Learning to Automate GUI Tasks
from Demonstration

Thanapong Intharah

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of

University College London.

Department of Computer Science

University College London

204 October, 2018

2

I, Thanapong Intharah, confirm that the work presented in this thesis is my
own. Where information has been derived from other sources, I confirm that this

has been indicated in the work.

Abstract

This thesis explores and extends Computer Vision applications in the context of
Graphical User Interface (GUI) environments to address the challenges of Program-
ming by Demonstration (PbD). The challenges are explored in PbD which could be
addressed through innovations in Computer Vision, when GUIs are treated as an
application domain, analogous to automotive or factory settings. Existing PbD sys-
tems were restricted by domain applications or special application interfaces. Al-
though they use the term Demonstration, the systems did not actually see what the
user performs. Rather they listen to the demonstrations through internal communi-
cations via operating system.

Machine Vision and Human in the Loop Machine Learning are used to cir-
cumvent many restrictions, allowing the PbD system to watch the demonstration
like another human observer would. This thesis will demonstrate that our prototype
PbD systems allow non-programmer users to easily create their own automation
scripts for their repetitive and looping tasks. Our PbD systems take their input from
sequences of screenshots, and sometimes from easily available keyboard and mouse
sniffer software. It will also be shown that the problem of inconsistent human
demonstration can be remedied with our proposed Human in the Loop Computer
Vision techniques.

Lastly, the problem is extended to learn from demonstration videos. Due to
the sheer complexity of computer desktop GUI manipulation videos, attention is
focused on the domain of video game environments. The initial studies illustrate
that it is possible to teach a computer to watch gameplay videos and to estimate

what buttons the user pressed.

Contents

1 Introduction
1.1 Research Questions
1.2 Contributions of This Thesis
1.3 ScopeoftheThesis

1.4 ResearchPapers

2 Literature Review
2.1 Traditional Approaches to End-user Program Synthesis
2.1.1 Programming by Demonstration
2.1.2 Other End-user Program Synthesis Approaches
2.2 Other Approaches to Comparable Domains
2.2.1 Digital Game Domain
2.2.2 Web Search Engine Domain
2.3 Background Knowledge,
23.1 GUI Analysis
2.3.2 Joint Segmentation and Classification of Action

2.3.3 Discovering Looping Pattern

3 Visual-based Programming by Demonstration
3.1 Overview of Challenges
3.2 Learning to Perform Tasks from Demonstration
3.2.1 DemonstrationPhase

3.2.2 TeachingPhase

33

34

323

Contents

RunningPhase

Evaluationand Results

3.3.1

User Study Scenarios

Discussion and Future Work

Looping GUI Action Automation

4.1
4.2

4.3

4.4

4.5
4.6
4.7

OVEIVIEW o o e e e e e e e e

Looping Action Recognition

4.2.1
422
423
424

Basic Motif Finding
Distance Between Two Sequences Dist(S;,S;)
The Proposed Method for Multiple Motif Finding

Artificial Subsequences for Robustness

Looping Action Recognition

Prediction of Future Actions

Generating Artificial Subsequences

4.3.1 Human-in-the-loop
Datasets L
4.4.1 Demonstration Dataset
4.4.2 Looping GUI Automation Dataset

Validation of the Algorithms

UserFeedback

Conclusions and Future Work

Generating Log-file from Video

5.1

5.2

Baselines and Challenges They Face

5.1.1 Baseline: Human Performance
5.1.2 Challenge: Class Imbalance
5.1.3 Challenge: Multiple Control Buttons Per Record
5.1.4 Challenge: Many-to-One
Architecture

5.2.1

The Network

57
58
61
68

71
74
74
76
76
78
79
80
81
82
84
85
85
85
86
92
93

Contents 6

5.2.2 3Dconvolutionlayers 103

523 Training 104

524 Losses. 104

5.3 ExperimentsandResults 105

531 Data. 105

5.3.2 Performance Metrics, 106

5.3.3 Result: Overall Results 107

5.3.4 Result: Class Imbalance 111

535 Result: 2D VS3DFilters 111

5.3.6 Result: Many-to-One 111

5.3.7 Result: Generalization 112

5.4 Discussion and Conclusion L. 112

6 Conclusions 116

6.1 Future Research Directions 117

Appendices 120

A Pseudo-codes 120

The Looping GUI Automation Dataset Evaluation Protocol 121

B Datasets 123

B.1 Demonstration Dataset 123

B.2 Looping GUI Automation Dataset 124

C Looping GUI Automation Evaluation and Datasets 126

C.1 Automating SMSsending 127

C.2 Adding contacts on phone from spreadsheet via 3rd party app 130

C.3 Saving area chairs’ homepage as PDFs (icons clicked in regular order) 133
C.4 Saving area chairs’ homepage as PDF’s (icons clicked in random

order) e 136

C.5 Renaming files on Google Drive 139

C.6 Deleting specific files on a cluttered desktop 142

Contents 7

C.7 Deleting files in folder (smallericon) 144
C.8 Creating list of filenames from a folder (files selected in regular order) 146

C.9 Creating list of filenames from a folder of remote computer (regular

ordered) 148
C.10 Creating list of filenames from a folder of remote computer (random

ordered) 150
C.11 Creating Slides of images from folder of images 153
C.12 Zipping every fileinafolder 156
C.13 Unzipping every file in a folder and renaming the files to the names

ofzipfiles 158
C.14 Taking screenshots of listof websites 161
C.15 Taking screenshots of list of websites on mobile 163

Bibliography 165

List of Figures

1.1

1.2

3.1

3.2

33

34

Diagram of conventional Programming by Demonstration systems.
The system has two limitations as follows. First, the PbD system
listens to the demonstration, instead of watching, so they need an
Accessibility API to perceive messages about the demonstration.

Second, The PbD system needs an application’s Open API to oper-

ate the application widget.

Diagram of our proposed Visual-based Programming by Demon-
stration system. The system watches the demonstration from the

same screen as the user and operates directly at a specific location

navigated by visual features.

Flow of the system. Details for each phase are described in the text.

Example of a log-file which merges the inputs from both video and

snifferdata.

The system workflow for the teaching phase. The yellow boxes

indicate where the system poses questions to the teacher.

Examples of a segment, a time interval, a key frame, and an input
to SVMs. ‘L’ indicates the left mouse button is pressed, ‘R’ indi-

cates the right mouse button is pressed, and ‘-’ indicates none of the

mouse buttons are pressed. L.

45

3.5

3.6

3.7

List of Figures

Target patterns in (a) & (b) are distinguishable on their own. The
spreadsheet cells in (c) need row and column names to differentiate
between one another. Text fields in registration forms in (d) can be

distinguished by the text field labels. Supporter helps distinguish

locally ambiguous patterns.

An example of a supporter for a looping task. The table shows
names of characters and actors/actresses of a popular TV show. The
names in each column have similar appearance, so, if the user in-
tended to loop through one of the columns, marking the column

name as a supporter will help the system to distinguish between

columns. e

An example of a spatial supporter. Blue boxes are user provided
positive examples, red are user provided negative examples, yellow
are target detections, and a green box indicates a user-provided sup-
porter. (a) and (b) demonstrate detection performance without and
with a spatial supporter. Red color in the heatmaps means a high
detection score. In (a), the left image shows the heatmap of target
detection scores, and the right image shows detected targets. In (b),
the left image shows the heatmap of target detection when com-
bined with the spatial supporter scores, and the right image shows
detected targets. The spatial supporter successfully suppressed all
similar looking patterns under the Character column in heatmap (b)

so that the system is able to detect only desired targets under the

Actor/Actresscolumn.

List of Figures 10

3.8 Example screenshots of HILC when it asks users for supporters. (a)
HILC asks users to add supporters when there are confusing pat-
terns (red boxes) which look similar to the user intended patterns
(green box). In this case, NCC scores of the confusing patterns are
higher than a threshold. The system uses only the NCC detector for
the intended pattern at the Running Phase, unless the users provide
supporter(s). (b) HILC asks users to add supporters when a con-
fusing pattern (red box) has the same NCC score to the intended
pattern (green box). Unless the users provide at least one supporter,

HILC trains RF detector for the intended pattern. 56

3.9 An example screenshot of HILC when it asks users for additional

information during the Teaching Phase of looping tasks. 57

3.10 An example screenshot of HILC when it requests a user to provide
the visual cue (yellow box) which is the visual pattern that invokes

the system to run the rest of the script whenever the system finds it. . 57

3.11 The system workflow for the running phase. The yellow box indi-

cates user Interaction. e e 59

3.12 The instructor clicked on the speaker in the green box, but the sys-
tem also detected a similar pattern - the speaker in the red box. In
this situation, the system asks the teacher for a supporter(s), the

yellow box, to help with detecting the intended pattern. 62

3.13 High-Contrast-Mode comparing with Normal Mode and (in the red
box) the transcribed steps of the task demonstrated by HILC. 62

3.14 Steps to complete remote access via TeamViewer. Red lines link
related patterns on the screen with the pattern in the transcript. It
is noteworthy that performing the basic action DragTo from and to
the same pattern has a similar effect as performing the basic action
Click on that pattern. Participants often unintentionally perform the
basic action Dragto instead of the basic action Click. HILC is robust

to this type of different-but-interchangeable action. 63

3.15

3.16

3.17

3.18

3.19

3.20

List of Figures

YouTube Skip Ad. These advertisements show before or during a
playing video for varying periods of times, and HILC successfully
closes them in Scenario 4, as soon as the text appears. The visual

cue is highlighted by the magenta rectangle.

