

SourcererCC due to their fast detection speed. Moreover, Simian and SourcererCC

complement each other as SourcererCC’s clone fragments are always confined to

method boundaries while Simian’s fragments are not.

Simian is a text-based clone detector that locates clones at line-level granular-

ity and has been used extensively in several clone studies [Ragkhitwetsagul et al.,

2016a, 2018a, Wang et al., 2013b, Mondal et al., 2011, Cheung et al., 2015, Krinke

et al., 2010]. Furthermore, it offers normalisation of variable names and literals

(strings and numbers) which enables Simian to detect literal clones (Type-1) and

parameterised clones (Type-2) [Bellon et al., 2007].

SourcererCC is a token-based clone detector which detects clones at either

function- or block-level granularity. It can detect clones of Type-1, -2 up to Type-3

(clones with added and removed statements) and offer scalability against large code

corpus [Sajnani et al., 2016, Saini et al., 2016b, Yang et al., 2017].

We prepared the Java code in both datasets by removing comments and pretty-

printing to increase the clone detection accuracy. Then, we deployed the two

detectors to locate clones between the two datasets. For each Qualitas project, we

ran the tools on the project’s code and the entire Stack Overflow data. Due to

incomplete code blocks and functions typically found in Stack Overflow snippets,

the built-in SourcererCC’s Java tokeniser could not parse 45,903 snippets, more

than half of them. Nevertheless, the tool provides an option to plug in a customised

tokeniser, so we developed a special Java tokeniser with assistance from the tool’s

creators. The customised tokeniser successfully processed all Stack Overflow

snippets.
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Table 4.2: Configurations of Simian and SourcererCC

Tool Configurations

Simian Threshold=10, ignoreStringCase,
ignoreCharacterCase, ignoreModifiers

SourcererCC Functions, Minimum clone size=10, Similarity=80%

Simian did not provide an option to detect cross-project clones. Hence the

Simian clone report was filtered to contain only clone pairs between Stack Overflow

and Qualitas projects, removing all clone pairs within either Stack Overflow or

Qualitas. SourcererCC can detect cross-project clones between two systems, so

we did not filter the clones.

Clone Detection Configuration: We are aware of the effects of configu-

rations to clone detection results and the importance of searching for optimised

configurations in empirical clone studies [Svajlenko et al., 2014b, Wang et al., 2014,

Ragkhitwetsagul et al., 2016b,a, 2018a]. However, considering the massive size of

the two datasets and the search space of at least 15 Simian and 3 SourcererCC

parameters, we are unable to search for the best configurations of the tools. Thus,

we decided to configure Simian and SourcererCC based on their established default

configurations chosen by the tools’ creators as depicted in Table 4.2. The two

clone detectors complemented each other by having Simian detecting literal copies

of code snippets (Type-1) and SourcererCC detecting clones with renaming and

added/deleted statements (Type-2, Type-3).

Nevertheless, we investigated a crucial parameter setting for clone detection:

the minimum clone size threshold. Choosing a large threshold value can reduce

the number of trivial clones (e.g., equals, hashCode, or getter and setter methods)

and false clones in the analysis or the manual investigation phase [Sajnani et al.,

2016], i.e., increasing precision. Nonetheless, it may create some false negatives.

On the other hand, setting a low threshold results in a larger number of clone

candidate pairs to look at, i.e., increasing recall, and a higher chance of getting

false positives. Moreover, the large number of clone pairs hinder a full manual

validation of the clones. Three threshold values, six, ten, and fifteen lines, were
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chosen for our investigation. We started the investigation by using a threshold value

of six lines, a well-accepted minimum clone size in clone benchmark [Bellon et al.,

2007]. Simian reported 67,172 clone candidate pairs and SourcererCC reported

7,752 clone candidate pairs. We randomly sampled 382 pairs from the two sets for

a manual check. This sample number was a statistically significant sample with a

95% confidence level and ±5% confidence interval. The thesis author investigated

the sampled clone pairs and classified them into three groups: non-clones, trivial

clones (equals, hashCode, or getter and setter methods), and non-trivial clones.

The manual check found 26 non-clone pairs, 322 trivial clone pairs, and 34 non-

trivial clone pairs. Next, we increased the threshold to ten lines, another well-

established minimum clone size for large-scale data sets [Sajnani et al., 2016], and

retrieved 721 clone pairs from Simian and 1,678 clone pairs from SourcererCC.

We randomly sampled and manually checked the same amount of 382 pairs and

found 27 non-clone pairs, 253 trivial clone pairs, and 102 non-trivial clone pairs.

Then, we increased the threshold further to fifteen lines and retrieved 196 clone

pairs from Simian and 1,230 clone pairs from SourcererCC. The manual check of

the 382 randomly sampled pairs revealed zero non-clone pairs, 298 trivial clone

pairs, and 83 non-trivial clone pairs.

The findings from the three threshold values show that selecting the minimum

clone size of ten lines was preferred over six and fifteen lines. First, it generated

a fewer number of clone pairs than using six lines, which made the manual clone

investigation feasible. Second, it preserved the highest number of non-trivial clone

pairs.

The number of online clone pairs reported using the minimum clone size of 10

lines are presented in Table 4.3. Simian reports 721 clone pairs while SourcererCC

reports 1,678 clone pairs. The average clone size reported by Simian is 16.61 lines

which is slightly smaller than SourcererCC (17.86 lines).

4.3.2.2 Phase 2: Clone Merging

Clones from the two detectors can be duplicated. To avoid double-counting of the

same clone pair, we adopted the idea of clone agreement which has been used in
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Table 4.3: Number of online clones reported by Simian and SourcererCC

Tool Total clone pairs Average clone size

Simian 721 16.61
SourcererCC 1,678 17.86

clone research studies [Funaro et al., 2010, Wang et al., 2013b, Ragkhitwetsagul

et al., 2016b] to merge clones from two data sets. Clone pairs agreed by both clone

detection tools have a high likelihood to be duplicate and must be merged. To

find agreement between two clone pairs reported by two different tools, we used

the clone pair matching metric proposed by Bellon et al. [2007]. Two clone pairs

that have a large enough number of overlapping lines can be categorised as either a

good-match or an ok-match pair with a confidence value between 0 and 1. Although

good-match has a stronger agreement than ok-match, we choose the ok-match

criterion as our clone merging method because it depends on clone containment

and does not take clone size into account. Clone containment suits our online code

clones from two tools, Simian (line-level) and SourcererCC (method-level), better

because Simian’s clone fragments can be smaller or bigger than a method while

SourcererCC’s clone fragments are always confined to a method boundary.

We follow Bellon’s original definitions of ok-match [Bellon et al., 2007],

which are based on how much two clone fragments CF are contained in each other:

contained(CF1,CF2) =
|lines(CF1)∩ lines(CF2)|

|lines(CF1)|

A clone pair CP is formed by two clone fragments CF1 and CF2, i.e., CP = (CF1,

CF2) and the ok-value of two clone pairs is defined as

ok(CP1,CP2) = min(max(contained(CP1.CF1,CP2.CF1),

contained(CP2.CF1,CP1.CF1)),

max(contained(CP1.CF2,CP2.CF2),

contained(CP2.CF2,CP1.CF2)))
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Two clone pairs CP1 and CP2 are called an ok-match(t) iff, for threshold t ∈ [0,1]

holds

ok(CP1,CP2) ≥ t

The threshold t is crucial for the ok-match because it affects the number of

merged clone pairs. Setting a high t value will result in a few ok-match clone

pairs and duplicates of the same clone pairs (which are supposed to be merged)

may appear in the merged clone set. On the other hand, setting a low t value will

result in many ok-match clone pairs, and some non-duplicate clone pairs may be

accidentally merged by only a few matching lines. In order to get an optimal t

value, we did an analysis by choosing five t values of 0.1, 0.3, 0.5, 0.7, 0.9 and

studied the merged clone candidates. By setting t = 0.7 according to Bellon’s study,

we found 97 ok-match pairs reported. On the other hand, setting t to 0.1, 0.3, 0.5,

and 0.9 resulted in 111, 110, 110, and 94 ok-matched pairs respectively. Since the

clone pairs of t = 0.1 were the superset of other sets, we manually checked all the

111 reported pairs. We found one false positive pair and 110 true positive pairs. By

raising the t to 0.3 and 0.5, we got rid of the false positive pair and still retained all

the 110 true positive pairs. All the clone pairs of t = 0.7 (97) and t = 0.9 (94) were

also true positives due to being a subset of t = 0.5. However, since there were fewer

merged clone pairs, we ended up leaving some duplicates of the same clones in the

final merged clone set. With this analysis, we can see that setting the threshold t to

0.1 is too relaxed and results in having false positive ok-match pairs, while setting

the t to 0.7 or 0.9 is too strict. Thus, we decided to select the t value at 0.5.

Using the ok-match criterion with the threshold t of 0.5 similar to Bellon’s

study [Bellon et al., 2007], we merge 721 clone pairs from Simian and 1,678 clone

pairs from SourcererCC into a single set of 2,289 online clone pairs. There are 110

common clone pairs between the two clone sets as depicted in Figure 4.4. The low

number of common clone pairs is due to SourcererCC reporting clones with method

boundaries while Simian is purely line-based.
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Figure 4.4: The result from clone merging using Bellon’s ok-match criterion

4.3.2.3 Phase 3–4: Validation and Classification

We used the 2,289 merged clone pairs for manual validation and online clone

classification. The validation and classification of the pairs were done at the same

time. The clone validation process (phase 3 in Figure 4.3) involves checking if a

clone pair is a true positive or a false positive. Moreover, we are also interested in

the patterns of code cloning so we can gain more insights into how these clones are

created (phase 4 in Figure 4.3).

Manual investigation: To mitigate the human error, we deployed two people

in the manual clone investigation process. The author of the thesis and a software

engineering research student in the Centre for Research on Evolution, Search and

Testing (CREST), who is familiar with code clones, took the role of the investigators

performing a manual validation and classification of the merged clone pairs. The

two investigators separately went through each clone pair candidate, looked at the

clones, and decided if they are a true positive or a false positive and classified

them into an appropriate pattern. After the validation, the results from the two

investigators were compared. There were 338 (15%) conflicts between true and

false clones (QS, SQ, EX, UD, BP, IN vs. NC). The investigators looked at each

conflicting pair together and discussed until a consensus was made. Another 270

pairs (12%) were conflicts in the classification of the true clone pairs. Among these

pairs, 145 conflicts were caused by one investigator being more careful than the

other and being able to find evidence of copying while the other could not. Thus,

resolving the conflicts lead to a better classification, i.e., from UD to QS or EX.

The online cloning classification patterns: We studied the eight patterns

of cloning from Kapser and Godfrey [2006, 2008] and performed a preliminary

study to evaluate its applicability to our study. We tried to classify 697 online



4.3. Empirical Study 119

Table 4.4: The seven patterns of online code cloning

Patt. Description

QS Cloned from Qualitas project to Stack Overflow (Q→ S)
SQ Cloned from Stack Overflow to Qualitas project (S→ Q)
EX Cloned from an external source to Stack Overflow (X→ S)
UD Cloned from each other or from an external source outside the project

(unknown)

BP Boiler-plate or IDE auto-generated
IN Inheritance, interface implementation
NC Not clones

clone pairs from the reported clones in phase 1 using Kapser’s cloning patterns.

We found that Kapser’s patterns are too broad for our study and a more suitable

and fine-grained classification scheme is needed. After a preliminary study, we

adopted one of Kapser’s cloning patterns, boiler-plate code, and defined six new

cloning patterns. The seven patterns include QS, SQ, EX, UD, BP, IN, and NC as

presented in Table 4.4. Pattern QS (Qualitas to Stack Overflow) represents clones

that have evidence of being copied from a Qualitas project to Stack Overflow. The

evidence of copying can be found in comments in the Qualitas source code or in

the Stack Overflow post’s contents. Pattern SQ (Stack Overflow to Qualitas) is

cloning, with evidence, in the opposite direction from Stack Overflow to a Qualitas

project. Pattern EX (External Sources) is cloning that has evidence of copying

from a single or multiple external sources to Stack Overflow, and possibly also to a

Qualitas project. Pattern UD (Unknown Direction) is cloning that creates identical

or highly similar clones between Qualitas and Stack Overflow but where we could

not find any attribution of copying. Pattern BP (Boiler-Plate) represents clones

containing boiler-plate. We define three cases of boiler-plate code and use in our

classification as shown in Table 4.5. Our definition is specific to Java and more

suitable to our study than the general definition in Kapser’s [Kapser and Godfrey,

2008]. Pattern IN (Inheritance/Interface) is cloning by inheritance of the same super

class or implementation of the same interface. These two activities usually result

in similar overriding methods. The last pattern, NC (Not Clones), represents false
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Table 4.5: The definition of boiler-plate code

Type Description

API constraints Similar code fragments are created because of a constraint
by an API. For example, reading and writing to database
using JDBC, reading and writing a file in Java.

Templating An optimised or stable code fragment is reused multiple
times. This also includes auto-generated code by IDE.

Design patterns Java design patterns suggest a way of implementing similar
pieces of code. For example, getters, setters, equals,
hashCode, and toString method.

IN
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BP
yes

no

inheritance/
interface

NCno

clone?
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start
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QS
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Figure 4.5: Online code clone classification process

clone pairs. These are mainly false positive clones from the clone detectors such as

similar try-catch statements.

The classification of the filtered online clone pairs followed the steps depicted

in Figure 4.5. First, we looked at a pair of clone fragments to see their similarity.

If they were accidentally similar clones after code normalisation or false positive

clones from the clone detection tools, we classified the pair into NC. If the

two fragments were boiler-plate code, the pair was classified into BP. If they

implemented the same interface or inherited the same class and shared similar

overriding methods, the pair was classified into IN. If the pair was not BP, IN,

or NC, we started a detailed investigation. We checked the corresponding Stack

Overflow post, read through it carefully and looked for any evidence mentioning

code copying. If evidence of copying had been found from a Qualitas project,

the pair was classified in QS. In several occasions, we used extra information
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such as the questions’ contents, the name of posters, and the tags to gain a better

understanding. On the other hand, if the source code from the Qualitas project

mentioned copying from Stack Overflow, the pair was classified into SQ. If there

was evidence of copying from an external source instead of a Qualitas project,

the pair was classified as EX. Lastly, if there was no evidence of copying in any

direction but the clone fragments were highly similar, we classified them into UD.

4.3.2.4 Phase 5: Outdated Clones

Outdated code occurs when a piece of code has been copied from its origin to

another location, and later the original has been updated [Xia et al., 2014]. Usually,

code clone detection is used to locate clone instances and update them to match with

the originals [Bellon et al., 2007]. However, online code clones are more difficult

to detect than in regular software projects due to its large search space and a mix of

natural and programming languages combined in the same post.

To search for outdated online code clones, we focused on the QS clone pairs

that were cloned from Qualitas to Stack Overflow and compared them with their

latest versions. We downloaded the latest version of the Qualitas projects from their

repositories on 3 October 2017. For each QS online clone pair, we used the clone

from Qualitas as a proxy. We searched for its latest version by the file name and

located the cloned region in the file based on the method name or specific code

statements. We then compared the Stack Overflow snippet to its latest version line-

by-line to find if any change has been made to the source code. We also made sure

that the changes did not come from the modifications made to the Stack Overflow

snippets by the answerers but from the updates in the projects themselves. When we

found inconsistent lines between the two versions, we used git blame to see who

modified those lines of code and the timestamps. We also read commit messages

and investigated the issue tracking information if the code change is linked to an

automatic issue tracking system, such as Jira or BugZilla to gain insights into the

intent behind the change.

Lastly, we searched for the outdated code snippets in 130,719 GitHub projects

to see how widespread is the outdated code in the wild. We mined GitHub based
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on the number of stars the projects received, which indicated their popularity. We

relied on GitHub API to query the project metadata before cloning them. Since

GitHub API returned only top 1,000 projects at a time for each query, we formulated

the query to retrieve most starred projects based on their sizes. The project size

range started from 1KB to 2MB with 1KB step size, and the last query is for all

the remaining projects that were larger than 2MB. With this method, we retrieved

the top 1,000 most starred projects for each project size. As a result, we cloned

130,719 GitHub projects ranging from 29,465 stars to 1 star. A clone detection was

then performed between the outdated code snippets and the GitHub projects. We

selected SourcererCC with the same settings (see Table 4.2) for this task because it

could scale to a large-scale data set, while Simian could not. Finally, we analysed

the clone reports and manually checked the clones.

4.3.2.5 Phase 6: Licensing Analysis

Software license plays an important role in software development. Violation of

software licenses impacts software delivery and also leads to legal issues [Sprigman,

2015]. One can run into a licensing issue if he or she integrates third-party source

code into their software without checking. A study by An et al. [2017] reports 1,279

cases of potential license violations between 399 Android apps and Stack Overflow

code snippets.

We analysed licensing conflicts of the online clones in the QS, EX, and UD

set. The licenses were extracted by Ninka, an automatic license identification

tool [German et al., 2010]. Since Ninka works at a file level, we reported the

findings based on Stack Overflow snippets and Qualitas source files instead of the

clone pairs (duplicates were ignored). For the ones that could not be automatically

identified by Ninka and had been reported as SeeFile or Unknown, we looked at

them manually to see if any license can be found. For EX clone pairs that are

cloned from external sources such as JDK or websites, we manually searched

for the license of the original code. Lastly, we searched for occurrences of the

license-conflicting online clones in GitHub projects using the same method as in

the outdated clones.
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Table 4.6: Investigated online clone pairs and corresponding snippets and Qualitas projects

Set Pairs Snippets Projects Cloned ratio

Reported clones 2,289 460 59 53.28%

TP from manual validation 2,063 443 59 54.09%

4.4 Results and Discussion
We follow the 6 phases in the experimental framework (Figure 4.3) to answer the

four research questions. To answer RQ1, we rely on the number of manually

validated true positive online clone pairs in phase 3. We use the results of the

manual classification by the seven patterns of online code cloning to answer RQ2

(phase 4). For RQ3, we looked at the true positive clone pairs that are classified

as clones from Qualitas to Stack Overflow and checked if they have been changed

after cloning (phase 5). Similarly, for RQ4, we looked at the license of each clone

in the pattern QS, EX, UD and checked for a possibility of license violation (phase

6).

4.4.1 RQ1: Online Code Clones

To what extent is source code cloned between Stack Overflow and open source

projects?

The statistics on clones obtained from the merged clone data set are presented in Ta-

ble 4.6. Simian and SourcererCC reported clones in 460 snippets, approximately

0.6% of the 72,365 Stack Overflow snippets, associated with 59 Qualitas projects.

For the cloned Stack Overflow snippets, the average ratio of cloned code is 53.28%

(i.e., the number of cloned lines of the cloned Stack Overflow snippet).

Lastly, during the manual investigation of 2,289 clone pairs, we identified 226

pairs as being accidental clones (NC), i.e., false positives. After removing them,

the set still contains 2,063 true positive clone pairs between 443 Stack Overflow

snippets and 59 Qualitas projects. The average cloned ratio for the true positive

clone pairs is 54.09%.

To answer RQ1, we found 2,063 manually confirmed clone pairs between 443
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Table 4.7: Classifications of online clone pairs.

Set QS SQ EX UD BP IN NC Total

Before consolidation 247 1 197 107 1,495 16 226 2,289
After consolidation 153 1 109 65 216 9 53 606

Stack Overflow code snippets and 59 Qualitas proejcts.

4.4.2 RQ2: Patterns of Online Code Cloning

How do online code clones occur?

We performed a manual classification of the 2,289 merged clone pairs by following

the classification process in Figure 4.5. The classification results are shown in

Table 4.7 and explained in the following.

QS: Qualitas → Stack Overflow. We found 247 online clone pairs with

evidence of cloning from Qualitas projects to Stack Overflow. However, we

observed that, in some cases, a cloned code snippet on Stack Overflow matched

with more than one code snippet in Qualitas projects because of code cloning inside

Qualitas projects themselves. To avoid double counting of such online clones, we

consolidated multiple clone pairs having the same Stack Overflow snippet, starting

line, and ending line into a single clone pair. We finally obtained 153 QS pairs

(Table 4.7) having unique Stack Overflow code snippets and associated with 23

Qualitas projects listed in Table 4.8. The most cloned project is hibernate with 23

clone pairs, followed by eclipse (21 pairs), jung2 (19 pairs), spring (17 pairs), and

jfreechart (13 pairs). The clones are used as examples and are very similar to their

original Qualitas code with limited modifications. Most of them have a statement in

the Stack Overflow post saying that the code is “copied,” “borrowed” or “modified”

from a specific file or class in a Qualitas project. For example, according to the

motivating example in Figure 4.1, we found evidence in the Stack Overflow Post

22315734 saying that “Actually, you can learn how to compare in Hadoop from

WritableComparator. Here is an example that borrows some ideas from it.”

We analysed the time it took for the clones to appear from Qualitas projects to

Stack Overflow. The clone ages were calculated by counting the number of months
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Table 4.8: Qualitas projects associated with QS and UD online clone pairs

QS UD

Project Pairs Project Pairs

hibernate 23 netbeans 11
eclipse 21 eclipse 8
jung2 19 jstock 5
spring 17 compiere 5
jfreechart 13 ireport 4
hadoop 10 jmeter 4
tomcat 8 jung2 3
log4j 8 jhotdraw 3
struts2 5 c-jdbc 3
weka 4 log4j 3
lucene 4 wct 2
poi 3 hibernate 2
junit 3 tomcat 2
jstock 2 spring 1
jgraph 2 rssowl 1
jboss 2 mvnforum 1
jasperreports 2 jfreechart 1
compiere 2 jboss 1
jgrapht 1 hadoop 1
itext 1 geotools 1
c-jdbc 1 freemind 1
ant 1 findbugs 1
antlr4 1 cayenne 1

between the date of each Qualitas project and the date the answer was posted on

Stack Overflow as shown in Figure 4.6. We found that, on average, it took the

clones around two years since they appeared in Qualitas projects to appear on Stack

Overflow answers. Some of the clones appeared on Stack Overflow almost at the

same time as the original, while the oldest clones took around five years.

SQ: Stack Overflow→Qualitas. We found one pair with evidence of cloning

from Stack Overflow post ID 698283 to POIUtils.java in jstock project. The user

who asked the question on Stack Overflow is an author of jstock. The question is

about determining the right method to call among seven overloading methods of

setCellValue during runtime. We could not find evidence of copying or attribution

to Stack Overflow in jstock. However, considering that the 25 lines of code of
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Figure 4.6: Age of QS online code clones.

private Method findMethodToInvoke(Object test) {

Method method = parameterTypeMap.get(test.getClass());

if (method != null) {

return method;

}

// Look for superclasses

Class<?> x = test.getClass().getSuperclass();

while (x != null && x != Object.class) {

method = parameterTypeMap.get(x);

if (method != null) {

return method;

}

x = x.getSuperclass();

}

// Look for interfaces

for (Class<?> i : test.getClass().getInterfaces()) {

method = parameterTypeMap.get(i);

if (method != null) {

return method;

}

}

return null;

}

Figure 4.7: The findMethodToInvoke that is found to be copied from Stack Overflow
post 698283 to POIUtils class in jstock.

findMethodToInvoke method depicted in Figure 4.7 in Stack Overflow is very

similar to the code in jstock including comments, it is almost certain that the two

code snippets form a clone pair. In addition, the Stack Overflow answer was posted

on 30 March 2009, while the code in POIUtils class in jstock was committed to

GitHub on the next day of 31 March 2009.

This very low number of SQ clone pair is very likely due to the age of the
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Figure 4.8: Original sources of EX clone pairs

Qualitas corpus as another study [An et al., 2017] showed the presence of clones

from Stack Overflow in newer open source data sets. This is expected and comes

from our experimental design since we are more interested in cloning from Qualitas

to Stack Overflow.

EX: External Sources. We found 197 clone pairs from external sources

to Stack Overflow. After consolidating duplicated SO snippets due to multiple

intra-clone instances in Qualitas, we obtained 109 EX pairs. We found evidence

of copying from an external source to both Stack Overflow and Qualitas in 49

pairs. Each of the pairs contains statement(s) pointing to the original external

location of the cloned code in Qualitas and Stack Overflow. Besides, we found

evidence of copying from an external source to Stack Overflow, but not in Qualitas,

in 60 pairs. Our analysis shows that the external sources fall into six groups

as displayed in Figure 4.8. There are 63 EX online clone pairs copied from

source code of Java SDK (e.g., java.util, javax.swing, javax.servlet), 18 pairs

from websites, 14 pairs from open source systems not in Qualitas (e.g., Mozilla

Rhino), 10 pairs from Java official documentation by Sun Microsystems or Oracle,

3 pairs from books, and 1 pair from a company project. For example, Stack

Overflow Post 9549009 contains a code comment saying “Copied shamelessly

from org.bouncycastle.crypto.generators.PKCS5S2ParametersGenerator” which is

an open source project not included in the Qualitas corpus. Post 92962 includes
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a VerticalLabelUI class with a license statement showing that it is developed

by a private company called Sapient. Post 12879764 has a text saying “Code

modified and cleaned from the original at Filthy Rich Clients.” which is a book for

developing animated and graphical effects for desktop Java applications. Another

example is a copy of the code from a website in post 15260207. The text

surrounding source code reads “I basically stole this from the web and modified

it slightly... You can see the original post here (http://www.java2s.com/Code/

Java/Swing-JFC/DragListDemo.htm).”. Interestingly, the code is actually a

copy from Sun Microsystems.

These findings complement a study of clones between software projects [Sva-

jlenko et al., 2014b]. We found that cloning can also happen among differ-

ent sources on the Internet just like software projects. There are 18 clone

pairs that originated from programming websites including www.java2s.com and

exampledepot.com. Moreover, there is one snippet which comes from a research

website. We found that a snippet to generate graphical Perlin noise is copied from

NYU Media Research Lab (http://mrl.nyu.edu/˜perlin/noise/) website

and is used in both Stack Overflow answer and the aoi project with attribution.

UD: Unknown Direction. We found 107 online clone pairs, reduced to 65

pairs after consolidating the clones, with no evidence of cloning between Qualitas

and Stack Overflow but with a high code similarity that suggests cloning. The most

cloned project is netbeans with 11 clone pairs. Most of the clones are a large chunk

of code handling GUI components. Although these GUI clones might be auto-

generated by IDEs, we did not find any evidence. The second most cloned project

is eclipse (8 pairs), followed by jstock (5 pairs), a free stock market software, and

compiere, a customer relationship management (CRM) system.

BP: Boiler-Plate. There were a large amount of boiler-plate clone pairs found

in this study. We observed 1,495 such clone pairs and 216 after consolidation. The

BP clone pairs account for 65% of all clone pairs we classified. The majority of

them are equals() methods.

IN: Inheritance/interface. There were 16 clone pairs, 9 pairs after consol-

http://www.java2s.com/Code/Java/Swing-JFC/DragListDemo.htm
http://www.java2s.com/Code/Java/Swing-JFC/DragListDemo.htm
www.java2s.com
exampledepot.com
http://mrl.nyu.edu/~perlin/noise/
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Figure 4.9: Outdated QS online clone pairs group by projects

idation, found to be similar because they implement the same interface or inherit

from the same class. An example is the two implementations of a custom data type

which implements UserType. They share similar @Override methods of deepCopy,

isMutable, assemble, disassemble, and replace.

NC: Not Clones. There were 226 non-clone pairs, 53 after consolidation.

Mainly, they are false positive clones caused by code normalisation and false Type-

3 clones from SourcererCC. Examples of the NC clone instances include finally

or try-catch clauses that were accidentally the same due to their tiny sizes, and

similar switch-case statements.

To answer RQ2, we found 153 pairs with strong evidences to be cloned from

23 Qualitas projects to Stack Overflow, 1 pair was cloned from Stack Overflow to

Qualitas, and 109 pairs were found to be cloned to Stack Overflow from external

sources. However, the largest amount of the clone pairs between Stack Overflow

and Qualitas projects are boiler-plate code (216), followed by 65 clone pairs with

no evidence that the code has actually been copied, and 9 pairs of clones due to

implementing the same interface or inheriting the same class.

4.4.3 RQ3: Outdated Online Code Clones

Are online code clones up-to-date compared to their counterparts in the original

projects?

We discovered 100 outdated online clone pairs out of 153 pairs. As shown in

Figure 4.9, hibernate has the highest number of 19 outdated pairs, followed by
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Table 4.9: Six code modification types found when comparing the outdated clone pairs to
their latest versions

Modification Occurrences

Statement modification 50
Statement addition 28
Statement removal 18
Method signature change 16
Method rewriting 15
File deletion 14

14 from spring, 13 from eclipse, and 9 from hadoop. Besides the two examples of

outdated code in WritableComparator and StringUtils class from hadoop shown

in Figure 4.1 and Figure 4.2, we also found a few outdated code elements which

contained a large number of modifications. For example, the code snippet in Stack

Overflow post 23520731 is a copy of SchemaUpdate.java in hibernate. The code

has been heavily modified on 5 February 2016.

We analysed code modifications which made Stack Overflow code outdated by

going through commits and git blame information. The six code modification types

found in the 100 outdated online clone pairs are summarised in Table 4.9. They

include statement addition, statement modification, statement removal, method

rewriting, API change (changing in method signature), and file deletion. We

occasionally found multiple code modifications applied to one clone pair at the same

time but at a different location. The most often code change found is statement

modification (50 occurrences), followed by statement addition (28 occurrences),

statement removal (18 occurrences), change of method signature, i.e., API change

(16 occurrences), and method rewriting (15 occurrences). Moreover, in the 101

outdated pairs, we found 15 “dead” snippets. These snippets cannot be located

in the latest version of the projects. For example, the snippet in Stack Overflow

post 3758110, a copy of DefaultAnnotationHandlerMapping.java in spring,

was deleted in the commit 02a4473c62d8240837bec297f0a1f3cb67ef8a7b on 20

January 2012, two years after it was posted.

Moreover, using the information in git commit messages, we can associate
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each change to its respective issues in an issue tracking system, such as Bugzilla

or Jira. We found that in 58 cases, the cloned code snippets on Stack Overflow

were changed because of a request in the issue tracking system. Since issue

tracking systems are also used, besides bug reports, for feature request and feature

enhancements, having an issue tracking ID can reflect that most of the changes are

important and not only a superficial fix such as code formatting. The intents behind

the changes are grouped into six categories as shown in Section 4.4.3. Enhancement

is the majority intent accounting for 65 of the 100 outdated code (65%), followed

by code deprecation (15%). There were 10 outdated code snippets (10%) caused by

bug fixing. The rest of the changes are because of code refactoring (6%), changing

coding style (3%), and the data format change (2%). Not all outdated code are

toxic. However, the 10 buggy and outdated code snippets we found are toxic and

are harmful to reuse.

Table 4.10 shows examples of the outdated online clones on Stack Overflow.

The table displays information about the clones from both Stack Overflow and

Qualitas side including the dates. We summarise the changes that make the clones

outdated into three types, modified/added/deleted statements (S), file deletion (D),

and method rewriting (R), along with the issue tracking number and the date of the

change. The complete set of 100 outdated online clones can be found in Table B.1

and Table B.2 in Appendix B.

We performed a detailed investigation of the 100 outdated answers on Stack

Overflow, on 6 May 2018, approximately two years after the snapshot we analysed

was created to look for any changes, warnings, or mitigations made to the outdated

code snippets. We investigated the answers on three aspects: newer answers, higher-

voted answers, and comments on the outdated answers. We found 34 posts which

contained newer answers and 5 posts which contained answers with a higher number

of votes than the outdated answers. However, 99 of the 100 outdated answers were

still marked as accepted answers.
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Intent Detail Amount

Enhancement Add or update existing features 64
Deprecation Delete dead/deprecated code 15
Bug Fix bugs 10
Refactoring Refactor code for better design 6
Coding style Update to a new style guideline 3
Data change Changes in the data format 2

Table 4.11: Intents of code changes in 100 outdated code snippets

Clones Amount

Found in Qualitas GitHub repos 13

Found in other project repos
Exact copy (outdated) 47
Non-exact copy 32

Total 102

Table 4.12: Clones of the 100 Stack Overflow outdated code snippets in 130,719 GitHub
projects

For the comments, we check if there is any comment to mitigate or point

out the toxicity of the outdated code snippets. We found that, out of 100

answers, 6 answers had a comment saying the code in the answer is outdated

or containing issues, such as “spring 3.1 stuff”, “...tried this but having connect

exception – javax.mail.MessagingException: Could not connect to SMTP

host: smtp.gmail.com, port: 465”, “You should add a buffer.reset(null,

0, 0); at the end of the try block to avoid excess heap usage (issue no. HADOOP-

11323)” or “.. I do not have experience with new versions of hibernate for a long

time. But previously without clean you could receive some unexpected results. So

I suggest to try different approaches or even check latest documentation”. The 6

outdated code snippets were still not fixed, but the comments themselves may help

to warn some of the Stack Overflow users.

Then, we performed code clone detection between the 100 outdated code

snippets and 130,719 GitHub projects. We found 102 cloned candidates, which

were associated with 30 outdated code snippets, appearing in 68 GitHub projects

and manually investigated all of them. Out of the 102 cloned snippets, 13 cloned
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snippets matched with themselves because some of the Qualitas projects also appear

on GitHub. For other projects besides the Qualitas projects, 32 cloned snippets were

not exactly the same (e.g., they contained additional code modifications made by

the projects’ developers or they were copied from another source with a slightly

different code). 47 cloned snippets were the same as the outdated code snippets,

which of 12 were buggy. Two cloned snippets gave attributions to Stack Overflow.

The attributions pointed to different posts than the ones we found but containing the

same code in the answers9. 32 cloned snippets were very likely to be a file-level

clone from its respective original project (e.g., JFreeChart, JUnit, Log4J, Hadoop)

based on their license header and the Javadoc comments. 13 cloned snippets did not

have any hints or evidence of copying.

Interestingly, we discovered that the buggy version of the humanReadableInt()

method from Hadoop appeared in two popular Java projects: deeplearning4j (8,830

stars and 4,223 forks) and Apache Hive (1,854 stars and 1,946 forks). Due to

the lack of evidence, we could not conclude how this method, which is the

same as the toxic code snippet we found on Stack Overflow, appears in the two

projects. It is possible that the developers retrieved them from Stack Overflow,

other websites, or from Hadoop code base directly. Nevertheless, we reported them

to the developers of the two projects regarding the issue. We created a bug report

for each project (deeplearning4j #469410 and HIVE-1892911) and communicated

with the developers of the projects by describing the problem of race condition

in the outdated version of the humanReadableInt() method and proposed a fix

by using the newest version of the method in Hadoop. The issue has been fixed

in both projects. The developers of deeplearning4j agreed that the method was

problematic and decided to implement their own fix due to a concern of a potential

software licensing conflict caused by copying the fix directly from the Hadoop code

base. The Apache Hive developers investigated the code base and found that the

humanReadableInt() method is not used anywhere in the project. Thus, they

9The answers were not marked as accepted so they were not included in our experiment.
10deeplearning4j bug report: https://github.com/deeplearning4j/deeplearning4j/

issues/4692
11Apache Hive bug report: https://issues.apache.org/jira/browse/HIVE-18929

https://github.com/deeplearning4j/deeplearning4j/issues/4692
https://github.com/deeplearning4j/deeplearning4j/issues/4692
 https://issues.apache.org/jira/browse/HIVE-18929
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deleted the method.

Although we did not find strong evidence of the outdated code snippets in

GitHub projects, it would still be useful if Stack Overflow implements a flagging of

outdated answers. The outdated online code clones cause problems ranging from

uncompilable code (due to modifications and different API usage in the outdated

code) to the introduction of vulnerabilities to the software [Xia et al., 2014]. An

outdated code with a subtle change (e.g., Figure 4.1) may be copied and reused

without awareness from developers. Moreover, an outdated code with a defect (e.g.,

a race condition problem in Figure 4.2) is clearly harmful to be reused. Although

Stack Overflow has a voting mechanism that may mitigate this issue, the accepted

answer may still be used by naive developers who copy and reuse the outdated code.

For RQ3, our results show that 65% (100) of QS clone pairs on Stack Overflow

are outdated. 86 pairs differ from their newest versions by modifications applied to

variable names or method names, added or deleted statements, to a fully rewritten

code with new method signatures. 15 pairs are dead snippets. 47 outdated code

snippets, of which 12 are buggy, are found in 130,719 GitHub projects without

evidence of copying. A toxic code snippet with a race condition is found in two

popular projects: deeplearning4j and Apache Hive.

4.4.4 RQ4: Software License Violations

Do license conflicts occur between Stack Overflow clones and their originals?

In our study, we reveal another type of toxic code snippets which is software

licensing issues caused by code cloning to Stack Overflow. We found evidence

that 153 pieces of code have been copied from Qualitas projects to Stack Overflow

as examples. Another 109 pieces of code are cloned from external sources. Their

status of accepted answers increases their chances of being reused. Even though

most of the Qualitas projects came with a software license, we found that the license

information was frequently missing after the code was copied to Stack Overflow.

The licensing terms on top of source code files are not copied because usually only

a small part of the file was cloned. In overall, we can see that most of the Stack
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Table 4.13: License mapping of online clones (file-level)

Type Qualitas Stack Overflow
(CC BY-NC-SA)

QS EX UD

Compatible Apache-2 Apache-2 1
EPLv1 EPLv1 2 1
Proprietary Proprietary 2
Sun Microsystems Sun Microsystems 3
No license No license 20 9 2
No license CC BY-SA 3.0 1

Total 23 15 3

Incompat. AGPLv3/3+ No license 1 4
Apache-2 No license 46 14 12
BSD/BSD3 No license 4 1
CDDL or GPLv2 No license 6
EPLv1 No license 10 6
GPLv2+/3+ No license 8 48 7
LesserGPLv2.1+/3+ No license 16 9
MPLv1.1 No license 1
Oracle No license 3
Proprietary No license 1 2
Sun Microsystems No license 1 2
Unknown No license 11
LesserGPLv2.1+ New BSD3 1

Total 86 78 50

Overflow snippets do not contain licensing terms while their clone counterparts in

Qualitas projects and external sources do. Since licensing statement resides on top

of a file, the results here are analysed at a file level, not clone fragment, and clone

pairs from the same file are merged. The summary of licensing information is listed

in Table 4.13.

Compatible license: There are 41 pairs which have compatible licenses

such as Apache license v.2; Eclipse Public License v.1 (EPLv1); or a pair of

Creative Common Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-

NC-SA 3.0) vs. no license. These clones are safe for being reused. Since source

code and text on Stack Overflow are protected by CC BY-NC-SA 3.0, we can treat

the Stack Overflow code snippets without licensing information as having CC BY-

NC-SA 3.0 by default. The CC BY-NC-SA 3.0 license is relaxed, and it only requests
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an attribution when reused.

Incompatible license: there are 214 clone pairs which do not contain licensing

information after they are posted on Stack Overflow or contain a different license

from their Qualitas clone counterparts. Almost all (85) of QS clone pairs have their

licensing terms removed or changed when posted on Stack Overflow. One QS clone

pair posted by a JFreeChart developer changed its license from Lesser GPL v2.1+ to

New BSD 3-clause. The developer may intentionally changed the license to be more

suitable to Stack Overflow since New BSD 3-clause license allows reuse without

requiring the same license in the distributing software or statement of changes.

For EX clone pairs, we searched for licensing terms of the original source

code from the external sources. We found that 78 out of 93 EX clone pairs have

incompatible licenses. Similarly, the license statement was removed from Stack

Overflow snippets.

Of 53 UD clone pairs, 50 pairs have incompatible licenses. Again, most clones

in Qualitas contain a license while the Stack Overflow snippets do not.

The same GitHub study has been done for license-incompatible code snippets.

We detected clones between the 214 code snippets with their original license miss-

ing (86 QS, 78 EX, and 50 UD) and 130,719 GitHub projects using SourcererCC

with 80% similarity threshold. Opposite to the outdated clones, we discovered

a large number of 7,207 clone pairs. There were 95 pairs from 10 Qualitas

projects hosted on GitHub and 7,112 pairs from 2,427 other projects. As shown

in Table 4.14, the clones were found in highly-starred projects (29,465 to 10 stars)

to 1-star projects. We found 12 code snippets with attributions to Stack Overflow

questions/answers and 6 of them refer to one of our QS or EX clone pairs. We

used the Ninka tool to identify software licenses of the 7,112 cloned code snippets

automatically. Five code snippets did not have a license while the originals had the

Apache-2, GPLv2, or EPLv1 license. One snippet had the AGPLv3 license while

the original had the Apache-2 license. Only 995 code snippets in GitHub projects

have the same license as the originals in Qualitas.

Note that the code snippets could potentially violate the license, but do not
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No. of stars
Qualitas Other Projects

Projects Pairs Projects Pairs Same license

29540 to 10 8 71 406 1,837 193
9 to 5 0 0 275 739 110
4 to 1 2 24 1,746 4,536 692

Total 10 95 2,427 7,112 995

Table 4.14: Clones of the 214 Stack Overflow missing-license code snippets in 130,719
GitHub projects

necessarily do so. In the example where the JFreeChart developer copied his own

code, she or he was free to change the license. The same may have occurred with

any of the 214 code snippets.

For RQ4, we found 214 code snippets on Stack Overflow that could potentially

violate the license of their original software. The majority of them do not contain

licensing statements after they have been copied to Stack Overflow. For 164 of

them, we were able to identify, with evidence, where the code snippet has been

copied from. We found occurrences of 7,112 clones of the 214 license-incompatible

code snippets in 2,427 GitHub projects.

4.4.5 Overall Discussion

The findings lead to a few insights about online code clones and their toxicity as

follows.

4.4.5.1 Online Code Clones Exists on Stack Overflow

In Chapter 3, the Stack Overflow answerers’ survey shows that the answerers

sometimes copy code snippets from other sources, such as open source projects, to

answer questions on Stack Overflow. The visitors’ survey shows that programmers

reuse the code snippets in the answers and occasionally experience problems from

the copied code. Our empirical study of clone detection between 72,365 Java code

snippets on Stack Overflow and 111 open source projects in the curated Qualitas

corpus support the survey results. We found 2,289 clone pairs reported by Simian

and SourcererCC clone detectors and classified them using the seven patterns of

online code cloning. We discovered 153 clone pairs that have been copied, with
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evidence, from Qualitas projects to Stack Overflow, 109 clone pairs that have been

copied from external sources besides Qualitas to Stack Overflow, and 65 clone pairs

that are highly similar but without evidence of copying.

4.4.5.2 Outdated Clones Are Not Harmful

We found only a small number of toxic outdated code snippets in open source

projects on GitHub. Besides 12 buggy and outdated code snippets found in 12

projects, the rest were non-harmful clones of the outdated code. Although other

studies show that Stack Overflow code snippets may become toxic by containing

security vulnerabilities [Acar et al., 2016, Fischer et al., 2017] or API misuse [Zhang

et al., 2018], we found in this chapter that the damage caused by outdated code on

Stack Overflow is not high.

4.4.5.3 License-incompatible Clones Can Be Harmful

The missing licensing statements of online code clones on Stack Overflow can cause

more damage than the outdated code. As shown in our study and also in the study

by An et al. [2017], some online clones on Stack Overflow are initially licensed

under more restrictive license than Stack Overflow’s CC BY-SA 3.0. If these

missing-license online clones are reused in software with an incompatible license,

the software owner may face legal issues. Software auditing services such as Black

Duck Software or nexB, which can effectively check for license compliance of code

copied from open source projects, do not check for the original license of the cloned

code snippets on Stack Overflow. Although the Stack Overflow answerers who

participated in our survey believe that most of the code snippets on Stack Overflow

are too small to claim for copyright and they fall under fair-use, there is still a risk

due to different legal systems in each country. For example, Germany’s legal system

does not have a concept of fair use. Besides, the number of minimum lines of code

to be considered copying, i.e., de minimis, is also differently interpreted from case

to case or from country to country.
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4.4.5.4 Actionable Items

Our study discovers links from code in open source projects to code snippets on

Stack Overflow using clone detection techniques. These links enable us to discover

toxic code snippets with outdated code or licensing problems. The links can be

exploited further to mitigate the problems of reusing outdated online clones and

incompatible license on Stack Overflow code snippets. The thesis proposes the

following actionable items:

Preventive measure: We encourage Stack Overflow to enforce attribution

when source code snippets have been copied from licensed software projects to

Stack Overflow. Moreover, an IDE plug-in that can automatically detect pasted

source code and follow the link to Stack Overflow and then to the original open

source projects could also prevent the issue of license violation. We foresee the

implementation of the IDE plugin using a combination of scalable code clone

detection [Sajnani et al., 2016] or clone search techniques [Kim et al., 2018] and

automated software license detection [German et al., 2010]. In this chapter, we

performed the check using a set of code clone detectors (Simian and SourcererCC)

and software license detector (Ninka), but we had to operate the tools manually.