Close-ups of YouTube Ads. These ads appear at the bottom of a
playing video, and HILC detects and successfully closes them in

Scenario 5. The visual cues are pointed by magenta arrows.

Scenario 6: create slides from folder full of images. The generated
script is shown in the red frame. HILC starts by building a list of
locations that will be the starting points for each iteration. The list
is formed by the Trained RF, which trained and refined in the teach-
ing phase with a few examples stemming from the demonstration
phase. The system then iteratively executes a sequence of actions
from line three to five (DragTo, Click, Click). In this scenario, the

two applications are displayed side-by-side.

Two application screens from Scenario 7, where file names are be-
ing collected into a spreadsheet. The script of the task, in the red
frame, involves switching back and forth between the two applica-

tions, and pasting the text into similar-looking cells.

A synthesized script of Scenario 8, where a BibTex file is automati-
cally constructed from a list of paper titles. Three different desktop
GUTI’s were involved. The user was able to train the system quite
easily, and can just run the task without further instructions when

writing her next research paper.

HILC successfully use videos of a screencast software as input of
the system, instead of generating the input log-file from the sniffer,
to create a working script. It is noteworthy that the system failed to
remove mouse pointer from the target patterns in the first and the

seventh lines.

11

66

4.1

4.2

4.3

List of Figures

A looping GUI task, where the user is renaming files on Google
Drive to match names in an Excel spreadsheet. This type of task is
long and tedious, and hard for a typical computer user to automate.
Our system is designed to learn to complete such tasks by watching

a user performs a few demonstration iterations.

An example problem setup. This diagram shows that the proposed
system allows detour actions, Windows’ popup asks for restarting
the system, that can accidentally happen during the demonstration
process. Without that mechanism the user need to re-record every-
thing again from scratch. It is noteworthy that the diagram shows
extracted objects, PDF file icons, buttons, etc., which linked with
actions instead of in reality the system only has access to whole

screen screenshots and their corresponding mouse pointer locations.

The proposed future action prediction algorithm chooses where to
apply action events, based on the small number of user demonstra-
tions. (a) If the demonstration events follow a linear pattern, the
spatial prior uses linear regression to predict action locations. (b) If
the demonstration events do not exhibit spatial correlation, then the
spatial prior becomes uniform and the pattern matching likelihood
becomes dominant. Here, it learns to locate the ‘.pdf*’ files on a

cluttered desktop.

12

73

83

List of Figures

4.4 Quantitative results of the proposed looping action recognition al-

gorithm on the Demonstration Dataset. The proposed algorithm,
NCC+Noisy+Missing, is compared against three baselines: Divi-
sion, greedMotif, and Motif algorithms. GT in the name indicates
that the algorithm has access to the ground truth distance matrix in-
stead of using Eq 4.2, while NCC indicates that the algorithm use
the proposed Normalized Cross Correlation as the distance func-
tion between two visual objects. GT Motif, NCC Motif and GT
greedMotif share the same graph at { GT,NCC}-Motif, GT greed-
Motif. GT+Noisy+Missing demonstrates the accuracy of the pro-
posed algorithm when it has access to the ground truth distance ma-

trix. NCC+Noisy is the ablation study, showing the result when the

artificially appended actions isremoved.

13

4.5

4.6

List of Figures

Prediction / execution / improvement of future actions. Top: An
illustrated event history in 14 steps. In this unseen test task the user
demonstrated three loops, each starting with a left-click on a hyper-
link (shown as red boxes). Boxes in blue show the bot’s subsequent
predictions. For each such prediction (e.g., bot 4), the user presses
the spacebar to confirm they are happy for the system to proceed au-
tomatically. If the prediction’s score falls below the stopping thresh-
old, the system asks the user to approve, correct, or additionally, to
terminate — these events are labeled as green boxes followed by
a question mark. “hum X” shows when the human terminated the
loop. Here, “Bot 5 7 asked the user to confirm whether the pattern
in the box is the next target; the user instead corrected the system
by specifying the next correct target as “hum 6”. Bottom: The fig-
ure shows what the user sees when autocompleting the task. The
system visualizes the action it will take next, rendered as a virtual
mouse-arrow. It asks the user for approval through large rendered
messages, though two-way audio interfaces could be easier for other

USEIS tO ACCESS. . . . v v v v vt e e e e e e e e e e e

An example output of the proposed looping action recognition algo-
rithm. The task here is to make a list of filenames from a folder of
files. The system outputs a rendering showing discovered loops in
rows and matched actions across loops in the same column. Num-
bers before the actions indicate the order in the input sequence.
Here, there are three missing actions and one noisy action (not
shown), all of which were detected by the algorithm. The images
are extracted from the screenshots at the position each action was
performed. It can be seen here that the variation in spatial loca-
tion of user interaction; images within each column are shifted, or
worse. It is this variation that makes it hard to parse a user’s demon-

StratioN. v v o e e e e e e e e

14

4.7

5.1

5.2

5.3

54

5.5

List of Figures

Another example that can be easily completed by RecurBot:

Adding mobile contacts from a spreadsheet program via an An-

droid remote access program, Vysor [28]

Classical titles: Tetris from Nintendo Entertainment System (NES)
and Mega Man X from Super Nintendo Entertainment System

(SNES) are used in the experiments. Cover art © Nintendo Co.,

Ltd. . . o

Example of a question in the questionnaires: an example video clip
of Tetris gameplay, with check-boxes for a user to indicate what
buttons they think were pressed at the middle frame. While this is

a demanding and time-consuming task, users were fairly successful

when “transcribing” Tetris. L

Button-combination Frequencies for Tetris (a) and Mega Man X (b).
For Tetris, the dominant input is Idle (nothing pressed), followed by
three main buttons: Down, Left, and Right. For Mega Man X, the
two main classes are Idle and Shoot, followed by the “Right and

Shoot” combination. Y-axis represents button-combination (Class)

and X-axis represents frequency of the combination.

Functionally equivalent button-combinations for Tetris, shown in
(a), and Mega Man X shown in (b), are visualized through confu-
sion matrices. Each numerical entry indicates how many times the

button-combination (of that row) produces the same visual output

as another button-combination (column).

Detailed analysis of DeepLogger network’s performance on Tetris
for per button and per class prediction. (a) shows the performance
of per button prediction and (b) shows the performance of per class
prediction. In both cases, rotation is the hardest to recognize. Small

red X’s on the per button accuracy chart indicate there is no ground

truth label for the buttons (Up and Select).

15

98

5.6

5.7

5.8

List of Figures

Detailed analysis of DeepLogger network’s performance on Mega
Man X for per button and per class prediction. (a) shows the per-
formance of per button prediction and (b) shows the performance of
per class prediction. Binary labels in (b) along the horizontal axis
represent pressing (1) and not pressing (0) that game controller but-
ton and The Binary codes preserve the button-order from (a). Red
X’s on the per button accuracy chart indicate there is no ground
truth label for the buttons (R and Select). X-axis represents button-
combination (class).
Comparing loss functions. This bar-chart compares two DeepLog-
ger networks using four performance metrics. For the red bars,
the network was trained with normal multi-label loss, and for the
blue bars, the network was first trained with normal multi-label loss
on 90% of the training data, and then fine-tuned with multi-label-
multi-choice loss on the remaining 10% of the training data. This
bar-chart is generated from the Tetris gameplay dataset. Under each
measure, fine-tuning with multi-label-multi-choice loss yielded bet-
ter scores. Y-axis represents prediction accuracy.
The graph visualizes Euclidean distances between embedding fea-
tures, produced by the ”"Dense9” layer of the network, for the query
clip and other clips from different videos. Minl, Min2, and Min3
clips are examples of the clips which have the smallest distances
to the query clip. Y-axis represents distance and X-axis represents

time steps in the video of the retrieved gameplay.

16

List of Tables

3.1

4.1

User study on HILC compared to Sikuli Slides. Scenario 3.2 is an
alternative way to perform Scenario 3, without pressing shortcut
key combinations that Sikuli Slides is known to be missing. Nev-
ertheless, we eventually realized that Sikuli Slides is not detecting
the right click actions either. (v'= successful, v'* = partially suc-
cessful, vV** = can be successful with guidance from the operator,
X= can not succeed at the task at all). x represents the number of
repeated loops needed to complete the task. Please note that 90%
of the refining time for Task 9 is offline - devoted to the time spent

on processing video to produce the log-file.

Average statistics of the proposed Demonstration Dataset. These
data serve for training and testing of just the analysis part of the vi-
sual motif-finding, analogous to typical (non-visual) motif-finding
challenges. Here, each sequence is a unique task, made of ba-
sic GUI interactions (Actions), performed by 7 different computer
users. Test users performed the first 3 or 4 loops of each task, and
these were labeled to quantify experimental performance. Loops
within the same sequence naturally differ from each other by hav-
ing extra, missing, or iteratively changing actions. % Variation Seq
is the % of sequences that have at least one user variation, either

NOISY OF MISSING. . . .« v v v v e e e e e e e et e e e e e

4.2

4.3

5.1

5.2

List of Tables

Quantitative evaluation of the task completion system on the Loop-
ing GUI Automation Dataset. After training each task with 3
demonstrated loops, how many actions were correctly predicted
and automatically run (Correct (Auto)). How many action were
correctly predicted but the score fell below threshold, so need user
approval (Correct (Approval)). If the system make mistake on the
prediction and the confident score is below threshold, the system
wait for user approval or modification (Incorrect (Approval)). If the
system make incorrect prediction with high confident, it is counted
as “Incorrect”. Qualitative views of action prediction are shown in

Figure 4.5 and more detail on the tasks can be found in appendix C.