Using the knowledge obtained from this chapter, we build an automated and

scalable clone search with license detection as will be presented in Chapter 8. With

the proposed solution, we demonstrate that the tool can create a database of code

snippets on Stack Overflow and allow the users to search for clones and check their

licenses. The clone search tool can offer a service via REST API and integrated into

the IDE plugin. Every time a new code fragment is pasted into the IDE, the plugin

performs the check by calling the clone search tool service and report the finding to

the developers in real time.

Also, we also performed a study of two open source software auditing plat-

forms/services: BlackDuck Software12 and nexB13. For BlackDuck Software, we

found from their report [BlackDuck CORSI, 2017] that while they check for code

copied from open source projects including GitHub and Stack Overflow and analyse

12https://www.blackducksoftware.com
13https://www.nexb.com
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their license compatibility with their customer software, the BlackDuck auditing

system will treat the code snippets on Stack Overflow as having an “unknown”

license because it does not know the original license of Stack Overflow code

snippets. For nexB, their product does not mention checking of reused source

code from Stack Overflow. So, our proposed service, which can offer more precise

licensing information of Stack Overflow code snippets, will be useful as an add-on

license check for code copying from Stack Overflow.

Detective measure: A system to detect outdated source code snippets on

Stack Overflow may be needed. The system can leverage the online clone detection

techniques in this chapter to periodically check if the cloned snippets are still up-

to-date with their originals.

While checking if the copied code snippets on Stack Overflow are still up-to-

date with the latest version of their originals can possibly be done automatically, it

is a challenging task to automate the process of establishing the direction of code

cloning. One viable solution, for now, is encouraging the Stack Overflow developers

to always include the origin of the copied code snippet in the post so that this link

is always established at the posting time. Even better, Stack Overflow can provide

an optional form to fill in when an answerer post an answer if he or she copies the

code from other software projects. The form should include the origin of the code

snippet (possibly as a GitHub URL) and its original license. Using this manually

established links at posting time, we can then automate the process of checking for

an outdated code.

With such a system, the poster can be notified when the code has been updated

in the original project so that he/she can update their code on Stack Overflow

accordingly. On the other hand, with a crowdsourcing solution using an IDE

plug-in, developers can also report the corrected version of outdated code back

to the original Stack Overflow threads when they reuse outdated code and make

corrections to them.



4.5. Threats to Validity 142

4.5 Threats to Validity
There are some potential threats to validity in this chapter. We separately discuss

them in two aspects: internal and external validity.

4.5.1 Internal Validity:

We applied different mechanisms to ensure the validity of the clone pairs we

classified. First, we used two widely-used clone detection tools, Simian and

SourcererCC. We tried five other clone detectors but could not add them to the

study due to their scalability issues and susceptibility to incomplete code snippets.

We adopted Bellon’s agreement metric [Bellon et al., 2007] to merge clone pairs

for the manual classification and avoid double counting of the same clone pairs. We

studied the impact of choosing different thresholds for Bellon’s clone agreement

and the minimum clone size of the two clone detectors and selected the optimal

values. Nevertheless, our study might still suffer from false negatives, i.e., online

code clones that are not reported by the tools or are filtered out by the size (less than

10 lines) during the clone detection process. We selected accepted answers on Stack

Overflow in this chapter to focus on code snippets that solve the question’s problem

and are often shown on top of the answer list. We investigated the 72,365 Stack

Overflow code snippets used in our study and found that 62,245 of them (86%) are

also the highest voted answers.

Our seven patterns of online code cloning may not cover all possible online

cloning patterns. However, instead of defining the patterns beforehand, we resorted

to extracting them from the data sets. We derived them from a manual investigation

of 679 online clone pairs and adopted one pattern from the study by Kapser and

Godfrey [2003].

The 2,289 clone pairs classified by the two investigators are subject to manual

judgement and human errors. Although we tried our best to be careful on searching

for evidence and classifying the clones, some errors may still exist. We mitigated

this problem by having two investigators to cross check the classifications and found

145 cases that lead to better classification results. This validation process can be

even improved by employing an external investigator.
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4.5.2 External validity:

We carefully chose the data sets for our experiment so the findings could be

generalised as much as possible. We selected Stack Overflow because it is one of the

most popular programming Q&A websites available with approximately 7.6 million

users. There are a large number of code snippets reused from the site [An et al.,

2017], and there are also several studies encouraging of doing so (e.g., Ponzanelli

et al. [2013, 2014], Keivanloo et al. [2014], Park et al. [2014]). Nonetheless, it may

not be representative to all the programming Q&A websites.

Regarding the code snippets, we downloaded a full data dump and extracted

Java accepted answers since they are the most likely ones to be reused. Our findings

are limited to these restrictions. They may not be generalised to all programming

languages and all answers on Stack Overflow. We chose the curated Qualitas corpus

for Java open source projects containing 111 projects [Tempero et al., 2010]. The

projects span several areas of software and have been used in several empirical

studies [Taube-Schock et al., 2011, Beckman et al., 2011, Vasilescu et al., 2011,

Omar et al., 2012]. Although it is a curated and well-established corpus, it may not

fully represent all Java open source software available. Lastly, we selected 130,719

GitHub Java projects based on the number of stars they obtained to represent their

popularity. They might not represent all Java projects on GitHub, and the number

of clone pairs found may differ from other project selection criteria.

4.6 Related Work

Work similar to ours are studies by An et al. [2017], Abdalkareem et al. [2017],

Baltes et al. [2017], and Zhang et al. [2018]. An et al. investigated clones between

399 Android apps and Stack Overflow posts. They found 1,226 code snippets

which were reused from 68 Android apps. They also observed that there are

1,279 cases of potential license violations. The authors rely on the timestamp

to judge whether the code has been copied from/to Stack Overflow along with

confirmations from six developers. Instead of Android apps, we investigated clones

between Stack Overflow and 111 open source projects. Their results are similar to
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our findings that there exist clones from software projects to Stack Overflow with

potential license violations. Abdalkareem et al. [2017] detected clones between

Stack Overflow posts and Android apps from the F-Droid repository and used

timestamps to determine the direction of copying. They found 22 apps containing

code cloned from Stack Overflow. They reported that cloned code is commonly

used for enhancing existing code. Their analysis shows that the cloned code from

Stack Overflow has detrimental effects on quality of the apps. Baltes et al. [2017]

discovered that two-thirds of the clones from the 10 most frequently referenced

Java code snippets on Stack Overflow do not contain attributions. Zhang et al.

[2018] study quality of code snippets on Stack Overflow. They show that 31% of

the analysed Stack Overflow posts contain potential API usage violations and could

lead to program crashes or resource leaks.

4.7 Chapter Summary
The findings in this chapter establish the existence of online code clones and their

potential ramifications. This chapter provides an incentive for creating a scalable

clone search engine to effectively detect clones that are originated from online

sources. Since we target online sources such as Stack Overflow or GitHub, the

clone search engine can build and keep a large database of online code fragments,

which can be queried multiple times.

In order to develop such a tool, we take a step back to look at what has already

been invented by investigating the strengths and weaknesses of the current state-of-

the-art code similarity techniques. The next chapter will discuss a framework for

evaluating code similarity and clone search tool, called OCD. We will explain how

the framework is created and present the results of using the framework to compare

34 code similarity analysers. Lastly, we will discuss how the results from the study

affects our design of the clone search tool.



Chapter 5

OCD: A Framework for Evaluating

Code Similarity and Clone Search

Tools

This chapter explains a framework for evaluating code similarity and a code clone

search tool called OCD (Obfuscation/Compilation/Decompilation) and presents

the results of comparing 34 state-of-the-art code similarity analysers using the

framework. We built the framework as a benchmark for evaluating not only code

clone detectors but various types of code similarity detection tools. Moreover, the

framework supports the thesis’s goal of creating a scalable code clone search tool

by allowing the author to learn the strengths and weaknesses of the state-of-the-

art tools and wisely choose an appropriate method for large-scale code similarity

measure.

This chapter sets off by explaining the OCD framework. Then, the chapter

puts the framework to use by performing an empirical study to compare 34 code

similarity analysers on pervasively modified source code and boiler-plate code data

sets and studying the sensitivity of the tools’ configurations to the data sets. The

chapter also applies compilation/decompilation as a code normalisation method

and evaluates their effects to the tools’ performance. Lastly, the chapter discusses

lessons learned from the study and how the results influence our design of a scalable

code clone search technique.
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5.1 Motivation
The assessment of source code similarity has a co-evolutionary relationship with

the modifications made to the code at the point of its creation. Although there is a

large number of clone detectors, plagiarism detectors, and code similarity detectors

invented in the research community, there are relatively few studies that compare

and evaluate their performances. Burd and Bailey [2002] compare five clone

detectors for preventive maintenance tasks. Bellon et al. [2007] created and applied

a framework for comparing and evaluating 6 clone detectors. Roy et al. [2009]

evaluated a large set of clone detection tools but only based on results obtained

from the tools’ published papers. Hage et al. [2010] compare five plagiarism

detectors against 17 code modifications. Biegel et al. [2011] compare three code

similarity measures to identify code that needs refactoring. Svajlenko and Roy

[2016] developed and used a clone evaluation framework called BigCloneEval to

evaluate 10 state-of-the-art clone detectors. Although these studies cover various

goals of tool evaluation and cover different types of code modification found in the

chosen data sets, they suffer from two limitations: (1) the selected tools are limited

to only a subset of clone or plagiarism detectors, and (2) the results are based on

different data sets, so one cannot compare a tool’s performance from one study to

another tool’s from another study. To the best of our knowledge, there is no study

that performs a comprehensive and fair comparison of widely-used code similarity

analysers based on the same data sets.

In this chapter, we fill the gap by presenting a framework for comparing

code similarity analysers and use it to do the largest extant study on source code

similarity that covers the widest range of techniques and tools. We study the tools’

performances on both local and pervasive (global) code modifications usually found

in software engineering activities such as code cloning, software plagiarism, and

code refactoring. This study is motivated by the question:

“When source code is copied and modified, which code similarity

detection techniques or tools get the most accurate results?”

To answer this question, we use our framework to evaluate the performance
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of the current state-of-the-art similarity detection techniques using several error

measures. The aim of this study is to provide a foundation for the appropriate

choice of a similarity detection technique or tool for a given application based

on a thorough evaluation of strengths and weaknesses on source code with local

and global modifications. Choosing the wrong technique or tool with which to

measure software similarity or even just choosing the wrong parameters may have

detrimental consequences. The framework can also be used for evaluating new code

similarity tools and compare the performance to our reported results of the current

tools.

For the empirical study, we have selected as many techniques for source code

similarity measurement as possible, 34 in all, covering techniques specifically

designed for clone and plagiarism detection, plus the normalised compression

distance, string matching, and information retrieval. In general, the selected tools

require the optimisation of their parameters as these can affect the tools’ execution

behaviours and consequently their results. A previous study regarding parameter

optimisation [Wang et al., 2013b] has explored only a small set of clone detectors’

parameters using search-based techniques. Therefore, while including more tools

in this study, we have also searched through a wider range of configurations for

each tool, studied their impact, and discovered the best configurations for each data

set in our experiments. After obtaining tools’ optimal configurations derived from

one data set, we apply them to another data set and observe if they can be reused

effectively.

Clone and plagiarism detection use intermediate representations like token

streams or abstract syntax trees or other transformations like pretty printing or

comment removal to achieve a normalised representation [Roy et al., 2009]. We

integrated compilation and decompilation as a normalisation pre-process step for

similarity detection and evaluated its effectiveness.

5.2 Contributions

This chapter makes the following primary contributions:
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1. A framework and a data set of pervasive code modifications: Our OCD

framework is built for comparing code similarity analysers based on a general

similarity report template. It aims to evaluate code similarity detection tools

on source code with pervasive modifications, which is a challenging scenario

for code similarity. The similarity report template is designed to support

the evaluation using either pair-based or query-based measures. Thus, it

is suitable for both code clone/plagiarism detection and clone search tool

evaluation. The generated Java data set with pervasive modifications used

in this study has been created to be challenging for code similarity analysers.

According to the way we constructed the data set, the complete ground truth

is known. We make the data set publicly available so that it can be used in

future studies of tool evaluation and comparison.

2. A broad, thorough study of the performance of similarity tools and

techniques: Using our framework, we compare a large range of 34 similarity

detection techniques and tools using five experimental scenarios for Java

source code in order to measure the techniques’ performances and observe

their behaviours. We apply several error measures including pair-based and

query-based measures. The results show that, in overall, highly specialised

source code similarity detection techniques and tools can perform better

than more general, textual similarity measures. However, we also observed

some situations where compression-based and textual similarity tools are

recommended over clone and plagiarism detectors.

The results of the evaluation can be used by researchers as guidelines for

selecting techniques and tools appropriate for their problem domain. Our

study confirms both that tool configurations have strong effects on tool

performance and that they are sensitive to particular data sets. Poorly chosen

techniques or configurations can severely affect results.

3. Normalisation by decompilation: Our study confirms that compilation and

decompilation as a pre-processing step can normalise pervasively modified
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source code and can improve the effectiveness of similarity measurement

techniques with statistical significance. Three of the similarity detection

techniques and tools reported no false classifications once such normalisation

was applied.

5.3 Background

5.3.1 Source Code Modifications

We are interested in two scenarios of code modifications in this chapter: pervasive

code modifications (global) and boiler-plate code (local). Their definitions are as

follows.

5.3.1.1 Pervasive Modifications

Pervasive modifications are code changes that affect the code globally across the

whole file with multiple changes applied one after another. These are code transfor-

mations that are mainly found in the course of software plagiarism when one wants

to conceal copied code by changing their appearance and avoid detection [Daniela

et al., 2012]. Nevertheless, they also represent code clones that are repeatedly

modified over time during software evolution [Pate et al., 2013], and source code

before and after refactoring activities [Fowler, 2013]. However, our definition of

pervasive modifications excludes strong obfuscation [Collberg et al., 1997], that

aims to protect code from reverse engineering by making it difficult or impossible

to understand.

Most clone or plagiarism detection tools and techniques tolerate different

degrees of change and still identify cloned or plagiarised fragments. However, while

they usually have no problem in the presence of local or confined modifications,

pervasive modifications that transform whole files remain a challenge [Roy and

Cordy, 2009a], for example, in a situation that multiple methods are merged into

a single method due to a code refactoring activity. A clone detector focusing on

method-level clones would not report the code before and after merging as a clone

pair. Moreover, with multiple lexical and structural code changes applied repeatedly

at the same time, resulting source code can be totally different. When one looks at
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/* original */

private static int partition(Comparable[] a, int lo, int hi)

{

int i = lo, j = hi+1;

Comparable v = a[lo];

while (true) {

while (less(a[++i], v)) if (i == hi) break;

while (less(v, a[--j])) if (j == lo) break;

if (i >= j) break;

exch(a, i, j);

}

exch(a, lo, j);

return j;

}

/* plagiarised code */

private static int partition(int[] bob, int left, int right) {

int x = left;

int y = right+1;

for (;;) {

while (less(bob[left], bob[--y]))

if (y == left) break;

while (less(bob[++x], bob[left]))

if (x == right) break;

if (x >= y) break;

swap(bob, y, x);

}

swap(bob, y, left);

return y;

}

Figure 5.1: Pervasive modifications found in a programming submission.

code before and after applying pervasive modifications, one might not be able to

tell that both originate from the same file. We found that code similarity detection

tools have the same confusion.

We define source code with pervasive modifications to contain a combination

of the following code changes:

1. Lexical changes of formatting, layout modifications (Type I clones), and

identifier renaming (Type II clones).

2. Structural changes, e.g., if to case or while to for, or insertions or

deletions of statements (Type III clones).

3. Extreme code transformations that preserve source code semantics but change

its syntax (Type IV clones).
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private void createConnectionThread(int input) {

data = new HoldSharedData(startTime , password , pwdCounter);

int numOfThreads = input;

int batch = pwdCounter/numOfThreads + 1;

numOfThreads = pwdCounter/batch + 1;

System.out.println("Number of Connection Threads Used=" +

numOfThreads);

ConnectionThread[] connThread = new

ConnectionThread[numOfThreads];

for(int index = 0; index < numOfThreads; index ++) {

connThread[index] = new ConnectionThread(url, index, batch,

data);

connThread[index].conn();

}

}

Figure 5.2: A boiler-plate code to create connection threads.

Figure 5.1 shows an example of code before and after applying pervasive mod-

ifications. It is a real-world example of plagiarism from a university’s programming

class submission1.

5.3.1.2 Boiler-plate Code

Boiler-plate code occurs when developers reuse a code template, usually a function

or a code block, to achieve a particular task. It has been defined as one of the

code cloning patterns by Kapser and Godfrey [2006, 2008]. Boiler-plate code can

be found when building device drivers for operating systems [Baxter et al., 1998],

developing android applications [Crussell et al., 2013], and giving programming

assignments [Burrows et al., 2007, Schleimer et al., 2003]. Boiler-plate code usually

contains small code modifications in order to adapt the boiler-plate code to a new

environment. In contrast to pervasive modifications, the modifications made to

boiler-plate code are usually contained in a function or block. Figure 5.2 depicts

an example of boiler-plate code used for creating new HTTP connection threads

which can be reused as-is or with minimum changes.

5.3.2 Obfuscation and Deobfuscation

Obfuscation is a mechanism of making changes to a program while preserving its

original functions. It originally aimed to protect intellectual property of computer

1https://www.princeton.edu/pr/pub/integrity/pages/plagiarism/
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programs from reverse engineering or from malicious attack [Collberg et al., 2002]

and can be achieved in both source and binary level. Many automatic code

obfuscation tools are available nowadays both for commercial (e.g., Semantic

Designs Inc.’s C obfuscator [Designs, 2015], Stunnix’s obfuscators [Stunnix, 2015],

Diablo [PARIS research group, 2015]) and research purposes [Chow et al., 2001,

Schulze and Meyer, 2013, Madou et al., 2006, Necula et al., 2002].

Given a program P, and the transformed program P′, the definition of obfusca-

tion transformations T is P
T
−→ P′ requiring P and P′ to hold the same observational

behaviour2. Specifically, legal obfuscation transformation requires: 1) if P fails to

terminate or terminates with errors then P′ may or may not terminate, and 2) P′

must terminate if P terminates [Collberg et al., 1997].

Generally, there are three approaches for obfuscation transformations: lexical

(layout), control, and data transformation [Collberg et al., 2002, 1997]. Lexical

transformations can be achieved by renaming identifiers and formatting changes,

while control transformations use more sophisticated methods such as embedding

spurious branches and opaque predicates which can be deducted only at runtime.

Data transformations make changes to data structures and hence make the source

code difficult to reverse engineer. Similarly, binary-code obfuscators transform the

content of executable files.

Many obfuscation techniques have been invented and put to use in commercial

obfuscators. Collberg et al. [2003] introduce several reordering techniques (e.g.,

method parameters, basic block instructions, variables, and constants), splitting of

classes, basic blocks, and arrays, and merging of methods, parameters, and classes.

These techniques are implemented in their tool, SandMark. Wang et al. [2001]

propose a sophisticated deep obfuscation method called control flow flattening

which is used in a commercial tool called Cloakware. ProGuard [Guard Square,

2015] is a Java bytecode obfuscator which performs obfuscation by removing

existing names3 (e.g., class, method names), replacing them with meaningless

2Observation behaviour is loosely defined by Collberg et al. [1997] as “behavior as experienced
by the user.” Thus, side-effects of P′ that P does not have (e.g., file creation or message transmission
over the network), which are not experienced by the user, are not taken into account.

3This renaming is not applied to names of external library entities, which cannot be replaced.
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characters, and also gets rid of all debugging information from Java bytecode.

Loco [Madou et al., 2006] is a binary obfuscator capable of performing obfuscation

using control flow flattening and opaque predicates on selected fragments of code.

Deobfuscation is a method aiming at reversing the effects of obfuscation which

can be achieved at either static and dynamic level. It can be useful in many aspects

such as detection of obfuscated malware [Nachenberg, 1996] or as a resiliency test

for a newly developed obfuscation method [Madou et al., 2006]. While surface

obfuscation such as variable renaming can be handled straightforwardly, deep

obfuscation which makes large changes to the structure of the program (e.g., opaque

predicates or control flow flattening) is much more difficult to reverse. However,

it is not totally impossible. It has been shown that one can counter control flow

flattening by either cloning the portions of added spurious code to separate them

from the original execution path or use static path feasibility analysis [Udupa et al.,

2005] .

5.3.3 Program Decompilation

Decompilation of a program generates high-level code from low-level code. It has

several benefits including recovery of lost source code from compiled artifacts such

as binary or bytecode, reverse engineering, finding similar applications [Chen et al.,

2014]. On the other hand, decompilation can also be used to create program clones

by decompiling a program, making changes, and repacking it into a new program.

An example of this malicious use of decompilation can be seen from a study by

Chen et al. [2014]. They found that 13.51% of all applications from five different

Android markets are clones. Gibler et al. [2013] discovered that these decompiled

and cloned apps can divert advertisement impressions from the original app owners

by 14% and divert potential users by 10%.

Many decompilers have been invented in the literature for various program-

ming languages [Cifuentes and Gough, 1995, Proebsting and Watterson, 1997,

Desnos and Gueguen, 2011, Mycroft, 1999, Breuer and Bowen, 1994]. Several

techniques are involved to successfully decompile a program. The decompiled

source code may be different according to each particular decompiler. Conceptually,
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Figure 5.3: The OCD framework

decompilers extract semantics of programs from their executables, then, with

some heuristics, generate the source code based on this extraction. For example

Krakatoa [Proebsting and Watterson, 1997], a Java decompiler, extracts expressions

and type information from Java bytecode using symbolic execution, and creates

a control flow graph (CFG) of the program representing the behaviour of the

executable. Then, to generate source code, a sequencer arranges the nodes and

creates an abstract syntax tree (AST) of the program. The AST is then simplified by

rewriting rules and, finally, the resulting Java source code is created by traversing

the AST.

5.4 The OCD Framework
In this chapter, we introduce a framework called the OCD (Obfuscation/Compi-

lation/Decompilation) framework. The overview of the framework is shown in

Figure 5.3, which consists of 5 main steps.

In Step 1, the test data, i.e., a collection of Java source code files, are created.

In Step 2, pervasively modified variants (clones) are generated by applying code

transformations on the original test data files. The generated variants are saved

to a new file. Multiple tools can be chosen to transform the source code in this

step to generate different combinations of the variants. For example, if we have an

original file F and we select one source code obfuscator O and one decompiler D,

we retrieve three variants of F including FO, FD, and FOD. In Step 3, the original

and the variants are normalised. A simple form of normalisation is pretty printing

by removing comments and formatting the code to a specific coding convention,
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which is usually applied to source code during clone detection [Roy and Cordy,

2008]. The framework user can also choose to add his or her own normalisation

technique in this step. In Step 4, a code similarity detection tool that the user wants

to evaluate is plugged into the framework. The tool must be executed on every file

pair in the data set to generate a similarity report containing similarity values for all

the pairs.

In Step 5, the similarity report is analysed. We extract a similarity value

sim(x,y) from the report for every pair of files (x,y), and classify the pair as being

similar (clones) or not similar based on a chosen threshold T . The set Sim(F) of

similar pairs out of all the file pairs in F is

Sim(F) = {(x,y) ∈ F ×F : sim(x,y) > T } (5.1)

According to the way we generate the data set, we obtain a complete ground

truth, i.e., we know exactly which pair is similar and which pair is not. The files

that are originated from the same Java file must be treated as similar, and vice

versa. Thus, we can decide whether a code pair is correctly classified as a similar

pair (true positive, TP), correctly classified as a dissimilar pair (true negative, TN),

incorrectly classified as a similar pair while it is actually dissimilar (false positive,

FP), and incorrectly classified as dissimilar pair while it is actually a similar pair

(false negative, FN). After the classification, we create a confusion matrix for the

tool containing the number of TP, FP, TN, and FN. Computation of precision,

recall, accuracy, or F1 score is then based on the confusion matrix.

5.4.1 The Similarity Report Template

We design a template for the similarity report, which is produced after executing a

code similarity detection tool on our framework. The report is a Comma-Separated

Values (CSV) file that contains a matrix of similarity values of all the pairwise

comparisons. The matrix can be either symmetric or asymmetric depending on the

code similarity detection tool. It is formatted as follows.

1. The first row (header) contains a list of file names in the data set separated by
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– A.java B.java C.java D.java E.java F.java G.java H.java I.java J.java
A.java 100 55 37 63 33 43 35 60 32 43
B.java 55 100 35 54 33 39 36 56 32 39
C.java 37 35 100 39 60 27 80 36 58 27
D.java 63 54 39 100 34 58 37 80 33 58
E.java 33 33 60 34 100 34 60 33 82 34
F.java 43 39 27 58 34 100 26 59 34 100
G.java 35 36 80 37 60 26 100 36 58 26
H.java 60 56 36 80 33 59 36 100 32 59
I.java 32 32 58 33 82 34 58 32 100 34
J.java 43 39 27 58 34 100 26 59 34 100

Figure 5.4: An example similarity report

commas.

2. The first column in each row contains the name of the file being compared,

followed by a list of similarity values between the file and the other files

separated by a comma.

3. The report must have identical row and column sizes, i.e., it resembles an

N ×N matrix, where N is the number of files in the data set.

An example similarity report is illustrated in Figure 5.4. Let assume the dataset

contains 10 files: A.java, B.java, C.java, ..., J.java. Thus, the report has a

dimension of 10× 10. The first row contains a list of the file names in the data set

while the rest of the rows contains the similarity values between the pair of the file

in the first column and the file in the other columns. For example, the value 35 at

row 2 column 3, i.e., [2, 3], is a comparison [B.java, C.java]. The same value of

35 is found at [3, 2] since it is the reverse comparison [C.java, B.java]. We keep

the similarity scores for both directions because some code similarity analysers do

not give symmetric similarity values. Thus, [B.java, C.java] does not always equal

[C.java, B.java].

The similarity report contains only file names and similarity values. Hence, it

offers a benefit of supporting any tool and technique as long as the similarity values

can be obtained or derived from the tool’s output. For example, in the empirical

study shown later in this chapter, we employed a method to convert clone pair

information in a code clone report to a similarity score based on a ratio of number
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of cloned lines.

5.4.2 Implementation of the Framework

We implement the OCD framework by using a combination of various open source

programs and our developed programs. Mainly, it covers the following sets of

tools: (1) the tools to generated pervasive code modifications and perform code

normalisation, (2) the tools to run code similarity analysers, and (3) the tools to

read the similarity report and output error measure scores.

5.4.2.1 Pervasive Code Modification and Code Normalisation Tools

We deploy two types of tools for creating pervasively modified source code: code

obfuscators and compiler/decompilers. For code normalisation, we rely on a Java

pretty-printing tool and decompilers.

Obfuscators: In order to create pervasively modified source code variants in

Table 5.1: List of pervasive code modifications offered by our source code and bytecode
obfuscator, and compiler/decompilers

Code modifications Artifice ProGuard (De)compilers

Lexical modification

Formatting changes [Roy and Cordy, 2009a, Duric and Gasevic,
2013, Joy and Luck, 1999]

X X

Addition, modification or deletion of comments [Duric and Gase-
vic, 2013, Joy and Luck, 1999]

X X

Renaming of identifiers, methods [Roy and Cordy, 2009a, Duric
and Gasevic, 2013, Joy and Luck, 1999, Brixtel et al., 2010,
Fowler, 2013]

X X X

Modification of constant values [Duric and Gasevic, 2013] X

Structural modification

Split or merge of variable declarations [Duric and Gasevic, 2013] X X
Addition, modification or deletion of modifiers [Duric and Gase-
vic, 2013, Fowler, 2013]

X X

Line insertion/deletion with further edits [Roy and Cordy, 2009a] X X
Reordering of statements & control replacements [Roy and
Cordy, 2009a, Duric and Gasevic, 2013, Joy and Luck, 1999,
Brixtel et al., 2010]

X X X

Modification of control structures [Duric and Gasevic, 2013, Joy
and Luck, 1999, Brixtel et al., 2010]

X X

Changing of data types and modification of data structures [Duric
and Gasevic, 2013]

X

Method inlining and method refactoring [Duric and Gasevic,
2013, Fowler, 2013]

X

Structural redesign of source code [Duric and Gasevic, 2013,
Fowler, 2013]

X
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Step 2 of the framework, we employed two obfuscators: Artifice and ProGuard.

Artifice [Schulze and Meyer, 2013] is an Eclipse plugin for source-level obfus-

cation. The tool makes 5 different transformations to Java source code including

1) renaming of variables, fields, and methods, 2) changing assignment, increment,

and decrement operations to normal form, 3) inserting additional assignment,

increment, and decrement operations when possible, 4) changing while to for

and the other way around, and 5) changing if to its short form. We manually ran

Artifice in Eclipse.

ProGuard [Guard Square, 2015] is a well known open-source bytecode obfus-

cator. It is a versatile tool containing several functions including shrinking Java

class files, optimisation, obfuscation, and pre-verification. ProGuard obfuscates

Java bytecode by renaming classes, fields, and variables with short and meaningless

ones. It also performs package hierarchy flattening, class repackaging, merging

methods/classes and modifying package access permissions.

Using source and bytecode obfuscators, we can create pervasively modified

source code that contains modifications of lexical and structural changes. We

have investigated the code transformations offered by Artifice and ProGuard and

found that they cover changes commonly found in both code cloning and code

plagiarism as reported by [Roy and Cordy, 2009a, Schulze and Meyer, 2013, Duric

and Gasevic, 2013, Joy and Luck, 1999, Brixtel et al., 2010]. The details of code

modifications supported by our obfuscators are shown in Table 5.1.

Compiler and Decompilers: One can use a combination of compilation and

decompilation as a method of source code obfuscation or transformation. Luo et al.

[2014] use GCC/G++ with different optimisation options to generate 10 different

binary versions of the same program. However, if the desired final product is source

code, a decompiler is also required in the process in order to transform the bytecode

back to its source form. The only compiler deployed in this study is the standard

Java compiler (javac).

Decompilation is a method for reversing the process of program compilation.

Given a low-level language program such as an executable file, a decompiler gen-
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erates a high-level language counterpart that resembles the (original) source code.

This has several applications including recovery of lost source code, migrating a

system to another platform, upgrading an old program into a newer programming

language, restructuring poorly-written code, finding bugs or malicious code in

binary programs, and program validation [Cifuentes and Gough, 1995]. An example

of using the decompiler to reuse code is a well-known lawsuit between Oracle

and Google [Oracle America, Inc. v. Google Inc., 2011]. It seems that Google

decompiled a Java library to obtain the source code of its APIs and then partially

reused them in their Android operating system.

Since each decompiler has its own decompiling algorithm, one decompiler

usually generates source code which is different from the source code generated

by other decompilers. Using more than one decompiler can also be a method of

obfuscation by creating variants of the same program with the same semantics but

with different source code.

We selected two open source decompilers: Krakatau and Procyon. Krakatau

[Grosse, 2016] is an open-source toolset comprising a decompiler, a class file

disassembler, and an assembler. Procyon [Strobel, 2015] includes a Java open-

source decompiler. It has advantages over other decompilers for declaration of

enum, String, switch statements, anonymous and named local classes, annotations,

and method references. They are used in both the transformation (obfuscation) and

normalisation post-process steps (Steps 2 and 3) of the framework.

Using a combination of compilation and decompilation to generate code with

pervasive modifications can represent source code that has been refactored [Fowler,

2013] or rewritten (i.e., Type-4 clones) [Roy et al., 2009]. While its semantics

has been preserved, the source code syntax including layout, variable names, and

structure may be different. Table 5.1 shows code modifications that are supported

by our compiler and decompilers.

Code Normalisation: After the source code has been pervasively modified

by the obfuscators, compiler, and decompilers, we applied astyle4 pretty-printing

4http://astyle.sourceforge.net
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tool to reformat the code to follow the same Java coding convention. This is im-

portant since some general string similarity techniques are sensitive to whitespace,

indentations, or newlines. Then, we remove comments from the source code using

uncomment tool5. This is important due to the sensitivity of string-based measures

on code comments and also due to extra comments generated by some tools such

as the Procyon decompiler after decompilation. Any additional code normalisation

techniques can be added at this step. In our empirical study, we also performed

another code normalisation operation by applying the compiler/decompilers on the

pervasively modified source code one more time.

5.4.2.2 Tools for Running Code Similarity Analysers

To generate a similarity report according to our predefined template, we have to

correctly manage the order of pairwise comparisons, execute the tool with specified

parameters, and collect the tool’s results and format them. We rely on a bash script

to perform this task. The script is responsible for managing the tool’s dependencies

and executing the tool on a given source code pair. The script then collects the tool

result; which can be a similarity score, a terminal output, or a report file; derives a

similarity score, and writes the score to the similarity report file. An example tool

running script can be found in Appendix C. The framework user has to adapt the

script to work with their own tool.

5.4.2.3 Tools to Analyse the Similarity Report

We create another set of scripts to read the similarity report and generate error

measure scores. The scripts support computation of pair-based measures including

precision, recall, accuracy, and F1 scores and query-based measures including

precision at n (prec@n), average R-precision (ARP) and mean average precision

(MAP) scores. The script is also responsible for finding the best similarity cut-off

threshold that gives the highest F1, and prec@n.

5The uncomment tool is created by Kimmo Kulovesi (http://arkku.com)
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5.4.3 Using the OCD Framework

To use the OCD framework to evaluate a code similarity analyser. The user should

follow the guideline in Appendix C. The framework comes with an OCD data set,

and the scripts to run the tool and analyse the result. The user can choose to execute

the tool on the OCD data set and obtain the benefit of comparing his or her results

to our results of 34 code similarity analysers reported in this chapter or plugging in

their custom data set for a specific need.

5.5 Empirical Study
We have performed an empirical study of the current state-of-the-art code similarity

detection techniques using the OCD framework. Our empirical study consists

of five experimental scenarios covering different aspects and characteristics of

source code similarity. Three experimental scenarios examined the tool/technique

performance on three different data sets to discover any strengths and weaknesses.

These three are (1) an experiment on the products of the two obfuscation tools,

(2) an experiment on an available data set for identification of reuse boiler-plate

code [Flores et al., 2014], and (3) an experiment on the combinations of pervasive

modifications and boiler-plate code. The fourth scenario examined the effectiveness

of compilation/decompilation as a preprocessing normalisation strategy and the fifth

evaluated the use of error measures from information retrieval for comparing tool

performance without relying on a threshold value.

5.5.1 Research Questions

The empirical study aimed to answer the following research questions:

RQ1 (Performance comparison): How well do current similarity detection

techniques perform in the presence of pervasive source code modifications

and boiler-plate code? We compare 34 code similarity analysers using a data

set of 100 pervasively modified pieces of source code and a data set of 259

pieces of Java source code that incorporate reused boiler-plate code.

RQ2 (Optimal configurations): What are the best parameter settings and
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similarity thresholds for the techniques? We exhaustively search wide

ranges of the tools’ parameter values to locate the ones that give optimal

performances so that we can fairly compare the techniques. We are also

interested to see if one can gain optimal performance of the tools by relying

on default configurations.

RQ3 (Normalisation by decompilation): How much does compilation

followed by decompilation as a pre-processing normalisation method improve

detection results for pervasively modified code? We apply compilation and

decompilation to the data set before running the tools. We compare the

performances before and after applying this normalisation.

RQ4 (Reuse of configurations): Can we effectively reuse optimal tool

configurations for one data set on another data set? We apply the optimal tool

configurations obtained using one data set when using the tools with another

data set and investigate whether they still offer the tools’ best performances.

RQ5 (Ranked Results): Which tools perform best when only the top n results

are retrieved? Besides the set-based error measures normally used in clone

and plagiarism detection evaluation (e.g., precision, recall, F-scores), we also

compare and report the tools’ performances using ranked results adopted

from information retrieval. This comparison has a practical benefit in terms

of plagiarism detection, manual clone investigation, and automated software

repair.

RQ6 (Pervasive Modifications + Boiler-plate Code): How well do the

techniques perform when source code containing boiler-plate code clones

has been pervasively modified? We evaluate the tools on a data set com-

bining both local and global code modifications. This question also studies

which types of pervasive modifications (source code obfuscation, bytecode

obfuscation, compilation/decompilation) strongly affect tools’ performances.
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5.5.2 Code Similarity Detection Tools and Techniques

The code similarity detectors cover a wide range of similarity measurement

techniques and methods including plagiarism and clone detection, compression

distance, string matching, and information retrieval. All tools are open source in

order to expedite the repeatability of our experiments.

5.5.2.1 Plagiarism Detectors

The selected plagiarism detectors include JPlag, Sherlock, Sim, and Plaggie.

JPlag [Prechelt et al., 2002] and Sim [Gitchell and Tran, 1999] are token-based

tools which come in versions for text (jplag-text and simtext) and Java (jplag-java

and simjava), while Sherlock [Pike and Loki, 2002] relies on digital signatures,

i.e., a number created from a series of bits converted from the source code text.

Plaggie’s detection [Ahtiainen et al., 2006] method is not public but claims to

have the same functionalities as JPlag. Although there are several other plagiarism

detection tools available, some of them could not be chosen for the study due

to the absence of command-line versions preventing them from being automated.

Moreover, we require a quantitative similarity measurement so we can compare

their performances. All chosen tools report a numerical similarity value, sim(x,y),

for a given file pair x,y.

5.5.2.2 Clone Detectors

We cover a wide spectrum of clone detection techniques including text-based,

token-based, and tree-based techniques. Like the plagiarism detectors, the selected

tools are command-line based. However, most state-of-the-art clone detectors do

not report a similarity value between two files. Thus, we adopted the General Clone

Format (GCF) as a common format for clone reports. We modified and integrated

the GCF Converter [Wang et al., 2013b] to convert clone reports generated by

unsupported clone detectors into GCF format.

Since a GCF report contains several clone fragments found between two files

x and y, the similarity of x to y can be calculated as the ratio of the size of clone

fragment between x and y found in x (overlaps are handled), i.e., fragx
i (x,y), to the
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size of x and vice versa.

simGCF(x,y) =

∑n
i=1 |fragx

i (x,y)|
|x|

(5.2)

Using this method, we included six state-of-the-art clone detectors:

CCFinderX, NiCad, Simian, iClones, Deckard, and SourcererCC. CCFinderX

(ccfx) [Kamiya et al., 2002] is a token-based clone detector detecting similarity

using suffix trees. NiCad [Roy and Cordy, 2008] is a clone detection tool

embedding TXL for pretty-printing, and compares source code using string

similarity. Simian [Harris, 2003] is a purely text-based clone detection tool relying

on text line comparison with a capability for checking basic code modifications,

e.g., identifier renaming. iClones [Göde and Koschke, 2009] performs token-based

incremental clone detection over several revisions of a program. Deckard [Jiang

et al., 2007a] converts source code into an AST and computes similarity by

comparing characteristic vectors generated from the AST to find cloned code based

on approximate tree similarity. SourcererCC [Sajnani et al., 2016] is a scalable

token-based clone detection tool using an optimised inverted index with two token

filtering heuristics for fast clone detection.

Although most of the clone reports only contain clone lines, the actual

implementation of clone detection tools works at a different granularity of code

fragments. Measuring clone similarity at a single granularity level, such as line,

may penalise some tools while favouring another set of tools. With this concern

in mind, our clone similarity calculation varies over multiple granularity levels to

avoid biases to any particular tools. We consider three different granularity levels:

line, token, and character. Computing similarity at a level of lines or tokens is

common for clone detectors. Simian and NiCad detect clones based on source code

lines while CCFinderX, iClones, and SourcererCC work at token level. However,

Deckard compares clones based on ASTs so its similarity comes from neither lines

nor tokens. To make sure that we get the most accurate similarity calculation for

Deckard and other clone detectors, we also cover the most fine-grained level of

source code: characters. Using these three levels of granularity (line, word, and
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character), we calculate three simGCF(x,y) values for each of the tools.

5.5.2.3 Compression Tools

Normalised compression distance (NCD) is a distance metric between two docu-

ments based on compression [Cilibrasi and Vitányi, 2005]. It is an approximation

of the normalised information distance which is in turn based on the concept

of Kolmogorov complexity [Li and Vitáanyi, 2008]. The NCD between two

documents can be computed by

NCDz(x,y) =
Z(xy)−min {Z(x),Z(y)}

max {Z(x),Z(y)}
(5.3)

where Z(x) means the length of the compressed version of document x using

compressor Z. In this study, five variations of NCD tools are chosen. One is

part of CompLearn [Cilibrasi et al., 2015] which uses the built-in bzlib and zlib

compressors. The other four have been created by the authors as shell scripts. The

first one utilises 7-Zip [Pavlov, 2016] with various compression methods including

BZip2, Deflate, Deflate64, PPMd, LZMA, and LZMA2. The other three rely on

Unix’s gzip, bzip2, and xz compressors respectively.

Lastly, we define another, asymmetric, similarity measurement based on

compression called inclusion compression divergence (ICD). It is a compressor

based approximation to the ratio between the conditional Kolmogorov complexity

of string x given string y and the Kolmogorov complexity of x, i.e., to K(x|y)/K(x),

the proportion of the randomness in x not due to that of y. It is defined as

ICDZ(x,y) =
Z(xy)−Z(y)

Z(x)
(5.4)

and when C is NCDZ or ICDZ then we use simC(x,y) = 1−C(x,y).

5.5.2.4 Other Techniques

We expanded our study with other techniques for measuring similarity including

a range of libraries that measure textual similarity: difflib [Python Software

Foundation, 2016] compares text sequences using Gestalt pattern matching, Python
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NGram [Poulter, 2012] compares text sequences via fuzzy search using n-grams,

FuzzyWuzzy [Cohen, 2011] uses fuzzy string token matching, jellyfish [Turk and

Stephens, 2016] does approximate and phonetic matching of strings, and cosine

similarity from scikit-learn [Pedregosa et al., 2011] which is a machine learning

library providing data mining and data analysis, Java implementation of n-gram-

based similarities using Jaccard index, Sorensen-Dice coefficient, and Cosine

similarity [Debatty, 2018]. We also employed diff, the classic file comparison tool,

and bsdiff, a binary file comparison tool. Using diff or bsdiff, we calculate the

similarity between two Java files x and y using

simD(x,y) = 1−
min(|y|, |D(x,y)|)

|y|
(5.5)

where D(x,y) is the output of diff or bsdiff 6 and |D(x,y)| is the number of lines in

the diff or bsdiff output.

The result of simD(x,y) is asymmetric as it depends on the size of the

denominator. Hence simD(x,y) usually produces a different result from simD(y, x).

This is because simD(x,y) provides the distance of editing x into y which is different

in the opposite direction.

The summary of all selected tools and their respective similarity measurement

methods are presented in Table 5.2. The default configurations of each tools, as

displayed in Table 5.3, are extracted from (1) the values displayed in the help menu

of the tools, (2) the tools’ websites, (3) or the tools’ papers (e.g., Deckard [Jiang

et al., 2007b]). The range of parameter values we searched for in our study are

also included in Table 5.3. In addition, we will write the name of each tool using

only lower-case letters to show that the tool has been executed on the OCD and the

SOCO data set . For example, the results of running NiCad tool will be denoted as

“nicad” and JPlag will be denoted as “jplag”.

6We use the raw text output from both tools. The diff output was from using the parameters -i
-E -b -w -B -e. The bsdiff output was used as-is without any parameter.
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Table 5.2: Tools with their similarity measures

Tool/Technique Similarity calculation

Clone Det.
ccfx [Kamiya et al., 2002] tokens and suffix tree matching
deckard [Jiang et al., 2007b] characteristic vectors of AST optimised by LSH
iclones [Göde and Koschke, 2009] tokens and generalised suffix tree
nicad [Roy and Cordy, 2008] TXL and string comparison (LCS)
simian [Harris, 2003] line-based string comparison
sourcerercc [Sajnani et al., 2016] token index with filtering heuristics
vincent [Ragkhitwetsagul et al., 2018b] source code image comparison

Plagiarism Det.
jplag-java [Prechelt et al., 2002] tokens, Karp Rabin matching, Greedy String Tiling
jplag-text [Prechelt et al., 2002] tokens, Karp Rabin matching, Greedy String Tiling
plaggie [Ahtiainen et al., 2006] N/A (not disclosed)
sherlock [Pike and Loki, 2002] digital signatures
simjava [Gitchell and Tran, 1999] tokens and string alignment
simtext [Gitchell and Tran, 1999] tokens and string alignment

Compression
7zncd NCD with 7z
bzip2ncd NCD with bzip2
gzipncd NCD with gzip
xz-ncd NCD with xz
icd Equation 5.4
ncd [Cilibrasi et al., 2015] ncd tool with bzlib & zlib

Others
bsdiff Equation 5.5
diff Equation 5.5
difflib [Python Software Foundation, 2016] Gestalt pattern matching
fuzzywuzzy [Cohen, 2011] fuzzy string matching
jellyfish [Turk and Stephens, 2016] approximate and phonetic matching of strings
ngram [Poulter, 2012] fuzzy search based using n-gram
cosine [Pedregosa et al., 2011] cosine similarity from machine learning library
jaccard [Debatty, 2018] jaccard set similarity based on n-gram tokens
sorensen-dice [Debatty, 2018] Sorensen-Dice set similarity based on n-gram tokens
ncosine [Debatty, 2018] cosine similarity based on n-gram tokens
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Table 5.3: Tools and parameters with chosen value ranges (DF denotes default parameters)

Tool Settings Details DF Range

Clone det.
ccfx b min no. of tokens 50 3 4 5 10 15 16 17 18 19 20 21

22 23 24 25 30 35 40 45 50
t min token kinds 12 1 2 3 .. 14

deckard mintoken min no. of tokens 50 30, 50
stride sliding window size inf 0, 1, 2, inf
similarity clone similarity 1.0 0.90, 0.95, 1.00

iclones minblock min token length 20 8 10 20 30 40 50
minclone min no. of tokens 100 50 60 .. 140 150

nicad UPI % of unique code 0.30 0.30, 0.50
minline min no. of lines 10 5, 8, 10
rename variable renaming none blind, consistent
abstract code abstraction none none, declaration, statement,

expression, condition, literal
simian threshold min no. of lines 6 3 4 5 .. 10

options other options none none, ignoreCharacters,
ignoreIdentifiers, ignoreLiterals,
ignoreVariableNames

sourcerercc similarity clone similarity 80 20, 40, 60, 80

Plagiarism det.
jplag-java t min no. of tokens 9 1 2 3 .. 12
jplag-text t min no. of tokens 9 1 2 3 .. 12
plaggie M min no. of tokens 11 1 2 3 .. 14
sherlock N chain length 4 1 2 3 .. 8

Z zero bits 3 0 1 2 .. 8
simjava r min run size N/A 10 11 12 .. 24
simtext r min run size N/A 4 5 6 .. 12

Compression
7zncd-bzip2 mx compression level N/A 1 3 5 7 9
7zncd-deflate mx compression level N/A 1 3 5 7 9
7zncd-deflate64 mx compression level N/A 1 3 5 7 9
7zncd-lzma mx compression level N/A 1 3 5 7 9
7zncd-lzma2 mx compression level N/A 1 3 5 7 9
7zncd-ppmd mx compression level N/A 1 3 5 7 9
bzip2ncd C block size N/A 1 2 3 .. 9
gzipncd C compression speed N/A 1 2 3 .. 9
icd ma compression algo. N/A bzip2, deflate, deflate64,

lzma, lzma2, PPMd
mx compression level N/A 1 3 5 7 9

ncd-zlib N/A
ncd-bzlib N/A
xzncd -N compression level 6 1 2 3 .. 9, e

Others
bsdiff N/A
diff N/A
difflib autojunk auto. junk heuristic N/A true, false

whitespace ignoring white space N/A true, false
fuzzywuzzy similarity similarity calculation N/A ratio, partial ratio,

token sort ratio, token set ratio
jellyfish distance edit distance algo. N/A jaro distance, jaro winkler
ngram N/A
cosine N/A
jaccard N/A
sorensen-dice N/A
ncosine N/A
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Table 5.4: Descriptions of the 10 original Java classes in the generated OCD data set

No. File SLOC Description

1 BubbleSort.java* 39 Bubble Sort implementation
2 EightQueens.java† 65 Solution to the Eight Queens problem
3 GuessWord.java* 115 A word guessing game
4 TowerOfHanoi.java* 141 The Tower of Hanoi game
5 InfixConverter.java* 95 Infix to postfix conversion
6 Kapreka Transformation.java* 111 Kapreka Transformation of a number
7 MagicSquare.java† 121 Generating a Magic Square of size n
8 RailRoadCar.java* 71 Rearranging rail road cars
9 SLinkedList.java* 110 Singly linked list implementation

10 SqrtAlgorithm.java* 118 Calculating the square root of a number

* classes downloaded from http://www.softwareandfinance.com/Java
† classes downloaded from http://www.cs.ucf.edu/˜dmarino/ucf/cop3503/lectures

5.6 Experimental Scenarios
To answer the research questions, five experimental scenarios have been designed

and studied following the framework presented in Figure 5.3. The experiment

was conducted on a virtual machine with 2.67 GHz CPU (dual core) and 2 GB

RAM running Scientific Linux release 6.6 (Carbon), and 24 Microsoft Azure virtual

machines with up to 16 cores, 56 GB memory running Ubuntu 14.04 LTS. The

details of each scenario are explained below.

5.6.1 Scenario 1 (Pervasive Modifications)

Scenario 1 studies tool performance against pervasive modifications (as simulated

through source and bytecode obfuscation). At the same time, the best configuration

for every tool is discovered. For this data set, we completed all the 5 steps of

the OCD framework: data preparation, transformation, post-processing, similarity

detection, and analysing the similarity report. However, post-processing is limited

to pretty printing and no normalisation through decompilation is applied.

5.6.1.1 Preparation, Transformation, and Normalisation

This section follows Steps 1 and 2 in the framework. The original data con-

sists of 10 Java classes: BubbleSort, EightQueens, GuessWord, TowerOfHanoi,

InfixConverter, Kapreka Transformation, MagicSquare, RailRoadCar,

SLinkedList, and, finally, SqrtAlgorithm. We downloaded them from two

http://www.softwareandfinance.com/Java
http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lectures
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Table 5.5: Size of the data sets. The (generated) OCD data set in Scenario 1 has
been compiled and decompiled before performing the detection in Scenario 2
(OCDdecomp). The SOCO data set is used in Scenario 3 and the SOCO with
pervasive modification (SOCOocd) is used in Scenario 5.

Scenario Data set Files #Comparisons Positives Negatives

1 OCD 100 10,000 1,000 9,000
2 OCDdecomp 100 10,000 1,000 9,000
3 SOCO 259 67,081 453 66,628
3 SOCOocd 330 20,691 1,045 19,646

programming websites as shown in Table 5.4 along with the class descriptions. We

selected only the classes that can be compiled and decompiled without any required

dependencies other than the Java SDK. All of them are short Java programs with

less than 200 SLOC and they illustrate issues that are usually discussed in basic

programming classes. The process of test data preparation and transformation is

illustrated in Figure 5.6. First, we selected each original source code file and

obfuscated it using Artifice. This produced the first type of obfuscation: source-

level obfuscation (No. 1). An example of a method before and after source-level

obfuscation by Artifice is displayed on the top of Figure 5.5 (formatting has been

adjusted due to space limits).

Next, both the original and the obfuscated versions were compiled to bytecode,

producing two bytecode files. Then, both bytecode files were obfuscated once again

by ProGuard, producing two more bytecode files.

All four bytecode files were then decompiled by either Krakatau or Procyon

giving back eight additional obfuscated source code files. For example, No. 1

in Figure 5.6 is a pervasively modified version via source code obfuscation with

Artifice. No. 2 is a version which is obfuscated by Artifice, compiled, obfuscated

with ProGuard, and then decompiled with Krakatau. No. 3 is a version obfuscated

by Artifice, compiled and then decompiled with Procyon. Using this method, we

obtained 9 pervasively modified versions for each original source file, resulting

in 100 files for the data set. The only post-processing step in this scenario is

normalisation through pretty printing. We call the generated data set the OCD data

set.
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/* original */ /* ARTIFICE */

public MagicSquare(int n) { public MagicSquare(int v2) {

square=new int[n][n]; f00=new int[v2][v2];

for(int i=0;i<n;i++) int v3;

for(int j=0;j<n;j++){ v3=0;

square[i][j]=0; while(v3<v2) {

... int v4;

} v4=0;

while(v4<v2) {

f00[v3][v4]=0;

v4=v4+1;

}

v3=v3+1;

...

}

/* original + Krakatau */ /* ARTIFICE + Krakatau */

public MagicSquare(int i){ public MagicSquare(int i){

super(); super();

this.square=new int[i][i]; this.f00=new int[i][i];

int i0=0; int i0=0;

int i1=0; int i1=0;

while(i1<i) { while(i1<i){

this.square[i0][i1]=0; this.f00[i0][i1]=0;

i1=i1+1; i1=i1+1;

} }

i0=i0+1; i0=i0+1;

... ...

} }

/* original + Procyon */ /* ARTIFICE + Procyon */

public MagicSquare public MagicSquare {

(final int n) { (final int n) {

super(); super();

this.square = new int[n][n]; this.f00=new int[n][n];

for (int i=0;i<n;++i) { for (int i=0;i<n;++i) {

for (int j=0;j<n;++j) { for (int j=0;j<n;++j)

{

this.square[i][j]=0; this.f00[i][j]=0;

} }

} }

... ...

} }

Figure 5.5: The same code fragments, a constructor of MagicSquare, after pervasive
modifications, and compilation/decompilation.
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Figure 5.6: Test data generation process

5.6.1.2 Similarity Detection

The generated OCD data set of 100 Java code files is used for pairwise similarity

detection in Step 4 of the framework in Figure 5.3, resulting in 10,000 pairs of

source code files with their respective similarity values. We denote each pair and

their similarity as a triple (x,y, sim). Since each tool can have multiple parameters

to adjust and we aimed to cover as many parameter settings as possible, we

repeatedly ran each tool several times with different settings in the range listed in

Table 5.3. Hence, the number of reports generated by one tool equals the number

of combinations of its parameter values. A tool with two parameters p1 ∈ P1 and

p2 ∈ P2 has |P1| × |P2| different settings. For example, sherlock has two parameters

N ∈ {1,2,3, ...,8} and Z ∈ {0,1,2,3, ...,8}. We needed to do 8×9×10,000 = 720,000

pairwise comparisons and generated 72 similarity reports. To cover the 34 tools with

all of their possible configurations, we performed 14,950,000 pairwise comparisons

in total and analysed 1,495 reports.

5.6.1.3 Analysing the Similarity Reports

In Step 5 of the framework, the results of the pairwise similarity detection are

analysed. The 10,000 pairwise comparisons result in 10,000 (x,y, sim) entries. As in

Equation 5.1, all pairs x,y are considered to be similar when the reported similarity
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sim is larger than a threshold T . Such a threshold must be set in an informed

way to produce sensible results. However, as the results of our experiment will be

extremely sensitive to the chosen threshold, we want to use the optimal threshold,

i.e., the threshold that produces the best results. Therefore, we vary the cut-off

threshold T between 0 and 100.

As shown in Table 5.5, the ground truth of the generated data set contains 1,000

positives and 9,000 negatives. The positive pairs are the pairs of files generated

from the same original code7. For example, all pairs that are the derivatives of

InfixConverter.java must be reported as similar. The other 9,000 pairs are

negatives since they come from different original source code files and must be

classified as dissimilar. Using this ground truth, we can count the number of true

and false positives in the results reported for each of the tools. We choose the F-

score as the method to measure the tools’ performance. The F-score is preferred in

this context since the sets of similar files and dissimilar files are unbalanced and the

F-score does not take true negatives into account8.

The F-score is the harmonic mean of precision (ratio of correctly identified

reused pairs to retrieved pairs) and recall (ratio of correctly identified pairs to all the

identified pairs):

precision =
TP

TP + FP
recall =

TP
TP + FN

F-score =
2×precision× recall

precision + recall

Using the F-score, we can search for the best threshold T under which each tool

has its optimal performance with the highest F-score. For example in Figure 5.7,

after varying the threshold from 0 to 100, ncd-bzlib has the best threshold T =

37 with the highest F-score of 0.846. Since each tool may have more than one

parameter setting, we call the combination of the parameter settings and threshold

that produces the highest F-score the tool’s “optimal configuration”.

7In this study, we treat the files generated from the same original code as true positive because
they share the same semantics. However, human may or may not consider them as similar since
some of the code is heavily modified by obfuscation/compilation/decompilation.

8For the same reason, we decided against using Matthews correlation coefficient (MCC).
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Figure 5.7: The graph shows the F-score and the threshold values of ncd-bzlib. The tool
reaches the highest F-score when the threshold equals 37.

5.6.2 Scenario 2 (Reused Boiler-Plate Code)

In this scenario, we analyse the tools’ performance against an available data set that

contains files in which fragments of boiler-plate code are reused with or without

modifications. We choose the data set that has been provided by the Detection of

SOurce COde Re-use competition for discovering monolingual re-used source code

amongst a given set of programs [Flores et al., 2014], which we call the SOCO data

set. We found that many of them share the same or very similar boiler-plate code

fragments which perform the same task. Some of the boiler-plate fragments have

been modified to adapt to the environment in which the fragments are re-used. Since

we reused the data set from another study [Flores et al., 2014], we merely needed to

format the source code files by removing comments and applying pretty-printing to

them in Step 1 of our OCD framework (see Figure 5.3). We later skipped Step 2 and

Step 3 of pervasive modifications and followed only Step 4 – similarity detection,

and Step 5 – analysing similarity report in our framework.

We selected the Java training set containing 259 files for which the answer

key of true clone pairs is provided. The answer key contains 84 file pairs that

share boiler-plate code. Using the provided pairs, we are able to measure both

false positives and negatives. For each tool, this data set produced 259× 259 =

67,081 pairwise comparisons. Out of these 67,081 file pairs, 259+2×84 = 427 pairs

are similar. However, after manually investigating false positives in a preliminary
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study, we found that the provided ground truth contains errors. An investigation

revealed that the provided answer key contained two large clusters in which pairs

were missing and that two given pairs were wrong9. After removing the wrong pairs

and adding the missing pairs, the corrected ground truth contains 259+2×97 = 453

pairs.

We performed two analyses on this data set: 1) applying the derived configura-

tions to the data set and measuring the tools’ performances, and 2) searching for the

optimal configurations. Again, no transformation or normalisation has been applied

to this data set as it is already prepared.

Since the SOCO data set is 2.59 times larger than the OCD data set (259 Java

files vs. 100 Java files), it takes much longer to run. For example, it took CCFinderX

7 hours 48 minutes10 to complete 2592 = 67,081 pairwise comparisons with one

of its configurations on our Azure virtual machine. To complete the search space

of 20× 14 = 280 CCFinderX’s configurations, it took us 90 days. Executions of

the 34 tools with all of their possible configurations cover 100,286,095 pairwise

comparisons in total for this data set compared to 14,950,000 comparisons in

Scenario 1. We analysed 1,495 similarity reports in total.

5.6.3 Scenario 3 (Decompilation)

We are interested in studying the effects of normalisation through compilation/de-

compilation before performing similarity detection. This is based on the observation

that compilation has a normalising effect. Variable names disappear in bytecode

and nominally different kinds of control structures can be replaced by the same

bytecode, e.g., for and while loops are replaced by the same if and goto structures

at the bytecode level.

Likewise, changes made by bytecode obfuscators may also be normalised by

decompilers. Suppose a Java program P is obfuscated (transformed, T ) into Q

(P
T
−→ Q), then compiled (C) to bytecode BQ, and decompiled (D) to source code

Q′ (Q
C
−→ BQ

D
−→ Q′). This Q′ should be different from both P and Q due to the

9The authors of the data set confirmed that the data set contains errors.
10User time measured by /usr/bin/time -p command.



5.6. Experimental Scenarios 176

changes caused by the compiler and decompiler. However, with the same original

source code P, if it is compiled and decompiled using the same tools to create

P′ (P
C
−→ BP

D
−→ P′), P′ should have some similarity to Q′ due to the analogous

compiling/decompiling transformations made to both of them. Hence, one might

apply similarity detection to find similarity sim(P′,Q′) and get more accurate results

than sim(P,Q).

In this scenario, we focus on the OCD data set containing pervasive code

modifications of 100 source code files generated in Scenario 1. However, we

added normalisation through decompilation to the post-processing (Step 3 in the

framework) by compiling all the transformed files using javac and decompiling

them using either Krakatau or Procyon. We then followed the same similarity

detection and analysis process in Steps 4 and 5. The results are then compared to

the results obtained from Scenario 1 to observe the effects of normalisation through

decompilation.

5.6.4 Scenario 4 (Ranked Results)

In our three previous scenarios, we compared the tools’ performances using their

optimal F-scores. The F-score offers a weighted harmonic mean of precision and

recall. It is a set-based measure that does not consider any ordering of results.

The optimal F-scores are obtained by varying the threshold T to find the highest F-

score. We observed from the results of the previous scenarios that the thresholds are

highly sensitive to each particular data set. Therefore, we had to repeat the process

of finding the optimal threshold every time we changed to a new data set. This was

burdensome but could be done since we knew the ground truth data of the data sets.

The configuration problem for clone detection tools including setting thresholds

has been mentioned by several studies as one of the threats to validity [Wang

et al., 2001]. There has also been an initiative to avoid using thresholds at all

for clone detection [Keivanloo et al., 2015]. Hence, we try to avoid the problem

of threshold sensitivity affecting our results. Moreover, this approach also has

applications in software engineering including finding candidates for plagiarism

detection, automated software repair, working code examples, and large-scale code
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clone detection.

Instead of looking at the results as a set and applying a cut-off threshold to

obtain true and false positives, we consider only a subset of the results based on

their rankings. We adopt three error measures mainly used in information retrieval:

precision at n (prec@n), average r-precision (ARP), and mean average precision

(MAP) to measure the tools’ performances. We present their definitions below.

Given n as a number of top n results ranked by similarity, precision at

n [Manning et al., 2009] is defined as:

prec@n =
TP
n

In the presence of ground truth, we can set the value of n to be the number of

relevant results (i.e., true positives). With a known ground truth, precision at n when

n equals to the number of true positives is called r-precision (RP) where r stands

for “relevant” [Manning et al., 2009]. If a set of relevant files for each query q ∈ Q

is Rq = {rfq1
, ...,rfqn

}, then the r-precisions for a query q is:

RPq =
TPq

|Rq|

With presence of more than one query, an average r-precision (ARP) can be

computed as the mean of all r-precision values [Beitzel et al., 2009]:

ARP =
1
|Q|

|Q|∑
i=1

RPq

Lastly, mean average precision (MAP) measures the quality of results across

several recall levels where each relevant result is returned. It is calculated from

multiple average precision at n values where nqi is the number of retrieved results

after each relevant result rfqi
∈ Rq of a query q is found. An average precision at n

(aprec@n) of a query q is calculated from:

aprec@nq =
1
|Rq|

|Rq|∑
i=1

prec@nqi
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Mean average precision (MAP) is then derived from the mean of all aprec@n

values of all the queries in Q [Manning et al., 2009]:

MAP =
1
|Q|

|Q|∑
i=1

aprec@nqi

Precision at n, ARP, and MAP are used to measure how well the tools retrieve

relevant results within top-n ranked items for a given query [Manning et al., 2009].

We simulate a querying process by 1) running the tools on our data sets and

generating similarity pairs, and 2) ranking the results based on their similarities

reported by the tools. The higher the similarity value, the higher the rank. The top

ranked result has the highest similarity value. If a tie happens, we resort to a ranking

by alphabetical order of the file names.

For precision at n, the query is “what are the most similar files in this data

set?” and we inspect only the top n results. Our calculation of precision at n in

this study can be considered as a hybrid between a set-based and a ranked-based

measure. We put the results from different original files in the same “set” and we

“rank” them by their similarities. This is suitable for a case of plagiarism detection.

To locate plagiarised source code files, a human investigator may not want to give a

specific file as a query (since he or she does not know which file has been copied)

but he or she wants to retrieve a set of all similar pairs in a set ranked by their

similarities. JPlag uses this method to report plagiarised source code pairs [Prechelt

et al., 2002]. Moreover, finding the most similar files is useful in a manual study

of large-scale code clones (e.g., in a study by Yang et al. [2017]) when too many

clones are reported and researchers are only feasibly able to investigate by hand a

few of the most similar clone candidates.

ARP and MAP are calculated by considering the question “what are the most

similar files for each given query q?” For example, since we had a total of 100

files in our OCD data set, we queried 100 times. We picked one file at a time

from the data set as a query and retrieved a ranked result of 100 files (including the

query itself) according to the query. An r-precision was calculated from the top 10

results. We limited results to only the top 10, since our ground truth contained 10
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pervasively modified versions for each original source code file (including itself).

Thus, the number of relevant results, r, is 10 in this study. We derive ARP from the

average of the 100 r-precision values. The same process is repeated for MAP except

using average precision at n instead of r-precision. The query-based approach is

suitable when one does not require the retrieval of all the similar pairs of code

but only the most relevant ones for a given query. This situation occurs when

performing code search for automated software repair [Ke et al., 2015]. One may

not feasibly try all returned repair candidates but only the top-ranked ones. Another

example is searching for working code examples [Keivanloo et al., 2014] when one

wants to pick only the top ranked solution.

Using these three error measures, we can compare performances of the

similarity detection techniques and tools without relying on the threshold at all.

They also provide another aspect of evaluating the tools’ performances by observing

how well the tools report correct results within the top n pairs.

5.6.5 Scenario 5 (Pervasive Modifications + Boiler-plate Code)

We have two objectives for this experimental scenario. First, we are interested in a

situation where local and global code modifications are combined together. This is

done by applying pervasive modifications (global) on top of reused boiler-plate code

(local). This scenario occurs in software plagiarism when only a small fragment of

code is copied and later pervasive modifications are applied to the whole source

code to conceal the copied part of the code. It also represents a situation where

a boiler-plate code has been reused and repeatedly modified (or refactored) during

software evolution. We are interested to see if the tools can still locate the reused

boiler-plate code. Second, we shift our focus from measuring how well our tools

find all similar pairs of pervasively modified code pieces, as we did in Scenario 1,

to measuring how well our tools find similar pairs of code pieces based on each

pervasive code modification type. This is a finer-grained result and provides insights

into the effects of each pervasive code modification type on code similarity. The

default configurations are chosen for this experimental scenario to reflect a real use

case when one does not know the optimal configurations of the tools and also to
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show the effect of each pervasive code modifications on the tools’ performances

when they are picked off-the-shelf without any tuning. Since some threshold needs

to be chosen, we used the optimal threshold for each tool.

We use the data set called SOCOocd which is derived from the SOCO data set

used in Scenario 3. We follow the 5 steps in our OCD framework (see Figure 5.3) by

using the SOCO’s data set with boiler-plate code as a test data (Step 1). Among 259

SOCO files, 33 are successfully compiled and decompiled after code obfuscations

by our framework. Each of the 33 files generates 10 pervasively modified files

(including itself) resulting in 330 files available for detection (Step 4). The statistics

of SOCOocd is shown in Table 5.5.

We change the similarity detection in Step 4 to focus only on comparing

modified code to their original. Given M as a set of the 10 pervasive code

modification types, a set of similar pairs of files Simm(F) out of all files F with

a pervasive code modification m is

M = {O,A,K,Pc,PgK,PgPc,AK,APc,APgK,APgPc}

Simm(F) = {(x,y) ∈ FO×Fm : m ∈ M; sim(x,y) > T }
(5.6)

Table 5.6 presents the 10 pervasive code modification types; including the

original (O), source code obfuscation by Artifice (A), decompilation by Krakatau

(K), decompilation by Procyon (Pc), bytecode obfuscation by ProGuard and decom-

pilation by Krakatau (PgK), bytecode obfuscation by ProGuard and decompilation

by Procyon (PgPc), and four other combinations (AK, APc, APgK, APgPc); and

ground truth for each of them. The number of code pairs and true positive pairs

of A to APgPc are twice larger than the Original (O) type because of asymmetric

similarity between pairs, i.e., Sim(x,y) and Sim(y, x).

We measured the tools’ performance on each Simm(F) set. By applying tools

on a pair of original and pervasively modified code, we measure the tools based

on one particular type of code modifications at a time. In total, we made 703,494

pairwise comparisons and analysed 34 similarity reports in this scenario.
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Table 5.6: 10 pervasive code modification types

Obfuscation Decomp. Pairs TP
Type Modification Source Bytecode

O Original 1,089 55
A Artifice X 2,178 110
K Krakatau X 2,178 110
Pc Procyon X 2,178 110
PgK ProGuard + Krakatau X X 2,178 110
PgPc ProGuard + Procyon X X 2,178 110
AK Artifice + Krakatau X X 2,178 110
APc Artifice + Procyon X X 2,178 110
APgK Artifice + ProGuard + Krakatau X X X 2,178 110
APgPc Artifice + ProGuard + Procyon X X X 2,178 110

5.7 Results
We used the five experimental scenarios of pervasive modifications, decompilation,

reused boiler-plate code, ranked results, and the combination of local and global

code modification to answer the six research questions. The automatic execution

of 34 similarity analysers using the OCD framework on the data sets along with

searching for their optimal parameters took several months to complete. Then, we

carefully observed and analysed the similarity reports and the results are discussed

below in order of the six research questions.

5.7.1 RQ1: Performance Comparison

How well do current similarity detection techniques perform in the presence of

pervasive source code modifications and boiler-plate code?

The results for this research question are collected from the experimental Scenario 1

(pervasive modifications) and Scenario 2 (reused boiler-plate code).

5.7.1.1 Pervasively Modified Code

A summary of the tools’ performances and their optimal configurations on the OCD

data set are listed in Table 5.7. We show seven error measures in the table including

false positives (FP), false negatives (FN), accuracy (Acc), precision (Prec), recall

(Rec), area under ROC curve (AUC), and F-score (F1). The tools are classified into

4 groups: clone detection tools, plagiarism detection tools, compression tools, and
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Figure 5.8: The (zoomed) ROC curves of the 10 tools that have the highest area under the
curve (AUC).

other similarity analysers. We can see that the tools’ performances vary over the

same data set. For clone detectors, we applied three different granularity levels of

similarity calculation: line (L), token (T), and character (C). We find that measuring

code similarity at different code granularity levels has an impact on the performance

of the tools. For example, ccfx gives a higher F-score when measuring similarity

at character level than at line or token level. We present only the results for the

best granularity level in each case here. The complete results of the tools can be

downloaded from the study website [Ragkhitwetsagul and Krinke, 2017], including

the OCD data set before and after compilation/decompilation.

In terms of accuracy and F-score, the token-based clone detector ccfx is ranked

first. The top 10 tools with highest F-score include ccfx (0.9760) followed by

jaccard (0.8876), sorensen-dice (0.8873), fuzzywuzzy (0.876), jplag-java (0.8636),

difflib (0.8629), simjava (0.0.8618), deckard (0.8509), bzip2ncd (0.8494), and ncd-

bzlib (0.8465) respectively. Interestingly, tools from all the four groups appear in

the top ten.

For clone detectors, we have a token-based tool (ccfx) and an AST-based tool

(deckard) in the top ten. This shows that with pervasive modifications, multiple

clone detectors with different detection techniques can offer comparable results
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Table 5.7: OCD data set (Scenario 1): rankings (R) by F-scores (F1) and optimal configu-
ration of every tool and technique.

Tool Settings T FP FN Acc Prec Rec AUC F1 R

Clone det.
ccfx (C)* b=5,t=11 36 24 24 0.9952 0.9760 0.9760 0.9995 0.9760 1
deckard (T)* mintoken=30 17 44 227 0.9729 0.9461 0.7730 0.9585 0.8509 8

stride=2
similarity=0.95

iclones (L)* minblock=10 0 36 358 0.9196 0.9048 0.4886 0.7088 0.6345 30
minclone=50

nicad (L)* UPI=0.50 38 38 346 0.9616 0.9451 0.6540 0.8164 0.7730 26
minline=8
rename=blind
abstract=literal

simian (C)* threshold=4 5 150 165 0.9685 0.8477 0.8350 0.9262 0.8413 11
ignoreVariableNames

sourcerercc (T)* similarity=40 21 232 205 0.9563 0.7741 0.7950 0.9337 0.7844 25

Plag. det.
jplag-java t=7 19 58 196 0.9746 0.9327 0.8040 0.9563 0.8636 5
jplag-text t=4 14 66 239 0.9695 0.9202 0.7610 0.9658 0.8331 14
plaggie M=8 19 83 234 0.9683 0.9022 0.7660 0.9546 0.8286 17
sherlock N=4, Z=2 6 142 196 0.9662 0.8499 0.8040 0.9447 0.8263 19
simjava r=16 15 120 152 0.9728 0.8760 0.8480 0.9711 0.8618 7
simtext r=4 14 38 422 0.9540 0.9383 0.5780 0.8075 0.7153 28

Compression
7zncd-bzip2 mx=1,3,5 45 64 244 0.9692 0.9220 0.7560 0.9557 0.8308 16
7zncd-deflate mx=7 38 122 215 0.9663 0.8655 0.7850 0.9454 0.8233 22
7zncd-deflate64 mx=7,9 38 123 215 0.9662 0.8645 0.7850 0.9453 0.8229 23
7zncd-lzma mx=7,9 41 115 213 0.9672 0.8725 0.7870 0.9483 0.8275 18
7zncd-lzma2 mx=7,9 41 118 213 0.9669 0.8696 0.7870 0.9482 0.8262 20
7zncd-ppmd mx=9 42 140 198 0.9662 0.8514 0.8020 0.9467 0.8260 21
bzip2ncd C=1..9 38 62 216 0.9722 0.9267 0.7840 0.9635 0.8494 9
gzipncd C=7 31 110 203 0.9687 0.8787 0.7970 0.9556 0.8359 13
icd ma=lzma2 50 86 356 0.9558 0.8822 0.6440 0.9265 0.7445 27

mx=7,9
ncd-zlib N/A 30 104 207 0.9689 0.8841 0.7930 0.9584 0.8361 12
ncd-bzlib N/A 37 82 206 0.9712 0.9064 0.7940 0.9636 0.8465 10
xzncd -e 39 120 203 0.9677 0.8691 0.7970 0.9516 0.8315 15

Others
bsdiff* N/A 71 199 577 0.9224 0.6801 0.4230 0.8562 0.5216 34
diff (C)* N/A 8 626 184 0.9190 0.5659 0.8160 0.9364 0.6683 29
difflib whitespace=false 28 12 232 0.9756 0.9846 0.7680 0.9412 0.8629 6

autojunk=false
fuzzywuzzy token set ratio 85 58 176 0.9766 0.9342 0.8240 0.9772 0.8757 4
jellyfish jaro distance 78 340 478 0.9182 0.6056 0.5220 0.8619 0.5607 33
ngram N/A 49 110 224 0.9666 0.8758 0.7760 0.9410 0.8229 23
cosine N/A 48 292 458 0.9250 0.6499 0.5420 0.9113 0.5911 32
jaccard N/A 40 108 116 0.9776 0.8911 0.8840 0.9935 0.8876 2
sorensen-dice N/A 57 116 110 0.9774 0.8847 0.8900 0.9935 0.8873 3
ncosine N/A 65 784 226 0.8990 0.4968 0.7740 0.9317 0.6052 31

* — Tools that do not report similarity value directly. Similarity is measured at the granularity level of
line (L), token (T), or character (C).
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given their optimal configurations are provided. However, some clone detectors,

e.g., iclones, nicad, and sourcerercc did not perform well in this data set. ccfx

performs the best – possibly due to a combination of using a suffix tree matching

algorithm on a small number of tokens (b=5). This means that ccfx performs

similarity computation on one small chunk of code at a time. This approach is

flexible and effective in handling code with pervasive modifications that spread

changes over the whole file. We also manually investigated the similarity reports

of poorly performing iclones and nicad and found that the tools were susceptible

to code changes involving the two decompilers, Krakatau and Procyon. When

comparing files after decompilation by Krakatau to Procyon with or without

bytecode obfuscation, they could not find any clones and hence reported zero

similarity.

For plagiarism detection tools, jplag-java and simjava, which are token-based

plagiarism detectors, are the leaders. Other plagiarism detectors give acceptable

performance except simtext. This is expected since the tool is intended for pla-

giarism detection on natural text rather than source code. Compression tools show

promising results using NCD for code similarity detection. They are ranked mostly

in the middle from 9th to 27th with comparable results. The three bzip2-based NCD

implementations, ncd-zlib, ncd-bzlib, and bzip2ncd only slightly outperform other

compressors like gzip or lzma. So the actual compression method may not have

a strong effect in this context. Other techniques for code similarity offer varied

performance. Tools such as ngram, diff, cosine, ncosine, jellyfish and bsdiff perform

badly. They are ranked among the last positions at 23th, 29th, 31st, 32nd, 33rd, and

34th respectively. Surprisingly, two Java tools using Jaccard and Sorensen-Dice

coefficients on n-grams and two Python tools using difflib and fuzzywuzzy string

matching techniques produce very high F-scores.

To find the overall performance over similarity thresholds from 0 to 100, we

drew the receiver operating characteristic (ROC) curves, calculated the area under

the curve (AUC), and compared them. The closer the value is to one, the better the

tool’s performance. Figure 5.8 includes the ten highest AUC valued tools. We can
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see from the figure that ccfx is again the best performing tool with the highest AUC

(0.9995), followed by jaccard (0.9935) and sorensen-dice (0.9935), fuzzywuzzy

(0.9772), simjava (0.9711), jplag-text (0.9658), ncd-bzlib (0.9636), and bzip2ncd

(0.9635). The two other tools, deckard and ncd-zlib offer AUCs of 0.9585 and

0.9584.

The best tool with respect to accuracy, and F-score is ccfx. The tool with the

lowest false positive is difflib. The lowest false negatives is given by diff. However,

considering the large amount of false positive for diff (8,810 false positives which

mean 8,810 out of 9,000 dissimilar files are treated as similar), the tool tends to

judge everything as similar. The second lowest false negative is once again ccfx.

To sum up, we found that specialised tools such as source code clone and

plagiarism detectors perform well against pervasively modified code. They were

better than most of the compression-based and general string similarity tools.

Compression-based tools mostly give decent and comparable results for all com-

pression algorithms. String similarity tools perform poorly and mostly ranked

among the last. However, we found that n-gram-based Jaccard and Sorensen-Dice

and Python difflib and fuzzywuzzy perform surprisingly better than code clone

detectors and plagiarsim detectors. They are both ranked highly among the top 5.

Lastly, ccfx performed well on the data set, and is ranked the 1st on several error

measures.

5.7.1.2 Boiler-plate Code

We report the complete evaluation of the tools on the SOCO data set with the

optimal configurations in Table 5.8. Among the 34 tools, the top ranked tool

in terms of F-score is jplag-text (0.9692), followed by simjava (0.9682), simian

(0.9593) and jplag-java (0.9576). Most of the tools and techniques perform well

on this data set. We observed high accuracy, precision, recall, and an F-score of

over 0.7 for every tool except for diff and bsdiff. Since the data set contains source

code that is copied and pasted with local modifications, the four clone detectors

(ccfx, deckard, nicad, and simian) and three plagiarism detectors (jplag-text, jplag-

java and simjava) performed very well with F-scores between 0.90 and 0.97. ccfx
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Table 5.8: SOCO data set (Scenario 3): rankings (R) by F-scores (F1) and optimal
configuration of every tool and technique.

Tool Settings T FP FN Acc Prec Rec AUC F1 R

Clone det.
ccfx (C)* b=15,16,17

t=12
25 42 15 0.9992 0.9125 0.9669 0.9905 0.9389 7

deckard (T)* mintoken=50 19 27 17 0.9993 0.9417 0.9625 0.9823 0.9520 5
stride=2
similarity=1.00

iclones (L)* minblock=40 19 20 57 0.9989 0.9519 0.8742 0.9469 0.9114 12
minclone=50

nicad (L)* UPI=0.30 22 19 51 0.9990 0.9549 0.8874 0.9694 0.9199 9
minline=5
rename=consistent
abstract=condition

simian (L)* threshold=4 26 20 17 0.9994 0.9561 0.9625 0.9921 0.9593 3
ignoreVariableNames

sourcerercc (T)* similarity=60 24 42 58 0.9985 0.9039 0.8720 0.9412 0.8876 14

Plag. det.
jplag-java t=12 29 26 13 0.9994 0.9442 0.9713 0.9895 0.9576 4
jplag-text t=9 32 16 12 0.9996 0.9650 0.9735 0.9939 0.9692 1
plaggie M=14 33 36 37 0.9989 0.9204 0.9183 0.9753 0.9193 10
sherlock N=5, Z=0 22 22 54 0.9989 0.9477 0.8808 0.9996 0.9130 11
simjava r=25 46 18 11 0.9996 0.9607 0.9757 0.9987 0.9682 2
simtext r=12 17 73 19 0.9986 0.8560 0.9581 0.9887 0.9042 13

Compression
7zncd-bzip2 mx=1,3,5 64 24 118 0.9979 0.9331 0.7395 0.9901 0.8251 30
7zncd-deflate mx=7 64 27 97 0.9982 0.9295 0.7859 0.9937 0.8517 28
7zncd-deflate64 mx=7 64 27 96 0.9982 0.9297 0.7881 0.9957 0.8530 27
7zncd-lzma mx=7,9 69 11 99 0.9984 0.9699 0.7815 0.9940 0.8655 24
7zncd-lzma2 mx=7,9 69 11 99 0.9984 0.9699 0.7815 0.9939 0.8655 24
7zncd-ppmd mx=9 68 19 106 0.9981 0.9481 0.7660 0.9948 0.8474 29
bzip2ncd C=1,2,3,..,8,9 54 20 94 0.9983 0.9473 0.7925 0.9944 0.8630 26
gzipncd C=9 54 25 82 0.9984 0.9369 0.8190 0.9961 0.8740 19
icd† ma=lzma

mx=1,3
84 12 151 0.9976 0.9618 0.6667 0.9736 0.7875 31

ncd-zlib N/A 57 10 91 0.9985 0.9731 0.7991 0.9983 0.8776 16
ncd-bzlib N/A 52 30 82 0.9983 0.9252 0.8190 0.9943 0.8689 22
xzncd 2,3 64 13 94 0.9984 0.9651 0.7925 0.9942 0.8703 20

6,7,8,9,e 65

Others
bsdiff N/A 90 2125 212 0.9652 0.1019 0.5320 0.9161 0.1710 33
diff (C) N/A 29 7745 5 0.8845 0.0547 0.9890 0.9180 0.1036 34
difflib autojunk=true 42 30 21 0.9992 0.9351 0.9536 0.9999 0.9443 6

whitespace=true
fuzzywuzzy ratio 65 30 30 0.9991 0.9338 0.9338 0.9989 0.9338 8
jellyfish jaro distance 82 0 162 0.9976 1.0000 0.6424 0.9555 0.7823 32
ngram N/A 59 20 84 0.9984 0.9486 0.8146 0.9967 0.8765 17
cosine N/A 68 50 68 0.9982 0.8851 0.8499 0.9973 0.8671 23
jaccard N/A 58 36 72 0.9984 0.9134 0.8411 0.9991 0.8759 18
sorensen-dice N/A 73 36 70 0.9984 0.9141 0.8455 0.9992 0.8784 15
ncosine N/A 86 26 84 0.9984 0.9342 0.8146 0.9904 0.8703 21

* — Tools that do not report similarity value directly. Similarity is measured at the granularity level of
line (L), token (T), or character (C).
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Figure 5.9: The (zoomed) ROC curves of the 10 tools that have the highest area under the
curve (AUC) for SOCO.

and deckard produced the highest F-score when measuring similarity at character

and token levels respectively. Other clone detectors including iclones, nicad, and

simian provide the highest F-score at line level. The Python difflib and fuzzywuzzy

are outliers of the Others group offering high performance against boiler-plate

code with F-score of 0.9338 and 0.9443. Once again, these two string similarity

techniques show promising results. The compression-based techniques are among

the last although they still offer relatively high F-scores ranging from 0.8630 to

0.8776.

Regarding the overall performance over similarity thresholds of 0 to 100, the

results are illustrated as ROC curves in Figure 5.9. The tool with the highest AUC is

difflib (0.9999), followed by sherlock (0.9996), sorensen-dice (0.9992) and jaccard

(0.9991).

To sum up, we observed that almost every tool detected boiler-plate code

effectively by reporting high scores on all error measures. jplag-text, simjava,

simian, jplag-java, and deckard are the top 5 tools for this data set in terms of F-

score. Similar to pervasive modifications, we found the string matching techniques

difflib and fuzzywuzzy ranked among the top 10.
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5.7.1.3 Observations of the Tools’ Performances on the Two Data

Sets

We can notice a clear distinction between the F-score rankings of clone/plagiarism

detectors and string/compression-based tools on the SOCO data set. This is due

to the nature of boiler-plate code that has local modifications, contained within

a single method or code block on which clone and plagiarism detectors perform

well. However, on a more challenging pervasive modifications data set, there

is no clear distinction in terms of ranking between dedicated code similarity

techniques, compression-based, and general text similarity tools. We found that

the Java implementations of Jaccard and Sorensen-Dice n-gram similarity, Python

difflib string matching, and Python fuzzywuzzy token similarity techniques even

outperform several clone and plagiarism detection tools on both data sets. Provided

that they are simple and easy-to-use Java and Python libraries, one can adopt these

two techniques to measure code similarity in a situation where dedicated tools are

not available (e.g., unparsable, incomplete methods or code blocks). Compression-

based techniques are not ranked at the top in either scenario, possibly due to the

small size of the source code – NCD is known to perform better with large files.

5.7.2 RQ2: Optimal Configurations

What are the best parameter settings and similarity thresholds for the techniques?

In the experimental Scenarios 1 and 2, we thoroughly analysed various configura-

tions of every tool and found that some specific settings are sensitive to pervasively

modified and boiler-plate code while others are not.

5.7.2.1 Pervasively Modified Code

The complete list of the best configurations of every tool for pervasive modifications

from Scenario 1 can be found in the second column of Table 5.7. The optimal con-

figurations are significantly different from the default configurations, in particular

for the clone detectors. For example, using the default settings for ccfx (b=50, t=12)

leads to a very low F-score of 0.5781 due to a very high number of false negatives.
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Table 5.9: ccfx’s parameter settings for the highest precision and recall

Error measure Value
ccfx’s parameters

b t

Precision 1.000 19 7 8 9
Recall 0.980 5 12

Interestingly, a previous study on agreement of clone detectors [Wang et al., 2013b]

observed the same difference between default and optimal configurations.

In addition, we performed a detailed analysis of ccfx’s configurations. This is

because ccfx is a widely-used tool in several clone research studies. Two parameter

settings are chosen for ccfx in this study: b, the minimum length of clone fragments

in the unit of tokens, and t, the minimum number of kinds of tokens in clone

fragments. We initially observed that the optimal F-scores of the tool were at either

b=5 or b=19. Hence, we expanded the search space of ccfx parameters from 280

(|b| = 20× |t| = 14) to 392 settings (|b| = 28× |t| = 14) to reduce chances of finding a

local optimum. We did a fine-grained search of b starting from 3 to 25 stepping by

one and coarse-grained search from 30 to 50 stepping by 5.

From Figure 5.10, we can see that the default settings of ccfx, b=50 and t=12

(denoted with a × symbol) provide a decent precision but very low recall. While

there is no setting for ccfx to obtain the optimal precision and recall at the same time,

there are a few cases in which ccfx can obtain high precision and recall as shown on

the top right corner of Figure 5.10. Our derived ccfx’s optimal configuration is one

of them. The best settings for precision and recall of ccfx are described in Table 5.9.

The ccfx tool gives the best precision with b=19 and t=7, 8, 9 and gives the best

recall with b=5 and t=12.

The landscape of ccfx performance in terms of F-score is depicted in Fig-

ure 5.11. Visually, we can distinguish regions that are the sweet spot for ccfx’s

parameter settings against pervasive modifications from the rest. There are two

regions covering the b value of 19 with t value from 7 to 9, and b value of 5 with t

value from 11 to 12. The two regions provide F-scores ranging from 0.9589 up to

0.9760.
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Figure 5.10: Trade off between precision and recall for 392 ccfx parameter settings. The
default settings provide high precision but low recall against pervasive code
modifications.
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5.7.2.2 Boiler-plate Code

For boiler-plate code, we found another set of optimal configurations for the 34

tools by once again analysing a large search space of their configurations. The

complete list of the best configurations for every tool from Scenario 3 can be found

in the second column of Table 5.8. Similar to the OCD data set, the derived optimal

configurations for SOCO are different from the tools’ default configurations. For

example, ccfx’s best configurations have a smaller b, minimum number of tokens,

of 15 compared to the default value of 50 while jplag-java’s best configurations have

a higher t value, the minimum number of tokens, of 12 compared to the default value

of 9.

The results for both pervasively modified code and boiler-plate code show that

the default configurations cannot offer the tools’ their best performance. These

empirical results support the findings of Wang et al. [2013b] that one cannot rely

on the tools’ default configurations. We suggest researchers and practitioners try

their best to tune the tools before performing any benchmarking or comparisons

of the tools’ results to mitigate the threats to internal validity in their studies. Our

optimal configurations can be used as guidelines for studies involving pervasive

modifications and boiler-plate code. Nevertheless, they are only effective against

their respective data set and not guaranteed to work well on other data sets.