Results of the user study on the prototype system. Each question
was scored on a Likert scale out of a maximum of 7, and the ques-

tions in each of the four categories were averaged for display in this

The performance of both human experts and the proposed
DeepLogger system, on estimating a gamer’s controller inputs (the
log) from gameplay videos only: Tetris and Mega Man X. The
criteria (rows) are explained in the text, but higher accuracies and
F1 scores are better. Humans are better with Tetris videos, while
DeepLogger does better with Mega Man X, possibly due to the Ul

complexity.

Diagram of the proposed DeepLogger Network where D is the num-
ber of frames per clip, which are 21 frames and 11 frames for Tetris
and Mega Man X respectively. W xH are the image dimensions of
the gameplay videos, which are the default screen dimensions of
NES, 256 x224 for Tetris, and SNES, 586x448 for Mega Man X.
C is the number of buttons, with 8 buttons for Tetris and 12 buttons

forMegaMan X.

18

91

53

54

List of Tables

Performance of 3 CNN’s: DeepLogger, DeepLogger2D, and VGG
on Tetris and Mega Man X. Figures in parentheses indicate per-

formance of the networks when they were trained without over-

sampling the non-majority classes.

Generalization evaluation. Base is the performance of the system
when testing on gameplay video from the same level, gamer, and
encoder. Diff I level shows the performance of the system when
testing with gameplay videos from a different level than the training
data, by 1 level, Diff 2 levels tests the same thing, but where the
difference is 2 levels. Diff Gamers level shows the performance
of the system when testing with gameplay videos from different
gamers. Diff Encoder level shows the performance of the system
when testing gameplay videos downloaded from video-sharing site

YouTube, where compression and frame-rate changes can occur.

19

. 113

Chapter 1

Introduction

The Graphical User Interface (GUI) is one of the most important innovations that
helped make personal computers (PCs) prevalent in modern society. It allows a
wider range of users to access and interact with the complex algorithms behind the
user-friendly surface of the computers. Prior to the wide-availability of GUISs, text-
based interfaces were most commonly used. Using text interfaces typically requires
users to have knowledge of commands specific to each operating system (OS), thus
limiting its use to expert users only. GUIs make it easier for non-expert users to
use computers by alleviating the need for knowledge of OS-specific commands.
Instead, GUISs are often intuitive and provide special tools for simple and commonly

used tasks.

However, one of the major disadvantages of GUIs is that they are not as flexible
as text-based interfaces. One specific instance where text-based interfaces are still
preferred to GUIs is for the execution of repetitive or looping tasks. Repetitive tasks
are those where a user repeatedly performs the same set of steps every time he/she
executes those tasks, e.g., turning on/off high contrast mode. The tasks might be
easy but require several steps to complete which can be troublesome for people who
have certain disabilities or lack of knowledge. Looping tasks, on the other hand, are
tasks which require users to apply a similar set of steps to several different objects,
which have a similar pattern, in one execution, e.g., sending different messages with
a similar pattern to each individual persons listed in a spreadsheet. Although each

iteration of looping tasks usually takes fewer steps compared to repetitive tasks, one

21

of its challenges is to generalize across all iterators which are slight different among

one another from a few examples.

A task discussed throughout this thesis are defined as a sequence of basic desk-
top actions, e.g. left click, right click, and key press, which are needed to be per-
formed to achieve a user’s goal. Examples of the tasks are turning on high contrast
mode (Linear task), removing all pdf files in a specific folder (Looping task), and

closing an Ads. on YouTube when it appears (Stand by task).

To automate a task, users need special mechanisms to interpret their intention
into scripts. The mechanisms range from a programming language to a special
recording program which can record steps of the task and playback. Currently, GUI
task automation is achieved through the use of special APIs provided by the OS or
applications. Thus, the automation power of the computer is limited not only by
programming skills but also available tools. Accordingly, most PC users, who need
to rely on GUISs, have not used their machines to their full capabilities. Countless
day-to-day tasks are tedious and repetitive. It is the fact that computers are good at
executing repetitive and looping tasks. So why are we, humans, the ones who have

to perform all of those tedious tasks, instead of the computer?

Many attempts have been made to make GUI task automation possible, e.g.,
Sikuli [95], OSX’s Automator [4], and CoScriptor [55]. Programming by Demon-
stration (PbD) is one of those paths to achieve the full automation machine goal.
PbD takes natural human demonstration process(es) as an input, and produces a
script which performs the automation, instead of asking users to write cryptic com-
puter codes, or explicitly list steps by following a predefined set of rules. In other
words, PbD systems synthesize automation scripts by observing users’ demon-
strated examples. The advantage of this approach is that users of PbD systems
do not need to have any programming skill in order to create an automation script
and the script creation process takes no more than the time taken to perform the task

manually.

Although many applications include features that enable task automation by

user demonstration, the tasks are restricted within a group of applications which

22

Figure 1.1: Diagram of conventional Programming by Demonstration systems. The system
has two limitations as follows. First, the PbD system listens to the demonstra-
tion, instead of watching, so they need an Accessibility API to perceive mes-
sages about the demonstration. Second, The PbD system needs an application’s
Open API to operate the application widget.

were implemented with the accessibility API functionalities. A conventional PbD
system is demonstrated in figure 1.1.

To enable cross-application communication, all involved applications have to
conform to special APIs. First of all, an application has to be developed under
an Accessibility API framework to allow other applications, in this case the PbD
systems, to perceive which of its GUI widgets are activated by users. Moreover,
the application has to provide an Open API to let other applications interact with
its internal components. Developing software/applications with those special APIs
supported incurs considerably more cost and effort. Additionally, it is likely that
only a fraction of applications were developed under these special API frameworks.

Furthermore, some applications such as remote desktop applications stream videos

23

of the server-side screen to the client-side so it is almost impossible for the client-
side to access the application’s APIs of the host directly. This is also a limitation
when working with mobile phones whose screens (only) can be operated from a

Desktop PC.

The main motivation of this research is to get rid of the APIs completely to
allow PBD systems to work across applications regardless of how the applications

were developed. The research is divided into three phases.

First, the APIs are replaced with Computer Vision and follow-up questions in
a prototype PBD system, HILC, which is described in Chapter 3. HILC is the first
attempt which leverages Computer Vision to observe user demonstration instead of
relying on the Accessibility API and also use it to guide actions at the execution time
instead of relying on the Open API. In additions, follow-up questions are used to
refine the computer vision model. However, demonstrating looping tasks in HILC
requires special steps which are burdens for casual users. HILC needs the users to
exactly indicate where are the start and the end of the loop and explicitly state what

are examples of the iterators.

Thus, in the second phase, the research is focused on simplifying the demon-
stration of the looping task to allow more casual users to use the PBD system. In
the research, a special motif discovery algorithm is devised to extract different parts
demonstrated loops as well as example iterators. This novel algorithm is robust to
user inconsistencies. As a result, RecurBot, a Computer Vision based PbD system
which can learn more complex programming paradigms from simple demonstra-
tions, is proposed. Chapter 4 presents detail of the algorithms, the datasets and

results of the studies.

It has been shown in Chapter 3 and Chapter 4 that the APIs, which are heavily
relied by existing PbD systems, can be replaced with Computer Vision and care-
fully designed human in the loop schemes. Although the APIs can be completely
eliminated from the prerequisites of PbD system, the demonstration still has to be

done on a system which equipped with a customized sniffer program.

The aim of the last phase is to learn user demonstration from a recorded video.

1.1. Research Questions 24

Hence, the demonstration can be done on any machine. In other words, the sniffer
program requirements are lifted. In this phase, however, the study is limited to
GUIs of two 2D game environments, NES and SNES, because input actions of the
game environments are tractable comparing to the input actions of the computer
desktop environment. This initial study illustrates challenges which are faced when
designing a system to observe interactions between the users and the GUIs from a
video. These interactions are deemed as user demonstration in this context. The

study is reported in Chapter 5. Solutions to the challenges are also discussed.

1.1 Research Questions

The core research question which is posed and attempted to validate in this thesis
is “Does Human in the Loop Machine Learning help casual users train a computer
to perform general GUI tasks?”. Human in the Loop describes a machine learn-
ing technique which benefits from human interaction with the system or human
feedback during the training process. Machine Learning, which includes Com-
puter Vision, leverages data, mathematical models, and optimization to achieve the
prescribed goal. Casual users are computer users, whether inexperienced or ex-
perienced, who attempt to demonstrate the GUI tasks to train the computer. In
this research, it was found that while the users are performing the GUI tasks, the
demonstrations are frequently, though unintentionally, inconsistent. For example,
users perform two identical tasks differently at different moments depending on
states of the computer. Users occasionally click on different locations of the same
object when they perform a task. The goal is to build a system which is robust to
these inconsistencies. Train is defined as the methods used to feed inputs to the
system. A computer is a separate system, which learns from the user demonstration
data to automate the GUI task. General GUI tasks in the statement emphasizes that
the system can automate GUI tasks independently of OS and Application, regard-
less of special API restrictions or on-screen content. This very point makes this
system unique because existing PbD systems relied on either Accessibility APIs or

Open APIs, or both and the systems ignore non-widget screen elements.

1.2. Contributions of This Thesis 25

This thesis touches the main research question in three aspects. First, how can
the special API restrictions of PbD systems be lifted? This question is answered in
Chapter 3 by proposing HILC, the first API-less PbD system. Second, what make
the demonstration hard for casual users and how that can be remedied? The answers
to these questions are discussed in user studies and the development of RecurBot in
Chapter 4. Third, is it possible to remove all instrumented tools needed to observe
the demonstration? The detailed study of this question is presented in Chapter 5

where DeepLogger is proposed.

The next section lists and discusses contributions of this thesis to different

computer science areas.

1.2 Contributions of This Thesis

The main research question is explored on three different aspects which lead to the

following contributions.

The first contribution of the thesis is to propose a solution for the special API
restrictions of existing PbD system by building a prototype visual-based PbD sys-
tem that automates users’ simple GUI tasks. This prototype takes as input GUI
screenshot images and basic mouse-keyboard events. One assumption is that the
mouse-keyboard events, which can be easily retrieved from the OS, are available.
Machine Vision techniques are used to compensate the needs of the Accessibility
API, and then directly inject real mouse-keyboard-action signal back to the system
to avoid the need of Open API. Figure 1.2 demonstrates the proposed Visual-based
Programming by Demonstration system, which allows the proposed PbD system to
effortlessly work across applications regardless of how demonstrated applications
were developed. In other words, the system is not restricted only to the applications
which were developed with a special API framework in mind like existing PbD

systems discussed in detail in Chapter 2.
Secondly, in practice, users trust a system when they know what the system is
going to do and they have full control over it. By integrating the proposed Human

in the Loop framework to the system, it builds a user’s trust and also benefits from

1.2. Contributions of This Thesis 26

Figure 1.2: Diagram of our proposed Visual-based Programming by Demonstration sys-
tem. The system watches the demonstration from the same screen as the user
and operates directly at a specific location navigated by visual features.

the user’s feedback. Further, two kinds of tasks users wish to automate, Repetitive
Tasks and Looping Tasks are studied in detail. In response to a user study in Chap-
ter 4, a novel motif discovery algorithm which is robust to user inconsistencies in the
demonstration phase is invented. The new PbD system simplifies a user’s demon-
stration process by mirroring how a human teaches another to do GUI tasks. To
make this research reproducible and pave the way for further research, novel GUI

task automation datasets are also proposed, along with their companion toolkits.

Lastly, the use of demonstration videos as the only input to a PbD system are
explored. All of the works which have been done so far in Chapter 3 and Chapter 4
takes as input a screen-captured images and a log-file, produced by tailor-made

sniffer software that captures sequences of screenshot images and corresponding

1.3. Scope of the Thesis 27

mouse-keyboard input signals. To extend an ability of PbD systems to learn from
richer sources, such as online instructional videos, the possibility of producing the
same log-file by analyzing just a demonstration video is studied.

In this research, the study commences with less complex environments of the
two systems of two different game genres, the Super Nintendo Entertainment Sys-
tem (SNES) for the game Mega Man X and the Nintendo Entertainment System
(NES) for the game Tetris. The aim is to predict a button-press combination for
each frame of an input gameplay video for two different game genres. The study
addresses explicit and implicit challenges which hurt the prediction quality of both
human and the computer. Convolutional Neural Networks (CNNs) and their training
strategy specially designed to address the challenges are proposed and evaluated.

Additionally, human experts prediction quality is also discussed in Chapter 5.

1.3 Scope of the Thesis

1. Due to very complex environment and subtle visual signals of desktop envi-
ronments, Chapter 3 and Chapter 4 only focus on perceiving user interaction

via a simple custom made sniffer.

2. For proposed Programming by Demonstration systems, only linear task, loop-
ing task and standby task are programming paradigms which were addressed

in this thesis.

3. Pure computer vision approach, without using sniffer software, is only ap-

plied to two game environments: Mega Man X (SNES) and Tetris (NES).

1.4 Research Papers

Since the start of PhD journey of the author, three publications had been produced
and published in three premier international conferences on Human-Computer In-

teraction.

1. “DeepLogger: Extracting User Input Logs From 2D Gameplay Videos” was
accepted to present in CHI PLAY 2018 conference. This paper explains ex-

1.4. Research Papers 28

tensive experiments on training a CNN to produce a log-file of a video of

gameplay. Chapter 5 presents detail of the work.

. “RecurBot: Learn to Auto-complete GUI Tasks from Human Demonstrations”
was presented at CHI 2018 conference as a Late Breaking Work poster pre-
sentation. In this work, The focus is on making looping tasks of the PbD
system robust to users inconsistencies during the demonstration phase. More

detail of the work can be found in Chapter 4.

. “Help, It Looks Confusing: GUI Task Automation through Demonstration
and Follow-up Questions” was presented in the ACM IUI 2017 conference,
and was awarded the best student paper honorable mention. In the paper a
prototype PbD system which analyzes sequences of GUI screenshot images
and corresponding mouse-keyboard events to synthesize automation scripts

is presented. This work can be mapped to Chapter 3.

Chapter 2

Literature Review

In this chapter, classical approaches to the end-user program synthesis are pre-
sented. The end-user program synthesis is defined as a set of approaches which
allow end-user of applications to create automation scripts to complete the applica-
tion related tasks. Moreover, other works related to understanding user intent from
interaction log are reviewed. Furthermore, backgrounds of useful concepts which
are used through out this report are described. In section 2.1, there are extensive re-
views of existing Programming by Demonstration (PbD) systems, and explorations
of other alternative end-user program synthesis approaches. In section 2.2, Other
approaches on comparable domains are discussed. Although these works are not
closely related to the Desktop GUI automation, they are worth exploring because
many approaches can be applied to different domains. In section 2.3, all useful
concepts upon which the proposed systems are built are explained. The important
concepts are GUI image analysis, sequence decoding, looping action recognition,

and time series motif discovery.

2.1 Traditional Approaches to End-user Program

Synthesis

The goal of end-user program synthesis is to give tools for the end-users to create
their custom-made computer scripts to perform personal tasks on the related ap-
plications without modifying the applications internal source code. For example,

users might always want to use specific printer setup when they print documents

2.1. Traditional Approaches to End-user Program Synthesis 30

from Microsoft Excel. This setup contains a sequence of settings, which is different
from the default setting for other applications, the users needs to apply before print-
ing from Microsoft Excel. With the end-user program synthesis, they could create
a script which, when invoked, the script selects printing menu in Microsoft Excel
and it then sets everything up for the users. The end-user program synthesis can
be categorized by their means of script creation e.g., writing applications specific
codes, providing input-output examples, and demonstrating how to complete the
tasks. Programming by Demonstration (PbD) is one of the end-user program syn-
thesis approaches which allows the users to create a script by demonstrating steps
to complete the intended task.

Generally, a PbD system observes a user performing a task, sequentially ma-
nipulating GUI widgets of target applications. The system then synthesizes the
script which will manipulate elements of target applications at the execution time
by following the observed steps. Many programs, for examples Microsoft Excel and
Adobe Photoshop, provide users functions to record macros of their tasks. Never-
theless, one common drawback of existing PbD systems is that the systems require
target applications to conform to special APIs in order for the PbD systems to per-
ceive the demonstration and to manipulate the widgets at execution time. Hence,
they rarely work across applications. In 2.1.1, existing PbD systems are reviewed in
terms of their functionalities and what distinguishes them from other systems. Fur-

thermore, other approaches to the end-user program synthesis are discussed in 2.1.2.

2.1.1 Programming by Demonstration

Dated back to as early as the 90s, Cypher published the book, Watch What 1
Do [25], which compiles early Programming by Example (PbE) and Programming
by Demonstration (PbD) systems until 1993. Works from that book paved ways for
PbE and PbD system design and implementation. Examples of notable systems in
the book include Pygmalion, the first PbD system which introduced the concept of
creating a script by observing a user demonstrating steps of the task instead of hav-
ing the user write abstract logic in a programming language; TELS, a system which

predicts the next text editing action similar to what Microsoft Excel’s Autofill does

2.1. Traditional Approaches to End-user Program Synthesis 31

nowadays; Eager, a PbD system that learns from a set of user demonstrated exam-
ples to produce the more generalized scripts; and Triggers, a system that uses visual
information of the display screen to trigger keyboard and mouse macros. These
system build concepts some of which are still used in current PbD systems. Current

well known PbD systems are discussed below.

Sheepdog [19, 53] is a PbD system specially designed for IT support tasks. Af-
ter observing IT experts demonstrate variations of procedures to complete a specific
task, it then uses an Input/Output Hidden Markov Model to learn how to complete
the task from the set of demonstrated sequences of actions. At the execution time,
Sheepdog couples user interaction with the inference to guide the system on each
step. Moreover, Familiar [77] was developed as a PbD system to automate itera-
tive (looping) GUI tasks by learning from a few performed examples of the task.
Nevertheless, target applications of both systems need to conform to OS accessibil-
ity APIs which restricted them to the closed environments while HILC proposed in

Chapter 3 and RecurBot proposed in Chapter 4 are not restricted by the APIs.

CHINLE [22] allows applications which were developed under the SUPPLE
framework [29] to automatically generate its own PbD functionality. The system
takes as input SUPPLE’s functional specification of the application’s interface. Al-
though the applications of the system are restricted to the SUPPLE framework, the
paper studied extensively on an important problem which is recovering from user’s
mistakes at the demonstration phase. CHINLE allows users to modify the generated
script before the execution phase. It is also confirmed in Chapter 4 that user demon-
stration inputs are brittle and users are willing to help preventing the script to run
into disaster. In contrast to CHINLE, RecurBot solves the issue automatically with

the proposed motif discovery algorithm.