5.7.3 RQ3: Normalisation by Decompilation

How much does compilation followed by decompilation as a pre-processing

normalisation method improve detection results of pervasively modified code?

The results after adding compilation and decompilation for normalisation to the

post-processing step before performing similarity detection on the generated data

set in the experimental scenario 3 is shown in Figure 5.12. We can clearly observe

that decompilation by both Krakatau and Procyon boosts the F-scores of every tool

in the study.

Table 5.10 shows the performances of the tools after decompilation by

Krakatau in terms of false positive (FP) rate, false negative (FN) rate, accuracy
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Table 5.10: Optimal configuration of every tool obtained from the generateddecomp data set
decompiled by Krakatau in Scenario 2 and their rankings (R) by F-scores (F1).

Tool Settings T FP FN Acc Prec Rec AUC F1 R

Clone det.
ccfx*† (T) b=5, t=8 50 0 18 0.9982 1.0000 0.9820 0.9991 0.9909 4
deckard*† (L) mintoken=30 29 0 84 0.9916 1.0000 0.9160 0.9459 0.9562 15

stride=1
similarity=0.95

iclones* (L) minblock=8 10 0 86 0.9914 1.0000 0.9140 0.9610 0.9551 17
minclone=50

nicad*† (T) UPI=0.30 19 0 106 0.9894 1.0000 0.8940 0.9526 0.9440 27
minline=8
rename=blind
abstract=literal

simian*† (T) threshold=3 17 0 0 1.0000 1.0000 1.0000 0.9960 1.0000 1
ignoreidentifiers

sourcerercc* (T) similarity=60 16 24 156 0.9820 0.9724 0.8440 0.9536 0.9036 32

Plagiarism det.
jplag-java t=4..12,default 23 0 0 1.0000 1.0000 1.0000 0.9964 1.0000 1
jplag-text t=1 56 16 24 0.9960 0.9839 0.9760 0.9993 0.9799 8
plaggie M=9 29 0 84 0.9916 1.0000 0.9160 0.9454 0.9562 16
sherlock N=1,Z=0 60 34 22 0.9944 0.9664 0.9780 0.9989 0.9722 9
simjava† r=18 17 0 0 1.0000 1.0000 1.0000 0.9998 1.0000 1
simtext r=4; 33 33 60 0.9907 0.9661 0.9400 0.9862 0.9529 19

r=5 31

Compression
7zncd-bzip2 mx=1,3,5 49 40 40 0.9920 0.9600 0.9600 0.9983 0.9600 13
7zncd-deflate mx=9 46 28 71 0.9901 0.9707 0.9290 0.9978 0.9494 21
7zncd-deflate64 mx=9 46 28 72 0.9900 0.9707 0.9280 0.9978 0.9489 22
7zncd-lzma mx=7,9 48 28 72 0.9900 0.9707 0.9280 0.9977 0.9489 22
7zncd-lzma2 mx=7,9 48 28 72 0.9900 0.9707 0.9280 0.9977 0.9489 22
7zncd-ppmd mx=9 49 40 31 0.9929 0.9604 0.9690 0.9985 0.9647 11
bzip2ncd C=1..9,default 43 40 36 0.9924 0.9602 0.9640 0.9983 0.9621 12
gzipncd C=8,9 38 28 63 0.9909 0.9710 0.9370 0.9980 0.9537 18
icd† ma=lzma,

mx=7,9
54 45 68 0.9887 0.9539 0.9320 0.9921 0.9428 28

ncd-zlib N/A 37 28 72 0.9900 0.9707 0.9280 0.9981 0.9489 22
ncd-bzlib N/A 42 46 36 0.9918 0.9545 0.9640 0.9984 0.9592 14
xzncd -1 43 16 83 0.9901 0.9829 0.9170 0.9967 0.9488 26

Others
bsdiff N/A 78 0 171 0.9829 1.0000 0.8290 0.9595 0.9065 31
diff (C) N/A 23 12 186 0.9802 0.9855 0.8140 0.9768 0.8916 33
difflib autojunk=true 23 28 66 0.9906 0.9709 0.9340 0.9823 0.9521 20
fuzzywuzzy token set ratio 90 0 32 0.9968 1.0000 0.9680 0.9966 0.9837 5
jellyfish jaro winkler 89 40 220 0.9740 0.9512 0.7800 0.9473 0.8571 34
ngram N/A 60 48 104 0.9848 0.9492 0.8960 0.9726 0.9218 29
cosine N/A 68 98 66 0.9836 0.9050 0.9340 0.9955 0.9193 30
jaccard N/A 47 34 0 0.9966 0.9671 1.0000 0.9999 0.9833 6
sorensen-dice N/A 64 34 0 0.9966 0.9671 1.0000 0.9999 0.9833 7
ncosine N/A 80 50 8 0.9942 0.9520 0.9920 0.9990 0.9716 10

* — Tools that do not report similarity value directly. The similarity is measured at the granularity level of
line (L), token (T), or character (C).

† — Tools that have several optimal configurations. The complete lists can be found in Appendix C
and the study’s website [Ragkhitwetsagul and Krinke, 2017].
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Figure 5.12: Comparison of tool performances (F1-score) before and after decompilation

Table 5.11: Wilcoxon signed-rank test of tools’ performances before and after decompila-
tion by Krakatau and Procyon (α = 0.05).

Test p-value Significant? Effect size (A12)

Before-after decompiled by Krakatau 1.164e-10 Yes 0.972 (large)
Before-after decompiled by Procyon 1.164e-10 Yes 0.944 (large)

(Acc), precision (Prec), recall (Rec), area under ROC curve (AUC), and F-score.

We can see that normalisation by compilation/decompilation has a strong effect on

the number of false results reported by the tools. Every tool has its number of

false positives and negatives greatly reduced and three tools, simian, jplag-java, and

simjava, even no longer report any false results. All compression or other techniques

still report some false results.

To strengthen the findings, we performed a statistical test to see if the

performances before and after normalisation via decompilation differ with statis-

tical significance. We chose the non-parametric two-tailed Wilcoxon signed-rank

test [Wilcoxon, 1945]11 and performed the test with a confidence interval value

of 95% (i.e., α ≤ 0.05). Table 5.11 shows that the observed F-scores before and

after decompilation are different with statistical significance for both Krakatau and

11However, we also tried using the randomisation (i.e., permutation) test [Fisher, 1935, Box et al.,
1978] on the results and found identical test results in all cases
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Procyon. We complemented the statistical test by employing a non-parametric

effect size measure called Vargha and Delaney’s A12 measure [Vargha and Delaney,

2000] to measure the level of differences between two populations. We choose

Vargha and Delaney’s A12 measure because it is robust with respect to the shape

of the distributions being compared [Thomas et al., 2014]. Put it another way, it

does not require the two populations under comparison to be normally distributed,

which is the case in our results of the tools’ F1 scores. According to the guideline

by Vargha and Delaney [2000], the A12 value of 0.5 means there is no difference

between the two populations. A12 value over or below 0.5 means the first population

outperforms the second population, and vice versa. The guideline shows that 0.56

is interpreted as small, 0.64 as medium, and 0.71 as large. Using this scale, our

F-score differences after decompilation by Krakatau (A12 = 0.972) and Procyon

(A12 = 0.944) compared to the original are large. According to the interpretation of

A12 in Vargha and Delaney [2000], with Krakatau’s A12 of 0.972 we can compute

the probability that a random X1 score from the set of tools’ performance after

decompilation by Krakatau will be greater than a random X2 score from the set

of tools’ performance before decompilation by 2A12 − 1 = 2× 0.972− 1 = 0.944.

This A12 effect size confirms that the tools’ performance after decompilation by

Krakatau will be higher than the original 94.4% of the time. The similar finding

also applies to Procyon (88.8%). The large effect sizes clearly supports the findings

that compilation and decompilation is an effective normalisation technique against

pervasive modifications.

To gain insight, we carefully investigated the source code after normalisation

and found that decompiled files created by Krakatau are very similar despite the ap-

plied obfuscation. As depicted in Figure 5.5 in the middle, the two code fragments

become very similar after compilation and decompilation by Krakatau. This is

because Krakatau has been designed to be robust with respect to minor obfuscations

and the transformations made by Artifice and ProGuard are not very complex.

Code normalisation by Krakatau resulted in multiple optimal configurations found

for some of the tools. We selected only one optimal configuration to include in
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Table 5.10 and separately reported the complete list of optimal configurations in

Table C.1 in Appendix C.

Normalisation via decompilation using Procyon also improves the perfor-

mance of the similarity detectors, but not as much as Krakatau (see Table 5.12).

Interestingly, Procyon performs slightly better for deckard, sherlock, and cosine. An

example of code before and after decompilation by Procyon is shown in Figure 5.5

at the bottom.

The main difference between Krakatau and Procyon is that Procyon attempts to

produce much more high-level source code while Krakatau’s is nearer to the byte-

code. It seems that the low-level approach of Krakatau has a stronger normalisation

effect. Hence, compilation/decompilation may be used as an effective normalisation

method that greatly improves similarity detection between Java source code.

5.7.4 RQ4: Reuse of Configurations

Can we reuse optimal configurations from one data set in another data set

effectively?

We answer this research question using the results from RQ1 and RQ2 (experi-

mental Scenario 1 and 2 respectively). For the 34 tools from RQ1, we applied

the derived optimal configurations obtained from the OCD data set (denoted as

Cocd) to the SOCO data set. Table 5.13 shows that using these configurations has

a detrimental impact on the similarity detection results for another data set, even

for tools that have no parameters (e.g., jaccard, sorensen-dice, and ncd-zlib) and are

only influenced by the chosen similarity threshold. We noticed that the low F-scores

when Cgen are reused on SOCO come from high number of false positives possibly

due to their relaxed configurations.

To confirm this, we refer for the best configurations (settings and threshold)

for the SOCO data set discussed in RQ1 (see Table 5.8), the comparison of best

configurations between the two data sets is shown in Table 5.13. The reported

F-scores are very high for the dataset-based optimal configurations (denoted as

Csoco), confirming that configurations are very sensitive to the data set on which the
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Table 5.12: Optimal configuration of every tool obtained from the generateddecomp data set
(decompiled by Procyon) in Scenario 2 and their rankings (R) by F-scores (F1).

Tool Settings T FP FN Acc Prec Rec AUC F1 R

Clone det.
ccfx* (L) b=20, t=1..7 11 4 38 0.9958 0.9959 0.962 0.9970 0.9786 6
deckard* (T) mintoken=30 10 0 32 0.9968 1.0000 0.9680 0.9978 0.9837 4

stride=1, inf
similarity=1.00

iclones* (C) minblock=10 0 18 98 0.9884 0.9804 0.9020 0.9508 0.9396 13
minclone=50

nicad* (W) UPI=0.30 11 16 100 0.9884 0.9825 0.9000 0.9536 0.9394 14
minline=10
rename=blind
abstract=
condition,literal

simian* (C) threshold=3 23 8 70 0.9922 0.9915 0.9300 0.9987 0.9598 10
ignoreIdentifiers

sourcerercc* (T) similarity=60 11 16 136 0.9848 0.9818 0.8640 0.9990 0.9191 21

Plagiarism det.
jplag-java t=8 22 0 72 0.9928 1.0000 0.9280 0.9887 0.9627 9
jplag-text t=9 11 16 48 0.9936 0.9835 0.9520 0.9982 0.9675 8
plaggie M=13,14 10 16 80 0.9904 0.9829 0.9200 0.9773 0.9504 11
sherlock N=1, Z=0 55 28 16 0.9956 0.9723 0.9840 0.9997 0.9781 7
simjava r=default 11 8 0 0.9992 0.9921 1.0000 0.9999 0.9960 1
simtext r=4 15 42 100 0.9858 0.9554 0.9000 0.9686 0.9269 17

r=default 0

Compression
7zncd-bzip2 mx=1,3,5 51 30 116 0.9854 0.9672 0.8840 0.9909 0.9237 19
7zncd-deflate mx=9 49 25 154 0.9821 0.9713 0.8460 0.9827 0.9043 24
7zncd-deflate64 mx=9 49 25 154 0.9821 0.9713 0.8460 0.9827 0.9043 24
7zncd-lzma mx=7,9 52 16 164 0.9820 0.9812 0.8360 0.9843 0.9028 27
7zncd-lzma2 mx=7,9 52 17 164 0.9819 0.9801 0.8360 0.9841 0.9023 28
7zncd-ppmd mx=9 53 22 122 0.9856 0.9756 0.8780 0.9861 0.9242 18
bzip2ncd C=1..9,default 47 12 140 0.9848 0.9862 0.8600 0.9922 0.9188 22
gzipncd C=3 36 40 133 0.9827 0.9559 0.8670 0.9846 0.9093 23
icd ma=lzma,

mx=7,9
54 37 150 0.9813 0.9583 0.8500 0.9721 0.9009 29

ma=lzma2,
mx=7,9

ncd-zlib N/A 41 30 158 0.9812 0.9656 0.8420 0.9876 0.8996 30
ncd-bzlib N/A 47 8 140 0.9852 0.9908 0.8600 0.9923 0.9208 20
xzncd -e 49 35 148 0.9817 0.9605 0.8520 0.9860 0.9030 26

Others
bsdiff N/A 73 48 236 0.9716 0.9409 0.7640 0.9606 0.8433 33
diff (C) N/A 23 6 244 0.9750 0.9921 0.7560 0.9826 0.8581 32
difflib autojunk=true 26 12 94 0.9894 0.9869 0.9060 0.9788 0.9447 12
fuzzywuzzy token set ratio 90 0 36 0.9964 1.0000 0.9640 0.9992 0.9817 5
jellyfish jaro winkler 87 84 270 0.9646 0.8968 0.7300 0.9218 0.8049 34
ngram N/A 58 8 192 0.9800 0.9902 0.8080 0.9714 0.8899 31
cosine N/A 69 54 74 0.9872 0.9449 0.9260 0.9897 0.9354 16
jaccard N/A 47 26 0 0.9974 0.9747 1.0000 0.9999 0.9872 2
sorensen-dice N/A 64 26 0 0.9974 0.9747 1.0000 0.9999 0.9872 2
ncosine N/A 79 34 88 0.9878 0.9641 0.9120 0.9972 0.9373 15

* — Tools that do not report similarity value directly. The similarity is measured at the granularity level of
line (L), token (T), or character (C).
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Table 5.13: Results after applying the best configurations (Cgen) from Scenario 1 to the
SOCO data set and the derived best configurations for the SOCO set (Csoco).

Tools
Cgen Csoco

Settings T
generated SOCO

Settings T
SOCO

F-score F-score F-score

ccfx (C) b=5,t=11 36 0.9760 0.8441 b={15 16 17}, 25 0.9389
jaccard N/A 40 0.8876 0.4203 N/A 58 0.8759
sorensen-dice N/A 57 0.8873 0.4134 N/A 73 0.8784

t=12
fuzzywuzzy token set ratio 85 0.8757 0.6012 ratio 65 0.9338
jplag-java t=7 19 0.8636 0.3168 t=12 29 0.9576
difflib autojunk=false 28 0.8629 0.2113 autojunk=true 42 0.9443

whitespace=false whitespace=true
simjava r=16 15 0.8618 0.5888 r=25 46 0.9682
deckard (T) M=30 17 0.8509 0.3305 M=50 19 0.9520

S1=2 S1=1
S2=0.95 S2=1.0

bzip2ncd C=1..9 38 0.8494 0.3661 C=1 .. 9 54 0.8630
ncd-bzlib N/A 37 0.8465 0.3357 N/A 52 0.8689

Note: M=mintoken, S1=stride, S2=similarity

similarity detection is applied. We found the dataset-based optimal configurations,

Csoco, to be very different from the configuration for the generated data set Cocd.

The table shows only the top 10 tools from the OCD data set, but the same findings

apply for every tool in our study.

Lastly, we noticed that the best thresholds for the tools are very different

between one data set and another and that the chosen similarity threshold tends to

have the largest impact on the performance of similarity detection. This observation

provides further motivation for a threshold-free comparison using precision at n.

5.7.5 RQ5: Ranked Results

Which tools perform best when only the top n results are retrieved?

In experimental scenario 4, we applied three error measures; precision at n

(prec@n), average r-precision (ARP) and mean average precision (MAP); adopted

from information retrieval to the generated and SOCO data set. The results are

discussed below.
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Table 5.14: Top-10 rankings of using prec@n, ARP, and MAP over the OCD data set with
the tools’ optimal configurations

Rank
Pair-based Query-based

F-score prec@n ARP MAP

1 (0.976) ccfx (0.976) ccfx (1.000) ccfx (1.000) ccfx
2 (0.888) jaccard (0.891) jaccard (0.927) sorensen-dice (0.967) jaccard
3 (0.887) sorensen-dice (0.890) sorensen-dice (0.926) jaccard (0.966) sorensen-dice
4 (0.876) fuzzywuzzy (0.860) simjava (0.915) fuzzywuzzy (0.949) fuzzywuzzy
5 (0.864) jplag-java (0.858) fuzzywuzzy (0.913) ncd-bzlib (0.943) ncd-bzlib
6 (0.863) difflib (0.842) simian (0.912) 7zncd-bzip2 (0.942) bzip2ncd
7 (0.862) simjava (0.836) deckard (0.909) bzip2ncd (0.938) 7zncd-bzip2
8 (0.851) deckard (0.836) jplag-java (0.900) 7zncd-ppmd (0.937) gzipncd
9 (0.849) bzip2ncd (0.832) bzip2ncd (0.900) gzipncd (0.935) ncd-zlib

10 (0.847) ncd-bzlib (0.828) difflib (0.898) ncd-zlib (0.933) jplag-text

Table 5.15: Top-10 rankings of using prec@n, ARP, and MAP over the SOCO data set with
the tools’ optimal configurations

Rank
Pair-based Query-based

F-score prec@n ARP MAP

1 (0.969) jplag-text (0.965) jplag-text (0.998) jplag-java (0.997) jplag-java
2 (0.968) simjava (0.960) simjava (0.998) difflib (0.997) difflib
3 (0.959) simian (0.956) simian (0.989) ccfx (0.993) jplag-text
4 (0.958) jplag-java (0.947) deckard (0.989) simjava (0.988) simjava
5 (0.952) deckard (0.943) jplag-java (0.987) gzipncd (0.987) gzipncd
6 (0.944) difflib (0.938) difflib (0.986) jplag-text (0.987) ncd-zlib
7 (0.939) ccfx (0.929) ccfx (0.985) ncd-zlib (0.986) sherlock
8 (0.934) fuzzywuzzy (0.929) fuzzywuzzy (0.984) 7zncd-deflate (0.986) 7zncd-deflate64
9 (0.920) nicad (0.914) plaggie (0.984) 7zncd-deflate64 (0.986) 7zncd-deflate

10 (0.919) plaggie (0.901) nicad (0.983) 7zncd-lzma (0.984) fuzzywuzzy

5.7.5.1 Precision at n

As discussed in Section 5.6.4, we used prec@n in a pair-based manner. For the

OCD data set, we sorted the 10,000 pairs of documents by their similarity values

from the highest to the lowest. Then, we evaluated the tools based on a set of top

n elements. We varied the value of n from 100 to 1500. In Table 5.14, we only

reported the n equals to 1,000 since it is the number of true positives in the data set.

The ccfx tool is ranked 1st with the highest prec@n of 0.976 followed by jaccard

(0.891), and sorensen-dice (0.890). In comparison with the rankings for F-scores,

the ranking of the ten tools changed slightly, as simjava and simian perform better

while jplag-java and difflib tool now performed worse. ncd-zlib is no longer in the

top 10.

As illustrated in Figure 5.13, varying fifteen n values of prec@n from 100 to
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Figure 5.13: Precision-at-n of the tools according to varied numbers of n against the OCD
data set

1500, stepping up by 100, gave us an overview of how well the tools perform across

different n sizes. The number of true positives is depicted by a dotted line. We

could see that most of the tools performed really well in the very first few hundreds

of top n results by having steady flat lines at prec@n of 1.0 until the top 500 pairs.

However, at the top 600 pairs, the performance of sorensen-dice, simjava, deckard,

and ncd-bzlib started dropping. jaccard, py-fuzzywuzzy, jplag-java, and bzip2ncd

started reporting false positives after the top 700 pairs while difflib could stay until

the top 800 pairs. ccfx was the only tool that could maintain 100% correct results

until the top 900 pairs. After that, it also started reporting false positives. At the top

1,500 pairs, all the tools offered prec@n at approximately 0.6 to 0.7. Due to a fairly

small data set, this finding of perfect 1.0 prec@n until the first 500 pairs may not

generalise to other data sets, as the similar performances achieved by the tools on

the first 500 pairs might be due to intrinsic properties of the analysed programs.

For the SOCO data set, we varied the n value from 100 to 800, also stepping

up by 100. The results in Table 5.15 used the n value of 453 which is the number

of true positives in the corrected ground truth. We can clearly see that the ranking

of 10 tools using prec@n closely resembles the one using F-scores. jplag-text is

the top ranked tool followed by simjava, jplag-java, simian, and deckard. The

ranking of eight tools is exactly the same as using F-score. jplag-java and nicad

perform slightly worse using prec@453 and move down one position. The overall
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Figure 5.14: Precision-at-n of the tools according to varied numbers of n against SOCO
data set

performances of the tools across various n values is depicted in Figure 5.14 with

the dotted line representing the number of true positives. The chart is somewhat

analogous to the OCD data set (Figure 5.13). Most of the tools started reporting

false positives at the top 300 pairs except jplag-java and fuzzywuzzy. After the top

400 pairs, no tool could any longer maintain 100% true positive results.

Since prec@n is calculated from a set of top-n ranked results, its value shows

how fast a tool can retrieve correct answers to a limited set of n most similar files.

It also reflects how well the tool can differentiate between similar and dissimilar

documents. A good tool should not be confused and should produce a large gap

in the similarity values between the true positive and the true negative results. In

this study, ccfx and jplag-text have shown to be the best tools in terms of prec@n

for pervasive modifications and boiler-plate code respectively. They are the also the

best tools based on F-scores in RQ1.

5.7.5.2 Average r-Precision

ARP is a query-based error measure that needs knowledge of ground truth. Since

we knew the ground truth for our two data sets, we did not need to vary the values

of n as in prec@n. The value of n was set to the number of true positives.

For the OCD data set, each file in the set of 100 files was used as a query once.

Each query received 100 files ranked by their similarity values. We knew the ground

truth that each file has 10 other similar files including itself (i.e., r or the number
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Table 5.16: One-tailed randomization test with 100K samples of the ARP values from the
OCD data set.

Tool ccfx sorensen-dice jaccard fuzzywuzzy ncd-bzlip bzip2 bzip2ncd ppmd gzipncd ncd-zlib

ccfx I I I I I I I I I
sorensen-dice � � � � � � � � �
jaccard � � � � � � � � �
fuzzywuzzy � � � � � � � � �
ncd-bzlib � � � � � � � � �
bzip2 � � � � � � � � �
bzip2ncd � � � � � � � � �
ppmd � � � � � � � � �
gzipncd � � � � � � � � �
ncd-zlib � � � � � � � � �

I— statistically significant difference of 1st tool’s ARP (row) to 2ndnd tool’s ARP (column), i.e., α ≤ 0.05.
�— no statistically significant difference.

of relevant documents equals 10). We cut off after the top 10 ranked results and

calculated an r-precision value. Finally, we computed ARP from an average of the

100 r-precisions. We reported the ARPs of the ten tools in Table 5.14. We can see

that ccfx is still ranked first with the perfect ARP of 1.000 followed by sorensen-

dice, jaccard, and fuzzywuzzy. ncd-bzlib now performs much better using ARP and

is ranked fifth. Interestingly, the 5th to 10th ranks are all compression-based tools.

This shows that with the presence of pervasive modifications, code similarity using

NCD-compression method is better at query-based results than most of the clone

and plagiarism detectors and the string similarity tools.

For SOCO, only files with known, corrected, ground truth were used as queries.

This is because ARP can only be computed when relevant answers are retrieved. We

found that the 453 pairs in the ground truth were formed by 115 unique files, and

we used them as our queries. The value of r here was not fixed as for the OCD data

set. It depended on how many relevant answers existed in the ground truth for each

particular query file and we calculated the r-precision based on that. The ARPs of

the SOCO data set is reported in Table 5.15. jplag-java and difflib are ranked first

with an ARP of 0.998, followed by ccfx and simjava both with an ARP of 0.989.

Similar to the findings for the OCD data set, compression-based tools work well

with a query-based approach by having 5 NCD tools ranked in the top 10.

Since ARP are computed based on means, we performed a statistical test to

strengthen our results by testing for the statistical significance of differences in
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Table 5.17: One-tailed randomization test with 100K samples of the MAP values from the
OCD data set.

Tool ccfx jaccard sorensen-dice fuzzywuzzy ncd-bzlib bzip2ncd bzip2 gzipncd ncd-zlib jplag-text

ccfx I I I I I I I I I
jaccard � � � I I I I I I
sorensen-dice � � � I I I I I I
fuzzywuzzy � � � � � � � � �
ncd-bzlib � � � � � � � � �
bzip2ncd � � � � � � � � �
bzip2 � � � � � � � � �
gzipncd � � � � � � � � �
ncd-zlib � � � � � � � � �
jplag-text � � � � � � � � �

I— statistically significant difference of 1st tool’s MAP (row) to 2ndnd tool’s MAP (column), i.e., α ≤ 0.05.
�— no statistically significant difference.

Table 5.18: One-tailed randomization test with 100K samples of the ARP values from the
SOCO data set.

Tool jplag-java difflib ccfx simjava gzipncd jplag-text ncd-zlib deflate deflate64 lzma

jplag-java � � � � � � I I I
difflib � � � � � � I I I
ccfx � � � � � � � � �
simjava � � � � � � � � �
gzipncd � � � � � � � � �
jplag-text � � � � � � � � �
ncd-zlib � � � � � � � � �
deflate � � � � � � � � �
deflate64 � � � � � � � � �
lzma � � � � � � � � �

I— statistically significant difference of 1st tool’s ARP (row) to 2ndnd tool’s ARP (column), i.e. α ≤ 0.05.
�— no statistically significant difference.

the set of r-precision values between tools. We chose a one-tailed non-parametric

randomisation test (i.e., permutation test) due to its robustness in information

retrieval as shown by Smucker et al. [2007]12. We performed the test using 100,000

random samples with a confidence interval value of 95% (i.e., α ≤ 0.05). The

statistical test results are shown in Table 5.16, Table 5.17, and Table 5.18. The

tables are matrices of pairwise one-tailed statistical test results in the direction of

rows ≥ columns. The symbol I represents statistical significance while the symbol

� represents no statistical significance. For example, in Table 5.16 and Table 5.17,

the I on the left most of the top row [ccfx, sorensen-dice] shows that the mean of

r-precision values of ccfx are higher than or equal to sorensen-dice’s with statistical

12We also tried using one-tailed Wilcoxon signed-rank test on the results and found identical test
results in all cases
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significance. On the other hand, we can see that the mean of r-precision values of

jaccard is higher than sorensen-dice with no statistical significance as represented

by � at the location of [jaccard, sorensen-dice].

For the OCD data set (Table 5.16), we found that ccfx is the only tool that

dominates other tools on their r-precision values with statistical significance. For

SOCO data set (Table 5.18), jplag-java and difflib outperform 7zncd-deflate, 7zncd-

deflate64, and 7zncd-lzma with statistical significance.

ARP tells us how well the tools perform when we want all the true positive

results in a query-based manner. For example, in automated software repair one

wants to find similar source code given some original, buggy, source code that one

possesses. One can use the original source code as a query and look for similar

source files in a set of source code files. In our study, ccfx is the best tool for this

retrieval method against pervasive modifications. jplag-java and difflib are the best

tool for boiler-plate code.

5.7.5.3 Mean Average Precision

We included MAP in this study due to its well-known quality of discrimination

and stability across several recall levels. It is also used when the ground truth for

relevant documents is known. We computed MAP in a very similar way to ARP

except that instead of only looking at the top r pairs, we calculated precision every

time a new, relevant, source code file is retrieved. An average across all recall levels

is then calculated. Lastly, the final average across all the queries is computed as

MAP. We used the same number of relevant files as in the ARP calculations for the

generated and the SOCO data set. The results for MAP are reported in Table 5.14

and Table 5.15.

For the OCD data set (Table 5.14), the rankings are very similar to those for

ARP. ccfx, jaccard, and sorensen-dice are ranked 1st, 2nd and 3rd. For SOCO

(Table 5.15), the rankings are very different to those obtained when using F-score

and prec@n but similar to those for ARP. jplag-java and difflib become the best

performers followed by jplag-text and simjava.

Compression-based tools are again found to offer good performance with
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Table 5.19: One-tailed randomization test with 100K samples of the MAP values from
SOCO data set.

Tool jplag-java difflib jplag-text simjava gzipncd ncd-zlib sherlock deflate64 deflate fuzzywuzzy

jplag-java � � � I I I I I I
difflib � � � I I I I I I
jplag-text � � � � � � � � �
simjava � � � � � � � � �
gzipncd � � � � � � � � �
ncd-zlib � � � � � � � � �
sherlock � � � � � � � � �
deflate64 � � � � � � � � �
deflate � � � � � � � � �
fuzzywuzzy � � � � � � � � �

I— statistically significant difference of 1st tool’s MAP (row) to 2ndnd tool’s MAP (column), i.e. α ≤ 0.05.
�— no statistically significant difference.

MAP. Five tools are ranked in the top 10 for both the generated and boiler-plate

code data sets.

Similarly, since MAP is also computed based on mean, we performed a one-

tailed non-parametric randomisation statistical test on pairwise comparisons of the

tools’ MAP values. The test results are shown in Table 5.17 and Table 5.19. For

the OCD data set, we found the same results of ccfx dominating other tools’ MAPs

with statistical significance. Moreover, jaccard and sorensen-dice also statistically

outperformed ncd-bzlib, bzip2ncd, 7zncd-bzip2, gzipncd, ncd-zlib, and jplag-text.

For the SOCO data set, we found that jplag-java and difflib outperform gzipncd,

ncd-zlib, sherlock, 7zncd-deflate64, 7zncd-deflate, and fuzzywuzzy with statistical

significance.

MAP is similar to ARP because recall is taken into account. However, it differs

from ARP by measuring precision at multiple recall levels. It is also different from

F-score in terms of being query-based measure instead of a pair-based measure. It

shows how well a tool performs on average when it has to find all true positives for

each query. In this study, the best performing tool in terms of MAP is ccfx, followed

by jaccard, for pervasively modified code and jplag-java and difflib for boiler-plate

code respectively.
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Table 5.20: F-scores of the tools on SOCOocd using the default configurations (with
optimised threshold). Highlighted values have F-score higher than 0.8.

Tool

F-Score

O A K Pc Pg Pg A A A A
K Pc K Pc Pg Pg

K Pc

Clone det.
ccfx (C)* 0.8911 0.3714 0.0000 0.6265 0.0000 0.1034 0.0000 0.2985 0.0000 0.1034
deckard (T)* 0.9636 0.9217 0.1667 0.3333 0.0357 0.2286 0.1667 0.3252 0.0357 0.2286
iclones (L)* 0.5000 0.0000 0.0000 0.0357 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
nicad (T)* 0.5823 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
simian (L)* 0.8350 0.1034 0.0357 0.1356 0.0000 0.0357 0.0000 0.0357 0.0000 0.0357
sourcerercc (T)* 0.5679 0.0357 0.0000 0.0702 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Plagiarism det.
jplag-java 1.0000 1.0000 0.7429 0.9524 0.2973 0.4533 0.7547 0.9720 0.2973 0.4507
jplag-text 0.9815 0.6265 0.5581 0.6304 0.3590 0.4250 0.4906 0.5581 0.3590 0.4304
plaggie 0.9636 0.9159 0.7363 0.9372 0.2171 0.4626 0.7363 0.9423 0.2171 0.4626
sherlock 0.9483 0.8298 0.7872 0.8298 0.3061 0.3516 0.6744 0.7826 0.3061 0.3516
simjava 0.9649 0.9815 1.0000 0.7525 0.3188 0.3913 0.8041 0.7525 0.3188 0.3913
simtext 0.9649 0.7191 0.1667 0.4932 0.0357 0.1667 0.0702 0.2258 0.0357 0.1667

Compression
7zncd-bzip2 0.9273 0.7736 0.6852 0.8649 0.2446 0.3704 0.6423 0.7465 0.2446 0.3704
7zncd-deflate 0.9483 0.7579 0.6935 0.8406 0.2427 0.3333 0.6360 0.7418 0.2427 0.3333
7zncd-deflate64 0.9483 0.7579 0.6935 0.8406 0.2427 0.3333 0.6360 0.7373 0.2427 0.3333
7zncd-lzma 0.9649 0.7967 0.7488 0.8851 0.2663 0.3842 0.6768 0.7665 0.2632 0.3842
7zncd-lzma2 0.9649 0.7934 0.7536 0.8851 0.2718 0.3923 0.6700 0.7632 0.2697 0.4000
7zncd-ppmd 0.9623 0.7965 0.7628 0.8909 0.2581 0.3796 0.6667 0.8019 0.2581 0.3796
bzip2ncd 0.9649 0.8305 0.8302 0.9273 0.3590 0.4681 0.7612 0.8448 0.3562 0.4681
gzipncd 0.9623 0.7965 0.7628 0.8909 0.2581 0.3796 0.6667 0.8019 0.2581 0.3796
icd 0.9216 0.5058 0.4371 0.5623 0.2237 0.2822 0.3478 0.4239 0.2237 0.2822
ncd-zlib 0.9821 0.8571 0.8246 0.9432 0.4021 0.4920 0.7491 0.8559 0.3963 0.4920
ncd-bzlib 0.9649 0.8269 0.8269 0.9273 0.3529 0.4634 0.7500 0.8448 0.3500 0.4719
xzncd 0.9734 0.8416 0.7925 0.9198 0.3133 0.4615 0.7035 0.8148 0.3133 0.4615

Others
bsdiff 0.4388 0.2280 0.1529 0.2005 0.1151 0.1350 0.1276 0.1596 0.1152 0.1353
diff (C) 0.2835 0.2374 0.1585 0.2000 0.1296 0.1248 0.1530 0.1786 0.1302 0.1249
difflib 0.9821 0.9550 0.8952 0.9565 0.4790 0.5087 0.8688 0.9381 0.4606 0.5091
fuzzywuzzy 1.0000 0.9821 0.9259 0.9636 0.4651 0.5116 0.9074 0.9541 0.4557 0.5116
jellyfish 0.9273 0.7253 0.6400 0.6667 0.2479 0.3579 0.5513 0.5000 0.2479 0.3662
ngram 1.0000 0.9464 0.8952 0.9346 0.4110 0.4490 0.8785 0.8908 0.4054 0.4578
cosine 0.9074 0.6847 0.7123 0.6800 0.3500 0.3596 0.5823 0.5287 0.3500 0.3596
jaccard 0.9636 0.8909 0.9273 0.9333 0.5000 0.5287 0.8727 0.8850 0.5000 0.5287
sorensen-dice 0.9636 0.8909 0.9273 0.9333 0.5000 0.5287 0.8727 0.8772 0.5176 0.5287
ncosine 0.8750 0.6990 0.7629 0.7636 0.3846 0.4396 0.5825 0.6065 0.3846 0.4396

* — A tool that does not report similarity value directly. The similarity is measured at the granularity level of
line (L), token (T), or character (C).
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Figure 5.15: Distribution of tools performance for each pervasive modification type

5.7.6 RQ6: Pervasive Modifications + Boiler-plate Code

How well do the techniques perform when source code containing boiler-plate

code has been pervasively modified?

Using the results from Experimental Scenario 5, we present the tools’ performances

based on F-scores in Table 5.20 and show the distribution of F-scores in Figure 5.15.

The F-scores are grouped according to the 10 pervasive code modification types (see

Table 5.6). The numbers are highlighted when F-scores are higher than 0.8.

5.7.6.1 Tools’ Performances vs. Individual Pervasive Modification

Type

On the original boiler-plate code without any modification (O), every tool except

iclones, nicad, sourcerercc, bsdiff, and diff report high F-scores ranging from

0.8 to 1.0. This shows that most tools with their default configurations do not

have a problem detecting boiler-plate code. The nicad tool performed poorly,

possibly due to default configurations that aim at clones without variable renaming

and code abstraction at all (i.e., set renaming=none and abstract=none). iclone’s

default configurations of minimum 100 of clone tokens are too high compared to

the optimal configurations of 40 found in RQ1. Similarly, sourcerercc’s default

similarity threshold at 80% is probably too high for the data set compared to the

optimal configuration at 60% found in RQ1. diff and bsdiff are too general to handle

code with local modifications.

The tools perform worse after pervasive modifications are applied on top of
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the boiler-plate code. Source code obfuscation by Artifice (A) has strong effects

to ccfx, iclones, nicad, simian, sourcerercc, bsdiff, and diff according to low F-

scores of 0.0 to 0.2. deckard, jplag-java, plaggie, simjava, difflib, fuzzywuzzy and

ngram maintained their high F-scores of over 0.9. Interestingly, jplag-java reported

a perfect F-score of 1.0 possibly due to it being designed for detecting plagiarised

code which is usually pervasively modified at source code level.

According to the boxplot in Figure 5.15, code after decompilation by Krakatau

(K) results in lower F-scores than after decompilation by Procyon. Since the

Krakatau decompilation process generates source code that is close to Java bytecode

and mostly structurally different from the original, its generated code is challenging

for tools that are based on lexical and syntactic similarity. In the group of clone

detectors, ccfx, iclones, nicad, and sourcerercc did not report any correct results at

all (F-score = 0.0) while deckard and simian reported very low F-scores of 0.1667

and 0.0357 respectively. Code after decompilation by Procyon (Pc) had milder

effects than Krakatau and Artifice. The tool simjava is the best for K with F-score

of 1.000 and fuzzywuzzy is the best for Pc with F-score of 0.9636.

A combination of ProGuard and either Krakatau or Procyon (PgK, PgPc)

reported the lowest F-scores as can be clearly seen from Figure 5.15. This is due to

bytecode modifications (e.g., renaming classes, fields, and variables, package hier-

archy flattening, class repackaging, merging classes and modifying package access

permissions) performed by ProGuard combined with a decompilation process that

greatly changed both the lexemes and the structure of the code. It is interesting to

see that jaccard and sorensen-dice, an n-gram matching technique, are the highest

performing tools with F-scores of 0.5000 and 0.5287 for PgK and PgPc respectively.

Thus, in the presence of pervasive modifications that heavily or completely change

code structure, using a simpler, general, text similarity technique may give a higher

chance of finding similar code than dedicated code similarity detection tools.

Code after source code obfuscation by Artifice and decompilation by Krakatau

and Procyon (AK, APc) has comparable results to K and Pc with marginal differ-

ences. Fuzzywuzzy and jplag-java are the best tools for this modification type.
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Lastly, two combinations of obfuscation and decompilation (APgK, APgPc)

also provide almost identical F-score results to PgK and PgPc. This suggests that the

pervasive modifications made to source code obfuscation may be no longer effective

if decompilation is included. Vice versa, the modifications made by bytecode

obfuscation persist through the compilation and decompilation process. Sorensen-

dice and jaccard are the best tools for this modification type.

To sum up, we found that most of the tools perform well on detecting boiler-

plate code, and report lower performance when adding pervasive modifications.

Some clone detection tools can tolerate pervasive modifications made by source

code obfuscators, but all are susceptible to pervasive changes made by decompilers

or a combination of a bytecode obfuscator and decompilers. Plagiarism detectors

offer decent results over the 10 modification types. Interestingly, token and n-

gram matching techniques including fuzzywuzzy, difflib, jaccard, and sorensen-

dice outperformed dedicated tools on heavily modified code with a combination of

obfuscators and decompilers.

5.7.7 Overall discussions

In summary, we have answered the six research questions after performing five

experimental scenarios using the OCD framework. We found that the state-of-

the-art code similarity analysers perform differently on pervasively modified code.

Properly configured, a well known and often used clone detector, ccfx, performed

the best, closely followed by an n-gram similarity algorithm, jaccard. A comparison

of the tools on boiler-plate code in the SOCO data set found the jplag-text plagiarism

detector performed the best followed by simjava, simian, jplag-java, and deckard.

5.7.7.1 Lessons Learned

1. The experiment using compilation/decompilation for normalisation showed

that compilation/decompilation is effective and improves similarity detection

techniques with statistical significance. Therefore, future implementations of

clone or plagiarism detection tools or other similarity detection approaches

could consider using compilation/decompilation for normalisation.
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2. Every technique and tool turned out to be extremely sensitive to its own con-

figurations consisting of several parameter settings and a similarity threshold.

Moreover, for some tools the optimal configurations turned out to be very

different to the default configuration, showing one cannot just reuse (default)

configurations.

Finding an optimal configuration is naturally biased by the particular data

set. One cannot get optimal results from tools by directly applying the

optimal derived parameter settings and similarity thresholds for one data set

to another data set. The SOCO data set, where we have applied the optimal

configurations from the OCD data set, clearly shows that configurations that

work well with a specific data set may not be guaranteed to work with future

data sets. Researchers have to consider this limitation every time when they

use similarity detection techniques in their studies.

3. The chosen similarity threshold has the strongest impact on the results of sim-

ilarity detection. We have investigated the use of three information retrieval

error measures, precision at n, r-precision, and mean average precision, to

remove the threshold completely and rely only on the ranked pairs. These

three error measures are often used in information retrieval research but are

rarely seen in code similarity measurements such as code clone or plagiarism

detection. Using the three measures, we can see how successful the different

techniques and tools are in distinguishing similar code from dissimilar code

based on ranked results. The tool rankings can be used as guidelines to

select tools in real-world scenarios of similar code search or code plagiarism

detection, for example, when one is interested in looking at only the top n

most similar source code pairs due to limited time for manual inspection or

when one uses a file to query for the other most similar files.

4. Lastly, we compare the tools on a data set of pervasively modified boiler-plate

code. We found that while most tools offered high performance on boiler-

plate code, they performed much worse after pervasive modifications were



5.8. Threats to Validity 210

applied. We observed that pervasively modified code with changes made from

a combination of bytecode obfuscation by ProGuard and the two decompilers

had strongest effects on the tools’ F-scores.

5.7.7.2 Observations for The Design of a Clone Search Approach

From the empirical study of 34 code similarity analysers on both the generated

OCD data set and the SOCO data set, we made three observations that are useful

for developing our code clone search approach.

1. Detecting code similarity based on n-grams of code tokens is an effective

approach for pervasively modified code as shown in the results of RQ1. The

two n-gram based techniques, Jaccard and Sorensen-Dice, obtained the 2nd

and the 3rd rank behind CCFinderX and outperformed the other 31 tools. The

same observation was found for the query-based scenario in RQ5. The two

tools were ranked the 2nd and the 3rd on precision at n, ARP, and MAP on the

OCD data set. So, they are both suitable for pair-based detection of similar

code, such as in clone or plagiarism detection, and query-based detection of

similar code, such as code clone search.

2. Besides Jaccard and Sorensen-Dice, two token-based Python’s FuzzyWuzzy

and Difflib libraries also performed well on the two data sets. They were

ranked the 4th and the 6th respectively on OCD data set and ranked the 8th and

the 6th on SOCO data set. The major benefit of using general string similarity

techniques is that they can tolerate incomplete code snippets, which is often

found in online code snippets on Q&A websites.

3. We observed that using compilation/decompilation enhanced the performance

of code similarity detection. This enabled us to pursue a detailed investigation

of this method in the next chapter.

5.8 Threats to Validity
There are some potential threats to validity in this chapter. We separately discuss

them in three aspects: construct, internal, and external validity.
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5.8.1 Construct validity

We carefully chose the data sets for our experiment. We created the first data set

(generated) by ourselves to obtain the ground truth for positive and negative results.

We investigated whether our obfuscators (Artifice and ProGuard), compiler (javac)

and decompilers (Krakatau and Procyon) offer code modifications that are com-

monly found in code cloning and code plagiarism (see Table 5.1). However, they

may not totally represent all possible pervasive modifications found in software.

The SOCO data set has been used in a competition for detecting reused code and

a careful manual investigation has revealed errors in the provided ground truth that

have been corrected.

5.8.2 Internal Validity

Although we have attempted to use the tools with their best parameter settings,

we cannot guarantee that we have done so successfully and it may be possible

that the poor performance of some detectors is due to wrong usage as opposed to

the techniques used in the detector. Moreover, in this study we tried to compare

the tools’ performances based on several standard measurements of precision,

recall, accuracy, F-score, AUC, prec@n, ARP and MAP. However, there might be

some situations where other measurements (e.g., Matthews correlation coefficient

or normalised discounted cumulative gain) are required and that might produce

different results.