Sikuli Slides [5] was developed as an extended work of Sikuli [95], described
in detail in section 2.1.2, to simplify the GUI automation script creation process
which allows less programming-skilled users to generate such scripts. Instead of
coding with Sikuli script, Sikuli Slides represents a process as a PowerPoint slide

presentation, listing each sequential step on a separate slide. This generated slide

2.1. Traditional Approaches to End-user Program Synthesis 32

can be executed as a script later by the system. Additionally, Sikuli Slides provides
an action recorder, so a user can record the process by demonstrating and saving
it as a starting draft of the Sikuli Slides script. Although the system process GUI
screen-captured images instead of requiring access to the Accessibility API, similar
to HILC in Chapter 3 and RecurBot in Chapter 4, the ability of the action recording
feature is still very limited. For example, it can only interpret simple user events
and linear tasks. The scripts generated by the action recorder are often incomplete

and need modification from the users to work.

Nowadays, smartphones have become a part of human everyday life. There
have been many attempts to allow users to create automation scripts which operate
their smartphone [9, 2, 3, 1, 67, 58, 10]. Out of those works, Keep Doing It [67] and
Sugilite [58] were developed under the Programing by Demonstration concept, both
of them relying on Android Accessibility API to listen to users demonstrated events.
Keep Doing It [67] analyzes users’ mobile interaction logs to generate automation
script for the task users intended to do. Toby et al. [58] recently proposed Sugilite.
The system gives users many flexibilities such as users can modify the generated
scripts later when the GUI is changed, creating forks for the conditional tasks. The
system learns to generalize tasks well thank to the Android Accessibility API which
not only allows the system to access the demonstrated events but also the software
hierarchy of the involved applications. Unfortunately, These two systems rely on
the APIs like existing PbD systems, so they also suffer from tasks involving web-

based applications and poorly labeled alternative text applications.

It is a truism to say that most of the existing PbD systems hugely rely on
the Accessibility APIs, except the Sikuli Slides’s action recorder which is still at
the primitive stage. In this thesis, two PbD systems which successfully analyze
visual data to observe user demonstrations instead of relying on the Accessibility
APIs are proposed. This allows the systems to work across applications and to be

independent of domain applications.

2.1. Traditional Approaches to End-user Program Synthesis 33

2.1.2 Other End-user Program Synthesis Approaches

In this section, the rest of the end-user program synthesis approaches are grouped by
their means of script creation. The script creation ranges from providing examples
of input-out pairs of the desired scripts, combining operations from a set of pre-
defined operations, and writing a program with the more human-friendly language.

One of the most well-known examples of end-user program synthesis is Mi-
crosoft Excel’s FlashFill [34, 36], which automatically creates generalized Mi-
crosoft Excel scripts from user-provided input-output examples. FlashFill produces
an output for an unseen inputs according to the pattern discovered in the provided
input-output examples. Similar works generate the script by learning the input-
output pattern using a deep learning architecture approach [12, 30, 35]. These works
are categorized as Programming by Examples (PbE) [59]. As its name implies, Pro-
gramming by Examples takes as input a set of examples input-output pairs and then
synthesizes the generalized script that generates user intended outputs from unseen
inputs. These systems needs internal API in order to manipulate elements of the
applications.

Another well-known example of the end-user program synthesis is OSX Au-
tomator [4]. The Automator allows users to create simple scripts for user’s GUI
tasks by constructing procedures from a pre-defined set of operations, which the
Automator can perform, step by step. Those scripts can be saved and played later
when the users want to execute the tasks. OSX Accessibility API is used for both

script generation and execution phase.

Koala [61] and CoScriptor [55] introduced platforms to generate automation
scripts and business processes with a loose programming approach. The loose pro-
gramming is a programming language which is more similar to human language
and has more flexible syntaxes compared to the traditional programming languages.
These scripts can be shared and read by humans in the form of an organization
Wiki page. Those system focused only on web-based processes; the special APIs
are not required since a web-page source code is readily accessible and machine-

readable via The Document Object Model (DOM). Furthermore, CoScriptor pro-

2.1. Traditional Approaches to End-user Program Synthesis 34

vides a macro recording functionality which records user demonstrating the tasks
and transforming the recorded tasks into the loose programming scripts. Neverthe-
less, these two systems cannot be extend to general applications outside the web

browsers.

Sikuli [95] was the first to provide programmers a semi-visual programming
language to allow direct interaction with Graphical User Interface (GUI). the script
identify GUI elements and interact with them by relying on their visual information,
pixel values, instead of via the accessibility API. Hence the system can interact
across applications and can be run on multiple platforms. Sikuli was used in many
applications e.g., software testing [20, 96]. However, Sikuli scripts use traditional
programming syntax where it allows variables to be an image of a GUI element.

The scripts need programmers or users who have programming skills to write them.

LIA (Learning by Instruction Agent) [10] combines natural language with the
pre-defined set of operations to generate automation scripts from natural language
instruction. The work focuses on email reading and sending tasks. It use Natural
Language Processing techniques to parse and transform human language instruc-
tions to the automation scripts which comprise of pre-defined sensor and event pro-
cedures. When the system does not understand the instruction, it prompts the user
to manually construct the script from the pre-defined sensors and events and then
update itself. This approach is the first attempt to use human natural language to

synthesize the scripts but it application is still limited to the emailing tasks.

It is important to note that different means of script creation have their own
weakness and strength; some approaches are preferable for certain applications than
others. Programming by Examples work well with spreadsheet and data wrangling
tasks where there are finite sets of functions which map the given input examples to
the corresponding output examples. On the other hand, GUI tasks have intractably
large search space of operations which map between an input desktop setup and it
corresponding output desktop setup. Observing instructors performing the tasks is
then a preferable approach for tasks involving GUI operations. Construction scripts

from pre-defined operations seems to be easy for end-users but it is almost impos-

2.2. Other Approaches to Comparable Domains 35

sible for developers to provide enough pre-defined operations which can cover all
end-user needs. Finally although providing GUI specific programming language is
the most robust approach to end-user program synthesis, this approach requires the
end-users to at least have a basic knowledge of computer programming which are

not easily acquirable skill sets.

2.2 Other Approaches to Comparable Domains

In this section, other domains which share common goals, e.g., understanding user
log, are discussed. Two domain environments which are related to the GUI desktop

environment listed here are Digital Game Domain and Web Search Engine Domain.

2.2.1 Digital Game Domain

Digital game environments are closely related to the GUI desktop environment. It
can be considered as a simplify version of the GUI desktop environment due to
the sets of possible inputs are typically smaller than the GUI desktop environment.
This subsection summarizes two different branches that relate to understanding in-
teractions between users and graphical user interface of game environments. First,
projects where different gaming log-files served as the main input data of the user
behavior and gameplay experience analysis are studied. Second, machine learn-
ing projects which treat computer games as experimental platforms are highlighted.
Where feasible, these establish a connection between machine learning algorithms

and computer game analytics research.

2.2.1.1 Understanding Game Users Through Log-files

A log-file records information as a stream of events or messages. Log files have
been used extensively in game user research to extract important or hidden infor-
mation of gamers’ emotions or behaviors. Here, important research projects that
utilize gaming log-files (with a variety of content) as initial sources of information
are explained.

Shute et al. [86, 85, 87] analyze user interaction logs in their stealth assessment
of digital games for education. Stealth assessment is an assessment made from the

interaction data collected during gameplay sessions. During the gameplay sessions,

2.2. Other Approaches to Comparable Domains 36

users/learners do not notice that they were assessed. [23] uses customized game
log data to generate video summarizations of what happened during gameplay. In
[91], Tveit et al. proposed to use a player’s action log-files from Massive Multi-
player games to mine for user behavioral patterns. Zaman and MacKenzie [97] use
user input logs and game logs to evaluate different input devices for touchscreen
phones. Nacke et al. [72, 73] study the use of game session logs and game event
logs to assess game players’ experience, and to better understand the gameplay
sessions. Smith and Nayar [89] successfully model user’s play style from the user’s
raw controller inputs using Latent Dirichlet Allocation (LDA).

While aforementioned works utilize log information as a core input compo-
nent, There does not exist a practical tool that allows researchers to retrieve such in-
formation from publicly shared gameplay videos. The closest research which aims
to extract game information log from gameplay video is Marczak et al.work [66].
This work extracts gameplay metrics such as health bar and in-game items by sim-
ple hand-coded image processing techniques. Studies in Chapter 5 propose a system
that allows researchers to automatically extract raw control input information from
existing gameplay videos. This should boost up both Human Computer Interac-
tion and Computer Vision research communities’ ability to work with very large
datasets, without conducting extremely laborious and costly data collection pro-

CESSeS.

2.2.1.2 Using Machine Learning in Computer Game Research

Several attempts to probe Artificial Intelligence (AI) agents in the context of com-
puter games played by humans are made recently through advancements in Machine
Learning (ML) research, and through newly available platforms. To allow the Al
and ML research communities to validate their algorithms, a variety of games has
been used. Several of these well known platforms are highlighted in this section.
OpenAl Gym [17] and ALE [15] provide environments for computer agents
to play Atari 2600 games and many flash games. VizDoom [50] and DeepMind
Lab [14] provide API’s which allow Al and ML agents to learn to play classi-

cal first person shooter (FPS) games, e.g. Doom and Quake III respectively. Re-

2.2. Other Approaches to Comparable Domains 37

cently, RLE [16] was proposed to be an environment for SNES games, and Project
Malmo [46] 1s an environment for the game Minecraft.

These encourage ML researchers to develop new agents, e.g. through Rein-
forcement Learning: [32] for Tetris and [69] for Mario; Deep Reinforcement Learn-
ing agents: [51, 21, 80] for Doom, [68] for Atari games, and NeuralKart [39] for

Mario Kart 64; and Supervised Learning agent: TensorKart [41] for Mario Kart 64.

DeepLogger, proposed in Chapter 3, is a tool that intends to complement the
works mentioned in this section, by allowing researchers to train their Machine
Learning algorithms on any human gameplay videos, in addition or in contrast to

having these agents learn only by self-play.

2.2.2 Web Search Engine Domain

When users interact with web search engines, they often input more than one query
to reach their goals. These sequential traces are logged by the search engines as
“query sessions”. The query sessions is important for the web search engines be-
cause the sessions can reveal users’ behaviors which can be used to improve web
search engine services such as keyword suggestion and advertisement. There are
many works on this domain which attempt to infer users’ goals [81, 54, 44] and
users’ tasks [62, 45, 63, 57] from the query session logs.

There are several characteristics, which shared between web search engine log
analysis and GUI log analysis, such as users perform sequences of steps to reach
their goals, there are more than one path to complete a task, and users’ goals are
often inferred to users’ intentions. However, important details which make these

two domains different are as follows,

1. In web search engine, the number of possible queries are unbound comparing

to the number of possible GUI actions.

2. In web search engine, relationships between queries when composed together
to form a task does not have complex concepts, such as looping, conditioning,

and standing by, as in the GUI automation.

2.3. Background Knowledge 38

2.3 Background Knowledge

In this section, important concepts which are applied throughout this thesis are pre-
sented. First, the proposed visual-based PbD systems perceive user demonstration
through a sequence of screen-captured images. The literature on analyzing GUI
screen-captured images can be found in 2.3.1. Additionally, the system then needs
to encode a sequence of low-level user demonstration signal into the higher level of
abstraction, mouse-keyboard actions, in order to understand the demonstration. The
encoding process is closely related to the joint action segmentation and recognition
process in Computer Vision literature; brief overview of related work on segmenta-
tion and recognition sequence of input images/signals is provided in section 2.3.2.
Finally, in section 2.3.3, looping action recognition and the time series motif dis-
covery algorithms which are used for recognizing looping tasks and circumventing

inconsistent human demonstrations are discussed.

2.3.1 GUI Analysis

GUI analysis is the first important step of Visual-based Programming by Demon-
stration. It allows the PbD systems to recognize components on the screen which
will then be used to perceive user demonstration. Many attempts have been made

on the topic and they are reviewed below.

Dixon et al. [26] studied models of GUI widgets, e.g., buttons, tick boxes, text
boxes, etc., in PreFab. They associate parts into hierarchical models from visual
information. This work and its extension [27] aim to reverse-engineer GUI wid-
gets to augment new user interactions which can enhance existing widgets without
modifying internal codes of the applications. Although widgets are identified by
their pixel values, instead of relying on the accessibility APIs, the system uses pre-
defined heuristics to identify different widgets. Thus the system is restricted by the
set of pre-defined widgets and cannot apply the technique to non-widget elements
such as images and spreadsheet cells. Likewise, the systems proposed in this thesis
do not rely on a pre-defined set of widgets and can work on image and spreadsheet

cells.

2.3. Background Knowledge 39

Waken [13] processes video tutorials to allow users to directly interact with
widgets in the video tutorials. The system uses consecutive frame differences to
locate the mouse cursor and the application widgets on which the video tutorial
is focusing. They applied the system to video tutorials to allow user to directly
interact with the widgets in the video player. However, similar to PreFab, this
system mainly relies on pre-designed heuristic rules to detect cursors and widgets.
This make the system require substantial engineering effort to add a new widget to

the system when the developers want the system to work with new widgets.

EverTutor [93] processes low-level touch events and screen-captured images
on a smartphone to automatically generate a tutorial from a user demonstration. Due
to it perceiving user demonstration via screen-captured images and low-level touch
events, it is not restricted to a particular set of applications. A tutorial generated by
the system can interactively guide the user through the task. Although problem is
approached in many similar ways to HILC, in Chapter 3, they use pattern matching

algorithm to extract user demonstration process, their algorithm details are omitted.

Grabler et al. [31] presented a system that generates a photo manipulation tu-
torial from an instructor’s demonstration in GIMP, GNU Image Manipulation Pro-
gram. The system generates each step of the tutorial by accessing changes in the
interface and the internal application states. The source code of GIMP was modified
to allow such access. In addition, the authors proposed preliminary study on trans-
ferring user demonstrations into automation scripts which can be executed later to
perform user intended tasks, similar to PbD system. Nevertheless, this work relies

heavily on privileged access to the application source codes.

Chronicle [33] allows users to explore and modify the history of a graphical
document (image editing), as it was created through sequence of interactions. The
system captures the relation between time, regions of interest in the document, tools,
and actions. This rich information allows users to playback the video for a specific
time or region of interest, replicate the result, change parameters for specific oper-
ations, and understand the workflow. This system also heavily rely on accessing to

the application source code.

2.3. Background Knowledge 40

The Pause-and-Play system [79] helps users better learn to perform a task from
video tutorials. The system finds important events in the video tutorial, and links
them with the target applications. It allows the system to automatically pause the
video by detecting events in the applications, while the user is following the steps
of the tutorial. However, the detection of events in an application is implemented
through the accessibility APIs of those applications, so the system can only be used
with limited applications.

Karpathy’s Mini World Of Bits challenge [48], part of OpenAl’s Universe plat-
form, is another initiative idea that aims to be a proving-ground for bots. The task
of the challenge is to exploit reward functions to perform reinforcement learning
on GUI widget images. The main aim of the project is to provide ground truth for
learning about GUI widgets and their interaction through their pixel values. Al-
though this project is still in an early stage, the database of the project can be used
as a knowledge base to train the ultimate system, learn to automate desktop GUI

task from video demonstration, aimed by this thesis.

2.3.2 Joint Segmentation and Classification of Action

A crucial problem faced in HILC and RecurBot is to interpret user demonstration
from low level signal log file. In order to transcribe the user interaction log-file into
a sequence of basic actions, the log is needed to be segmented into parts. The parts
are then classified into basic actions. This problem can be framed as human action
segmentation and classification. The techniques applied in this thesis are modified
from the following works.

Shi et al. [84, 83] jointly segment and classify human actions in long videos,
unlike other action-recognition literature, which only do recognition on pre-
segmented clips. They use their Viterbi-like algorithm for inference, and use Ham-
ming distance to measure the loss between labels of two consecutive frames. HILC
and RecurBot also use the same dynamic programming algorithm but the distance is
modified to accommodate the characteristic of the problem which is discrete action
and continuous appearance. Hoai et al. [40] also proposed similar jointly segmen-

tation and classification algorithm with slight modification which can be applied

2.3. Background Knowledge 41

to segment honeybee motion. Other action-detection methods tend to be slow and

ill-suited for GUI problems.

2.3.3 Discovering Looping Pattern

A study from chapter 4 shows that users are often inconsistent when they have to
demonstrate the same procedure a few times. This leads to a need for a looping
recognition algorithm that is robust to the user inconsistency.

Levy and Wolf [56] train a Convolutional Neural Network with synthetic
videos to detect loops in videos of real-world actions. They heavily rely on a pre-
processing step to enable motion detection. Unfortunately, GUI task demonstration
videos have very subtle movements and changes, so their algorithm fails to de-
tect these actions. Moreover, their algorithm is designed to detect loops which are
temporally periodic, whereas for GUI tasks, the same sub-task often takes differ-
ing amounts of time, and also have user inconsistency, accidental and intentional
variations. Familiar [77] was specially designed to detect and automate looping
of GUI tasks. They segment a sequence into loops by treating the last action of
the full demonstrated sequence as the universal loop-terminator. The best loop is
then determined by finding the actions at the intersection of all the subsequences.
Finally, the algorithm uses a set of rules to determine whether an action is a noisy
representation or a looped representation. RecurBot, in chapter 4 does not assume
that subsequences are free of noise or omissions, or that specific actions serve as
loop-delimiters. Moreover, the proposed visual-based system does not have access
to an exact comparison metric between two similar basic actions. This makes the
problem more complex, but it also allows the system to be domain-independent.

Given a long time series sequence, motifs are sub-sequences which are very
similar to each other [60, 11]. Motif discovery problem was extensively studied
and explored in many applications including medicine [7], biology [8], audio [38],
shape [94], and motion [71]. These works are all interested in finding a pair of
motifs rather than sets of motifs, and many of the contributions in the field are to
speed up existing algorithms. This thesis frames the looping action recognition as a

motif discovery problem for an input sequence of actions; tries to find a set of motifs

2.3. Background Knowledge 42

which vary in length due to extra and missing actions. To the best of our knowledge,
The work proposed in Chapter 4 is the first time that the recurrent action recognition
problem has been framed as time series motif discovery.

It is noteworthy to mention here that there are works [75, 82, 78] in Natural
Language Processing (NLP) which attempt to deal with noise and missing steps
in narrative script domain. However, the techniques cannot directly be applied to
the problem in this thesis because NLP problems require background knowledge
from very large language corpus while the systems proposed in the thesis only have

access to examples from the demonstration phase.

Chapter 3

Visual-based Programming by

Demonstration

Creating automation scripts for tasks involving GUI interactions is hard. It is chal-
lenging because not all software applications allow access to a programs internal
state, nor do they all have accessibility APIs. Although much of the internal state is
exposed to the user through the GUI, it is hard to programmatically operate GUIs
widgets. Accordingly, existing PbD systems suffers from these limitations.