5.8.3 External Validity

The tools used in this study were restricted to be open-source or at least be freely

available, but they do cover several areas of similarity detection (including string-,

token-, and tree-based approaches) and some of them are well-known similarity

measurement techniques used in other areas such as normalised compression

distance (information theory) and cosine similarity (information retrieval). Nev-

ertheless, they might not be completely representative of all available techniques

and tools.

The generated OCD (100 Java files) and SOCO (259 Java files) data sets are
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fairly small and contain a single class with one or a few methods. They might

not adequately represent real software projects. Hence, our results are limited to

pervasive modifications and boiler-plate code at a file-level, not a whole software

project. The optimal configurations presented in this paper are found relative to

the data set of code modifications from which they were derived and may not

generalise to all types of code modifications. In addition, the two decompilers

(Krakatau, Procyon) are only a subset of all decompilers available. So they may

not totally represent the performance of the other decompilers in the market or even

other source code normalisation techniques. However, we have chosen two instead

of only one so we can compare their behaviours and performances. As we are

exploiting features of Java source and byte code, our findings only apply to Java

code.

5.9 Related Work

There are a few frameworks and data sets for evaluating code clone and plagiarism

detectors. Nevertheless, creating a good data set for code similarity evaluation is

challenging. Here we discuss the existing framework for code similarity detectors

and discuss their strengths and weaknesses compared to our OCD framework.

Bellon et al. [2007] manually classified 2 percent of 325,935 clone candidates

from eight subject systems in C and Java reported by six clone detectors. Since the

clone ground truth comprises of the 2-percent manually validated clone pairs, the

measure of precision gives only the lower bound.

Roy and Cordy [2009a] creates a mutation/injection-based automatic frame-

work for evaluating code clone detection tools by applying mutation operators to

create clones. The framework imitates code changes made to clones of Type-1 to

Type-3 but does not include disruptive changes such as code rewriting, i.e., Type-4

clones. Their framework is mostly limited to locally confined modifications, only

including systematic renaming as a pervasive modification. Due to the limitations,

we have not included their framework in our study. We rely on code obfuscators

to make locally confined modifications similar to their framework. Moreover, we
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apply compilation and decompilation to create semantically similar code. However,

since our OCD framework apply multiple code modifications on top of each other,

we cannot precisely measure precision and recall on a specific clone type as Roy’s

mutation framework.

Svajlenko et al. create a large-scale clone benchmark containing more than

eight million clone pairs mined from IJaDataset, the repository of 25,000 Java open

source projects by using regular expressions of 43 base functionalities [Svajlenko

and Roy, 2016]. The size of the benchmark is suitable for measuring scalability

of clone detectors. However, it is not suitable for measuring precision since only a

partial clone ground truth is manually validated based on the 43 base functionalities.

Moreover, measuring of recall is only based on the known clone pairs in the

ground truth. Although our two data sets in this study are much smaller in size

in comparison with the BigCloneBench, we were able to measure both precision

and recall. Since we created one data set using code obfuscators, a compiler, and

decompilers, and reused another data set from a competition, we had a complete

knowledge of the ground truth for both of them and could take all possible similar

code pairs, i.e., clones, into account.

Several code obfuscation methods can be found in the work of Luo et al. [Luo

et al., 2014]. The techniques utilised include obfuscation by different compiler

optimization levels or using different compilers. Obfuscating tools exist at either

source code level (e.g., Semantic Designs Inc.’s C obfuscator, Stunnix’s CXX-

obfuscator), and binary level (e.g., Diablo, Loco [Madou et al., 2006], CIL [Necula

et al., 2002]). Their study is based on C programs while our study is based on Java.

Similarly, we employed both source-level (Artifice) and bytecode-level (ProGuard)

Java obfuscators in this study.

An evaluation of code obfuscation techniques has been performed by Ceccato

et al. [2009]. They evaluated how layout obfuscation by identifier renaming affects

the participants’ comprehension of, and ability to modify, two given programs.

They found that obfuscation by identifier renaming could slow down an attack by

two to four times the time needed for clear, un-obfuscated programs. Their later
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study [Ceccato et al., 2013] confirms that identifier renaming is an effective obfus-

cation technique, even better than control-flow obfuscation by opaque predicates.

Our two chosen obfuscators also perform layout obfuscation, including identifier

renaming, in this study. However, instead of measuring understanding of obfuscated

programs by human, we measure how well code similarity analysers perform on

obfuscated code, which we use as a kind of pervasive code modifications. We also

decompiled obfuscated bytecode and compared the tools’ performances based on

the resulting source code.

Keivanloo et al. [2015] discussed the problem of using a single threshold for

clone detection over several repositories and propose a solution using threshold-

free clone detection based on unsupervised learning. The method mainly utilises k-

means clustering with the Friedman quality optimization method. Our investigation

of precision at n, ARP, and MAP focuses on the same problem but our goal is to

compare the performance of several similarity detection tools instead of boosting

the performance of one tool as in their study.

The work that is closest to ours is the empirical study of the efficiency of

current detection tools against code obfuscation [Schulze and Meyer, 2013]. The

authors created the Artifice source code obfuscator and measured the effects of

obfuscation on clone detectors. However, the number of tools chosen for the study

was limited to only three detectors: JPlag, CloneDigger, and Scorpio. Nor has

bytecode obfuscation been considered. The study showed that token-based clone

detection outperformed text-, tree- and graph-based clone detection (similar to our

findings).

5.10 Chapter Summary

This chapter presents the OCD framework for evaluating code similarity analysers

and a broad empirical study of 34 tools using the framework. Our experimental

results show that highly specialised source code similarity detection techniques and

tools can perform better than more general textual similarity measures. However,

general string matching techniques, jacard, sorensen-dice, fuzzywuzzy and difflib,
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outperform dedicated code similarity detection tools in some cases especially for

code with heavy structural changes. The results of the empirical study can be

used as a guideline for researchers to select a proper technique with appropriate

configurations for their data sets and also to compare future tools based on the

existing results presented in this chapter.

The OCD framework, which we introduce in this chapter, will be used to

evaluate our scalable code clone search tool in Chapter 7 and compare to the results

of other tools found in the empirical study in this chapter. A few observations we

made from the empirical study will also enable us to choose an appropriate code

similarity technique for the clone search approach.

Moreover, we confirmed that compilation and decompilation can be used

as an effective normalisation method that greatly improves similarity detection

between Java source code, leading to three clone and plagiarism tools not reporting

any false classification on our OCD data set. The next chapter will pursue a

further investigation of using compilation and decompilation to enhance code clone

detection. It applies the same technique introduced in this chapter to three real-

world Java projects and analysed the detected clone pairs.



Chapter 6

Using Compilation/Decompilation to

Enhance Code Clone Detection

This chapter is a follow-up to the findings in the previous chapter by studying the

effects of compilation and decompilation to code clone detection in more detail.

As previously observed, compilation/decompilation canonicalise syntactic changes

made to source code and can be used as a source code normalisation technique. This

chapter will apply the technique to a software project, instead of a file as previously

done, and evaluate its effectiveness in increasing recall of a clone detector.

6.1 Motivation
We aim to exploit compilation and decompilation as a pre-processing step for

detecting clones in Java programs. The previous chapter has shown that compila-

tion/decompilation can enhance the performance of 34 code similarity analysers,

including clone detection tools. This is because the process of compilation

and decompilation canonicalise differences between source code files and can be

considered as a code normalisation technique. Similar work is detecting clones after

compilation within Jimple code [Selim et al., 2010], bytecode [Chen et al., 2014,

Kononenko et al., 2014], or assembler code [Davis and Godfrey, 2010]. However,

instead of doing clone detection at an intermediate level such as bytecode, Jimple,

or assembler level, we use decompilation into Java source code to be able to use

any Java source code clone detector.
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Detecting clones after compilation/decompilation has three major benefits.

First, code decompilation generates a second set of source code that can be useful

for manual investigation of clones. In this chapter, we find that some clones

discovered after decompilation are interesting and sometimes can be used as a

recommendation for code refactoring. This insight cannot be achieved by looking

at clones at bytecode or assembler code level. Second, it supports existing state-of-

the-art clone detection tools. Since the decompiled code is Java source code, one

can choose any available Java clone detector. Third, performing clone detection

after decompilation can also be used in a case in which access to the source code is

not available or restricted.

While using compilation/decompilation to augment clone detection has shown

promising results, the dataset used in Chapter 5 was limited to 10 small Java

programs. They do not represent a real environment in software systems with

hundreds or thousands of source code files with third-party APIs and dependencies

among classes.

This chapter performs clone detection on three real-world software systems

and compares the results before and after decompilation. We resort to the build

mechanism provided in each project to handle dependencies in the compilation

process and use a decompiler to retrieve a decompiled versions from the class

files. The findings show that using compilation/decompilation to enhance clone

detection can be applied to real-world software systems. Furthermore, there are

clones that are challenging to detect in the original code but can be discovered after

decompilation (see Figure 6.3, Figure 6.4 and Figure 6.5 for examples). This opens

a possibility of using decompilation to increase recall of clone detectors.

6.2 Contributions
This chapter makes the following primary contributions:

1. A study of effects of compilation/decompilation to clone detection: We

demonstrate that using compilation/decompilation as a pre-processing step of

clone detection is feasible for real-world Java projects. By combining clones
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found before and after decompilation, one can achieve higher recall without

losing precision.

2. Providing insights into decompiled clones: Our manual investigation shows

that there are clones which can only be discovered using compilation and

decompilation. We summarise their characteristics.

3. Clone oracle: 326 manually validated clone pairs can be used as a clone

oracle in future clone studies.

6.3 Experimental Design
The study aimed to answer the following research questions:

RQ1 (Clone agreement): How many clone pairs are mutually agreed and

reported by the same clone detector before and after decompilation?

RQ2 (Decompilation accuracy): How does compilation/decompilation af-

fect precision and recall of clone detectors?

RQ3 (Characteristics of disjoint clones): What are the characteristics of

clones discovered only in the original source code before decompilation and

only in the decompiled source code?

6.3.1 Experimental Framework

The framework of the study is depicted in Figure 6.1. Given a software system,

we remove comments and apply pretty-printing to the source code. The system is

then compiled and decompiled to generate another version of the software. A clone

detector is applied to both versions. This process generates two clone reports: one

for the original code and another one for the decompiled code. We are interested in

method-level clones in this study, so the clone report contains file names, starting

lines and ending lines of cloned method pairs. Since starting and ending line of

the clones in the decompiled clone report are different from the original report, we

cannot compare the decompiled clones to the original clones directly. Thus, we
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Figure 6.1: The experimental framework

Table 6.1: Software systems

System Version
Original Decompiled

Files SLOC Files SLOC

JUnit 4.13 203 9,777 311 11,233
JFreeChart 1.5.0 644 96,711 669 85,251
Tomcat 9.0 1,688 241,924 2603 256,974

build a mapping tool to map the starting and ending lines of decompiled clones

to their respective locations in the original code and generate another version of

the report, decompiled-and-mapped clone report. We compare the original and

decompiled-and-mapped clone report to find common and disjoint clone pairs.

Finally, we manually look at the disjoint pairs to check if they are true clones.

6.3.2 Software Systems

We select the latest versions (obtained on 19 November 2016) of three well-known

Java open source systems for this study: JUnit v.4.13, JFreeChart v.1.5.0, and

Apache Tomcat v.9.0 from GitHub. The size1 of three systems are varied as listed

in Table 6.1. Tomcat is the largest project in the set having approximately 240K

SLOC. It is 2.5 times bigger than JFreeChart and 25 times bigger than JUnit. We

are only interested in Java production source code but not test code, so we remove

all testing class files before the analysis.

6.3.3 Tools

The following tools are used for this study.

1The size is measured in terms of SLOC (excluding comments and blank lines) by cloc tool
(https://github.com/AlDanial/cloc)
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Table 6.2: NiCad’s configurations

Configuration Parameters

Type-1 UPI=0.0, renaming=none
Type-2 UPI=0.0, renaming=consistent
Type-3 UPI=0.3, renaming=consistent

6.3.3.1 Compiler and Decompiler

We use the standard javac as the compiler and an open-source tool Procyon [Strobel,

2015] as the decompiler2. Procyon has advantages over other Java decompilers for

its ability to handle declaration of enum, String, switch statements, anonymous and

named local classes, annotations, and method references. Moreover, it is shown in

the previous chapter that Procyon produces decompiled code that is easier to read

than Krakatau.

6.3.3.2 Clone Detector and Its Configurations

We select the well-known NiCad tool as the clone detector for this study. NiCad

has been used extensively in several clone research studies [Ragkhitwetsagul et al.,

2016a, Svajlenko et al., 2014b, Wang et al., 2013b, Sajnani et al., 2016]. It can

detect clones at method level which suitably supports our clones mapping algorithm.

An additional benefit of using NiCad is its ability to detect and categorise clones into

Type-1, Type-2, and Type-3 by choosing from its pre-defined configuration files. We

select three sets of parameter configurations for NiCad as listed in Table 6.2. The

default configuration (UPI=0.3, renaming=none) does not conform to any clone

type and is also subsumed by the Type-3 configuration, so we do not include it in this

study3. Our method allows other method-level clone detectors such as DECKARD,

or SourcererCC to be used if required. However, in this chapter, we focus more on

the effects of decompilation to different clone types rather than comparing different

tools and detection approaches.

2We have also tried Krakatau but it failed to decompiled many of the class files so we did not
adopt it in this study.

3Although the thesis has shown in the previous chapter that using the default configurations may
not give optimal performance, we could not tune the parameters of NiCad for this data set because
they do not provide the clone ground truth.



6.3. Experimental Design 221

decompiled 
clone report

DCP1(dm1, dm2)

decompiled 
clone pairs

software
m1

m2

m4
m3

mn

…

DCP2(dm1, dm3)

DCP3(dm2, dm4)
… 

DCPn(dmm, dmo)

decompiled-and-mapped 
clone report

DCP*1((dm1,dm2),(m1,m2))

set of methods (M)

mo

DCP*2((dm1,dm3),(m1,m3))

DCP*3((dm2,dm4),(m2,m4))

DCP*n((dmm,dmo),(mm,mo))
…

decompiled-and-mapped  
clone pairs

Figure 6.2: The process of mapping decompiled clones to their original locations

6.3.3.3 Clone Mapping Tool

In a regular clone detection activity, one runs a clone detection tool against a

software system or multiple software systems and consults a clone report to locate

clones in the software. In this study, we have not only an original software system

but also another decompiled version of the software. We implemented a clone

mapping tool that automatically processes decompiled clone pairs and maps them

back to their original locations. The tool offers several benefits. With the clone

mapper, we can compare clones before and after decompilation just by using line

numbers. Moreover, after mapping, one can directly incorporate decompiled clones

into their original results since their locations are consistent with the original code.

Finally, the generated clone report conforms to the format of NiCad clone report

and can be analysed by other clone evaluation frameworks based on clone lines

(e.g., Bellon’s [Bellon et al., 2007], BigCloneBench [Svajlenko and Roy, 2015],

EvaClone [Wang et al., 2013b]) in the same way as the original.

The overview of the clone mapping process is shown in Figure 6.2. The tool

works at method level. The clone mapping algorithm relies on a fully-qualified

class name, method name, and its parameters as matching criteria. The clone

mapper tool starts by extracting a set M of all methods and constructors from a

software system under analysis. A method x is stored as a vector mx containing
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a method name, vector p of parameters, starting line, ending line, and fully-

qualified class name: mx = [name, p,start,end,FQClassName]. Then, the tool reads

a decompiled clone report and extracts all decompiled clone pairs (DCP). Each

DCP contains two decompiled methods DCP(dmx,dmy) reported as clones to each

other. Clone mapper iterates over all decompiled clone pairs and tries to match

each decompiled method to every original method in M based on name, p, and

FQClassName by string matching. For example, as illustrated in Figure 6.2, a

decompiled clone pair DCP1(dm1,dm2), finds matches between dm1 and m1 and

between dm2 and m2. Then, the clone mapper creates a decompiled-and-mapped

clone pair DCP*1((dm1,dm2), (m1,m2)) containing the clone pair with locations

in both decompiled and original source code. If there is no match, that means

the matching method does not exist in the original source code and is solely

generated by the process of compilation and decompilation (for example, default

constructors). The tool ignores such unmatched methods and all its respective

clone pairs. After all the decompiled clone pairs are processed, the clone mapper

generates a decompiled-and-mapped clone report from the set of DCP*. The

decompiled-and-mapped clone report is used along with the original clone report

to find common and disjoint clone pairs.

6.3.3.4 Common and Disjoint Clone Pairs

Using the original and decompiled-and-mapped clone report, we extract two sets of

clone pairs: Corig and Cdecomp. We find clone pairs that are common between them

by performing a set intersection. We call clone pairs in the intersection common

clone pairs (Ccommon).

Ccommon = Corig∩Cdecomp

Clone pairs that can only be found in the original (Corig-only) and decompiled set

(Cdecomp-only) are results of subtraction by the common clone pairs. We call them

disjoint clone pairs.

Corig-only = Corig−Ccommon

Cdecomp-only = Cdecomp−Ccommon
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We mainly focus on disjoint clone pairs for manual investigation. This

approach gives us clones that are detected only before and after decompilation. By

focusing on the disjoint clone pairs, we can reduce the number of clones that need

to be manually investigated dramatically and can study them in more details.

6.3.3.5 Clone Filtering

Before starting the manual clone validation process of the three systems, the thesis

author sampled a few clone pairs to look at manually and found some trivial and

auto-generated clone pairs. They were equals(), hashCode(), getters, setters, and

duplicated methods generated by the compiler and decompiler. We filter such clone

pairs using regular expressions because they are not very interesting to look at. The

equals(), hashCode(), getter and setter clone pairs are similar boiler-plate code.

The duplicated methods are inner-class methods which are by-products from the

compilation/decompilation process. They must be removed since they do not exist

in the original code.

6.4 Results and Discussion
We performed an experiment on an Apple iMac machine running macOS 10.12.1

with 2.7 GHz Intel Core i5 and 8 GB of RAM. The answers to the three research

questions are discussed below.

6.4.1 RQ1: Clone Agreement

How many clone pairs are mutually agreed and reported by the same clone

detector before and after decompilation?

We answer RQ1 by running NiCad against the three software systems twice, before

and after decompilation, and studying the clones. NiCad was configured using three

different configurations: Type-1, Type-2 with consistent renaming, and Type-3 with

consistent renaming (i.e., using NiCad’s configuration file type1.cfg, type2c.cfg, and

type3-2c.cfg accordingly). NiCad provided blind and consistent renaming options.

We chose the stricter consistent renaming so that we could reduce the number of

false positives. Then, we used the clone mapper to map decompiled clones back



6.4. Results and Discussion 224

to their original counterparts. Finally, we computed an intersection of clone pairs

between the original (Corig) and decompiled (Cdecomp) set to find common and

disjoint clone pairs. The same approach of finding common and disjoint clones

before manual analysis has also been done by Kononenko et al. [2014].

The number of clone pairs in common, orig-only, and decomp-only set before

and after filtering are displayed in Table 6.3. The set of clone pairs after filtering is

denoted as Cf. The clones are divided by clone types from Type-1 to Type-3. The

numbers are mutually exclusive. For example, Type-2 clone pairs are pairs that are

found using Type-2 configurations and not reported in Type-1 pairs. Similarly, the

number of Type-3 clone pairs are the ones not reported in Type-1 and Type-2. The

findings from the three systems are discussed below.

6.4.1.1 JUnit

The system contained no Type-1 clone. After filtering, we found 6 Type-2 and 3

Type-3 clone pairs and all of them were identically reported from both before and

after decompilation. We did not find any disjoint clone pairs, so we did not continue

the manual investigation for JUnit.

6.4.1.2 JFreeChart

The followings are numbers after filtering. For Type-1 clones, we found 33 (89.2%)

common, 1 (2.7%) orig-only, and 3 (8.1%) decomp-only pairs. For Type-2, there

were 159 (83.2%) common, 15 (7.9%) orig-only, and 17 (8.9%) decomp-only clone

pairs. For Type-3, there were 155 (67.4%) common, 48 (20.9%) orig-only, and 27

(11.7%) decomp-only pairs.

6.4.1.3 Tomcat

After filtering, we found 20 (46.5%) common, 22 (51.2%) orig-only, and 1 (2.3%)

decomp-only clone pairs in Type-1. For Type-2, there were 217 (88.6%) common,

25 (10.2%) orig-only, 3 (1.2%) decomp-only clone pairs. Lastly, for Type-3, there

were 608 (78.8%) common, 141 (18.3%) orig-only, 23 (2.9%) decomp-only pairs.
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To answer RQ1, we found that, after filtering irrelevant clone pairs, the

clone pairs before and after decompilation were mostly similar for all three clone

types. In JUnit, 100% of clone pairs were identically reported before and after

decompilation. In JFreeChart and Tomcat, common clone pairs accounted for

67.4% to 89.2%, and 45.5% to 88.6% respectively. Nevertheless, we still found a

number of disjoint clones for all three clone types, i.e., there were clones that could

avoid the detection before and after decompilation. The number of decomp-only

clone pairs in JFreeChart and Tomcat kept increasing from Type-1 to Type-3. This

demonstrates that compilation/decompilation is useful in discovering clones with

changes (i.e., Type-2 and Type-3). However, it can only marginally improve the

detection of Type-1 clones since they are already handled by NiCad pretty-printing.

6.4.2 RQ2: Decompilation Accuracy

How does compilation/decompilation affect precision and recall of clone detec-

tors?

We manually investigate 326 clone pairs (252 from Cforig-only and 74 from

Cfdecomp-only) in JFreeChart and Tomcat. The author of the thesis took a role of

an investigator. The investigator looked at the clones in the two sets and classified

them as either true or false positive. For each clone pair, he checked them both

in the original and the decompiled version. However, the classification was only

based on the original code. He also noted the details of the clones before and after

decompilation and the reason of why they were reported in only a single set. The

manual investigation results are shown in Table 6.4. We can see that every clone

pair, both in the original and the decompiled set, is classified as true positive except

for a single one in JFreeChart orig-only Type-3 clones.

Considering the number of clones and true positive pairs in both Cforig-only and

Cfdecomp-only set, we can see that NiCad offers perfect precision almost in every

setting. However, regarding recall, NiCad misses a considerable amount of clone

pairs that are reported only in the original or decompiled version.
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Table 6.4: Manual investigation results of clone pair candidates reported in Cforig-only and
Cfdecomp-only

System Type
Cforig-only Cfdecomp-only

Candidates True Positives Candidates True Positives

JFreeChart

Type-1 1 1 3 3
Type-2 15 15 17 17
Type-3 48 47 27 27

Sum 64 63 47 47

Tomcat

Type-1 22 22 1 1
Type-2 25 25 3 3
Type-3 141 141 23 23

Sum 188 188 27 27

6.4.2.1 JFreeChart

There are 47 true clone pairs from Cfdecomp-only that were not found in the original

version. On the contrary, there were 63 true clone pairs from Cforig-only that were

not reported in the decompiled version.

6.4.2.2 Tomcat

There were 27 true clone pairs from Cfdecomp-only that were discovered after

decompilation. On the other hand, 188 true clone pairs in Cforig-only were missing

after decompilation.

To answer RQ2, we find that original and decompiled source code do not have

perfect clone recall. However, one can complement the original clone results by

incorporating clones after decompilation. From the manual investigation, we find

that all decompiled clone pairs are true positives. Combining two clone sets will

increase recall of the tool without losing precision.

6.4.3 RQ3: Characteristics of Disjoint Clones

What are the characteristics of clones discovered only in the original source code

before decompilation?

The manual investigation reveals 7 characteristics of disjoint clones from

JFreeChart and Tomcat. The details of disjoint clone characteristics are described
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Table 6.5: Characteristics of disjoint clones reported in Cforig-only and Cfdecomp-only

Clone set Why do they only appear in this set?
JFreeChart Tomcat

Total
T1 T2 T3 T1 T2 T3

Cforig-only

Too small after decompilation 1 9 32 1 6 120 169
Too different after decompilation 0 6 11 21 0 0 38
Smaller after decompilation causing
higher dissimilarity

0 0 0 0 0 5 5

Unknown 0 0 5 0 19 16 40

Cfdecomp-only

Originals have added/deleted state-
ments, type casts, package names

3 5 8 2 0 1 19

Originals have different if-else 0 12 3 0 0 0 15
Originals use different loops (for
vs. while)

0 0 4 0 0 0 4

Originals are inner-class methods 0 0 0 0 0 2 2
Unknown 0 0 12 0 3 20 35

in Table 6.5. Three characteristics are found from clones in Cforig-only and four are

found from clones in Cfdecomp-only.

6.4.3.1 Disjoint Clones in Cforig-only

The majority of the clone pairs here did not have their counterparts after decompila-

tion due to effects of the decompilation process. The most common characteristic is

smaller clone size after decompilation. 169 pairs of the original clones were smaller

after decompilation. They were smaller than the 10-line minimum clone size of

NiCad and hence not reported, which made them appear only in the original set.

The second characteristic is that clones become more different after decompilation

(38 pairs). For example, two methods in the original source code contained a string

constant with the same variable name but different values. The variables were

declared outside of the clone region thus they formed an identical Type-1 clone pair.

After decompilation, the constant variables had been replaced by the actual value

of string literals. This made decompiled code no longer an identical clone pair.

Another characteristic, observed from 5 clone pairs, is a decrease of similarity due

to smaller clone size after decompilation. In some cases, a Type-3 clone pair with

added lines became smaller after decompilation. The added lines were preserved

while other statements were compressed or removed. Thus, the decompiled clone

pair had a lower similarity value. The remaining 40 disjoint pairs did not have any
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noticeable characteristics (categorised as Unknown).

6.4.3.2 Disjoint Clones in Cfdecomp-only

Most of the clone pairs are challenging Type-2 and Type-3 clones for NiCad.

There were 19 clone pairs that the original code contained added/deleted state-

ments, extra type castings (e.g., (CategoryAxis)this.domainAxes.get(index)

vs. this.rangeAxes.get(index)), or package names in front of class names

(e.g., Map.Entry vs. Entry). The added/deleted statements lowered clone similarity

while extra type casts and package names affected Type-1 and Type-2 detection.

These inconsistencies were standardised and the clone pairs were more similar after

decompilation. Moreover, we observed 15 clone pairs having different if-else

statements similar to the example depicted in Figure 6.3. The method findDo-

mainBounds() and findRangeBounds() formed a Type-3 clone pair with flipped

but equivalent if-else conditions. These if-else statements were canonicalised

by the decompilation process and became identical. Interestingly, this Type-

3 clone pair could be discovered using even stricter Type-2 configurations after

decompilation. There were 4 Type-3 clone pairs with different loops, for and

while. An example is shown in Figure 6.5. They turned almost identical after

decompilation by having only for loops. Lastly, we found 2 clone pairs residing

in inner classes. They were missing from the original clone set possibly due to

complications in parsing. Compilation/decompilation extracted inner classes out

as separated files so they were detected. There were 35 pairs only found after

decompilation but without any observable characteristic (categorised as Unknown).

To answer RQ3, we derive seven characteristics of disjoint clones that make

them discoverable only before and after decompilation. We observe that the major-

ity of clones are reported only in the original set because of their smaller size after

decompilation. The decompiled clones are still clones, but they are too small to be

reported, which is a weakness in our technique. On the contrary, the characteristics

of clone pairs only found by decompilation involve Type-2 and Type-3 clones with

strong modifications at the syntactic level. After compilation/decompilation, the

modifications are canonicalised.
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6.5 Overall Discussion
The findings in this chapter suggest using decompilation4 as a complementary

method to clone detection in Java software projects. Since the decompiled code

is also Java source code, any source code-based clone detection tool can be

benefited from this technique. We show that combining clones from before and

after decompilation can increase recall without sacrificing precision. It is useful for

code clone detection in a software project or between software projects.

However, the technique has a few limitations that prevent us from integrating

it into a scalable clone search engine. First, a successful compilation process needs

complete dependencies, so it will not work in the case of code snippets that are

separated from their projects. Second, code compilation, especially in Java, relies

on build platforms such as ant, gradle, or maven. These platforms manage the

dependencies required for a successful compilation. To enable the technique to

work on any project, we need to tailor the clone search tool to support most of,

or all, of the build platforms. This hinders the generalisation of the tool. Third,

compilation and decompilation process needs source code that is compilable. The

technique will not work with incomplete code snippets that are usually found on

Stack Overflow.

6.6 Threats to Validity
There are some potential threats to validity in this chapter. We separately discuss

them in two aspects: internal and external validity.

6.6.1 Internal Validity

The three chosen software systems for our experiment might not represent all Java

software projects, and the results might not be generalised. We are aware of

the effects of configurations to the tools’ performance, so we tuned NiCad using

multiple pre-defined configurations. At the same time, they are configurations that

conform to the definitions of Type-1, Type-2, and Type-3 clones. Nevertheless, we

4This possibly includes any kind of source-code transformation that normalizes code in the same
way as compilation and decompilation.
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only selected subsets of all possible NiCad configurations.

6.6.2 External Validity

All the tools used in this study are restricted to being open source to encourage

replication. However, there is only a single clone detection tool and decompiler

chosen. They might not represent other clone detectors and decompilers.

6.7 Related Work
There have been a few studies similar to ours by trying to detect clones after compi-

lation. Chen et al. [2014] locate clones in Android apps based on dex files extracted

from Android APKs. Davis and Godfrey [2010] convert Java and C/C++ code

into assembler code and detect clones using longest common subsequence string

matching augmented by hillclimbing search for flexible matching. Kononenko et al.

[2014] similarly find clones in Java after compilation by adapting CCFinderX to be

compatible with bytecode sequences and manually investigate disjoint clone pairs.

Selim et al. [2010] enhance Simian and CCFinderX by transforming Java code into

Jimple code and locating clones at that level. Their technique helps the tools to

detect more Type-3 clones and handle gapped clones. Our study detect clones

at source code level using the current state-of-the-art code clone detection tool

after applying a two-step process of compilation and decompilation. This approach

provides opportunities to compare and study clones before and after decompilation

which provide several useful insights. In various cases, we find that the decompiled

clones are more compact and concise than the original code.

6.8 Chapter Summary
This chapter studies compilation and decompilation as a pre-processing step for

clone detection in three open source software systems. It is found that the

technique can increase clone recall while not sacrificing precision. The technique

is recommended for intra- or inter-project code clone detection.

The next chapter will present the architecture of our scalable and incremental

clone search approach and its implementation as a tool called Siamese. The chapter
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will evaluate the Siamese tool on multiple data sets, including the OCD framework,

BigCloneBench, and GitHub, and compared the tool to the state-of-the-art clone

detection tools.



Chapter 7

Siamese: Scalable and Incremental

Code Clone Search Engine

This chapter sets off by explaining the architecture of Siamese, a scalable and

incremental code clone search approach. It moves to discuss two main modules

which enable accurate clone search: multi-representation and query reduction.

Lastly, the chapter evaluates the performance of Siamese both in terms of clone

search precision and scalability.

7.1 Motivation
Code search is becoming increasingly important when considering the plethora of

source code currently proliferating on the Internet [Sadowski et al., 2015]. Devel-

opers prefer to reuse coding solutions from online sources, such as Stack Overflow,

instead of official documentation or books [Acar et al., 2016]. Researchers have also

leveraged large amounts of online code snippets to make suggestions to developers

during development [Keivanloo et al., 2014, Park et al., 2014, Ponzanelli et al.,

2013, 2014]. Online code snippets may be exploited for program repair [Ke et al.,

2015] or code examples [Keivanloo et al., 2014, Nasehi et al., 2012]. On the other

hand, reusing code from online sources have been found to introduce negative

effects to software quality [Abdalkareem et al., 2017, Acar et al., 2016] or to violate

software licenses [An et al., 2017, Baltes et al., 2017]. To locate such clones,

a special type of code search, namely code clone search, which accepts a code
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fragment as a query and performs a code-to-code search in large code corpora [Kim

et al., 2018, Nishi and Damevski, 2018] is needed.

It is difficult to obtain high precision, recall, and scalability at the same time

in code clone detection. Text-based search engines such as Bing and Google are

scalable to the Internet but are not designed for source code and rely only on

keyword search [Sadowski et al., 2015]. Dedicated code search engines such as

BlackDuck OpenHub [BlackDuck, 2016], Krugle [Aragon Consulting Group, Inc.,

2018] or Searchcode [Boyter, Ben, 2018] cannot efficiently handle code clones with

modifications [Keivanloo et al., 2014, Kim et al., 2018]. Hummel et al. [2010] and

Koschke [2014] are among the first to propose scalable clone detection systems.

However, the trade-off for the scalability is their ability to report only copy-and-

paste clones or clones with variable renaming (i.e., Type-1 and Type-2 clones),

while the largest number of clones found in software are clones with added or

deleted statements (Type-3 clones) [Roy and Cordy, 2009b, Svajlenko et al., 2014b].

Although there are scalable clone detection and clone search techniques that can

locate Type-3 clones with some level of success [Keivanloo et al., 2011, Sajnani

et al., 2016, Kim et al., 2018], scalably finding Type-3 clones is still an open

challenge.

Retrieving a ranked list of clones is preferred over a full list of clone pairs in

various contexts, such as finding similar code examples [Keivanloo et al., 2014]

or searching for candidates for bug fixing [Ke et al., 2015]. Code clone detectors

that report a complete set of clones are not suitable for these tasks because a large

number of clone pairs have to be manually investigated [An et al., 2017, Yang

et al., 2017, Bauer et al., 2016]. In these circumstances, the user would only need

a ranked list of top n cloned code fragments instead [Niu et al., 2017]. There

have been a number of code search tools which produce a ranked list of code

candidates [Grechanik et al., 2010, Inoue et al., 2012, Keivanloo et al., 2014, Kim

et al., 2018, McMillan et al., 2011, Niu et al., 2017, Zhang et al., 2017] for some

specific use cases. To support a broader range of applications, we prefer a clone

search engine that is general and not tied to any specific use cases or scenarios.
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Moreover, to find good candidates for program repair, we look for clones which

deviate from the original buggy code (i.e., Type-3/Type-4) to increase the chance of

successful repairs [Ke et al., 2015]. On the other hand, to check for copy-and-

paste code from online sources and investigate their license compatibility, we are

interested in clones that are closer to the original (i.e., Type-1/Type-2) to reduce the

manual investigation time. Thus, it is important that the clone search tool captures

different types of clones.

Lastly, most of the clone detectors do not handle incremental addition or

deletion of software projects. Thus, adding new projects to the code base under

analysis or updating existing projects would result in the need to rerun the clone

detection for the complete data set. Several of the proposed techniques that support

incremental clone detection do not scale to large-scale data sets [Göde and Koschke,

2009, Kawaguchi et al., 2009, Nguyen et al., 2009b] or do not detect Type-3 clones

in sacrificing for scalability [Hummel et al., 2010, Koschke, 2014].

7.2 Contributions

To tackle these challenges in large-scale clone search, we present and evaluate

a scalable code clone search engine that retrieves Type-1 to Type-3 code clones

in seconds, and supports incremental changes in software projects. The Siamese

(Scalable, incremental, and multi-representation) clone search engine works with

multiple representations of source code to capture code similarity at different

structural levels. It mines token frequencies in a code corpus on-the-fly and

automatically adjusts a query’s length to improve the search speed and accuracy.

The tool allows incremental updates to its source code index. The evaluation

of Siamese shows that it scales to 365M SLOC and returns the results within

10 seconds. Our technique offers a search precision of 95% and 99% on two

established clone benchmarks, which are higher than seven state-of-the-art clone

detection tools. Moreover, the technique also exhibits high recall and precision for

all clone types in the BigCloneBench [Svajlenko et al., 2014b], a large-scale clone

benchmark. This chapter makes the following primary contributions.
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1. A multi-representation and query reduction techniques for code clone search

that is accurate and scalable, and their evaluation.

2. The Siamese clone search engine1 which is scalable and incremental, suitable

for performing instant clone search on large-scale data sets, such as online

code repositories.

7.3 Siamese Clone Search Architecture
We designed the architecture of our clone search approach by adopting inverted

index and code clone detection techniques as depicted in Figure 7.1. Source code

from code corpora is stored in an inverted index, which is a widely-used data

structure for fast querying of relevant documents [Manning et al., 2009]. Our

architecture separates the necessary indexing of source code, where the search index

is created, from querying, where the clones of a queried code fragment are retrieved.

Inverted index and tf-idf-based scoring functions are exploited as the infrastructure

of code retrieval and similarity measurement. Siamese works at token level which

supports scalable detection of near-missed clones [Kim et al., 2018, Sajnani et al.,

2016]. The two techniques normally found in token-based clone detection including

token normalisation [Kamiya et al., 2002, Prechelt et al., 2002, Roy and Cordy,

2008] and n-gram generation [Burrows et al., 2007, Ohmann and Rahal, 2014,

Prechelt et al., 2002, Schleimer et al., 2003] are performed during indexing and

querying time.

The architecture incorporates a novel multi-representation and query reduction

technique to increase clone search precision and flexibility of clone matching.

The multi-representation module (Section 7.3.3) enables clone detection based

on multiple code representations instead of one representation as in other tools.

The query reduction module (Section 7.3.4) leverages the knowledge of token

document frequency in a code corpus to improve the quality of the query on-

the-fly. Our customised scoring and ranking module (Section 7.3.5) computes

scores for matched code fragments and returns a ranked list of clones. Lastly,

1Tool and data sets used are available at https://siamesetool.github.io/siamese.

https://siamesetool.github.io/siamese
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Figure 7.1: Siamese Architecture

the incremental update module (Section 7.3.6) allows the user to add new code

fragments to the index or delete selected existing code fragments from the index

without affecting other indexed code fragments. Siamese performs a two-phase

approach: an indexing and a querying phase.

7.3.1 Indexing Phase

In this phase, Siamese processes a given source code base(s) to generate a search-

able code index. Siamese supports two types of code fragments, files and methods,

and the input code fragments are preprocessed before being stored into the inverted

index. Siamese is a token-based tool and is resilient to incomplete or uncompilable

code fragments. If the method parsing fails, it falls back to store the source code at a

file level. Each input code fragment F (file or method depending on its granularity)

is then tokenised into a stream of tokens and sent to the multi-representation (MR)

conversion module to generate four code representations which capture the code

structure at different levels, before being stored in the index. Indexing source code

files is an expensive task because the tool has to process all the available code data.

Fortunately, it occurs far fewer times than the querying phase.

7.3.2 Querying Phase

The querying phase happens when the clone search tool receives a code query from

its user and returns clone results. Only indexed documents containing the query
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terms are retrieved and ranked. Querying is the main activity for Siamese and

usually occurs many more times than indexing. In this phase, the source code query

is prepared in the same way as in the indexing phase by passing through method

extraction and tokenisation steps. A tokenised code query Q is sent to the MR

module to generate four query representations, i.e., siblings. The query reduction

(QR) module rewrites and generates reduced queries from the original four query

siblings. The reduced query siblings are combined into a single search request and

executed on the search engine. Siamese retrieves indexed code fragments that match

with the combined query and computes the ranking of results using a customised

scoring function before reporting them to the user.

7.3.3 Multi-Representation (MR)

The Siamese clone search approach works with four code siblings derived from the

original source code fragment F by the multi-representation module. The set of

four code representations {r0,r1,r2,r3} that represent F are defined as follows.

1. Original representation r0: A stream of tokens, i.e., 1-grams, containing

tokens from the original source code (text search).

2. Type-1 representation r1: A stream of n-grams containing tokens from the

original code (Type-1 clone search).

3. Type-2 representation r2: A stream of n-grams containing normalised n-

grams with identifier, literal, and type tokens replaced by the representative

tokens (Type-2 clone search).

4. Type-3 representation r3: A stream of n-grams containing normalised n-

grams with all tokens replaced by the representative tokens, except Java

punctuators {, }, [, ], (, ), and ;. Punctuators are not normalised as they

are meaningful to the code structure (Type-3 clone search).

The three n-gram-based representations (r1, r2, r3) are derived from the stream

of tokens in the original representation (r0). Our MR module augments the normal

text search and makes it more suitable for code search by including three more
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Table 7.1: Representative tokens for specific token types

D data types J Java class names
K Java keywords P Java packages
O operators S string literals
V numbers W words (other identifiers)

public static int binarySearch1 (int arr[], int key, int imin,

int imax) {

if (imax < imin)

return -1;

int imid = (imin+imax)/2;

if (arr[imid] > key)

return binarySearch1(arr,key,imin,imid-1);

else if (arr[imid] < key)

return binarySearch1(arr,key,imid+1,imax);

else

return imid;

}

Figure 7.2: An example code fragment of a binary search method

representations that leverage token types, code structure, and the knowledge of

clone types. For Type-1 representation (r1), the n-grams are generated directly

from the original representation (r0). For Type-2 (r2) and Type-3 representation

(r3), the stream of tokens r0 is normalised to a reduced token stream in which

tokens of specific types are replaced by a representative token. Table 7.1 shows

the list of our pre-defined representative tokens containing D for data types, J for

Java class names, K for Java keywords, P for Java packages, O for operators, S for

string literals, V for numbers, and W for words, i.e., other identifiers. In case of r2,

all identifiers, types, numbers, and string literals are replaced by a representative

token W, D, V, and S respectively. For r3, all tokens are replaced with their

respective representative tokens. Then, r1, r2, and r3 are obtained by n-gramising

their respective reduced token stream.

For example, given a code fragment of a binary search method in Figure 7.2,

the four representations r0,r1,r2,r3 generated from the MR module are depicted in

Table 7.2.

This MR technique enables Siamese to capture multiple clone types at the
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Table 7.2: The four representations of the binarySearch1method generated from the MR
module.

r0 (n-gram size = 1)
public static int binarySearch1 ( int arr [ ]

, int key , int imin , int imax ) ... ;

else return imid ; }

r1 (n-gram size = 4)
publicstaticintbinarySearch1 staticintbinarySearch1(

intbinarySearch1(int binarySearch1(intarr (intarr[ ...

;elsereturnimid elsereturnimid; returnimid;}

r2 (n-gram size = 4)
publicstaticDW staticDW( DW(D W(DW (DW[ DW[] W[],

[],D ],DW ,DW, DW,D W,DW ,DW) DW){ W){if ){if( ...

);elsereturn ;elsereturnW elsereturnW; returnW;}

r3 (n-gram size = 4)
KKDW KDW( DW(D W(DW (DW[ DW[] W[], [],D ],DW ,DW,

DW,D W,DW ,DW) DW){ W){K ){K( {K(W K(WO (WOW ...

KK(W WOV, OV,W V,W) ,W); W);K ;KKW KKW; KW;}

same time. During the search, each code representation in the query will match

with its respective representation of the indexed code fragments. We apply MR

conversion to the source code in both the indexing and querying phase. In the

indexing phase, Siamese creates a new document for a given code fragment and

puts the four representations in separated fields inside the document. Then, the

document is stored in the search index. In the querying phase, Siamese creates a

combined query containing four sub queries of the four representations.

7.3.4 Query Reduction (QR)

Clone search suffers the long query problem [Kumaran and Carvalho, 2009] since

a code fragment is given as a query. To tackle this problem, we adopted a query

reduction technique using token document frequency (df ), i.e., the number of

documents in which the token appears, as a query quality predictor [Kumaran and

Carvalho, 2009]. We rewrite the query to contain only rare tokens and discard

frequent ones. According to studies of Zipf’s power law in software [Zipf, 1932,

Knuth, 1971, Zhang, 2008], there are a few highly frequent tokens in programming

languages and the frequency of tokens drop rapidly inversely proportional to their
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ranks. Thus rare code tokens are ranked among the last and share only a few

documents with others. By choosing only rare tokens to form a reduced query, one

can (1) decrease the number of retrieved code snippets to be only highly relevant

ones, (2) increase the search speed due to fewer search terms to process, and

(3) avoid false positive results. Our query reduction technique chooses rare tokens

in a query on-the-fly by analysing df scores of all query tokens.

Siamese derives four sibling queries q0,q1,q2,q3 from the original query Q

(a given code fragment), and shortens all of them. The QR module gets rid of

duplicated tokens by consolidating tokens or n-grams in q0,q1,q2,q3 into a set of

unique tokens and n-grams. Then it filters the tokens based on their df score. For

each representation qi, tokens with df score lower than or equal to a threshold θi

are kept in the reduced query, and tokens with df score higher than θi are discarded.

The θi value is a proportion of the number of documents in the index and can be

adjusted via a variable called dfCapi (ranging from 0 to 100 percent). The threshold

θi and each reduced token query q′0, q′1, q′2, and q′3 are defined as below.