The aim of this chapter is to an answer an important question, “How can the
special API restrictions of PbD systems be lifted?”, by developing a system pro-
totype which learns-by-demonstration, called HILC (Help, It Looks Confusing).
HILC utilizes Computer vision as a delicate tool needed to replace the APIs. Users,
both programmers and non-programmers, train HILC to synthesize a task script by
demonstrating the task. A demonstration produces the needed screenshots and their
corresponding mouse-keyboard signals. After the demonstration, the user answers
follow-up questions.

This chapter examines many small and non-obvious challenges to learning-by-
demonstration in a GUI world. While template-matching of icons and scripting of
macros and bots are low-tech by modern vision standards, these technologies are
effective as an initial solution. The overall contributions of the proposed approach

are that:

* Non-programming users can teach a task to the system, simply by demon-

3.1. Overview of Challenges 44

strating it, either on a computer with a sniffer program or through screencast-

video.

* The system asks the human for help if parts of the demonstrated task were

ambiguous.

* The same or other users can run the task repeatedly, giving them functionality

that was previously hard to achieve or was missing entirely, e.g., looping.

Tasks range from short single-click operations to inter-application chains-of-
events. The informal surveys revealed that each user had different tasks they wished
to automate, but they agreed universally that the teaching of a task should not take
much longer than performing the task itself.

With the long-term aim of improving assistive technology, the role played by
the instructor is separated from that of the end-user. For example, one person could
use a mouse and keyboard (or an eye-tracker) to demonstrate a task and answer
follow-on questions. Then the same or another person could run that learned task,
e.g., using speech. Algorithms to make the instructor effective are the main focus
of this chapter. Moreover, the teacher role is split off from the instructor role to
support diverse demonstration inputs, e.g., video tutorials vs. sniffer programs.

Through the designated scenarios, three interesting issues of general Program-
ming by Demonstration systems are explored. For the linear tasks, script generation
is explored; for the looping tasks, generalization of the generated scripts is explored;

and for the monitoring tasks, invocation of scripts is explored.

3.1 Overview of Challenges

At a high level, HILC collects observations while the instructor performs a task,
then it finds confusing looking patterns that call for the instructor to give more input.
Once the task is learned and saved as a script, it can be called up by the end-user to
run one or more times, or to monitor for some visual trigger before running.

A number of challenges make this an interesting technical problem that relates

to object recognition, action recognition, and one-shot learning. The instructor’s

3.1. Overview of Challenges 45

computer can be instrumented with a sniffer program, that records mouse/keyboard
events, and screen-appearance. However, for example, a click-drag and a slow click
are still hard to distinguish, and hugely varying time-scales make sniffed observa-
tions surprisingly hard to classify. Learning of tasks from pre-recorded screencast
videos, which display noisy details of key/mouse events, is also explored. Further,
clicking someplace like a File-menu usually means the task calls for that relative
location to be a target, but what if other parts of the screen have similar looking
menus? The teacher can help find visual cues that serve as supporters.

Moreover, while demonstrating, the instructor runs through a linear version of
the task, and can indicate if some part of the chain of actions should actually become
a loop. Template matching may reveal that the to-be-looped segment was applied to
one unique target (an icon, a line of text, etc.,), but HILC can request further input to
correctly detect the other valid targets on the screen. This functionality is especially
useful when a looping task must “step” each time, operating on subsequent rows or

columns, instead of repeatedly visiting the same part of the screen.

a

Figure 3.1: Flow of the system. Details for each phase are described in the text.

3.2. Learning to Perform Tasks from Demonstration 46

3.2 Learning to Perform Tasks from Demonstration

The proposed system, HILC', has three phases: demonstration, teaching, and run-
ning. First, an instructor can choose to record their demonstration as either a screen-
cast video (so highlighting mouse and key presses) or through custom-made sniffer
software. Both methods have pros and cons, which will be discussed further in the
Demonstration Phase section. Next, during the teaching phase, HILC performs joint
segmentation and classification of basic actions. To generalize the observed actions,
a human teacher (can be the same person as the instructor) who can help the system
refine its pattern detectors is introduced. The challenges and proposed solutions of
joint segmentation and classification, and for humans in the loop training, are in
the Teaching Phase section. Finally in the Running phase, HILC performs actions
according to the transcript generated by the instructor and improved by the teacher.
The system also generates a Sikuli-like script, see Sequence of Basic Actions in Fig-
ure 3.1, for visualization purposes. A stand-alone runtime script in pure python is

made using the PyAutoGUI package. Overview of HILC is displayed in Figure 3.1.

To start, a set of basic actions that the system can perform is defined, and
the system needs to jointly segment and recognize these actions from the input
demonstration. The set of basic actions is composed of Left Click, Right Click,

Double Click and Click Drag.

3.2.1 Demonstration Phase

In this phase, an instructor who knows how to complete the task demonstrates the
task while only recording a video or while running the sniffer program. If the user
chooses to record the task as a video, HILC will pre-process the video and create
the unified format log-file from every frame of the video. On the other hand, if the
user chooses to record the task via a sniffer, the system will record every signal

produced by the user to the unified format log-file.

Project page: http://visual.cs.ucl.ac.uk/pubs/HILC/

http://visual.cs.ucl.ac.uk/pubs/HILC/

3.2. Learning to Perform Tasks from Demonstration 47

3.2.1.1 Recording the Task

For both input methods (video-only or sniffer) a unified sensor-data format is intro-
duced. Functioning like a log-file (see Figure 3.2), each entry records the screenshot
image and the low-level status of the machine: its mouse button status, mouse cursor
location, and the keyboard’s key press status. A sniffer can access useful informa-
tion directly from the OS, but cannot determine the class of the basic action. It
does naturally generate a log-file from the demonstration. However, one must take
into account time intervals between each log entry, inconsistent machine lag, and

storage space of screenshots. Details are presented in the Implementation section.

To help HILC recognize whether a demonstrated segment is a linear, looping,
or monitoring/standby task, special key combinations that the user was briefed on
before using the system are used. The terms monitoring and standby are used in this
thesis interchangeably and they both refer to the same kind of task. The details of
the recording step and the special key combination are presented in the User Study

Scenarios section.

Although processing a video-only demonstration is slower, it is more versatile
because end-users can leverage pre-recorded and internet-shared videos as an input
demonstration. However, processing of demonstration videos has many challenges,
such as locating the mouse cursor, retrieving low-level mouse/keyboard events from
screencast messages, removing the mouse pointer from the video’s screenshot im-
ages (i.e., capturing a template of the button without the cursor’s occlusion), and

noise/compression in the video recording.

The implementation details of the approach for coping with the aforementioned

issues for both sniffer and video inputs are described in the next section.

INFO:root:3483502,000087.bmp,1265,285,n0 press,
INFO:root:3483502,000088. bmp,1263,286,n0 press,
INFO:root:3483642,000089. bmp,1262,287 ,no press,
INFO:root:3483829,000090.bmp,1262,287 ,press left,
INFO:root:3483876,000091. bmp,1266,287 ,press left,
INFO:root:3483892,000092. bmp,1274,287 ,press left,
INFO:root:3483892,000093. bmp,1288,284 ,press left,

Figure 3.2: Example of a log-file which merges the inputs from both video and sniffer data.

3.2. Learning to Perform Tasks from Demonstration 48

3.2.1.2 Implementation

HILC was implemented in Python 2.7 and it was deployed on Microsoft Windows
7 64-bit machines with Intel Core 15-3317u @1.70GHz CPU and 8GB of RAM.

Implementing a custom sniffer which records low-level mouse and keyboard
events is carried out. Log-file entries and screenshots were only saved before and
after each of the mouse and keyboard status changes, to keep the hard drive 1/0 from
slowing down the machine. Records are re-sampled to have log-files where the
time difference between records is 1000/30 milliseconds, to make sniffer log-files
versions agree with video versions that sample screenshots at 30 frames per second.

Using an existing video as a demonstration requires the addressing of two im-
portant issues: how can the system retrieve low-level mouse and keyboard status
information, and how can the system remove the mouse cursor from video frames
for clean pattern extraction?

Video tutorials are commonly recorded with specialized screencasting soft-
ware that renders visual indicators of mouse events, left-right button pressing, and
keystrokes. Hence, it is assumed that the demonstration video was recorded with
key-casting software. Each key-caster is different, but HILC was trained for Key-
CastOW for Windows and Key-mon for Unix. Others could easily be added. Thus,
key-cast display locations are extracted from the video and the information for each
frame is recognized via the OCR software Tessarract. The mouse status information
displayed by the key-cast software is still low-level, similar to sniffer output. The
mouse cursor location is detected by a Normalized Cross Correlation detector of the
mouse pointer template. Videos of demonstrations have an inherent problem of the
mouse cursor occluding a target pattern during a basic action. To overcome this,
significant appearance changes of the screen are detected and a temporal median
filter is used to remove the cursor to create a clean mouse-free screenshot.

In the Demonstration Phase, the instructor’s basic actions are recorded by
HILC. Hence, to interact with HILC, for example, to start or stop the recording,
the instructor triggers explicit signals. In the implementation, these are special key

combinations. The detection of loops or standby patterns is not automatic, and has

3.2. Learning to Perform Tasks from Demonstration 49

to be flagged by the instructor. Therefore, three special key combinations are de-
fined for the different signals: End of Recording, Looping, and Standby, which are
discussed in detail before each designated scenario is explained in the Evaluation

and Results section.

3.2.2 Teaching Phase

At this phase, HILC takes as input the log-file from the Demonstration Phase, and
then produces a transcribed script that consists of a sequence of basic actions. HILC

workflow of the teaching phase is in Figure 3.3.