θi = dfCapi× |documents|, i ∈ [0,3]

q′i = {t ∈ qi : df(t) ≤ θi}, i ∈ [0,3]

The optimal θi value for the four representations may be different based on

the distribution of tokens and n-grams in each representation. Setting a low θ

value offers high discriminative power since it allows only rare tokens to appear

in the query, and results in a short query, while selecting a high θi value gives low

discriminative power and allows frequent tokens to be included in the query.

7.3.5 Scoring and Ranking of the Results

Siamese exploits Apache Lucene’s scoring and ranking function to create a list of

ranked cloned results. The scoring and ranking technique is based on a vector space

model (VSM) [Salton et al., 1975] representation by converting documents, i.e., code

fragments, into k-dimensional weight vectors V = 〈w1,w2,w3, ...,wi, ...,wk〉 where k

equals the number of terms in the dictionary. A popular weighting scheme is term
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frequency (tf) and inverse document frequency (idf). tf represents how frequent

a term occurs in a document and is defined as tf(t,d) =
√

frequency(t,d). idf

represents how often the term occurs across all the documents in the corpus and

is defined as idf(t) = 1 + log( |documents|
df (t)+1 ), where df (t) stands for document frequency

of term t.

Apache Lucene computes a relevance score between a query vector and

a document vector in order to gain speed in searching and ranking. Relevant

documents are ranked according to their scores, i.e., their relevance to the query,

before returning to the user. The Lucene scoring formula [Apache Software

Foundation, 2012] is

score(q,d) =
∑
t∈q

[tf(t,d) ·idf(t)2 ·t.getBoost() ·norm(t,d)] ·queryNorm(q) ·coord(q,d),

(7.1)

where a score(q,d) between a document d in the index and the query q is computed

from a sum of term scores for all the terms in q. A score for each term t in

the query is computed from a multiplication of the term frequency in document

tf(t,d), the squared inverse document frequencies idf(t)2, the term boosting weight

t.getBoost(), and the field length normalisation norm(t,d). Finally, the sum of term

scores is multiplied by a query normalisation factor, queryNorm(q), and a query

coordination, coord(q,d)2.

Since tf(t,d) will be zero for terms that do not exist in the document, only

matched terms contribute to the score. Siamese relies on four representations of

Java code, hence the final score of each code snippet is a sum of scores from the

four reduced queries q′0, q′1, q′2, and q′3. Our customised scoring function is

scoreSiamese(Q,d) =

3∑
i=0

score(q′i ,d). (7.2)

2Detailed explanation: a query normalisation factor, queryNorm(q), enables a comparison be-
tween results of different queries; query coordination, coord(q,d), gives higher scores to documents
that contain a high percentage of terms in the query; query boosting, t.getBoost(), gives a boosted
term more importance than another; and field length normalisation, norm(t,d), gives higher weight
to a shorter field than a long field in case a document is represented by more than one field, e.g. title
and body.
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In addition, during computation of the reduced query scores, we assign a

specific query term boosting weight for each representation, t.getBoost(), equals

the size of n-gram. The terms in q′0 are not boosted, i.e., t.getBoost() = 1, since the

original code tokens are 1-gram and can match relatively more frequently compared

to other representations (we empirically validated this in Section 7.4.2). In contrast,

the search terms in the n-gram-based representation q′1, q′2, q′3 receive a higher query

boosting weight. For example, if we choose the n-gram size for the query terms in

q′1 at 4, the matched n-grams in q′1 will receive a boosting weight of 4. Since the

query boosting score equals to the size of n-gram, the larger chosen n-gram size for

each representation, the higher the query boosting weight is given and the higher

score is received when terms in that representation find a match. We later explore

that this boosting scores can be adjusted to accurately search for a specific clone

type.

Finally, after the scores have been computed, the candidates are ranked based

on their scores from the highest to the lowest. If two documents obtain the same

score, they are sorted based on the alphabetical order of the file and method names.

Siamese then returns the top n results from the ranked list to the user.

7.3.6 Incremental Updates

Siamese allows incremental updates to its index which is beneficial for maintaining

an index of large-scale code repositories where the index can be updated to new

changes without a need to reindex all the repositories again, similar to Hummel’s

work [Hummel et al., 2010]. With large-scale source code data, it becomes a

necessity for code clone detection or clone search tool to handle changes in code

bases incrementally. Siamese leverages the flexibility of inverted index to allow its

user to add, edit, delete code fragments in the index without affecting other indexed

code fragments. For addition, the user can tell Siamese to incrementally add a given

code fragment or project(s) to its index instead of recreating the index from scratch.

For deletion, Siamese uses a given wildcard pattern for matching with the project

or file name of code fragment(s) intended to be deleted and performs a deletion on

the matched fragments. An update operation can be done using a deletion followed
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by an addition.

7.4 Siamese Implementation
Our implementation of Siamese utilises Elasticsearch [Elasticsearch BV., 2016],

an open-source high performance distributed full-text search engine, for a scalable

code indexing and retrieval. The current implementation is in Java and uses a

single Elasticsearch node with one shard. We built the preprocessing, MR module,

QR module, and scoring function on top of Elasticsearch’s infrastructure. The

Java method parsing is done using the Java parser [van Bruggen, 2017] and the

tokenisation is done using the Antlr4 lexer with a Java 8 grammar [Parr et al., 2017].

Our implementation allows the tool to be executed on a single desktop machine or

in a distributed manner by increasing the number of Elasticsearch nodes.

The MR, QR, scoring and ranking modules are language agnostic while the

parser, tokeniser, and normaliser are language dependent. The current implemen-

tation of Siamese supports Java. To add a new language, one has to provide an

implementation of the method extractor, tokeniser, and code normaliser for the

language.

7.4.1 Selection of N-gram Sizes

The selection of the optimal n-gram size is not a trivial task. Selecting a large n-

gram restricts Siamese to detect clones with small gaps of modified, inserted or

deleted statements to ensure the confidence of being clones. In addition, a large

n-gram size encodes more information in each gram and also contains a longer

overlapping region between each gram, which will affect the memory required and

the disk I/O time to process the n-grams. On the contrary, selecting a small n-gram

allows larger gaps with better matching flexibility and requires less memory and

disk access time, but also results in a higher chance of retrieving false clone pairs.

We surveyed the literature that use n-gram for clone detection and code

similarity to study their choices of n-gram sizes. Burrows et al. [2007] selected 4-

grams in their software plagiarism detection approach. Myles and Collberg [2005]

found that the size of 4-gram or 5-gram offers a suitable tradeoff between credibility
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Figure 7.3: Java term rank and its document frequency

and resilience for their n-gram-based software birthmark technique. Ohmann and

Rahal [2014] observed that n = 4 and n = 13 is the optimal choice for Manhattan

and cosine distance respectively. We observed that 4-gram was chosen and shown a

good performance in the three studies. Thus, we selected the n-gram size of 4 for our

three code representation r1, r2, and r3 in the MR module. 4-gram is long enough to

capture code sequences but still allows small modifications within a statement. The

representation r0 relies on 1-gram to function as a keyword search, which is useful

when looking for a specific token among the cloned fragments.

7.4.2 Choosing the Query Reduction Thresholds

Similar to the n-gram sizes, the selection of appropriate query reduction thresholds

is important for generating high-quality queries. We used two data sets to select the

optimal threshold θ values for the QR module. First, we selected the well-known

Bellon’s clone benchmark [Bellon et al., 2007] for this analysis. The benchmark

provides a partial clone ground truth in C and Java systems and has been used in

several code clone studies [Wang et al., 2013b, Svajlenko and Roy, 2014, Koschke

et al., 2006]. The Bellon’s benchmark was only used in this empirical n-gram

analysis, and not used in any of Siamese’s evaluation to avoid configuration bias.

We used the four Java systems, java-swing (204K SLOC), eclipse-jdtcore (148K

SLOC), eclipse-ant (16K SLOC), and netbeans-javadoc (19K SLOC) from the

benchmark. Second, we employed the Qualitas corpus [Tempero et al., 2010].

It is a curated Java corpus that has been used in several software engineering
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studies [Taube-Schock et al., 2011, Beckman et al., 2011, Vasilescu et al., 2011,

Omar et al., 2012]. The projects in the corpus represent various domains of software

systems ranging from programming languages to visualisation. We selected the

20130901r release of the Qualitas corpus containing 111 Java open source projects.

Since we need four threshold values for the four reduced query siblings q′0, q′1, q′2,

and q′3, we derived four data sets from Bellon’s benchmark and the Qualitas corpus,

namely r0, r1, r2, and r3 respectively, to match with the structure of our four code

representations. For r1, r2, and r3, we adopted the n-gram sizes of 4 as previously

discussed. Then, we counted document frequencies of the tokens and sorted them

based on their frequency.

A visualisation of the term’s document frequency vs. its rank from Bellon’s

benchmark is shown in Figure 7.3. We observed that the document frequency of

r0, the original tokens, dropped sharply and started rapidly converging to one at

approximately 10% (2K) of all the documents in the corpus. Similar observation

was found for r1. The document frequency of r2 and r3 also converged to one. They

dropped to one slightly slower than r0 and r1 due to the token normalisation, but

they were also almost distinct at 10% of all the documents. Similar findings were

observed for the Qualitas corpus as depicted in Figure 7.3b. With this observation,

we picked the same query reduction threshold for all representations at 10%.

7.5 Experimental Design
We designed Siamese to be a multi-purpose clone search tool that can be exploited

for various clone-related applications. To be useful, the tool must scale to the size of

code corpora on the Internet while still return accurate ranked lists of clone results

in a reasonable time (i.e., seconds).

We asked the following research questions to asses the practicality of Siamese

to clone search applications.

RQ1: Multi-Representation and Query Reduction: How effective are

multi-representation and query reduction (MR-QR) to improve clone search

accuracy? To measure the effectiveness of our multi-representation and query
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reduction techniques, we compared the search accuracy of Siamese with MR

and QR reduction to the baseline text search engine.

RQ2: Search Accuracy: How accurate are Siamese search results? We

measured Siamese search accuracy on the three established clone data sets

and compared to state-of-the-art clone detection and clone search tools. The

findings demonstrate the quality of Siamese’s search results compared to

other tools.

RQ3: Clone Ranking: How accurate is Siamese clone ranking? We

exploited Siamese MR for a fine-grained search targeting only Type-3 clones

for alternative implementations and evaluated the accuracy of the ranked

results.

RQ4: Scalability: How practical is Siamese to index and search on large-

scale code corpus? Scalability is one of the most important aspects of

Siamese. We evaluated Siamese’s scalability by measuring its indexing and

querying time on the BigCloneBench data set containing 365M SLOC.

RQ5: Incremental Update: How fast is Siamese’s incremental update? Us-

ing an index of 130,719 GitHub projects, we evaluate Siamese’s incremental

update module by measuring an index update time over hundreds of releases

of the three most-starred Java software projects. The findings show the time

saved by Siamese incremental index update when the user wants to update

projects in the existing index.

7.5.1 Data Sets

We adopted three existing data sets used in other empirical code clone studies

namely the OCD data set [Ragkhitwetsagul et al., 2018a], the SOCO data set [Flores

et al., 2014], and the BigCloneBench data set [Svajlenko et al., 2014b, Svajlenko

and Roy, 2016] for our evaluation. Their summary is displayed in Table 7.3. There

is a complete ground truth for the first two data sets, while there is a partial ground

truth for the third data set. The OCD data set provides Java files with pervasive code
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Table 7.3: The data sets for Siamese evaluation

No. Data set Files Clone pairs SLOC

1. OCD 100 10,000 9,618
2. SOCO 259 453 26,122
3. BigCloneBench 2,876,220 8,375,313 365M

modifications made by code obfuscators and compiler/decompilers. It covers clones

of Type-1 to Type-4 (i.e., semantic clones or two code fragments with different

syntax but share the same semantic). The OCD data set contains 100 Java files

with a ground truth of 1,000 clone pairs at file-level. The 100 files consist of

10 groups of 10 files that are derived from one file and are therefore clones of

each other. The SOCO data set was created for the detection of source code reuse

competition. It contains clones of boiler-plate code fragments with a few or without

modifications. The data set contains 259 files with a ground truth of 453 clone pairs

at file-level. The OCD and the SOCO data sets were used in our previous study to

compare 30 code similarity analysers [Ragkhitwetsagul et al., 2018a]. Third, the

BigCloneBench data set is one of the largest clone benchmarks available to date.

It is created from IJaDataset 2.0 [ASE group, 2018] of 25,000 Java systems. The

benchmark contains 2.9 million files with 8 million manually validated clone pairs

of Type-1 up to Type-4. The BigCloneBench data set was used for clone evaluation

and scalability test in several large-scale clone detection and clone search studies

[Kim et al., 2018, Li et al., 2017, Sajnani et al., 2016, Svajlenko et al., 2014b,

Svajlenko and Roy, 2015]. Lastly, for the evaluation of Siamese incremental update,

we relied on a set of publicly available 130,719 GitHub Java projects.

7.5.2 Error Measures

We evaluated our approach to answer RQ1 and RQ2 using three error measures:

precision at 10, mean average precision (MAP), and mean reciprocal rank (MRR).

They are defined as follows.

Given the top n ranked results of which TP are true positives, precision at n

(denoted prec@n) is defined as
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prec@n =
TP
n
. (7.3)

Precision at 10 is a special case of precision at n where n = 10. It is used when

only the top 10 results are taken into account, which reflects real-world web search

scenarios that only 10 results are displayed per page [Manning et al., 2009].

Mean average precision (MAP) measures the quality of results across several

recall levels where each relevant result is returned. It is calculated from multiple

average precision (denoted APrec) obtained for the set of top k documents existing

after each relevant document is retrieved, and this value is then averaged over all the

queries [Manning et al., 2009]. If the set of relevant documents for a query q j ∈ Q

is {d1, ...dm j} and R jk is the set of ranked retrieval results from the top result until

retrieving the document dk, then

MAP =
1
|Q|

|Q|∑
j=1

1
m j

m j∑
i=1

APrec(R jk). (7.4)

Mean reciprocal rank (MRR) considers the case where only one relevant

document is needed. MRR measures, on average across |Q| queries, the reciprocal

rank of the relevant document (i.e., clone) to each query q in the search result

[Craswell, 2009], i.e.,

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

. (7.5)

7.6 Evaluation and Results

The evaluation of Siamese was performed on a single desktop computer. In RQ1,

RQ2, and RQ3, Siamese was run on a MacBookPro with a single 2.9 GHz processor,

16 GB of RAM, and 512 GB of solid-state disk (SSD). In RQ4, Siamese was run on

a CentOS 7.4.1708 machine with eight 3.00 GHz processors, 32 GB of RAM, and

500 GB SATA disk. In RQ5, Siamese was run on an Ubuntu 16.04.4 LTS machine

with eight 3.70 GHz processors, 32 GB of RAM, and 2.8 TB SATA disk.
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7.6.1 RQ1: Multi-Representation and Query Reduction

How effective are multi-representation and query reduction (MR-QR) to improve

clone search accuracy?

To answer RQ1, we used the two data sets for which we knew the complete

ground truth and measured the improvement of clone search offered by the multi-

representation and query reduction (MR-QR) technique using MAP. To observe the

clone search improvement offered by the MR module; the QR module; and the

combination of MR-QR to a traditional search engine, we compared the baseline

text search engine represented by Elasticsearch to three variants of Siamese: (1)

Siamese with MR, (2) Siamese with QR, and (3) Siamese with MR-QR. The

baseline represents code search engines that rely on keyword search of source code

fragments, and do not take code structure into account. Moreover, the baseline

of Elasticsearch text search engine is adopted by GitHub to search for code in its

8 million code repositories3. Thus, the baseline also represents the code search

capabilities of GitHub. For the OCD data set, we retrieved 100 queries from the

ground truth and expected 10 clones at the top for each query result (r = 10). For

the SOCO data set, the 453 clone pairs in the ground truth came from 115 unique

files, which we used as the queries. The number of relevant results r for each query

was varied and based on the number of cloned files associated with each query as

specified in the ground truth.

We started by evaluating the clone search performance based on 15 unique

combinations of code representations as displayed in Table 7.4, denoted by the

subscripted number. For example, r123 represents the combination of r1, r2, and

r3. For the OCD data set, Siamese already performed decently well using one

representation especially r1 with the MAP of 0.921. The highest MAP score was

from a combination of r13 at 0.938. The combination of four representations (r0123)

received a slightly lower MAP of 0.900. However, we will show later that by using

query reduction to get rid of the extraneous tokens, we could obtain even higher

3https://www.elastic.co/use-cases/github
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MAP scores than using r1 and r13. For the SOCO data set, the best combination was

using a single representation of r1 at 0.990. The r1 representation performed well

with the SOCO data set because it contained clones of boiler-plate code with very

few changes (Type-1 clones). Thus, using the n-gram sequences of original tokens

in r1 would match best with the clones. The combination of four representations

gave the MAP of 0.976, slightly lower than r1.

The results from Table 7.4 shows that there is no single representation that

performs well on both data sets. We could sacrifice some level of search precision

by combining code representations to be able to locate different types of clones in

different data sets without changing the configurations. This supports our intuition

of using multiple code representation for clone search.

By adopting the multi-representation alone, we could gain a higher MAP score

than the baseline by up to 15% (from 0.785 to 0.900). By applying QR on top of the

baseline text search, we also received an improvement. As displayed in Table 7.5,

The MAP score on OCD increased by about 18% (from 0.785 to 0.926). However,

we observed a slight decrease of MAP after applying QR for the SOCO data set

with the MAP score decreased from 0.977 to 0.975. Thus, using QR alone can be

beneficial only in some cases. Nevertheless, after combining MR and QR together,

we always obtained the highest MAP for both two data sets. The MAP scores

increased to 0.953 for OCD and to 0.991 for SOCO.

To confirm our findings of improvements by MR-QR, we performed a statis-

tical test using a two-tailed non-parametric randomisation test due to its robustness

in information retrieval [Smucker et al., 2007]. Our null hypothesis (H0) was that

there is no significant difference between the results from the baseline to the results

of Siamese using MR-QR. We performed the test using 100,000 random samples

with a confidence interval value of 99% (i.e., α≤ 0.01). The values in bold represent

a statistically significant improvement which rejects the null hypothesis. We found

that MR-QR helps to improve the clone search precision with statistical significance

compared to the baseline on the OCD data set. The improvement for SOCO was not

statistically significant due to an already high MAP score reported by the baseline.
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Table 7.4: Search performance (MAP) with different combinations of code representations

(a) One and two representations

Data set
1 rep. 2 reps.

r0 r1 r2 r3 r01 r02 r03 r12 r13 r23

OCD 0.785* 0.921 0.889 0.892 0.850 0.844 0.842 0.923 0.938 0.900
SOCO 0.977* 0.990 0.948 0.939 0.987 0.964 0.960 0.979 0.978 0.942
* = using the same representation as the baseline (token-based keyword search)

(b) Three and four representations

Data set
3 reps. 4 reps.

r012 r013 r023 r123 r0123

OCD 0.885 0.882 0.865 0.930 0.900
SOCO 0.979 0.978 0.956 0.971 0.976

Table 7.5: Search performance improvement (MAP) after adding multi-representation and
query reduction

Data
Settings

p-value A12
Baseline MR QR MR-QR

OCD 0.785 0.900 0.926 0.953 0.000 0.743
SOCO 0.977 0.976 0.975 0.991 0.205 0.522

We complemented the statistical test by employing a non-parametric effect size

measure called Vargha and Delaney’s A12 measure [Vargha and Delaney, 2000] to

measure the level of differences between two populations and found that the effect

size on the OCD data set is large (0.743), while on the SOCO data set is negligible

(0.522). These findings show that MR-QR is highly effective against clones with

several modifications applied to the source code, and mildly effective against clones

with boiler-plate code or exact code copies.

To answer RQ1, the adoption of MR-QR improves the clone search perfor-

mance compared to the baseline text search engine with statistical significance. The

inclusion of MR and QR alone increases the search accuracy in most of the cases.
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7.6.2 RQ2: Search Accuracy

How accurate are Siamese search results?

We utilised all three data sets to measure Siamese’s search precision. Each of them

is discussed separately below.

7.6.2.1 OCD and SOCO

To answer RQ2, we utilised all three data sets to measure Siamese’s search

precision. For the OCD and SOCO data set, we compared Siamese using MAP to

seven state-of-the-art clone detectors at file level. The other clone detectors included

SourcererCC [Sajnani et al., 2016], CCFinderX [Kamiya et al., 2002], DECKARD

[Jiang et al., 2007a], iClones [Göde and Koschke, 2009], JPlag [Prechelt et al.,

2002], NiCad [Roy and Cordy, 2008], and Simian [Harris, 2003]. For CCFinderX,

DECKARD, iClones, JPlag, NiCad, and Simian, we relied on the results reported

in Chapter 5. For SourcererCC, we followed the method shown in Chapter 5 to

automatically compute a similarity score based on the clone pairs reported by the

tools, create a ranked results based on the similarity scores, and measure MAP

score. We also tuned Siamese and compared the optimised Siamese to the other

tools’ optimised configurations as a previous study by Wang et al. [2013b] and our

results in Chapter 5 have shown that the default configurations of clone detectors

could harm the validity of studies relying on them.

The mean average precision of Siamese compared to seven other clone detec-

tors using their default configurations on the two data sets, OCD and SOCO, is

displayed in Table 7.6 and Table 7.7. With the default configurations of n-gram

sizes and query reduction thresholds (θ) derived from the empirical study, Siamese

performed best on the OCD data set with MAP of 0.953 and for the SOCO data set,

Siamese was ranked first along with JPlag with MAP of 0.991.

Regarding the optimised version, we tuned Siamese’s n-gram sizes and θ to

give the highest MAP score. The n-gram sizes for the three code representation

r1, r2, and r3 starts from 4 to 24 with an increasing step of 4 (the representation

r0 always has the n-gram size of 1). We tried the four n-gram sizes on the three
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representation independently and obtained 216 different combinations. The query

reduction thresholds θ cover 2%, 4%, 6%, 8%, and 10% and were set identically

for the four representations. Combined the two parameters together, we searched

for 1,080 combinations of Siamese’s configurations. The other tools’ optimised

configurations and their parameter search space are based on the results from

Chapter 5. CCFinderX and JPlag was ranked 1st for OCD and SOCO with MAP

of 1.000 and 0.997 respectively. Although Siamese did not give the highest MAP

scores based on the optimised configurations, it still offered a very high MAP score

(0.997 and 0.994) and was ranked the 2nd for both OCD and SOCO. Moreover,

Siamese always outperformed SourcererCC, DECKARD, iClones, NiCad, and

Simian in both the default and the optimised configurations. Although it gave

slightly lower MAP score than CCFinderX and JPlag after tuning, Siamese offered

a much higher scalability than the two clone detectors as will be shown in RQ4.

The multi-representation module helped Siamese to perform well on different

data sets even without tuning as we observed that the optimised MAP values were

very close to the default configurations’ MAP values. In practice, it is very difficult

to always tune a clone detector to their optimal performance. We could optimise

the clone detectors in this study because we knew the complete clone ground truth

of the OCD and the SOCO data sets as they were generated data sets. A clone

ground truth does not exist in software projects. Thus, we mostly have to rely on

the default configuration of the clone detection tools. Moreover, Chapter 5 shows

that although we could find the tools’ optimal configurations on one data set, we

cannot efficiently reuse them on another data set. The results in Table 7.6 and Table

7.7 suggest that Siamese’s search performance, with or without tuning, was still

comparable or even better than other tools with their optimised configurations. This

shows that Siamese effectively handles clones with several code modifications in

the OCD data set and boiler-plate code in the SOCO data set, while still offers

comparable search precision to other clone detection tools optimised for the data

sets.
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Table 7.6: Comparison of search performance (MAP) on the OCD data set (100 queries)

Tool
Default Optimised

Settings MAP Settings MAP

Siamese r1=4-gram, r2=4-gram,
r3=4-gram,
θ=10%, 10%, 10%, 10%

0.953 r1=[4,8,12,16,20,24]-gram,
r2=24-gram, r3=8-gram,
θ=2%, 2%, 2%, 2%

0.997

Text Search N/A 0.785 – –

SourcererCC similarity=80% 0.471 similarity=40% 0.848
CCFinderX b=50, t=12 0.569 b=5, t=11 1.000
DECKARD mintoken=50,

stride=inf
similarity=1.0

0.665 mintoken=30,
stride=1
similarity=0.95

0.924

iClones minblock=20,
minclone=100

0.444 minblock=10,
minclone=50

0.668

JPlag t=9 0.857 t=5 0.918
NiCad UPI=0.30,

minline=10,
rename=none,
abstract=none

0.457 UPI=0.50,
minline=10,
rename=blind,
abstract=declaration

0.859

Simian threshold=6 0.442 threshold=3,
ignoreIdentifiers

0.916

Table 7.7: Comparison of search performance (MAP) on the SOCO data set (115 queries)

Tool
Default Optimised

Settings MAP Settings MAP

Siamese r1=4-gram, r2=4-gram,
r3=4-gram,
θ=10%, 10%, 10%, 10%

0.991 r0=1-gram,
r1=[4,8,12,16,20,24]-gram,
r2=4-gram, r3=16-gram,
θ=8%, 8%, 8%, 8%

0.994

Text Search N/A 0.977 – –

SourcererCC similarity=80% 0.776 similarity=60% 0.839
CCFinderX b=50, t=12 0.942 b=5, t=9 0.982
DECKARD mintoken=50,

stride=inf
similarity=1.0

0.946 mintoken=30,
stride=2
similarity=0.95

0.980

iClones minblock=20,
minclone=100

0.799 minblock=8,
minclone=70

0.882

JPlag t=9 0.991 t=8 0.997
NiCad UPI=0.30,

minline=10,
rename=none,
abstract=none

0.870 UPI=0.30,
minline=5,
rename=blind,
abstract=literal

0.931

Simian threshold=6 0.884 threshold=4,
ignoreIdentifiers

0.978



7.6. Evaluation and Results 259

7.6.2.2 BigCloneBench

The third data set is the BigCloneBench, which is a well-known data set that has

been used to benchmark code clone detectors and clone search engines [Sajnani

et al., 2016, Kim et al., 2018, Li et al., 2017]. Because Siamese is not a clone

detector but a clone search tool, it does not report a set of clones that can be used to

measure recall and precision. Nevertheless, we compared its performance to other

tools here for a situation where it will be adapted as a clone detector.

The BigCloneBench data set’s size represents code corpora on the Internet

and is suitable to assess how well the tool differentiates and reports relevant code

snippets from millions of candidates. Moreover, the data set offers a ground truth of

8 million clone pairs. The evaluation was performed at method level as required

by the BigCloneBench oracle. We measured Siamese on both clone recall and

precision. Both evaluations are done by issuing multiple queries and evaluated the

returned ranked results.

Recall: We followed the approach used by Kim et al. [2018], who also

evaluated their clone search engine for recall, by choosing 14,780 methods that

appeared in the clone oracle as the queries. Although we did not use all the methods

in BigCloneBench to query (similar to Kim et al. [2018]), it does not affect the clone

recall. The methods that do not appear in the clone oracle do not have any clone

pair associated with them, thus using them to query for clones would only result

in false positives, which is not taken into account for recall (on the contrast, it will

affect precision). To compute the recall score, we utilised an automated tool called

BigCloneEval [Svajlenko and Roy, 2016] which was created for recall computation

on BigCloneBench. For each query, we choose the result size of 900 to match

with the settings used in the evaluation of a clone search engine, FaCoy, by Kim

et al. [2018]4. After finishing querying, we gave the result to the BigCloneEval

tool for recall calculation. Table 7.8, Table 7.9, and Table 7.10 shows the recall

scores of Siamese on BigCloneBench compared to the other five tools including

SourcererCC, CCFinderX, DECKARD, iClones, and NiCad as reported in the study

4Due to the release of the FaCoy tool as only a virtual machine image, we could not include it in
our other RQs.
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by Sajnani et al. [2016] and FaCoy code search tool as reported in the study by Kim

et al. [2018]. BigCloneBench categorised the clone pairs into Type-1 (T1), Type-2

(T2), very-strongly Type-3 (VST3) with a similarity in range of 90% (inclusive) to

100%, strongly Type-3 (ST3): 70–90%, moderately Type-3 (MT3): 50–70%, and

weakly Type-3 or Type-4 (WT3/T4): 0–50% [Svajlenko and Roy, 2016]. Moreover,

BigCloneEval divides the evaluation into 3 sets: All Clones, Intra-Project Clones,

and Inter-project Clones. We included the other tools’ results for the all three sets

except the FaCoy tool which reported its recall scores only for the All Clones set.

For All Clones set (Table 7.8), Siamese provided recall scores of 99% for T1,

T2, VST3, and ST3. Siamese obtained the highest recall of 88% for MT3 compared

to other tools and 17% for WT3/T4. When dividing into Intra-Project (Table 7.9)

and Inter-Project clones (Table 7.10), Siamese performed slightly better on both

sets with higher or the same recall scores as in the All Clones set. Interestingly,

we found that Siamese could return 99% of MT3 clones in Intra-Project clones

while other tools reported up to 14%. Similarly, Siamese returned 77% of WT3/T4

clones while CCFinderX and DECKARD reported only 1% of the clones. A similar

finding was observed for Inter-Project clones where Siamese obtained the highest

recall at 87% of MT3 clones and 16% of WT3/T4 clones. The results show that

the multi-representation and query reduction techniques enable Siamese to find

more challenging clone pairs than state-of-the-art techniques. Although Siamese

and SourcererCC share fundamental concept of index-based and token-based clone

detection, Siamese can offer higher clone recall for the challenging clone types of

ST3, MT3, and WT3/T4 because it does not remove any token from the code in the

index. On the other hand, SourcererCC’s partial indexing keeps only rare tokens

in the clone index, which restricts the tool to find only clones that share the rare

tokens. The removal of frequent tokens in Siamese occurs at a query time and it

only affects the tokens in the query. However, Siamese suffers from a larger clone

index than SourcererCC due to the complete collection of code tokens and also its

multiple code representations.

Precision: To measure precision, there is no benchmark and standard method-
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Table 7.8: BigCloneBench Recall Measurements (All Clones)

Tool
All Clones

T1 T2 VST3 ST3 MT3 WT3/T4

Clone search engines
Siamese 99 99 99 99 88 17
FaCoy [Kim et al., 2018] 65 90 67 69 41 10

Clone detectors [Sajnani et al., 2016]
SourcererCC 100 98 93 61 5 0
CCFinderX 100 93 62 15 1 0
DECKARD 60 58 62 31 12 1
iClones 100 82 82 24 0 0
NiCad 100 100 100 95 1 0

Table 7.9: BigCloneBench Recall Measurements (Intra-Project Clones)

Tool
Intra-Project Clones

T1 T2 VST3 ST3 MT3 WT3/T4

Clone search engines
Siamese 100 99 100 100 99 77
FaCoy [Kim et al., 2018] – – – – – –

Clone detectors [Sajnani et al., 2016]
SourcererCC 100 99 99 86 14 0
CCFinderX 100 89 70 10 4 1
DECKARD 59 60 76 31 12 1
iClones 100 57 84 33 2 0
NiCad 100 100 100 99 6 0

Table 7.10: BigCloneBench Recall Measurements (Inter-Project Clones)

Tool
Inter-Project Clones

T1 T2 VST3 ST3 MT3 WT3/T4

Clone search engines
Siamese 99 100 99 99 87 16
FaCoy [Kim et al., 2018] – – – – – –

Clone detectors [Sajnani et al., 2016]
SourcererCC 100 97 86 48 5 0
CCFinderX 98 94 53 1 1 0
DECKARD 64 58 46 30 12 1
iClones 100 86 78 20 0 0
NiCad 100 100 100 93 1 0
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Table 7.11: BigCloneBench Precision Measurements

MRR prec@10 T1 T2 T3

0.948 0.871 0 25 811

ology for precision measurement in clone detection and some authors relied on

a manual investigation of the reported clone pairs [Sajnani et al., 2016]. The

BigCloneBench is created by using regular expressions derived from 43 target

functionalities, i.e., Java class files, to search for clone candidates in 25,000 Java

projects, followed by a manual confirmation. Thus, we chose the 43 Java files

that represented the target functionalities in BigCloneBench as the search queries.

We obtained 96 method queries from the 43 chosen files. The oracle of 8 million

manually validated clone pairs provided by the BigCloneBench authors is only a

partial ground truth as it only contains validated clone pairs but not all existing clone

pairs. It is possible that Siamese reports true clones which do not exist in the ground

truth during the evaluation. Thus, a manual validation is needed to obtain precision

scores. To evaluate Siamese as a clone search engine that returns a ranked list of

top n results, we relied on MRR and precision at 10 for precision measurement.

The two error measures are well-known in information retrieval since they reflect

a real-world setting of using a search engine where only a few first results will be

looked at due to a limited attention span of human investigator [Miller, 1956]. The

first author took the role of a human investigator.

Table 7.11 shows the MRR and precision at 10 scores based on the ground

truth in the benchmark and after the manual confirmation. Siamese’s search results

of the 96 queries on BigCloneBench offered an MRR score of 0.948 and precision

at 10 of 0.871. The MRR score of 0.948 shows that Siamese mostly returns true

clone fragment as the first result. The precision at 10 score of 0.871 shows that true

clones are observed within the top ten on average 87.1% of the time. These are

relatively high precision scores considering that there was no Type-1 clone for all

the 96 queries and only Type-2 and Type-3 clones were available.

During our manual confirmation of the BigCloneBench clone search results,
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we noticed some interesting clones that were reported by Siamese. We found that

in a few cases, Siamese not only reported clones that were syntactically similar to

the query but also semantically similar. For example, consider the binarySearch1

method shown before in Section 7.3.3 as the query. As shown in Figure 7.4, the

first result was very similar to the query but with differences in the data types and

expressions. The 2nd result contained a more diverse version of binary search with

renamed variables and different conditional statements. Interestingly, we found that

the 3rd result is a method that performed binary search using a while loop instead

of recursion as in the query and the 5th result was a method to search for an index

number which used binary search as the underlying search algorithm.

7.6.2.3 False Positives

To understand the weaknesses of our approach, we summarise a few patterns found

in the manually-validated false positive clone pairs. First, a number of false positive

clone pairs come from a method that is declared inside another method. For

example, as shown in Figure 7.5, the method deleteRecursively1 is reported

as clone pairs with its three inner methods: visitFile, visitFileFailed,

postVisitDirectory. This problem can be fixed by analysing the clone results

and filtering these inner-method clone pairs out.

In addition, we observed that many of the false positive pairs are caused by

two methods that share several code tokens and n-gram sequences. As shown in

Figure 7.6, the two methods perform a different task of checking a palindrome

word and checking for blank string. Nonetheless, they share several similar code

tokens such as for (int i = length - 1; i >= 0; i--), .charAt(i), or length

= original.length();. Increasing the n-gram sizes may remove these false

positives, while also reduce the chance of finding Type-3/Type-4 clones.

To answer RQ2, Siamese offers the highest mean average precision on two

clone benchmarks compared to seven clone detectors. Its multi-representation

enables Siamese to detect challenging Type-3 and Type-4 clone pairs better than

other tools, while still reserves high recall on Type-1, and Type-2 clones. It offers

the highest recall scores of ST3, MT3, and WT3/T4 clone pairs on BigCloneBench.
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/* 1st result (sample/BinarySearch.java, 19, 30) */

public static <T extends Comparable <T>>

int binarySearch3(T[] arr, T key, int imin, int imax) {

if (imax < imin) return -1;

int imid = (imin+imax)/2;

if (arr[imid].compareTo(key) > 0)

return binarySearch3(arr,key,imin,imid-1);

else if (arr[imid].compareTo(key) < 0)

return binarySearch3(arr,key,imid+1,imax);

else return imid;

}

/* 2nd result (default/103246.java, 20, 26) */

private int recFind(long searchKey ,

int lowerBound , int upperBound) {

int curIn;

curIn = (lowerBound + upperBound) / 2;

if (a[curIn] == searchKey) return curIn;

else if (lowerBound > upperBound)

return nElems;

else {

if (a[curIn] < searchKey)

return recFind(searchKey , curIn + 1, upperBound);

else

return recFind(searchKey , lowerBound , curIn - 1);

}

}

/* 3rd result (selected/2663331.java, 292, 299) */

double getValueForFeature(int f) {

int imin = 0, imax = features.length;

while (imin < imax) {

int mid = (imin + imax) / 2;

if (features[mid] == f) return values[mid];

else if (features[mid] > f) imax = mid;

else imin = mid + 1;

}

return 0;

}

/* 5th result (selected/541979.java, 138, 144) */

private int getIndex(int c, int start, int stop) {

int pivot = (start + stop) / 2;

if (c == value[pivot]) return pivot;

if (start >= stop) return -1;

if (c < value[pivot]) return getIndex(c, start, pivot - 1);

return getIndex(c, pivot + 1, stop);

}

Figure 7.4: Search results with syntactic and semantic clones
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public static void deleteRecursively1(Path dir) throws

IOException {

Files.walkFileTree(dir, new SimpleFileVisitor <Path>() {

@Override

public FileVisitResult visitFile(Path file,

BasicFileAttributes attrs) throws IOException {

Files.delete(file);

return FileVisitResult.CONTINUE;

}

@Override

public FileVisitResult visitFileFailed(Path file, IOException

exc)

throws IOException {

Files.delete(file);

return FileVisitResult.CONTINUE;

}

@Override

public FileVisitResult postVisitDirectory(Path dir,

IOException exc)

throws IOException {

if (exc == null) {

Files.delete(dir);

return FileVisitResult.CONTINUE;

} else {

throw exc;

}

}

});

}

Figure 7.5: A false positive clone pair containing methods inside a method

7.6.3 RQ3: Clone Ranking

How accurate is Siamese clone ranking?

In this RQ, we evaluated Siamese clone ranking to report alternative implemen-

tations, i.e., Type-3 or Type-4 clones, on the top of the search results. This

clone ranking is useful for finding bug fix candidates or similar implementations.

Although RQ2 shows that Siamese returns the largest number of Type-3 and Type-

4 clones from BigCloneBench, the recall evaluation did not take the ranking into

accounts. With the multiple code representations, we are allowed to search for a

specific type of clones that fits our needs. By adjusting a different boosting score

for each representation at a query time, we could target clones of a specific type
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/* QUERY - TestPalindrome.java, 2, 13 */

public static boolean isPalindrome(String original) {

//A not very efficient example

String reverse = "";

int length = original.length();

for (int i = length - 1; i >= 0; i--)

reverse = reverse + original.charAt(i);

if (original.equals(reverse))

return true;

else

return false;

}

/* 1st RESULT - 2394080.java, 118, 125 */

public static boolean isNotBlank(String str) {

int length;

if ((str == null) || ((length = str.length()) == 0)) return

false;

for (int i = length - 1; i >= 0; i--) {

if (!isWhitespace(str.charAt(i))) return true;

}

return false;

}

Figure 7.6: Another false positive clone pair containing similar code tokens

to be ranked on top of the search results, while discriminating against clones of

unwanted types to be ranked lower.

This clone ranking is difficult or impossible to achieve by traditional clone

detection tools. First, tools like CCFinderX, NiCad, or SourcererCC do not provide

a ranked list of clones. So a human investigator does not know which clone pairs

to start the investigation and has to rely on random sampling. Second, although we

can rank the clone pairs based on their similarity score (CCFinderX and NiCad can

report similarity scores), we cannot explicitly select clones of a specific type to be on

top of the list. For example, let say we are searching for alternative implementations

of a buggy code fragment, and we use NiCad for this task. We do not want Type-

1 or Type-2 clones because they are identical or very similar to the buggy code

fragment that we currently have. Thus, we configure NiCad to find Type-3 clones.

Nonetheless, since Type-3 clones subsume Type-2 and Type-1 clones by definition,

we cannot use NiCad to locate only Type-3 clones. The Type-1 clones reported by

NiCad will always have a similarity score higher than Type-2 and Type-3 clones,



7.6. Evaluation and Results 267

Table 7.12: Type-3-only search: the boosting scores for the four code representations and
the search accuracy

Tool
Representations

MRR
r0 r1 r2 r3

Baseline (text search) 1 – – – 0.4633
Siamese (default) 1 4 4 4 0.4550
Siamese (boosted) 10 -1 -1 1 0.7050

and will always be ranked on top. The human investigator will have to manually

go through a number of Type-1 and Type-2 clones before finding the Type-3 clones

that he or she is looking for. Third, most of the clone detectors locate clones based

on a given similarity threshold. SourcererCC’s partial indexing only keeps code

tokens that form a clone pair with similarity higher than or equal to the threshold.

Since this decision is made at indexing time, a change of the similarity threshold

to find stricter or more relaxed clones will result in re-indexing of the code base.

Other clone detectors such as Simian, DECKARD, or iClones would face the same

issues.

Similar to RQ2, we used the BigCloneBench index with 8.1 million code frag-

ments and performed the clone search based on the 96 queries which represented

43 target functionalities in BigCloneBench. They were chosen again for this RQ

because the 96 queries contained general functionalities that were normally found

in Java programs, such as binary search, bubble sort, file copy, and extraction of a

compressed file. Moreover, the benchmark’s partial clone ground truth helped us in

the manual clone investigation step. The maximum number of clone results to be

investigated is 10.

Since the 43 target functionalities had only Type-2 and Type-3 clone pairs and

did not have any Type-1 clone pair in BigCloneBench, we injected them into the

index so they could appear in the search results. We intentionally added them into

the search index in order to confuse the tool. Our goal was to find Type-3 clones that

slightly or moderately differ from the query, so the injected Type-1 clones should

not appear on top of the search results.
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The adjusted boosting scores of Siamese for Type-3 clone search is shown in

Table 7.12. The original and Type-3 representations r0 and r3 received positive

boosting scores of 10 and 1 respectively, while r1 and r2 received negative boosting

scores of -1. This setting was suitable for finding clones that deviate from the

query because the literal clones (Type-1) and parameterised clones (Type-2) were

penalised with the negative boosting scores. We need to keep positive boosting

scores for tokens in the original representation r0 to get rid of false positives due

to accidental structural similarity matches on r3. We gave a higher score of ten for

r0 than one of r3 to push Type-3 clones with similarity keywords on the top of the

list. Since there was no clone detection in our study that gives ranked list of clones,

we compared Siamese to the baseline text search engine, i.e., using the source code

original tokens with no boosting score (boosting score equals one), and Siamese

with the default configurations with the boosting scores of 1 for r0 and 4 for r1, r2,

and r3.

We adopted MRR to measure the search accuracy5. Since the goal of this RQ

is to find bug fix candidates or alternative implementations, we only targeted Type-3

clones. Clones with Type-1 or Type-2 were not considered as relevant and received

a zero score when computing MRR. Thus, in this case, the MRR score reflected how

well the tool retrieved Type-3 clones on the top of the search results. We consulted

the BigCloneBench clone oracle to validate the returned clone pairs and their clone

types. When a clone pair could not be found in the clone oracle, the thesis author

performed a manual validation of the clones.

The MRR scores of the baseline text search and Siamese are displayed in

Table 7.12. The baseline always returned Type-1 clone pairs on top of the search

results (96 times out of 96 queries), followed by Type-2 and Type-3 clones and

received an MRR score of 0.4633. The default Siamese gave a similar performance

with an MRR score of 0.4550. Boosted Siamese outperformed the other two tools

with a higher MRR score of 0.7050. The boosted Siamese returned Type-3 clone

5We were deterred from using the well-known Normalised Discounted Cumulative Gain (NDCG)
that was suitable for assessing the quality of ranked results. NDCG needs a complete ground truth
of relevant documents which were not the case for BigCloneBench.
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/* QUERY - Fibonacci.java, 3, 10 */

public static int getFibonacci(int n) {

if(n == 0)

return 0;

else if (n == 1)

return 1;

else

return getFibonacci(n-1) + getFibonacci(n-2);

}

/* 1st RESULT - 2156644.java, 5, 13 */

public int getFibonacci(int n) {

int prev[] = { 1, 1 };

for (int i = 1; i < n; i++) {

int aux = prev[1] + prev[0];

prev[0] = prev[1];

prev[1] = aux;

}

return prev[1];

}

Figure 7.7: An example of Type-3/Type-4 cloned fragment returned as the 1st result

pairs on the top result 59 times, returned Type-1 clone pairs on the top 23 times,

and did not return any correct clone pairs 14 times. Figure 7.7 shows an example

of a query and a Type-3 clone fragment returned by Siamese. The pair are both

methods to get a Fibonacci number. They share the same input/output but contain

two different implementations using recursion and a for loop.

To answer RQ3, Siamese can effectively search and return a specific type of

clones on top of the search results. Due to its multi-representation of code, Siamese

can target which type of clones to be ranked on the top while at the same time

discriminates clones of unwanted types. This specific clone-type ranking cannot be

done using existing clone detection tools or code search due to its use of a single

code representation. The search is beneficial for a case where only a specific type

of similar code is needed, such as finding potential bug fix candidates which are not

identical to the given query.

7.6.4 RQ4: Scalability

How practical is Siamese to index and search on large-scale code corpus?
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We evaluated Siamese’s scalability by measuring the time needed to index and

query various code base sizes. We created 10 sets of Java code with different sizes

by randomly selecting files from BigCloneBench. The number of files in a set i,

i ∈ [1,10], is 22i. The smallest set has 4 files (22 methods) and the largest set has

1,048,576 files (1,771,183) methods. We also added the complete BigCloneBench

data set with 2.9 million files (4,870,113 methods) as the last (11th) set. The

experiment was performed on a CentOS 7.4.1708 machine with eight 3.00 GHz

processors, 32 GB of RAM, and 500 GB SATA disk.

We separately measured the tools’ index and query time in this RQ because

we are more interested in a scenario of clone search than clone detection. In the

clone detection scenario as performed by Koschke [2014] or SourcererCC [Sajnani

et al., 2016], it is a one-off process. An index of code bases is created. Then,

queries containing code fragments either from within the same project (intra-clone

detection) or from other projects (inter-clone detection) are issued on the index to

locate clones. The clone index may be kept for later uses if needed or recreated if the

analysed code bases change. In this scenario of one-off clone detection, indexing

and querying occur one after the other in a single execution. On the other hand,

in the clone search scenario (or incremental and real-time detection as presented

by Hummel et al. [2010]), an index of large code bases is persisted only once

and loaded into memory whenever the clone search engine starts. The index is

frequently updated to reflect the changes in the code bases. With this approach, a

clone search tool allows as many queries as needed without a need to reindex the

code bases again. We can tolerate slow indexing time as long as the tool offers fast

querying time, which occurs much more often. Thus, measuring both the index and

query time allows us to know how long it takes to prepare the index, and how long

it takes to only retrieve clones.

For the indexing phase, we compared our tool to seven clone detectors:

SourcererCC, CCFinderX, DECKARD, iClones, JPlag, NiCad, and Simian. Since

all the tools except Siamese and SourcererCC do not separate their clone detection

into indexing and querying phase, we use their main command to detect clones to
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execute. Moreover, the other five clone detectors besides SourcererCC do not use

an indexed-based approach, so we cannot directly compare their indexing time and

rely on their clone detection time as the indexing time. We included them in this

comparison to assess their scalability to large-scale code data. For Siamese and

SourcererCC, we specifically instructed the tools to perform indexing on the given

data sets. Each tool was executed using their default configurations and, if allowed

by the tool, we allocated the same amount of 8GB of memory for their execution.

We measured the execution time using the time command. Unfortunately, during

the execution of CCFinderX, the tool reported encoding errors on several files. We

needed to remove those files from the data set to run the tool, which would affect its

running time. So, we decided to remove CCFinderX from this evaluation.

The tools’ indexing time is displayed in Figure 7.8. The plot shows the

tools’ execution time against the number of methods in each data set. Every tool

completed their analysis of 22, 50, 178, 423, 1723, 6.6K, and 28K methods with

increasing execution time. DECKARD reported clones in the 28K set in 7 hours 14

minutes and did not return any result on the 111K set within a week, so we decided

to terminate the tool’s execution. iClones and JPlag finished their executions on

the 6.6K set in 3 minutes and 15 minutes respectively and ran out of memory on

the 28K set. NiCad threw an error in cross-clone analysis on the 442K-method set.

Simian reported clones in the 28K set within 1 hour and 48 minutes and failed to

analyse the 442K set.

Siamese and SourcererCC were the only two tools that could complete their

indexing of the 11 data sets. SourcererCC finished indexing 111K, 442K, and

1.7M methods within 8 minutes, 32 minutes, and 2 hours respectively. For the

complete BigCloneBench (4.8M methods, 365M SLOC), SourcererCC used 6

hours to complete the indexing. Siamese finished indexing the same data sets

within 24 minutes, 1 hour 13 minutes, and 5 hours respectively. For the complete

BigCloneBench, Siamese took 18 hours 13 minutes to finish the indexing. Since

Siamese derives multiple code representations from given code fragments, its

indexing time took around three times longer than SourcererCC.
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Figure 7.8: Indexing time (minutes)
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Figure 7.9: Querying time (seconds)

For the querying phase, we compared Siamese only to SourcererCC because it

is the only tool besides Siamese that successfully scaled to the full BigCloneBench

data set. Moreover, it also works in a two-phase approach of indexing and querying

like Siamese. Both Siamese and SourcererCC were configured with their default

configurations, and only methods with at least ten lines were considered. After

each subset was indexed into Siamese’s and SourcererCC’s index, we performed

100 queries and measured the query response time. We used a fixed set of 100

randomly selected files from BigCloneBench as the queries. One query was issued

at a time and the average query time was derived from the execution time of all the

queries as shown in Figure 7.9. We observed a sharply increasing query response

time from SourcererCC when the number of methods in the index grew. Since

SourcererCC is designed for detecting clones within a data set, it has its optimal

speed when a large collection of files is given as an input and is processed in a
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batch. Nevertheless, SourcererCC does not respond fast when it comes to a single

query because it has to load the index into memory every time a query is issued.

On 111K; 442K; and 1.8M methods in the index, SourcererCC’s query took 3.4,

9.3, and 28.3 seconds on average. Siamese offered a slightly increasing query

response time of 2.5, 3.2, and 5.0 seconds on the same sets of 111K; 442K; and

1.8M methods. On the full BigCloneBench data set with 4.9M methods, Siamese’s

query time increased slightly to 8 seconds while it took SourcererCC 60 seconds

to return the results. This shows that Siamese is suitable for situations where one

query is issued at a time, such as searching for code examples, finding similar code

candidates for program repairs, or checking for cloned code from the Internet.

To answer RQ4, Siamese offers higher scalability than traditional clone detec-

tors including DECKARD, iClones, JPlag, NiCad, and Simian. It scales to a large

code corpus of 4.9M methods with 365M SLOC in less than a day. Its indexing

time is slower than SourcererCC, but it offers a faster query response time within

8 seconds. Siamese’s query response time is marginally affected by the index size.

We observed 3 seconds increment in the query time even when the index size grew

three times larger.

7.6.5 RQ5: Incremental Updates

How fast is Siamese’s incremental update?

We followed the same approach used by Hummel et al. [2010] to evaluate

the incremental update capability of Siamese. We instructed Siamese’s to update

versions of software projects in an index of 130,719 GitHub Java projects and

measured the time taken to complete the task. To create the code base of GitHub

Java projects, we downloaded projects that received at least one star to avoid trivial

repositories. We obtained 130,719 projects ranging from 29,465 stars to 1 star in

January 2018. The most-starred project is RxJava (29,465 stars), followed by java-

design-patterns (27,578 stars) and Elasticsearch (27,385 stars).

We simulated the scenario of maintaining a Siamese GitHub search index when

the top three most-starred projects have a new version release. We started by adding
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Table 7.13: GitHub projects used for incremental update

Project #Releases
Average (Min, Max)

Size (MB) Files SLOC

RxJava 153 7 (0.4, 16) 582 (1, 1.5K) 82K (3, 244K)
java-design-patterns 13 15 (11, 18) 787 (479, 989) 15K (192, 26K)
Elasticsearch 214 62 (10, 145) 3.7K (1.2K, 5.6K) 399K (87K, 720K)

all the 130,719 Java projects into Siamese index one project at a time at method-

level using incremental addition with the minimum method size of 10 lines (the

preferred size of clone detection in large-scale code corpora [Sajnani et al., 2016]).

The indexing took two weeks to finish, and the complete GitHub index contained

8.7 million code fragments with the size of 62 GB.

Then, we downloaded all the available releases of RxJava, java-design-

patterns, and Elasticsearch to perform incremental version updates. We choose the

three most-starred projects due to their popularity which reflects their chance of

being searched for code. As displayed in Table 7.13, the number of releases and the

size of each project varied. Elasticsearch had the highest number of 214 releases,

followed by RxJava (153), and java-design-patterns (13) and also had the biggest

size on average (62 megabytes), followed by java-design-patterns (15 megabytes)

and RxJava (7 megabytes).

For each project, we repeated the process of updating the project’s releases

from the oldest to the newest version by performing deletion of the current existing

release stored in the index followed by addition of the next release to the index. For

each update (i.e., deletion/addition) made to the Siamese’s index, we measured the

time required to finish the task. The results are shown in Figure 7.10. The average

time of updating java-design-patterns, which was the smallest of the three projects,

took 6.6 seconds on average (median 6.5s, max 8.2s). For RxJava, the average

project update time was 17 seconds (median 12.8s, max 51.1s). For Elasticsearch,

which was the biggest projects and had the largest amount of revisions, the time

Siamese took to update the index varied from 20 seconds to approximately 2

minutes with the average of 73 seconds (median 82.1s). The results show that

Siamese’s incremental update could save the time to prepare the search index of
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Figure 7.10: Incremental index update time

130,719 GitHub projects when a new version appears from 40,320 minutes (2

weeks) to 2 minutes.

To answer RQ5, Siamese incremental update efficiently handled the changes

in software releases and dramatically decreased the index preparation time.

7.7 Threats to Validity
There are some potential threats to validity in this chapter. We separately discuss

them in three aspects: internal, construct, and external validity.

7.7.1 Internal and Construct Validity

We carefully chose the data sets for our experiment and Siamese was evaluated

on multiple data sets to cover several types of cloned code and to alleviate the

evaluation bias. We compared the tools’ performance based on three standard

measurements of precision at 10, MAP, and MRR from information retrieval.

Nevertheless, in some situations, other measurements may be required and might

not produce the same results. We compared Siamese to seven state-of-the-art clone

detectors on the default and the optimal configurations but we might not cover

all the tools’ parameters. Moreover, the n-gram sizes and the query reduction

thresholds were derived from the Bellon corpus and may be subjective to the clones

in the corpus but we mitigated the issue by avoiding using Bellon corpus in the

evaluation data sets to avoid configuration bias. For the query reduction thresholds,

we confirmed the findings with another corpus (Qualitas) and observed the same

result. The manual validation of clone search results was carefully performed but
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may still be subject to manual judgement and human errors. The MRR and precision

at 10 used to measure Siamese’s precision differ from the precision typically used

in code clone detection by validating only the top n clone results. They may not

reflect the precision score which is based on the total number of returned results.

7.7.2 External Validity

Our multi-representation, query reduction techniques, indexing and searching

performance of Siamese are evaluated with Java and may not be generalised to

other languages. However, we design the Siamese’s architecture to work with

other programming languages by plugging in a new tokeniser and code normaliser

module. The indexing and querying performance of Siamese and SourcererCC

were measured on a desktop computer and may not represent their performance on

other computers with different specifications or a cluster of multiple Elasticsearch

instances. The criteria for selecting the GitHub projects for incremental update is

based on the stars and may not be generalised to other Java projects.

7.8 Chapter Summary
This chapter presents the architecture of a scalable and incremental clone search

approach using multiple code representations and its implementation as a tool called

Siamese. Siamese offers 95% and 99% mean average precision on the OCD and

the SOCO data set respectively and also offers high recall for all clone types in

the BigCloneBench data set. Furthermore, the tool provides scalability by returning

clone search results in less than 8 seconds even on the largest data set of 365 million

lines of code. The technique supports incremental index update that allows fast

update to the existing index without a need to recreate the index from scratch.

The next chapter will discuss three applications of Siamese including a

replication study of online code clones, software license analysis between code on

Stack Overflow and GitHub projects, and recommending tests for reuse.
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Applications of Siamese

This chapter discusses the applications of Siamese to facilitate software develop-

ment and research with three use cases including online code clone detection, clone

search with automated license analysis, and integration of Siamese into a study of

automating the reuse of tests.

8.1 Online Code Clone Detection on Stack Overflow

We replicated the study of online code clone detection in Chapter 4 between

Stack Overflow Java accepted answers and the Qualitas corpus using Siamese, and

compared the results to the existing clone results by Simian and SourcererCC. We

used the same data sets of 72,365 Stack Overflow Java code snippets and 111 open

source Java projects in Qualitas, and followed the same experimental framework

to detect online code clones as shown in Figure 4.3 in Chapter 4, except that

we did not need to partition the clone detection into multiple runs, thanks to the

scalability of Siamese. The Qualitas corpus was added to Siamese index and the

Stack Overflow code snippets were used as the queries. The configurations are

shown in Table 8.1. We configured Siamese to consider methods with at least ten

lines for the search, which resulted in 71,348 queries out of 149,664 methods in the

72,365 Stack Overflow snippets. We limited the result size at 100 code snippets per

query.
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Table 8.1: Siamese execution on Stack Overflow and Qualitas corpus

Snippets Queries Result size Exec. time Per query Clone pairs (80% sim.)

72,365 71,348 100 1h 55m 0.10s 1,088

8.1.1 Similarity Threshold

Siamese is a clone search engine which returns a ranked list of clones based on

relevance scores between the query and the retrieved code fragments. The original

Siamese has no cut-off threshold to decide whether a retrieved code fragment is a

cloned fragment of the query or not. This is desirable behaviour for a search engine

because the user will look at only the top n results, but not for a clone detector

that the user wants a comprehensive list of clones. To be able to compare the

clone results of Siamese to Simian’s and SourcererCC’s, we adapted Siamese to

incorporate a similarity measure called n-gram token ratio as the clone similarity

threshold.

N-gram Token Ratio (NTR) is an n-gram based similarity measure specifi-

cally invented for Siamese. It is applied during search time. Siamese computes an

NTR similarity score based on the number of tokens in the query that match with

tokens in the indexed fragments. It is similar to Jaccard similarity on n-gram tokens,

except that the similarity score is purely based on the query tokens instead of a union

of tokens from the two code fragments. An NTR similarity score between a query

Q and a code fragment F is computed as follows.

SimNTR =
|TQ∩TF |

|TQ|
(8.1)

where TQ represents a set of n-gram tokens in Q and TF represents a set of n-gram

tokens in F. Since Siamese uses four code representations for its clone search, the

similarity score is applied to each of the four representations. Given a similarity

threshold, Siamese retrieves only code snippets that offer an NTR score equal to

or higher than the threshold on all four representations. The NTR score is applied

when the search is performed. Only code fragments that contain enough tokens to

reach the defined NTR similarity threshold are retrieved. This method effectively
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675 1,876413

Siamese-NTR (1,088)
SM-SCC (2,289)

Figure 8.1: A comparison of Siamese-NTR clone pairs to the previous results by Simian
and SourcererCC (SM-SCC)

Table 8.2: The 413 SM-SCC online clone pairs that are found by Siamese

QS SQ EX UD BP IN NC

125 1 111 64 112 0 0

prunes unrelated code fragments and results in fast query response time. In addition,

the NTR is a simple token-based and language agnostic similarity measure. Thus, it

supports an analysis of any programming language and also works with incomplete

code fragments.

8.1.2 Results

As shown in Table 8.1, Siamese with NTR (Siamese-NTR) took approximately

2 hours to complete the clone detection, and the average clone search time per

query is 0.10 seconds. We set the similarity threshold at 80% to be similar to the

setting of SourcererCC’s clone similarity and obtained 1,088 clone pairs. Then, we

compared the clone candidates to the existing clone results reported by Simian and

SourcererCC (denoted SM-SCC) in Chapter 4. To find common clones between the

new results from Siamese and the existing 2,289 SM-SCC clone pairs, we employed

the clone matching method used in Chapter 4 by applying the Bellon’s ok-match

clone agreement with the threshold t of 0.5.

8.1.2.1 Common Clone Pairs:

The comparison results are displayed in Figure 8.1. There were 413 common

clone pairs between the SM-SCC results and Siamese-NTR. The common pairs

spread across several clone patterns of QS, SQ, EX, UD, BP, IN, and NC as shown

in Table 8.2. Siamese-NTR reported 125 Qualitas→Stack Overflow (QS) clone

pairs out of the 153 discovered QS pairs by Simian and SourcererCC and one

Stack Overflow→Qualitas (SQ) clone pair. It reported 111 external sources→Stack
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Overflow (EX) pairs, 64 unknown direction (UD) pairs, and 112 boiler-plate (BP)

pairs. It did not report any inheritance/interface (IN) or non-clone pair (NC).

8.1.2.2 Distinct Clone Pairs:

Siamese-NTR discovered 675 clone pairs that were not found before and also

missed 1,876 clone pairs in the previous results (see Figure 8.1). To gain insights

into the clone pairs that were found only by Siamese, we performed a manual

investigation. The thesis author manually checked 100 randomly selected clone

pairs from Siamese-NTR-only, the number of statistically significant sample with

95% confidence level and ±10% confidence interval. The manual clone validation

reported 73 true clone pairs and 27 false clone pairs.

By applying the 80% NTR similarity to the four code representations, we

forced Siamese to discover clones that were strictly similar. However, we did find

some interesting clone pairs due to the NTR similarity computation. Since the n-

gram token ratio is computed based on the number of tokens in the query, we found

that Siamese-NTR could locate clones of the query inside another method. We call

them contained clone pairs.

An example of the contained clone pairs is shown in Figure 8.2. The

addMouseListener() method in the Stack Overflow answer ID 4151399 was

reported as a clone fragment of the method buildGUI() from AboutDialog.java

file from DrJava project although the query matched with only a segment of code

inside the buildGUI() method. Looking closely into the cloned region between

the two clone fragments, we made two observations. First, the object name

differed. The first clone fragment contained an object called component while the

second clone fragment contained a drjava object. The Siamese-NTR query could

match them because of Type-2 clone representation that allowed variable renaming.

Second, the two clone fragments contained a different ordering of the statements.

They were reported by Siamese-NTR because the code representations based on

n-grams allowed partial matching of statements.

Moreover, we also randomly looked at a few Simian-SCC-only clone pairs

(50) to see why Siamese did not report them. We found many clones that were
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/* query 4151399_1.java */

component.addMouseListener ( new MouseListener() {

public void mouseClicked ( MouseEvent e ) {

}

public void mouseEntered ( MouseEvent e ) {

}

public void mouseExited ( MouseEvent e ) {

}

public void mousePressed ( MouseEvent e ) {

}

public void mouseReleased ( MouseEvent e ) {

}

} );

/* drjava/ui/AboutDialog.java */

public void buildGUI ( Container cp ) {

cp.setLayout ( new BorderLayout() );

JLabel drjava = createImageLabel( DRJAVA, JLabel.LEFT );

if ( drjava != null ) {

drjava.setBorder ( new CompoundBorder (

new EmptyBorder(5,5,5,5), drjava.getBorder()));

drjava.setCursor(new Cursor(Cursor.HAND_CURSOR));

final String url = "http://drjava.org/";

drjava.setToolTipText ( url );

drjava.addMouseListener ( new MouseListener() {

public void mousePressed ( MouseEvent e ) { }

public void mouseReleased ( MouseEvent e ) { }

public void mouseEntered ( MouseEvent e ) { }

public void mouseExited ( MouseEvent e ) { }

public void mouseClicked ( MouseEvent e ) {

...

// 22 more lines

...

}

Figure 8.2: A contained type-3 clone pair reported by Siamese-NTR

similar but their similarity probably lower than our defined thresholds of 80%. In a

few cases, they were Type-2 clones but missed by Siamese-NTR. It is because we

equally applied 80% similarity to the four representations, and the r1, i.e., Type-1,

representation rejected the clones. In this case, we should give a lower similarity

threshold for the r1 and r2 representation and only maintain the 80% similarity

threshold for r0 and r3. Moreover, we observed several Simian-SCC clone pairs that

were missed by Siamese because they spanned over multiple methods. They were

detected by Simian because Simian only performed line matching to find clones.

Since Siamese tried to parse the code into methods when possible, it could not

detect this kind of clones.
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Table 8.3: The data sets in the case study

Data set Files SLOC

Stack Overflow 72,365 1,840,581
GitHub 1,193,478 106,481,517

8.1.3 Discussion

Our replication of online code clone detection between Stack Overflow and Qualitas

corpus using Siamese shows that the tool can be applied for fast searching of

online code clones. The clone results after applying the n-gram token ratio (NTR)

similarity measure have some overlaps with the existing clone pairs reported by

Simian and SourcererCC and some distinct clone pairs only reported by Siamese.

We manually checked the pairs reported by Siamese only and found that many

of them are true positive pairs. At the same time, Siamese suffers from some

false negatives. There were clone pairs that were reported by either Simian or

SourcererCC that Siamese could not locate. This is possibly caused by the known

problem of clone detection tools’ configurations [Wang et al., 2013b].

8.2 Clone Search with Software License Analysis
This section illustrates an example of using Siamese for a large-scale exploratory

study of clones that are shared between repositories and their license compatibility.

An et al. [2017] performed a study of clones between Stack Overflow and 399

Android apps and their ramifications of license incompatibility. Their clone

detector, NiCad, did not scale to the full data set and had to be executed in 100

smaller runs. Our study leverages the scalability of Siamese to do a similar study

on a larger scale of Stack Overflow and 16,738 GitHub projects in a single run. The

data sets used in this study consists of (1) Java code snippets on Stack Overflow

and (2) Java source code in GitHub projects. The statistics of the two data sets are

shown in Table 8.3. For GitHub, we downloaded Java projects with at least ten stars

and obtained 16,738 projects. For Stack Overflow, we reused the 72,365 extracted

code snippets from Java accepted answers employed in the previous case study.

To be able to check for license incompatibilities similar to the study by An et al.
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[2017], Siamese was extended to support automatic software license identification

using pattern matching1, so that a manual investigation of software license is

reduced to only the clone pairs that have incompatible licenses. We built a database

of software license patterns by studying the list of 33 software license types on

GitHub2, reading the text in each license statement, and manually preparing the

patterns. During the execution, Siamese identifies software license in a software

project using a two-step approach. First, it reads a dedicated license file LICENSE or

LICENSE.txt at the root level of each GitHub project and matches it with the license

patterns in its database to detect the license at project-level. Second, Siamese reads

a license statement on the top of each Java source code file and performs pattern

matching of the license at file-level. When there is a conflict between the file-level

and the project-level license, Siamese prefers the finer-grained file-level one. If the

tool cannot identify the license, it reports unknown to flag that a manual validation

is needed. Moreover, we configured Siamese to apply the n-gram token ratio (NTR)

similarity of 100% to every query to make sure that we discovered only exact-match

clones. Since Siamese supported incremental indexing, we sequentially indexed the

projects one at a time. This also facilitated the project-based license identification

that each project had to be analysed individually. The Siamese index, after analysing

all the projects, contained 2,639,565 methods with an index size of 25.6 gigabytes.

The indexing with license identification of GitHub projects took one day and twelve

hours.

In the query phase, each code snippet from Stack Overflow was used as a

query with a results size of 100. The search for clones with similarity computation

between the two data sets took 1 hours and 57 minutes to complete.

8.2.1 Results

We initially set the minimum of 10 lines for clone size since it was recommended for

a large-scale clone detection to get rid of trivial clones [Sajnani et al., 2016]. With

the minimum of 10 lines, we retrieved a large number of clone candidate pairs.

1We also tried integrating Ninka [German et al., 2010], a license identification tool, into Siamese
but found that it dramatically slowed down the indexing and querying time.

2GitHub license type: https://help.github.com/articles/licensing-a-repository

https://help.github.com/articles/licensing-a-repository
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Table 8.4: GitHub projects with the highest no. of clones

Project name Stars Clone pairs

google/j2objc 4,981 17
biblelamp/JavaExercises 34 13
xamarin/XobotOS 1,278 11
amirmehdizadeh/JalaliCalendar 51 9
javajavadog/guideshow 85 7
Odinvt/react-native-lanscan 16 7
aosp-mirror/platform frameworks support 1,253 5
osglworks/java-tool 16 5
dropbox/hackpad 3,085 5
ibrahimbalic/AndroidRAT 37 5

However, after manually investigating a few sampled clone pairs, we still found

several trivial clones such as equalsmethods or generated GUI-related code. These

trivial clones had the size of around 10 to 20 lines, so we increased the minimum

clone size to 20 lines. With the larger minimum clone size, 378 clone pairs were

reported. This is the lower bound of the number of clone candidate pairs since

we might also get rid of true positive clone pairs that were smaller than 20 lines.

Nonetheless, false negatives (i.e., not reporting a clone pair while it is actually a

clone pair) are preferred over false positives (i.e., reporting a clone pair while it is

actually a non-clone pair) in this case of license violation checking.

We compiled a list of 10 projects having the highest number of clones as

shown in Table 8.4. The Google’s J2ObjC (4,981 stars), which is a command-

line tool that translates Java to Objective-C code, has the highest number of 17

clone pairs. The second is JavaExercises project (34 stars), which contains a lot of

Java programming examples, with 13 clone pairs followed by XobotOS, Android

porting from Java/Dalvik to C#, (1,278 stars) with 11 clone pairs; JalaliCalendar,

a Java Persian calendar library, (51 stars) with 9 clone pairs; guideshow (85 stars

– 7 pairs); react-native-lanscan (16 stars – 7 pairs); AOSP Framework Support

Library (1,253 stars – 5 pairs); java-tool (16 stars – 5 pairs); Dropbox’s hackpad

(3,085 stars – 5 pairs); and AndroidRAT (37 stars – 5 pairs). We did not confirm

the direction of cloning. However, after looking at the numbers, we observed an

interesting patterns: high and low stars projects both have high numbers of clones,
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Table 8.5: License comparison of the clones

License Stack Overflow GitHub Frequencies

Same license
None None 127
Apache-2.0 Apache-2.0 4

Total 131

Different license

None Apache-2.0 139
None GPL-2.0 32
None MIT 27
None GPL-3.0 12
None Apache 10
None BSD-2-Clause 6
None BSD-3-Clause 5
None LGPL-3.0 5
None AGPL-3.0 4
None Artistic-2.0 2
None Unknown 2
None CC0-1.0 1
Unknown GPL-2.0 1
Unknown WTFPL 1

Total 247

Grand total 378

which possibly indicate the direction of cloning. We left an investigation for future

work.

Siamese reported the same license for 131 pairs, and different license for

247 pairs. We further analysed the licenses in the clone pairs and the results are

displayed in Table 8.5. For the same license, 127 clone pairs do not have a license

statement and 4 pairs have the Apache-2.0 license. On the other hand, 65% of

the clone pairs with different licenses (247 out of 378) contain no license on Stack

Overflow while having a license on GitHub. The three highest number of clone

pairs have: 1) no license on Stack Overflow but Apache-2.0 license on GitHub (139

pairs); 2) no license on Stack Overflow and GPL-2.0 license on GitHub (32 pairs);

and 3) no license on Stack Overflow but MIT license on GitHub (27 pairs).

Although we did not confirm the violations of software license, the findings

from the study show that we can use Siamese to locate potential candidates of clones
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Figure 8.3: The overview of RELATEST

with software license incompatibility, which save the time for a human investigator.

8.2.2 Discussion

The study demonstrated an application of Siamese to efficiently and effectively

find clones which potentially violate software licenses. Siamese found a number

of clone pairs between Stack Overflow and GitHub projects that the code were

exactly matched but had different software licenses. These clone pairs with different

licenses may or may not create licensing conflicts depending on the direction of

cloning, which requires a further thorough investigation and is beyond the scope of

this paper.

8.3 Automating the Reuse of Tests
This section shows an application of Siamese to facilitate the reuse of existing test

cases. White et al.3 present an approach, called RELATEST, to extract test-to-

code traceability links and use the discovered links to recommend tests to new and

untested methods. Siamese has been used as a code similarity tool in the approach.

The main idea of the RELATEST approach is illustrated in Figure 8.3.

RELATEST works on a software project with some existing unit tests. From the

diagram, the RELATEST tool establishes a link between an existing function f1

and an existing unit test case t1 using 1) naming convention (NC) between the test

name and the function name (e.g., add and testAdd) and 2) the Last Call Before

3R. White, J. Krinke, E. Barr, C. Ragkhitwetsagul, F. Sarro, and A. Mariam, Exploiting test-
to-code traceability links for reuse, Submitted to the 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE ’18)
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Assert (LCBA) technique [Rompaey and Demeyer, 2009]. Once a traceability link

has been established, we can recommend the test t1 to a function that is newly

written or does not yet have a test based on a similarity between f1 and the function.

If a new function f2 is similar enough to f1 (based on some definition of similarity),

we recommend the test t1 from f1 to f2. The developer then copies and adapts the

recommended test t1 to fit within the new environment required to test f2. This

technique can help to save the developer’s time on writing a new test from scratch.

8.3.1 Searching for Similar Functions using Siamese

The actual implementation of the RELATEST idea is depicted in Figure 8.4. T

denotes all tests from the code corpus, F denotes all functions from the code corpus,

L denotes the set of traceability links between T and F, fq is the query function

to look for other similar functions, S ( fq) is the list of functions that are similar to

the query function, and R( fq) is the list of test recommendations for fq. The main

components of RELATEST, including traceability link establishment module and

recommendation module, were implemented by Robert White, a PhD student in

CREST, UCL under the supervision of Dr. Jens Krinke. Siamese was chosen as a

code similarity tools in the query processor module. The author has collaborated

with Robert White to integrate Siamese into RELATEST.

The test recommendation works as follows. RELATEST starts by analysing a

given code corpus and generating traceability links between functions and tests in

the corpus. The user of RELATEST gives a new function fq that he or she wants

to get test recommendations. Then, fq is sent to Siamese in the query processor

module to search for similar functions S ( fq). RELATEST reads the Siamese search

results and consult with the database of traceability links and finally returns a list of

recommended test cases R( fq) back to the user.

8.3.2 Results

Robert White and the author evaluated the performance of RELATEST based

on three Java systems: JFreeChart, CCollections, and Marc4j. The quality of

test recommendations was measured in two scenarios: within-project and cross-
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Figure 8.4: An implementation of RELATEST with Siamese as a query processor.

project. The within-project recommendations use a query function from one

project to recommended tests from within the same project, while the cross-

project recommendations use a query function from one project and recommend

tests from another project. From the three systems, we randomly sampled 10

functions with tests as query functions. Siamese was executed to build a search

index on a base project containing tests to recommend. By giving the 10 sampled

functions as queries to RELATEST, Siamese queried its search index and returned

10 ranked lists of similar functions to RELATEST. Then, RELATEST consulted the

traceability link database to find tests of the retrieved similar functions. The tests

were recommended to the human investigators to confirm their reusability.

We manually validated the RELATEST recommendations using the error mea-

sures shown in Table 8.6. The evaluation is performed on all recommendations and

per-query recommendations. For the all recommendation evaluation, we counted

the number of true and false positive recommendations by manually looking at the

recommended tests and decided whether they can be reused or not. The precision

score was computed based on the number of true positives over the total number

of recommendations. For the per-query evaluation, we counted the number of

recommendation lists that contained at least one true positive recommendation as
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Table 8.6: Ranked List Validation Methods.

Statistic Description

All Recommendations
TP The number of true positive recommendations
FP The number of false positive recommendations
Prec The number of true positives over the total number of

recommendations, i.e., |TP|
|Recommendations|

Per-Query
TPL The number of lists that contain at least one true

positive recommendation
FPL The number of lists that contain no true positive rec-

ommendations
PrecL The number of true positive lists over the total number

of samples, i.e., |TPL|
|Samples|

MRR The mean reciprocal rank of the lists
P@5 The average precision at rank 5 of the lists

Table 8.7: Manual validation of recommendation lists (within-project)

All Per-Query

Tool Queries TP FP Prec TPL FPL PrecL MRR P@5

JFreeChart 10 25 10 0.71 5 5 0.50 0.50 0.50
CCollection 10 12 16 0.43 6 4 0.60 0.60 0.46
Marc4j 10 0 24 0.00 0 10 0.00 0.00 0.00

true positive and counted the number of recommendation lists that contained no

true positive recommendation as false positive. Then, we computed precision, mean

reciprocal rank (MRR), and precision-at-5 (p@5) scores.

Table 8.8: Manual validation of recommendation lists (cross-project)

All Per-Query

Tool Queries TP FP Prec TPL FPL PrecL MRR P@5

JFreeChart 10 25 10 0.71 5 5 0.50 0.50 0.50
CCollection 10 13 19 0.41 6 4 0.60 0.60 0.46
Marc4j 10 1 33 0.03 1 9 0.10 0.10 0.10
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8.3.2.1 Within-Project Recommendations

The manual validation results are shown in Table 8.7. Siamese gave a precision

score of 0.71 and 0.43 for JFreeChart and CCollections respectively over all

recommendations. The precision for Marc4j was zero since due to no true positive

recommendation. Considering the per-query evaluation, the test recommendations

were useful in half of the cases for JFreeChart (5 TPL and 5 FPL). The MRR score

was 0.50, which meant half of the time the list contained correct recommendation on

the top. The 0.50 precision at 5 meant that, on average, the top 5 results contained

50% true positives. A similar observation was found for CCollections, we observed

a slightly higher number of true positives (6 TPL and 4 FPL). The project offered

a slightly higher precision and MRR scores of 0.60, but a lower precision at 5 of

0.46. Since Marc4j did not produced any useful recommendation, its per-query

scores were all zero.

8.3.2.2 Cross-Project Recommendations

The results were very similar to within-project recommendations as shown in

Table 8.8. We observed a precision score of 0.71 and 0.41 for JFreeChart and

CCollections respectively over all recommendations. Interestingly, we found one

true positive recommendation out of 34 recommendations for Marc4j. The precision

of recommendation on Marc4j was 0.03. Considering the per-query evaluation,

similar findings were observed with MRR scores of 0.50 and 0.60 for JFreeChart

and CCollections, and 0.10 for Marc4j. The precision at 5 scores were 0.50, 0.46,

and 0.10 respectively.

8.3.3 Discussion

We have shown that Siamese can be applied to automate a test recommendation

task. With the nature of Siamese as a query-based code search engine, it fits well

with the RELATEST technique where one wants to find functions similar to the

query function and only top n ranked results are needed. Moreover, the scalability

of Siamese will be valuable when large-scale code corpora, such as GitHub,

are required for the recommendations. The evaluation shows that some of the
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recommended tests based on Siamese search results were useful and both within-

and cross-project recommendations produced very similar results. There were good

recommendations for JFreeChart and decent recommendations for CCollections.

However, Siamese did not perform well on Marc4j. We found only one case of a

useful recommendation for Marc4j on the cross-project recommendation.

Since this is an ongoing project, we aim to improve the test recommendation

quality further by optimising Siamese’s parameters (e.g., query reduction thresh-

olds) to tailored to the token distributions in the analysed corpus as well as in-

creasing the precision of the traceability establishment and the test recommendation

module.

8.4 Chapter Summary
This chapter illustrates the applications of Siamese to software engineering re-

search. The chapter has shown that Siamese clone search technique is general and

can be adapted to a wide range of problems, such as online code clone detection,

software license analysis, or automated test recommendation.

The next chapter is the last chapter of the thesis. It will summarise the

contributions of this thesis and discuss the future work.



Chapter 9

Conclusion and Future Work

Large-scale source code data facilitate code cloning and, at the same time, compli-

cate the detection of such cloning. This thesis has established the existence of online

code cloning, which occurs between Stack Overflow Q&A website and software

projects. The online surveys reveal that Stack Overflow users are aware and

concerned of the ramifications of online code cloning to and from Stack Overflow,

including outdated code and software license violations. The thesis has analysed

online code clones between Stack Overflow and Qualitas corpus and found outdated

and potentially license-violating cloned code snippets, which may be harmful for

reuse.

To support the detection of online code clones, a scalable clone search

approach is a necessity. The thesis has presented a scalable and incremental code

clone search technique, called Siamese, and shown that it is suitable for clone search

in large-scale source code data. The use of multiple code representations and query

reduction allows Siamese to flexibly detect clones from Type-1 to Type-3. Each

clone search query costs only a few seconds. The thesis has shown that Siamese

can be deployed to tackle several research problems in software engineering.

In this way the analysis of code similarity and code clones on large-scale source

code data can be efficiently carried out. We foresee that scalable code similarity

and clone search approaches and tools will be valuable in tackling several code

similarity-related research problems in the near future.
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9.1 Summary of Achievements
The main goal of this thesis is to study code cloning in large-scale source code

data and develop a scalable clone search approach to address challenges from such

cloning. Towards that goal, this thesis has produced the following contributions.

Online Code Clones

Online code cloning and its side-effects of outdated code and software license

incompatibility are established and investigated in Chapter 3 and Chapter 4.

The two online surveys show that Stack Overflow answerers and visitors

are aware of outdated code snippets. In contrast, they are not aware or not

concerned about the violations of the original software license of code in the

answers. The empirical clone study between Stack Overflow and 111 Java

open source projects confirms the survey results. There are 2,063 manually

confirmed clone pairs found between the two sources. Several clones are

copied from the open source projects or external sources to Stack Overflow,

and many of them (100 clone pairs) are outdated. 214 code snippets could

potentially violate the license of their original software, and they occur in

7,112 projects on GitHub.

Framework for Comparing Code Similarity Tools and Clone Search

Techniques

Chapter 5 presents the OCD framework that is created for evaluating code

similarity and clone search tools based on a data set with pervasive code

modifications and a data set with boiler-plate code. The thesis uses the

framework to study the strengths and weaknesses of 34 state-of-the-art code

similarity tools and techniques. The results show that the dedicated code

similarity tools, such as clone detectors and plagiarism detectors, outperform

more general techniques of string matching or normalised compression

distance. However, there are a few string similarity techniques, including

Jaccard and Sorensen-Dice on n-gram tokens, and Python’s FuzzyWuzzy, and

Difflib libraries, that offer higher performance than the dedicated tools on both

clone detection and clone search scenarios. The empirical study also confirms
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that the tools’ optimised configurations are biased to a data set and are not

recommended to be reused. The framework can be used as a benchmark for

evaluating future code similarity tools.

Enhancing Code Clone Detection using Compilation/Decompilation

The use of compilation and decompilation as a code normalisation process for

code clone detection is first investigated in Chapter 5 and later evaluated in

more detail in Chapter 6. The results in Chapter 5 shows that compilation

followed by decompilation increases the F1 scores of 34 code similarity

tools with statistical significance. The follow-up study in Chapter 6 discover

similar findings that, when applied to a software project, compilation and de-

compilation allow a clone detector to find more clones, especially challenging

ones that are missed on the original source code. The technique increases the

clone detector’s recall without sacrificing precision.

A Scalable and Incremental Code Clone Search Approach

The thesis develops Siamese, a scalable and incremental code clone search

approach to tackle the challenge of locating online code clones in large-scale

source code data and studying their issues. Using the observations from a

comparison of code similarity analysers in Chapter 5, Siamese adopts n-gram

of normalised code tokens as the intermediate code representation. It uses

multiple code representations and query reduction techniques to accurately

search for clones of Type-1 to Type-3. The tool is scalable to a large code

corpus of 365M SLOC and allows incremental updates to its search index.

Chapter 8 discusses three applications of Siamese including online code clone

detection, software license analysing of online code clones, and automated

test reuse.

9.2 Summary of Future Work
There are now several scalable code clone detection tools available [Sajnani et al.,

2016, Saini et al., 2018, Kim et al., 2018] including Siamese. Their large-scale

empirical studies reveal interesting findings that could not be achieved using
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classical tools (e.g., Yang et al. [2017], Saini et al. [2016b], Lopes et al. [2017]).

Yet, there remains several future work to be done in the area of code similarity and

clone search in large-scale source code data. We discuss some potential future work

below.

Automated Code Cloning Direction Detection

As shown in this thesis, in order to validate the direction of online code cloning,

we still rely on manual validation to read the Stack Overflow posts, understand the

context, and use multiple hints based on human judgement (e.g., comments in the

code, natural text in the question and answers, date/time of the posts) to conclude

that the code snippets are actually copied from Qualitas or external sources to Stack

Overflow. This is a burdensome and time-consuming process. The future work

is to automate the code cloning direction detection. From our experience in this

thesis, we found that code comments and the accompanied natural text on Stack

Overflow were a great source of information to decide the direction of code copying.

Thus, by using code clone detection to locate clone candidates and then applying

information retrieval techniques, e.g., cosine similarity with tf-idf, we can rank the

clone candidates based on the similarity of their project names (or classes) to the

text in comments or natural text surrounding the clones in Stack Overflow posts.

For example, a Stack Overflow answer containing the text “Actually, you can learn

how to compare in Hadoop from WritableComparator. Here is an example that

borrows some ideas from it.” must be ranked very high among the list of clone

candidates of a code snippet from Hadoop since it contains two terms of the project

name (Hadoop) and a class name (WritableComparator) in it. This technique will

dramatically reduce the manual validation effort to establish the direction of cloning.

The technique can also be used on Stack Overflow to flag that an answer has a high

chance of copying from open source projects.

Multi-Modal Software Similarity Measurement

Most of the code similarity tools, scalable or not, locate similar pieces of code based

on their source code. This includes our Siamese tool. Some studies try to include
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other information such as natural text surrounding source code to locate more clones

[Kim et al., 2018] or to establish a link between natural text and source code for

code search [Ye et al., 2016]. With the multiple-code-representation concept in

Siamese, we can include other types of information besides source code in the code

search engine and open more possibilities of finding similar software artefacts. The

technique can be used to search for similar applications using a combination of

software requirements, documentation, and source code. Another possibility is to

find similar code reviews based on a patch, reviewer name, and review text.

Code Clone Detection at Code Review Time

Code clone detection has been integrated into the software development process in

several ways. Some software companies run a standalone code clone detector on

their software project at a time they want to refactor them [Sajnai, 2016]. Some

companies integrate the clone detector in their software lifecycle and study the

clones in every revision (e.g., CQSE’s Teamscale solution). Some programmers are

made aware of clones by their IDEs (e.g., JetBrains’s IntelliJ IDEA, SourcererCC-I

Eclipse Plug-in [Saini et al., 2016a]). There are also tools from research that make

the developer decide to or not to clone while they copy the code [Wang et al., 2012].

We see that code review is an appropriate stage for reporting clones. It has a

few benefits over real-time clone detection in IDE or during commit time. First,

by integrating code clone detection into code review, we can detect clones before

they are merged into the code base. It shares the same outcome of preventing (or

warning about) the creation of clones as the IDE-based and the commit-based clone

detection. In addition, code review is a better time for clone detection than the

post-mortem approaches, i.e., the approaches that identify clones after they already

appear in software. Moreover, the code review is specifically designed for manual

investigation of a patch. It is possibly better accepted by the programmers than

clone detection in the IDE, which interrupts programmers while coding. We can

study the awareness of programmers to code cloning and how code-review-time

clone detection affects the software quality.
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Code Clone Search As a Service

Siamese is built on top of Elasticsearch which supports distributed computing. By

upgrading Siamese to a web service on multiple machines, we are enabled to offer a

cloud-based clone search service for researchers and practitioners. The clone search

system can be integrated into the software development process as an IDE plug-in

or an automated code review assistant. Our clone search service will analyse code

snippets that are being committed into the project repository or being reviewed by

other programmers in the team and response back within seconds when it finds

similar code fragments on the Internet. Thus, software companies or open source

projects can perform a real-time check of code copying-and-pasting to avoid the

issues from code cloning (e.g., bug propagation or license violations), or at least

to be aware that such activities occurred in their software development process.

In return, we will collect the usage history and probably the code fragments they

submit to the system for a large-scale analysis of clone search.



Appendix A

Chapter 3: Answerer and Visitor

Surveys

A.1 Open Comments from Stack Overflow Answer-

ers
1. Sometimes you have to post code from official documentation, like in case of

C#, code form MSDN is posted in the answer with added explanation.

2. Snippets on SO are usually for demonstrating a technique and therefore age

well. If otherwise, I usually made them a gist, codebin or jsfiddle.

3. The real issue is less about the amount the code snippets on SO than it is about

the staggeringly high number of software “professionals” that mindlessly

use them without understanding what they’re copying, and the only slightly

less high number of would-be professionals that post snippets with built-in

security issues.

4. A related topic is beginners who post (at times dangerously) misleading

tutorials online on topics they actually know very little about. Think PH-

P/MySQL tutorials written 10+ years after mysql * functions were obsolete,

or the recent regex tutorial that got posted the other day on HackerNew

(https://news.ycombinator.com/item?id=14846506). They’re also

https://news.ycombinator.com/item?id=14846506
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full of toxic code snippets.

5. Just to say: the reason that I very rarely check the license status is that the

code I am posting is almost always my own or adapted from the question,

or imported from an open source project that I have worked on and already

know the license terms, or from my own company code that I can 100% say

it is OK to post in public because I know our policies.

6. No. Code snippets are short and small enough that no IP can be in them.

7. The point of snippets are that they are trivial. I mostly write from scratch or

copy-&-fix a snippet from the question. Most are illustrative or incomplete –

they aren’t of any value at all in isolation. They rarely take more than a few

minutes to write, and it’s usually harder to explain what they’re doing in plain

English. Where something is large enough to worth the effort of licensing

then it’s far too big for a snippet. In those cases I create a GitHub project

(with a license) and link to it. I’d be wary of increased IP controls – I doubt

there is value they could add to snippets, but they could create significant

barriers to contributors, which would hurt the site.

8. I always try to see what kind of person is asking the question. If it is a student,

I don’t want to just hand out the answer; they will learn nothing from that.

If, on the other hand, it’s somebody looking for best practices or a clever

trick, I’m not too worried about giving out the solution. In this case, chances

are much higher that the person asking the question will go “Ahh, yes, of

course!” and understand the question, whereas some students are more likely

to mindlessly copy-paste the answer.

9. However, it is also a competitive site, so if your answer requires too much

work to incorporate, it won’t get accepted or upvoted. As a result, some

people—I’m guilty of this myself, I’m sure—will hand out an answer willy-

nilly that might solve the problem at hand, but in the long run be a disservice
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to the person asking.

10. But I digress: My point is that it’s sometimes better to describe a solution

rather than just hand off a code snippet. However, since your project seems

to pertain to copyright issues, I suppose that’s not relevant to you.

11. I’m not sure it’s possible to include a license in your questions/answers. I’m

not sure what the legal ramifications would be if you tried it, since you already

agreed to S.O.’s terms. This is a very interesting question and I look forward

to hearing the results of your research.

12. I think it’s important to realise the code snippets are designed to be very small,

useful to illustrate concepts (10 lines or less). When you consider licensing

laws of such a small amount of code, while technically may be violating a

licence, in practice it would be nearly impossible to enforce such a claim.

13. SO code snippets are great but there is lot to improve . It’s hard to edit and

see output in so but website like jsfiddle , jsbin provide nice interface where

code editing and output is easy to do.

14. Outer thing is in so lot of code snippets doesn’t work because some users

don’t add libraries like angular, jquery. I think it’s better if we can identify

and ask user to auto inject relevant libraries.

15. Code snippets are usually just a few lines of code so it will be hard to

enforce any copyright claims except when it is a method used for something

company-specific (such as generating encryption keys). Regardless, since

most of the code I write is specifically to answer a given question and having

full knowledge of the license system used by Stack Overflow, it is entirely

unimportant to concern myself with licensing the code provided. Also, code

from MSDN documentation which I sometimes adapt and modify for answers

are already in the public domain so it makes no sense re-licensing it.
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16. On the matter of deprecation, I almost entirely use .NET which has got

different versions of the framework. Therefore, code deprecation is not often

a problem since what is deprecated on one version of the framework may be

the only way of solving a given problem on an older version of the framework.

I may also have to add that questions I tend to answer are about how to solve

general coding problems so they are not usually subject to deprecation.

17. I think you’re forgetting the fact that as a community, we want to share

knowledge. Patents, copyright issues and so on – it’s all just annoying. We’re

there to have fun and to share knowledge with people.

18. In the early days, the internet used to be full of free-for-all stuff without any

licenses. Because of that, it was a fantastic tool to share knowledge and

information on a vast scale. The remnant of this, open source, couldn’t have

existed without this!

19. Personally, I believe this “intellectual property” drive of the last decade is

completely overrated. If you make something substantial, it’s fine to be able

to claim some ownership – but on snippets? It’s like patenting the stuff you

make in your free time in your shed... it doesn’t make sense and just adds to

the pile of legal bullshit imho.

20. No. I only put code on there that I have the right to (code I created or have

permission to share). Adding the code is not an issue for me.

21. When I copy code it’s usually short enough to be considered “fair use” but

I am not a lawyer or copyright expert so some guidance from SO would be

helpful. I’d also like the ability to flag/review questions that violate these

guidelines.

22. The snippets are all small enough that I reckon they fall under fair use.
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23. I always try and attribute the code I take from other places. I feel pointing

back to the origin should be sufficient in terms of giving credit where it’s due.

Open source is about the sharing of ideas so that others can build on them.

Education is a primary use case of open source in my opinion.

24. My only concern, albeit minor, is that I know people blindly copy my code

without even understanding what the code does.

25. This survey may be inapplicable to me because I never copy code from

existing projects.

26. Stack Overflow did an effort to apply a MIT license to all code snippets, while

keeping CC-SA for the text content. Too bad they didn’t succeed with it, as it

would have solved many issues.

27. The main problem for me/us is outdated code, esp. as old answers have high

Google rank so that is what people see first, then try and fail. Thats why we’re

moving more and more of those examples to knowledge base and docs and

rather link to those.

28. I’ve got no issues with code snippets on Stack Overflow, I think they are

great. Any one using them should pay attention to details such as the date of

the answer etc.

29. SO’s license is not clearly explained when one registers or starts to answer

questions.

30. No, most copied code snippets are so trivial that licensing them would

be nearly impossible. It’s also mostly modified version, where only some

patterns are used.

31. Lot of the answers are from hobbyist so the quality is poor. Usually they are
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hacks or workarounds (even MY best answer on SO is a workaround).

32. I think most example and explanatory snippets don’t need a code-specific

license. The CC license provides just fine. The examples either aren’t copy-

rightable in the first place, or merely used as starting point (not used exactly

as-is, not very different from reading an “All rights reserved” education book

when learning programming, and “using” it in your career every day going

forward). In addition, there is also the attitude of authors. Where I might care

about attribution for distribution of my answer, the code within my answer is

always Public Domain for me, meaning, I would never defend it. (I used to

state that on my profile as well, but not in every post.)

33. Correctness and even syntax are often in doubt if I haven’t had time to test

the snippet end-to-end under the OP’s conditions/environment.

34. It will be awesome if it becomes simple git repositories like github’s gist.

35. Note that although I was not specifically of SO’s licensing terms, I did have

an in mind what those terms were likely to be. I have always made sure that

there should be no reason that I should not share the code that I included in

my replies.

36. It’s an ESSENTIAL part of the site, it would NEVER work without such

pieces of code. Also, given the snippets are very small in 99.99% of cases,

legal aspects of this are inherently and pretty much always overlooked by the

users.
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A.2 Stack Overflow Answerer Survey: Google Forms

A survey of developers' experiences on answering
Stack Overflow questions with code examples
Dear developer,

Since you are one of the top answerers on Stack Overflow, we hope you can help us with a not-
for-profit study.

We are researchers in the Software Systems Engineering Group at University College London, 
UK. We are studying problems caused by outdated and license-violating code snippets on Stack 
Overflow. We have designed a survey to understand these problems and would be grateful if you 
would complete it. 

The survey is completely anonymous and has 11 questions and should only take about 3-5 
minutes to complete. We hope that you will complete the entire form but if you do not wish to 
continue, you can just quit the session and your input will be discarded.

The survey results will be used only for academic research purposes and we plan to release the 
results to Stack Overflow and in the form of academic papers and presentations.

This research project has been approved by the designated ethics officer in the Computer 
Science Department at UCL.

If you have any question, please feel free to contact me.
 
Chaiyong Ragkhitwetsagul
chaiyong.ragkhitwetsagul.14@ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/C.Ragkhitwetsagul 

* Required

1. How long have you been working on developing software? *
Mark only one oval.

 Less than a year

 1 - 2 years

 3 - 5 years

 5 - 10 years

 More than 10 years

2. How frequently do or did you answer questions on Stack Overflow? *
Mark only one oval.

 Very Frequently (every day)

 Frequently (roughly 3-6 times a week)

 Occasionally (roughly once or twice a week)

 Rarely (roughly once or twice a month)

 Very Rarely (roughly once or twice a year)

 Never Skip to question 11.

Experience of Answering Stack Overflow Questions
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This section aims to gain understanding on how developers choose code snippets to put as a 
solution on Stack Overflow.

3. How frequently do or did you include code snippets in your answers on Stack
Overflow? *
Mark only one oval.

 Very Frequently (81--100% of the time)

 Frequently (61--80% of the time)

 Occasionally (41--60% of the time)

 Rarely (21--40% of the time)

 Very Rarely (1--20% of the time)

 Never (0% of the time) Skip to question 11.

Sources of the Stack Overflow Snippets
This section will gather information about the origins of the example snippets in Stack Overflow 
answers.

4. Where did the code snippets in your answers come from? *
Mark only one oval per row.

Very
frequently Frequently Occasionally Rarely Very

rarely Never

I copied them from my
own personal projects.
I copied them from my
company's projects.
I copied them from open
source projects.
I wrote the new code
from scratch.
I copied the code from
the question and
modified it for the
answer.
Others

Concerns of Copying Code Snippets to Stack Overflow
This section aims to study concerns of the answerers regarding software licensing of their code 
snippets in Stack Overflow answers.

5. Were you aware, at the time of copying the code, that Stack Overflow apply Creative
Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) to content in the posts,
including code snippets? *
Mark only one oval.

 Yes

 No
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6. Do you usually include a software license in your code snippets on Stack Overflow? *
Mark only one oval.

 Yes, as a comment in the code.

 Yes, in a text surrounding the source code.

 Yes, both in code comments and text.

 No.

7. How frequently did you check the software license of the code snippets you copy to
Stack Overflow if they conflict with Stack Overflow's CC BY-SA 3.0 license? *
Mark only one oval.

 Very Frequently (81--100% of the time)

 Frequently (61--80% of the time)

 Occasionally (41--60% of the time)

 Rarely (21--40% of the time)

 Very rarely (1--20% of the time)

 Never (0% of the time)

Problems from Code Snippets on Stack Overflow
This section will gather information of code snippets that were outdated after being copied to Stack 
Overflow.

8. Outdated code occurs when code snippets in your answers are no longer up-to-date
with the latest version of the software you copied the code from. Have you ever been
notified of outdated code in your Stack Overflow answers? *
Mark only one oval.

 Yes

 No

Frequency of Notifications

9. How frequently were you notified of outdated or deprecated code in your Stack
Overflow answers? *
Mark only one oval.

 Very frequently (81--100% of my answers)

 Frequently (61--80% of my answers)

 Occasionally (41--60% of my answers)

 Rarely (21--40% of my answers)

 Very rarely (1--20% of my answers)

 Never (0% of my answers) Skip to question 11.

Fixing Outdated Code
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Powered by

10. How frequently did you fix your outdated code on Stack Overflow? *
Mark only one oval.

 Very frequently (81--100% of the cases)

 Frequently (61--80% of the cases)

 Occasionally (41--60% of the cases)

 Rarely (21--40% of the cases)

 Very rarely (1--20% of the cases)

 Never (0% of the cases)

Additional feedbacks

11. Do you have any other concerns regarding answering Stack Overflow with code
snippets?
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A.3 Stack Overflow Visitor Survey: Google Forms

A survey of developers' experiences on reusing
code snippets from Stack Overflow
Dear developer,

We are researchers in the Software Systems Engineering Group at University College London, 
UK. We are studying problems caused by outdated and license-violating code snippets on Stack 
Overflow. We have designed a survey to understand these problems and would be grateful if you 
would complete it. 

The survey is completely anonymous and has 15 questions and should only take about 5-7 
minutes to complete. We hope that you will complete the entire form but if you do not wish to 
continue, you can just quit the session and your input will be discarded.

The survey results will be used only for academic research purposes and we plan to release the 
results to Stack Overflow and in the form of academic papers and presentations.

This research project has been approved by the designated ethics officer in the Computer 
Science Department at UCL.

If you have any question, please feel free to contact me.
 
Chaiyong Ragkhitwetsagul
chaiyong.ragkhitwetsagul.14@ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/C.Ragkhitwetsagul 

* Required

1. How long have you been working on developing software?
Mark only one oval.

 Less than a year

 1-2 years

 3-5 years

 5-10 years

 More than 10 years

Importance of Stack Overflow to Developers
This section aims to measure importance of Stack Overflow to developers when they solve 
programming tasks.

2. When you had a problem with your programming tasks, please rank in which order did
you search for help (1 for the first, and 5 for the last, without a tie)? *
Mark only one oval per row.

1st 2nd 3rd 4th 5th

Books
Official documentations
Stack Overflow
Online repositories (e.g. GitHub)
Others
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3. How frequently do or did you copy source code snippets from Stack Overflow? *
Mark only one oval.

 Very frequently (everyday)

 Frequently (roughly 3-6 times a week)

 Occasionally (roughly once or twice per week)

 Rarely (roughly once or twice a month)

 Very rarely (roughly once or twice a year)

 Never Stop filling out this form.

Reasons for Reusing Stack Overflow's Snippets
This section aims to understand why developers reuse code from Stack Overflow and their 
problems.

4. Why did you copy and reuse code snippets from Stack Overflow?
Mark only one oval per row.

Strongly
agree Agree Undecided Disagree Strongly

Disagree

They are easy to find by
searching the web.
They solve problems similar
to my problems with minimal
changes.
The context of questions and
answers helped me
understand the code snippets
better.
The voting mechanism and
accepted answers helped
filtering good code from bad
code.

5. Have you ever found any problems from reusing Stack Overflow code snippets? *
Mark only one oval.

 Yes

 No Skip to question 10.

Problems from Stack Overflow Code Snippets
This section aims to understand the problems from Stack Overflow snippets and whether the 
developers notify the answerers of the problems.

6. How frequently did you find problems from reusing Stack Overflow code snippets? *
Mark only one oval.

 Very frequently (81--100% of the reused snippets)

 Frequently (61--80% of the reused snippets)

 Occasionally (41--60% of the reused snippets)

 Rarely (21--40% of the reused snippets)

 Very rarely (1--20% of the reused snippets)

 Never
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7. What were the problems? *
Check all that apply.

 Incorrect solution (the code claims to solve the problem in the question while it does
not).

 Outdated solution (the code may work with the some older versions of the library or API,
but not the one you are using).

 Mismatched solution (the code solves the problem in the question but it is not exactly the
right solution for your problem).

 Other: 

8. How frequently did you report the problems back to the Stack Overflow discussion
threads? *
Mark only one oval.

 Very frequently (81--100% of the time)

 Frequently (61--80% of the time)

 Occasionally (41--60% of the time)

 Rarely (21--40% of the time)

 Very rarely (1--20% of the time)

 Never (0% of the time) Skip to question 10.

Reporting problems of Code on Stack Overflow

9. How did you report the problems?
Check all that apply.

 I down-voted the answer containing the problematic code snippet

 I wrote a comment saying that the code has problems.

 I contacted the answerers regarding the problems directly.

 I never report problems.

 Other: 

Licensing of Code on Stack Overflow
This section will study awareness of developers regarding licensing of code snippets on Stack 
Overflow.

10. Were you aware, at the time of copying the code, that Stack Overflow apply Creative
Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) to content in the posts,
including code snippets? *
Mark only one oval.

 Yes

 No
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15. Could you please briefly explain what are the legal problems that you faced by copying
code snippets from Stack Overflow?
 

 

 

 

 

Other Comments

16. Did you have any other problems from using code snippets from Stack Overflow?
 

 

 

 

 



Appendix B

Chapter 4: Outdated Code Snippets

Table B.1: 100 outdated cloned code snippets on Stack Overflow and their associated
original projects

No. Stack Overflow Post Start End Qualitas Project File Start End

1 9291241 1 11 apache-ant-1.8.4 Mkdir.java 19 29
2 12106623 1 16 apache-log4j-1.2.16 WriterAppender.java 45 61
3 18232672 42 63 apache-log4j-1.2.16 SMTPAppender.java 207 228
4 21734562 1 70 apache-tomcat-7.0.2 BasicAuthenticator.java 23 87
5 24404964 1 36 apache-tomcat-7.0.2 CoyoteAdapter.java 543 578
6 12617195 7 20 apache-tomcat-7.0.2 ServletFileUpload.java 12 25
7 10289462 1 45 apache-tomcat-7.0.2 JspRuntimeLibrary.java 252 296
8 24404964 14 31 apache-tomcat-7.0.2 CoyoteAdapter.java 557 573
9 8409971 65 86 apache-tomcat-7.0.2 GzipOutputFilter.java 47 68

10 16860613 55 74 eclipse SDK StyledString.java 55 74
11 2513183 106 159 eclipse SDK GenerateToStringAction.java 113 166
12 7504040 5 17 eclipse SDK ExternalResource.java 8 20
13 16860613 96 117 eclipse SDK StyledString.java 96 117
14 16860613 118 165 eclipse SDK StyledString.java 118 165
15 16860613 189 204 eclipse SDK StyledString.java 189 204
16 19567163 1 10 eclipse SDK AbstractDecoratedTextEditor.java 1351 1360
17 2513183 168 181 eclipse SDK GenerateToStringAction.java 175 188
18 6092014 1 10 eclipse SDK ViewParameterValues.java 8 17
19 8065120 1 11 eclipse SDK FormToolkit.java 287 297
20 968656 1 11 eclipse SDK MethodStubsSelectionButtonGroup.java 207 217
21 11861598 1 18 eclipse SDK WizardDialog.java 377 394
22 10289462 4 23 eclipse SDK JspRuntimeLibrary.java 260 279
23 16928749 50 66 hadoop-1 TextOutputFormat.java 46 63
24 21702608 1 36 hadoop-1 DBCountPageView.java 275 306
25 801987 1 18 hadoop-1 StringUtils.java 41 57
26 16928749 68 97 hadoop-1 TextOutputFormat.java 73 99
27 18647984 48 63 hadoop-1 SequenceFileRecordReader.java 36 50
28 22315734 10 21 hadoop-1 DeserializerComparator.java 16 26
29 14845581 1 10 hadoop-1 JobSubmissionFiles.java 46 55
30 16180910 1 14 hadoop-1 LineRecordReader.java 47 60
31 21702608 15 35 hadoop-1 DBCountPageView.java 289 309
32 23520731 1 75 hibernate-release-4 SchemaUpdate.java 115 190
33 23967852 1 20 hibernate-release-4 SQLServer2005LimitHandler.java 43 62
34 24924255 1 32 hibernate-release-4 Example.java 218 247
35 16930707 41 59 hibernate-release-4 RegisterUserEventListenersTest.java 40 53
36 609430 1 17 hibernate-release-4 DefaultLoadEventListener.java 277 293
37 10274267 1 12 hibernate-release-4 flush and clear session.java 1 12
38 14330686 1 12 hibernate-release-4 flush and clear session.java 1 12
39 14582029 1 12 hibernate-release-4 flush and clear session.java 1 12
40 15168494 1 29 hibernate-release-4 ConnectionProviderInitiator.java 65 93
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Table B.2: 100 outdated cloned code snippets on Stack Overflow and their associated
original projects (cont.)

No. Stack Overflow Post Start End Qualitas Project File Start End

41 19298607 1 10 hibernate-release-4 Oracle9iDialect.java 23 32
42 20458485 1 12 hibernate-release-4 flush and clear session.java 1 12
43 21777900 1 12 hibernate-release-4 flush and clear session.java 1 12
44 23520731 55 72 hibernate-release-4 SchemaUpdate.java 170 187
45 23974103 1 34 hibernate-release-4 BulkOperationCleanupAction.java 124 157
46 2398335 1 16 hibernate-release-4 using scroll.java 1 16
47 2761630 1 11 hibernate-release-4 using a StatelessSession.java 1 11
48 3275733 1 12 hibernate-release-4 flush and clear session.java 1 12
49 3788516 1 12 hibernate-release-4 flush and clear session.java 1 12
50 5713930 1 16 hibernate-release-4 using scroll.java 1 16
51 8037824 1 20 jasperreports-3 JRVerifier.java 1221 1240
52 8037824 22 38 jasperreports-3 JRVerifier.java 982 998
53 21734562 24 48 jboss-5 HTTPBasicServerAuthModule.java 63 87
54 21734562 58 68 jboss-5 HTTPBasicServerAuthModule.java 97 107
55 11368428 1 27 jfreechart-1 BarChartDemo1.java 29 55
56 12936580 63 197 jfreechart-1 AbstractXYItemRenderer.java 443 578
57 21998949 10 89 jfreechart-1 SpiderWebPlot.java 502 578
58 25651812 43 83 jfreechart-1 BarChartDemo1.java 56 87
59 12936580 83 94 jfreechart-1 AbstractXYItemRenderer.java 466 477
60 12936580 102 113 jfreechart-1 AbstractXYItemRenderer.java 484 495
61 16058183 1 13 jfreechart-1 KeyToGroupMap.java 18 30
62 21998949 31 45 jfreechart-1 SpiderWebPlot.java 522 536
63 6722760 38 56 jgraph-latest-bsd-src MyCellView.java 53 73
64 15889119 1 16 jgrapht-0 TouchgraphConverter.java 7 22
65 14940863 1 26 jstock-1.0.7c GoogleMail.java 18 43
66 3629882 1 26 jstock-1.0.7c Utils.java 1484 1502
67 6025026 212 233 jung2-2 0 1 ShortestPathDemo.java 158 179
68 10042010 30 41 jung2-2 0 1 TreeLayout.java 85 96
69 10042010 42 55 jung2-2 0 1 TreeLayout.java 97 110
70 24330611 197 213 jung2-2 0 1 TreeCollapseDemo.java 142 157
71 24330611 320 333 jung2-2 0 1 VertexCollapseDemoWithLayouts.java 247 258
72 6025026 47 93 jung2-2 0 1 ShortestPathDemo.java 42 82
73 6025026 137 153 jung2-2 0 1 ShortestPathDemo.java 121 137
74 24330611 162 177 jung2-2 0 1 L2RTreeLayoutDemo.java 102 117
75 24330611 321 347 jung2-2 0 1 TreeCollapseDemo.java 248 274
76 8802082 1 20 junit-4 ExpectException.java 12 31
77 23586872 1 20 junit-4 Assert.java 33 52
78 17697173 1 19 lucene-4.3.0 SlowSynonymFilterFactory.java 38 52
79 18970685 1 10 lucene-4.3.0 FSDirectory.java 35 44
80 12593810 1 12 poi-3.6-20091214 ExtractorFactory.java 49 60
81 18201985 1 26 poi-3.6-20091214 CalendarDemo.java 11 36
82 10924700 1 18 spring-framework-3.0.5 Jaxb2Marshaller.java 253 270
83 6149818 1 20 spring-framework-3.0.5 DefaultPropertiesPersister.java 67 86
84 20913543 1 15 spring-framework-3.0.5 AutowireUtils.java 30 43
85 249149 1 11 spring-framework-3.0.5 CciTemplate.java 193 203
86 7099864 13 27 spring-framework-3.0.5 OptionTag.java 84 98
87 9003314 70 83 spring-framework-3.0.5 WebDataBinder.java 95 108
88 18623736 1 39 spring-framework-3.0.5 CustomCollectionEditor.java 33 71
89 20421869 22 51 spring-framework-3.0.5 ClassPathScanningCandidateComponentProvider.java 90 119
90 20996373 1 15 spring-framework-3.0.5 DelegatingServletInputStream.java 6 20
91 22865824 67 80 spring-framework-3.0.5 JavaMailSenderImpl.java 186 199
92 3751463 1 11 spring-framework-3.0.5 ScheduledTasksBeanDefinitionParser.java 42 52
93 3758110 5 19 spring-framework-3.0.5 DefaultAnnotationHandlerMapping.java 78 92
94 4781746 1 13 spring-framework-3.0.5 DispatcherServlet.java 91 103
95 5660519 1 10 spring-framework-3.0.5 AnnotationMethodHandlerExceptionResolver.java 224 233
96 14019840 1 18 struts2-2.2.1-all DefaultActionMapper.java 128 145
97 15110171 23 40 struts2-2.2.1-all StringLengthFieldValidator.java 25 42
98 15131432 5 22 struts2-2.2.1-all FreemarkerManager.java 144 162
99 15131432 23 42 struts2-2.2.1-all FreemarkerManager.java 163 177

100 15110171 2 24 struts2-2.2.1-all StringLengthFieldValidator.java 4 26
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Chapter 5: The OCD Framework

C.1 The complete list of the optimal configurations

Table C.1: The complete list of optimal configurations for Krakatau

Tool Settings Granularity Threshold

ccfx b=5, t=8 T 50
b=5, t=11 T 17

deckard mintoken=30, stride=1, similarity=0.95 L, T, C 29,29,34
mintoken=30, stride=1, similarity=1.00 L, T, C 10,12,15
mintoken=30, stride=2, similarity=0.90 T 54
mintoken=30, stride=2, similarity=0.95 L, T, C 22,28,32
mintoken=30, stride=inf, similarity=0.95 L, T, C 29,29,34
mintoken=30, stride=inf, similarity=1.00 L, T, C 10,12,15
mintoken=50, stride=1, similarity=0.95 L, T, C 23,29,31
mintoken=50, stride=2, similarity=0.95 L, T, C 21,18,23
mintoken=50, stride=inf, similarity=0.95 L, T, C 23,28,31

simian threshold=3,4, ignoreidentifiers T 17
threshold=3, ignoreidentifiers C
threshold=5, ignoreidentifiers L 12
threshold=5, ignoreidentifiers T 13

simjava r=18,19 17
r=20 16
r=26,27 11
r=28 9
r=default 27

simtext r=4 33
r=5 31

icd ma=LZMA, mx=7,9 54
ma=LZMA2, mx=7,9
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C.2 The OCD Framework User’s Guide
1. Download the OCD framework from http://crest.cs.ucl.ac.uk/

resources/cloplag to your designated directory and extract it.

2. The framework folder should contain the following structure.

.

|---- programs

|---- tests

|---- tests_no_krakatau

|---- tests_no_procyon

|---- scripts

|---- results

| |---- thresholds

|---- results_no_krakatau

| |---- thresholds

|---- results_no_procyon

| |---- thresholds

The programs folder is where you put the code similarity tools being

evaluated. The three folders starting with tests contain the OCD data set

without compilation/decompilation (tests), the OCD data set with compi-

lation/decompilation by Krakatau (tests no krakatau), and the OCD data

set with compilation/decompilation by Procyon (tests no procyon). The

scripts folder contains tool running scripts and other scripts required for

reading the similarity report and compute the error measures. The folders

with names starting with results contain similarity reports generated by

running a tool on each respective OCD data set. The thresholds folder

inside each results folder contains scripts to compute F1 scores, precision-

at-n, ARP, and MAP.

3. Create a running script for your tool. You can adapt from an example script

of Linux’s diff tool shown below (Figure C.1). The actual script can be

found in the scripts folder. You are supposed to modify the content of

the m compare function to call your tool and derive a similarity value of two

given files $1 and $2. Please make sure the tool returns a similarity value

from 0 to 100.

http://crest.cs.ucl.ac.uk/resources/cloplag
http://crest.cs.ucl.ac.uk/resources/cloplag
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1 #!/bin/sh

2 # Code similarity tool: Linux’s diff

3 # Authors: Jens Krinke and Chaiyong Ragkhitwetsagul

4 DETECTOR=diff

5 # Do the comparison between two tests.

6 m_compare() {

7 # call diff to generate the diff file

8 diff -i -E -b -w -B -e $1/*.java $2/*.java > ../$RESULTS/files.diff

9 # get the file size of files.diff

10 diffSize=‘cat ../$RESULTS/files.diff | wc -c‘

11 fileSize=‘cat $2/*.java | wc -c‘

12 if [ $diffSize -lt $fileSize ] ; then

13 echo "100 - (($diffSize) * 100 / $fileSize)" | bc

14 else

15 echo "100"

16 fi

17 rm -rf ../$RESULTS/files.diff

18 }

19 # Set the directory for the results based on the current test directory.

20 RESULTS=‘basename $PWD | sed -e s:tests:results: | sed -e s:soco:results_soco:‘

21 if [ "‘echo "1\t2"‘" = "1\t2" ]; then

22 ECHO="-e"

23 else

24 ECHO=""

25 fi

26 # Create the table header.

27 LINE="-"

28 for p in *; do

29 for i in $p/[0-9A-Za-z]*; do # $p/test_*; do

30 LINE="$LINE, $i"

31 done

32 done

33 echo $LINE > ../$RESULTS/$DETECTOR.csv

34 count=1

35 # Do the pairwise comparisons.

36 for p in *; do

37 for i in $p/[0-9A-Za-z]*; do # $p/test_*; do

38 LINE="$i"

39 for q in *; do

40 for j in $q/[0-9A-Za-z]*; do # $q/test_*; do

41 sim="‘m_compare $i $j‘"

42 echo $ECHO "$count: diff $sim: $i $j"

43 count=$(($count+1))

44 LINE="$LINE, $sim"

45 done

46 done

47 echo $LINE >> ../$RESULTS/$DETECTOR.csv

48 done

49 done

Figure C.1: An example of a tool running script (compare diff.sh)

4. Change directory to tests folder and run the script. The following example

runs the script of the Linux’s diff tool.

$cd tests

$../scripts/compare_diff.sh

5. 10,000 pairwise comparisons will be performed by the script (you will see

the file names being compared and the similarity score printed to the screen).

Once the execution is complete, you will find a similarity report (diff.csv)

in the results folder.
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$cd ../results

$ls

diff.csv diff.info thresholds/

6. To compute the error measure, both pair-based and query-based ones, change

directory to the thresholds folder and execute the scripts. For example, to

compute precision, recall, accuracy, and F1 scores, run the all f1.sh script

as shown below.

$cd thresholds

$./all_f1.sh

file,T,tp,fp,tn,fn,prec,rec,acc,f1

diff ,8,816,626,8374,184,0.565880721220527,0.816,0.919,0.6683046683046682



Appendix D

Chapter 7: Siamese – A User’s Guide

1. Siamese executable (JAR file) can be downloaded from https://

siamesetool.github.io/siamese/.

2. Please make sure you have Java 8 installed on your machine.

3. To execute Siamese, unzip the file and follow the steps below:

$cd siamese

$./elasticsearch -2.2.0/bin/elasticsearch -d

$java -jar siamese -0.0.5-SNAPSHOT.jar

4. Then, the usage and examples of how to run Siamese will be shown on screen.

usage: (v 0.5) $java -jar siamese.jar -cf <config file> [-i input] [-o output] [-c command] [-h

help]

Example: java -jar siamese.jar -cf config.properties

Example: java -jar siamese.jar -cf config.properties -i /my/input/dir -o /my/output/dir -c index

-c,--command <arg> [optional] command to execute [index, search].

This will override the configuration file.

-cf,--configFile <arg> [* requried *] a configuration file

-h,--help <optional > print help

-i,--inputFolder <arg> [optional] location of the input files (for

index or query). This will override the

configuration file.

-o,--outputFolder <arg> [optional] location of the search result file.

This will override the configuration file.

https://siamesetool.github.io/siamese/
https://siamesetool.github.io/siamese/
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Table E.1: A list of GitHub project’s license keywords used by Siamese

License Pattern

MIT ‘‘THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED’’

GPL-2.0 ‘‘GNU GENERAL PUBLIC LICENSE’’ AND ‘‘Version 2’’

GPL-3.0 ‘‘GNU GENERAL PUBLIC LICENSE’’ AND ‘‘Version 3’’

Apache-2.0 ‘‘Apache License, Version 2.0’’

BSD ‘‘BSD’’

‘‘Redistributions of source code’’

BSD-2-clause ‘‘Redistributions in binary form’’

BSD-3-clause ‘‘Neither the name’’

BSD-3-clause-clear ‘‘NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY’S PATENT

RIGHTS ARE GRANTED BY THIS LICENSE’’

Unlicense ‘‘http://unlicense.org’’

LGPL ‘‘GNU LESSER GENERAL PUBLIC LICENSE’’

LGPL-2.1 ‘‘Version 2.1’’

LGPL-3.0 ‘‘Version 3’’

AGPL-3.0 ‘‘GNU AFFERO GENERAL PUBLIC LICENSE’’ AND ‘‘Version

3’’

MPL-2.0 ‘‘Mozilla Public License Version 2.0’’

OSL-3.0 ‘‘Open Software License version 3.0’’

AFL-3.0 ‘‘"Academic Free License version 3.0’’

Artistic-2.0 ‘‘Artistic License 2.0’’

CC0-1.0 ‘‘CC0 1.0’’

CC-BY-4.0 ‘‘Creative Commons Attribution 4.0’’

CC-BY-SA-4.0 ‘‘Attribution-NonCommercial-ShareAlike 4.0’’

WTFPL ‘‘DO WHAT THE FUCK YOU WANT TO’’

ECL-2.0 ‘‘Educational Community License, Version 2.0’’ OR
‘‘ECL-2.0’’

EPL-1.0 ‘‘Eclipse Public License - v 1.0’’

EUPL-1.1 ‘‘EUPL V.1.1’’

ISC ‘‘ISC License’’

LPPL-1.3c ‘‘LPPL Version 1.3c’’

MS-PL ‘‘Microsoft Public License’’ OR ‘‘(MS-PL)’’

POSTGRESQL ‘‘PostgreSQL License’’

OFL-1.1 ‘‘SIL Open Font License’’ AND ‘‘version 1.1’’

NCSA ‘‘NCSA Open Source License’’

ZLIB Altered source versions must be plainly marked as

such, and must not be misrepresented as being the

original software’’

Unknown The rest that are not matched with the above patterns.
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N. Göde and R. Koschke. Incremental clone detection. In Proceedings of the 13th

European Conference on Software Maintenance and Reengineering (CSMR ’09),

pages 219–228, Kaiserslautern, Germany, 2009. IEEE.

M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby. A

search engine for finding highly relevant applications. In Proceedings of the 33rd

International Conference on Software Engineering (ICSE ’10), pages 475–484,

2010.

S. Grier. A tool that detects plagiarism in Pascal programs. ACM SIGCSE Bulletin,

13(1):15–20, 1981.

G. Gross. Open-source legal group strikes again on BusyBox, suing Verizon. http:

//www.computerworld.com/article/2537947/open-source-tools/

open-source-legal-group-strikes-again-on-busybox--suing-verizon.

html, 2007. Accessed: 20-May-2015.

R. Grosse. Krakatau bytecode tools. https://github.com/Storyyeller/

Krakatau, 2016. Accessed: 2016-02-14.

http://www.computerworld.com/article/2537947/open-source-tools/open-source-legal-group-strikes-again-on-busybox--suing-verizon.html
http://www.computerworld.com/article/2537947/open-source-tools/open-source-legal-group-strikes-again-on-busybox--suing-verizon.html
http://www.computerworld.com/article/2537947/open-source-tools/open-source-legal-group-strikes-again-on-busybox--suing-verizon.html
http://www.computerworld.com/article/2537947/open-source-tools/open-source-legal-group-strikes-again-on-busybox--suing-verizon.html
https://github.com/Storyyeller/Krakatau
https://github.com/Storyyeller/Krakatau


BIBLIOGRAPHY 333

X. Gu, H. Zhang, and S. Kim. Deep code search. In Proceedings of the 40th

International Conference on Software Engineering (ICSE ’18), pages 933–944,

2018.

Guard Square. ProGuard: Bytecode obfuscation tool. http://proguard.

sourceforge.net, 2015. Accessed: 02-June-2015.

J. Hage, P. Rademaker, and N. van Vugt. A comparison of plagiarism detection

tools. Technical Report UU-CS-2010-015, Department of Information and

Computing Sciences Utrecht University, Utrecht, The Netherlands, 2010.

M. H. Halstead. Elements of Software Science. Amsterdam: Elsevier North-

Holland, Inc., 1977.

M. A. Hamilton and T. Sabety. Computer science concepts in copyright cases: The

path to a coherent law. Harvard Journal of Law & Technology, 10:240–280,

1997.

S. Harris. Simian - Similarity analyser. http://www.harukizaemon.com/

simian/, 2003. Accessed: 4-May-2015.

P. Heckel. A technique for isolating differences between files. Communications of

the ACM, 21(4):264–268, 1978.

A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra. Finding software license

violations through binary code clone detection. In Proceeding of the 8th working

conference on Mining software repositories (MSR ’11), page 63, 2011.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness

of software. In Proceedings of the 34th International Conference on Software

Engineering (ICSE’12), pages 837–847, 2012.

D. S. Hirschberg. Algorithms for the longest common subsequence problem.

Journal of the ACM, 24(4):664–675, 1977.

http://proguard.sourceforge.net
http://proguard.sourceforge.net
http://www.harukizaemon.com/simian/
http://www.harukizaemon.com/simian/


BIBLIOGRAPHY 334

B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone

detection: Incremental, distributed, scalable. In Proceedings of the International

Conference on Software Maintenance (ICSM ’10), pages 1–9. IEEE, 2010.

J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common

subsequences. Communications of the ACM, 20(5):350–353, 1977.

K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe. Where does this code come from and

where does it go? — Integrated code history tracker for open source systems.

In Proceedings of the 34th International Conference on Software Engineering

(ICSE ’12), pages 331–341. IEEE, 2012.

T. Ishio, Y. Sakaguchi, K. Ito, and K. Inoue. Source file set search for clone-and-own

reuse analysis. In Proceedings of the IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR ’17), pages 257–268, 2017.

K. Jalbert and J. S. Bradbury. Using clone detection to identify bugs in concurrent

software. In Proceedings of the IEEE International Conference on Software

Maintenance (ICSM ’10), pages 1–5, 2010.

S. Jeong. Federal circuit sends Oracle v. Google back for third

trial. https://www.theverge.com/2018/3/27/17169064/

federal-circuit-oracle-v-google-third-trial-java-android,

2018. Accessed: 27-May-2018.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable and accurate

tree-based detection of code clones. In Proceedings of the 29th International

Conference on Software Engineering (ICSE ’07), pages 96–105, Minneapolis,

Minnesota, USA, 2007a. IEEE.

L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related bugs.

In Proceedings of the 6th joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE ’07), 2007b.

https://www.theverge.com/2018/3/27/17169064/federal-circuit-oracle-v-google-third-trial-java-android
https://www.theverge.com/2018/3/27/17169064/federal-circuit-oracle-v-google-third-trial-java-android


BIBLIOGRAPHY 335

M. Joy and M. Luck. Plagiarism in programming assignments. IEEE Transactions

on Education, 42(2):129–133, 1999.

M. Joy, N. Griffiths, and R. Boyatt. The BOSS online submission and assessment

system. ACM Journal on Educational Resources in Computing, 5(3), 2005.

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones

matter? In Proceedings of the International Conference on Software Engineering

(ICSE’09), pages 485–495, 2009.

E. Juergens, F. Deissenboeck, and B. Hummel. Code similarities beyond copy &

paste. In Proceedings of the 15th European Conference on Software Maintenance

and Reengineering (CSMR ’11), pages 78–87. IEEE, 2011.

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-based

code clone detection system for large scale source code. IEEE Transactions on

Software Engineering, 28(7):654–670, 2002.

C. Kapser and M. W. Godfrey. Toward a taxonomy of clones in source code : A

case study. In Proceedings of the Evolution of Large-scale Industrial Software

Evolution (ELISA ’03), pages 67–78, Amsterdam, The Netherlands, 2003.

C. Kapser and M. W. Godfrey. “Cloning considered harmful” considered harmful.

In Proceedings of the 13th Working Conference on Reverse Engineering (WCRE

’06), pages 19–28, Benevento, Italy, 2006. IEEE.

C. J. Kapser and M. W. Godfrey. “Cloning considered harmful” considered harmful:

Patterns of cloning in software. Empirical Software Engineering, 13(6):645–692,

2008.

S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, and

H. Iida. SHINOBI: A tool for automatic code clone detection in the IDE. In

Proceedings of the 17th Working Conference on Reverse Engineering (WCRE

’09), pages 313–314, 2009.



BIBLIOGRAPHY 336

D. Kawrykow and M. P. Robillard. Improving API usage through automatic

detection of redundant code. In Proceedings of the 24th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’09), pages 111–122,

2009.

Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun. Repairing programs with semantic

code search. In International Conference on Automated Software Engineering

(ASE’15), pages 295–306, 2015.

I. Keivanloo, J. Rilling, and P. Charland. Internet-scale real-time code clone search

via multi-level indexing. In Proceedings of the 18th Working Conference on

Reverse Engineering (WCRE ’11), pages 23–27. IEEE, 2011.

I. Keivanloo, C. Forbes, and J. Rilling. Similarity search plug-in: Clone detection

meets Internet-scale code search. In Proceedings of the 4th International

Workshop on Search-Driven Development: Users, Infrastructure, Tools, and

Evaluation (SUITE ’12), pages 21–22. IEEE, 2012.

I. Keivanloo, J. Rilling, and Y. Zou. Spotting working code examples. In

Proceedings of the International Conference on Software Engineering (ICSE

’14), pages 664–675, 2014.

I. Keivanloo, F. Zhang, and Y. Zou. Threshold-free code clone detection for a large-

scale heterogeneous java repository. In SANER ’15, pages 201–210, 2015.

H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: Memory comparison-based clone

detector. In Proceeding of the 33rd International Conference on Software

Engineering (ICSE ’11), pages 301–310, Waikiki, Honolulu, HI, USA, 2011.

K. Kim, D. Kim, T. F. Bissyande, E. Choi, L. Li, J. Klein, and Y. L. Traon.

FaCoY – A code-to-code search engine. In Proceedings of the 40th International

Conference on Software Engineering (ICSE’18), 2018.

M. Kim, V. Sazawal, and D. Notkin. An empirical study of code clone genealogies.

In Proceedings of the 10th European Software Engineering Conference held



BIBLIOGRAPHY 337

jointly with the 13th ACM SIGSOFT International Symposium on Foundations

of Software Engineering (ESEC/FSE ’13), page 187, 2005.

B. A. Kitchenham and S. L. Pfleeger. Principles of survey research part 2: Designing

a survey sample size experimental designs. Software Engineering Notes, 27(1):

18–20, 2002.

D. E. Knuth. An empirical study of fortran programs. Software: Practice and

Experience, 1(2):105–133, 1971.

R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code.

In Proceedings of the 8th International Symposium on Static Analysis (SAS ’01),

volume 2126, pages 40–56, Paris, France, 2001. Springer.

O. Kononenko, C. Zhang, and M. W. Godfrey. Compiling clones: What happens?

In Proceedings of the International Conference on Software Maintenance and

Evolution (ICSME’14), pages 481–485, 2014.

R. Koschke. Survey of research on software clones. Duplication, Redundancy, and

Similarity in Software - Dagstuhl Seminar #06301, page 24, 2007.

R. Koschke. Large-scale inter-system clone detection using suffix trees and hashing.

Journal of Software: Evolution and Process, 26(8):747–769, Aug 2014.

R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix

trees. In Proceedings of the 13th Working Conference on Reverse Engineering

(RE ’06), pages 253–262, 2006.

J. Krinke. Identifying similar code with program dependence graphs. In Proceed-

ings of the 8th Working Conference on Reverse Engineering (WCRE ’01), pages

301–309. IEEE, 2001.

J. Krinke. Is cloned code more stable than non-cloned code? In Proceedings of the

International Working Conference on Source Code Analysis and Manipulation

(SCAM ’08), pages 57–66, 2008.



BIBLIOGRAPHY 338

J. Krinke, N. Gold, Y. Jia, and D. Binkley. Cloning and copying between GNOME

projects. In Proceedings of the 12th Working Conference on Mining Software

Repositories (MSR ’10), pages 98–101, 2010.

G. Kumaran and V. R. Carvalho. Reducing long queries using query quality

predictors. In Proceedings of the International Conference on Research and

Development in Information Retrieval (SIGIR’09), page 564, 2009.

T. Lavoie, M. Eilers-smith, and E. Merlo. Challenging cloning related problems

with GPU-based algorithms. In Proceedings of the 4th International Workshop

on Software Clones (IWSC ’10), pages 25–32, Cape Town, South Africa, 2010.

ACM.

M. Lee. Free software foundation files suit against Cisco for GPL violations.

http://www.fsf.org/news/2008-12-cisco-suit, 2008. Accessed: 20-

May-2015.

M. W. Lee, J. W. Roh, S. W. Hwang, and S. Kim. Instant code clone search. In

Proceedings of the 18th International Symposium on Foundations of software

engineering (FSE ’10), page 167. ACM, 2010.

C. Li, B. Wang, and X. Yang. VGRAM : Improving performance of approximate

queries on string collections using variable-length grams. In International

Conference on Very Large Data Bases (VLDB’07), pages 303–314, 2007.

H. Li and S. Thompson. Clone detection and removal for Erlang/OTP within a

refactoring environment. In Proceedings of the 2009 ACM SIGPLAN workshop

on Partial evaluation and program manipulation (PEPM ’09), page 169, 2008.

H. Li and S. Thompson. Incremental clone detection and elimination for Erlang

programs. In Proceedings of the International Conference on Fundamental

Approaches to Software Engineering (FASE ’11), pages 356–370, 2011.

L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder. CCLearner: A deep learning-

http://www.fsf.org/news/2008-12-cisco-suit


BIBLIOGRAPHY 339

based clone detection approach. In Proceedings of the International Conference

on Software Maintenance and Evolution (ICSME’17), pages 249–260, 2017.
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