3.2.2.1 Classification and Segmentation of Basic Actions

Although the log-file contains all of the low-level information, identifying basic ac-
tions is not straightforward. For example, the “left mouse button pressed” status can
be presented in the log-file at multiple consecutive entries for a single “Left Click”
basic action. Further, it is ambiguous if a left click is a single “Left Click™ basic
action, or a part of the “Double Click” basic action. Moreover, variability based on
how individual users interact with the computer via peripheral devices makes it hard
for deterministic rules to distinguish between different basic actions.This drives the
need for training data, though each user provides only very little.

To create a system that can cope with ambiguities in recognizing basic actions,
the problem is treated as a Viterbi path decoding problem. With dynamic program-
ming, the proposed algorithm segments and classifies the basic actions concurrently.

Let Y = {y1,...,y;} be the set of all possible states, a label for each temporal
segment. x is the observation of a segment, a feature vector representing part of
a basic action. The unary terms U (y|x) are probability distribution functions over
parts of basic actions, learned from pre-collected training data, The pairwise terms
P(¥,y) are the constraints that force consecutive parts of actions to be assigned to
the same basic action.

Ay, is defined as a basic action made from a sequence of parts of the action k,
A ={%05, .)F} 5 JAk| = and y) is the last part of A. y¥ is a part of the basic

action k where n indicates a status change frame (key frame) in the log-file, e.g., a

3.2. Learning to Perform Tasks from Demonstration 50

Log file from video or sniffer

’ Segmentation and Classification Actions ‘

Detect Loop Signal

’ Train RF from the given instances ‘

Predict and show prediction results
that get score higher than threshold

Ask user to provide
more positive examples,
verify false positive examples, and
add supporters

Re-train RF from the given instances
and additional examples

Whether the result satisfies the user

Iteratively train RF to detect supporter(s)
via hard negative mining

Loop through actions list

For each action in the actions list

k
|

Ask user to indicate the pattern

If this is a standby signal they want to stanby for

Constructing Detector Ne ¢

Iteratively train RF to detect the pattern
via hard negative mining

v

’ Push all the rest actions ‘

Check if there are instances
that pass threshold and the location
is not the one given by the us

in the standby actions list

For each action in the standby actions list -

v

Ask user to add more information
- left click to add supporters

- close window without adding any supporter
to iteratively train RF for detection

Contructing Detector

P’ End loo I l
N i) v

L Endlloop J»——

End Programme

Figure 3.3: The system workflow for the teaching phase. The yellow boxes indicate where
the system poses questions to the teacher.

3.2. Learning to Perform Tasks from Demonstration 51

frame where the mouse button status is changed, from press to release or vice versa.

Pairwise term is defined as in Eq 3.1:

/

+1 if i = jandy’_| follows y]

; . 0 ifi £ jandyi is the last

P(yy_1,%) = (3.1)
part of A;

—1 otherwise.

Learning Probability Distribution Functions

One of the challenges of basic action classification is that each basic action has a
different duration. For example, a “Left Click™ usually spans a few milliseconds in
the log-file, but “Click Drag” may span seconds. Moreover, each basic action also
has its inter-variability in terms of action duration.

The proposed approach is to train a Hinge-loss Linear SVM for each basic
action using the hard negative mining method, where each SVM may make a pre-
diction on a different time interval. For an input time interval, a feature vector is
constructed by computing histograms of frequencies of different encoded records
from the log-file. Each record is encoded by 3 binary low-level states: the status of
each of the mouse buttons, pressing the left button/ the right button, and whether
the mouse is moving. The feature vector also encodes context information of each
action by adding a histogram of a small time interval after an action is done. Finally,
the feature vector for the Linear SVM has 4 x 23 dimensions, the number 4 is from
3 histograms of equally divided time intervals of an action and plus 1 context his-
togram. It is noteworthy that this is different from a part of an action y*. Figure 3.4
depict the input part to the SVM.

The prediction scores of SVMs are not proportional to one another, so they
must be scaled before use within the Viterbi algorithm. Hence, for each basic action,
a Random Forest (RF), which takes as input a vector of the prediction scores from
SVMs and outputs the probability of each basic action class, is trained.

For any unknown time interval, a unary matrix which maps between a part

3.2. Learning to Perform Tasks from Demonstration 52

Figure 3.4: Examples of a segment, a time interval, a key frame, and an input to SVMs. ‘L’
indicates the left mouse button is pressed, ‘R’ indicates the right mouse button
is pressed, and ‘-’ indicates none of the mouse buttons are pressed.

of action to its probability distribution can be constructed from trained RF for that
action. The unary matrix Uy« . has the shape (number of states x number key frames

in the input sequences). The number of states is defined as Eq 3.2

number of states = Z |Ag| (3.2)
Ar€B
It should be noted that the same probability distribution is assigned to all parts of

each basic action.

Annotation of Log-files for Basic Actions

To annotate an unknown log-file, the system detects status change frames in the
log-file and use them as key frames. Records in the log-file are then grouped into N
different time intervals indexed by the key frames and passed to the trained Random
Forests to construct the unary matrix U. Lastly, the Viterbi dynamic programming
algorithm is used to infer about Y*, which is the sequence of y* that maximizes

Eq 3.3, where

N

Y* =argmax) (P(Y_1,)) +U (¥ |x)) (3.3)
e v=1

3.2.2.2 Interactive Training of Pattern Detectors with Few Examples

To perform any basic action, HILC needs to learn the appearance of the target of
the basic action. For linear tasks, the system needs to find a single correct location

of the target pattern. However, for looping tasks, the system has to find multiple

3.2. Learning to Perform Tasks from Demonstration 53

correct locations of the targets of the looping task, and thus the system needs to
generalize about the target pattern appearance. In both cases, the target pattern may
have appearance variations. For example the icon of the file may have moved on
the desktop and has a different section of the wallpaper as its background.

Target patterns can also be categorized into two groups: patterns that are dis-
criminative on their own and patterns that need extra information to be distinguish-
able, see Figure 3.5. Hence, the system needs to treat each of these possibilities

differently and a concept of supporters is also introduced here.

() (b)
A B c D E First Name |
1 -
2 Last Name
3 -
a Street Address Line 1
5 Street Address Line 2 [
_6- city |
(c) (d)

Figure 3.5: Target patterns in (a) & (b) are distinguishable on their own. The spreadsheet
cells in (c¢) need row and column names to differentiate between one another.
Text fields in registration forms in (d) can be distinguished by the text field
labels. Supporter helps distinguish locally ambiguous patterns.

Supporters The supporters are salience patterns that have certain offsets to
the target pattern. In linear tasks, a spreadsheet program’s row and column names
distinguish similar-looking cells, Figure 3.5(c); or field names distinguish similar
looking textboxes, Figure 3.5(d). In the Running Phase, HILC uses the same tech-
nique that is used for detecting the target pattern, to detect supporters. The target
patterns give votes to each detection location, but supporters give votes to the offset
locations.

Supporters for looping tasks work differently from the supporters for linear
tasks, as a fixed offset is not informative for multiple looping targets. Hence, the

supporters for looping provide x-axis and y-axis offsets to the targets, see Figure 3.6.

3.2. Learning to Perform Tasks from Demonstration 54

The final result is the average of target pattern detectors and spatial supporters, see

Figure 3.7.

Figure 3.6:

Actor/Actress Character
Peter Dinklage Tyrion Lannister
Nikolaj Coster-Waldau Jaime Lannister
Lena Headey' Cersei Lannister
Emilia Clarke Daenerys Targaryen
Kit Harington Jon Snow
lain Glen Jorah Mormont
Aidan Gillen Petyr Baelish
Sophie Turner Sansa Stark
Maisie Williams Arya Stark

An example of a supporter for a looping task. The table shows names of charac-
ters and actors/actresses of a popular TV show. The names in each column have
similar appearance, so, if the user intended to loop through one of the columns,
marking the column name as a supporter will help the system to distinguish
between columns.

Figure 3.7:

(a) (b)

An example of a spatial supporter. Blue boxes are user provided positive
examples, red are user provided negative examples, yellow are target detec-
tions, and a green box indicates a user-provided supporter. (a) and (b) demon-
strate detection performance without and with a spatial supporter. Red color
in the heatmaps means a high detection score. In (a), the left image shows the
heatmap of target detection scores, and the right image shows detected targets.
In (b), the left image shows the heatmap of target detection when combined
with the spatial supporter scores, and the right image shows detected targets.
The spatial supporter successfully suppressed all similar looking patterns under
the Character column in heatmap (b) so that the system is able to detect only
desired targets under the Actor/Actress column.

3.2. Learning to Perform Tasks from Demonstration 55
Follow-up Questions:

For different kinds of tasks, the system asks for help from the teacher differently.
Linear tasks

Every basic action of linear tasks has a unique target. The linear tasks can be
executed multiple times, but each run performs the same task on the same unique
targets. For each basic action of the linear task, the system has to learn the cor-
responding target pattern from only one positive example. To train the detector
for the target pattern, the system initially performs Normalized Cross Correlation
(NCC) matching with the given positive example on the screenshot image when
the basic action was about to be executed by the instructor, to prevent the pattern
from changing appearance after the action is executed. If there are false-positive
locations with high NCC score, the system asks the teacher to help the system to
distinguish between true and false positive examples by providing a supporter(s).
Figure 3.8 shows screenshots when HILC queries for help from users.

After teachers provide supporters, the system uses NCC as the detector for both
the target pattern and the supporters. If the teacher does not provide any support-
ers, the system assumes that this pattern is distinguishable on its own. More false
positive patches are mined to retrain RF until the system correctly detects the target
location using raw RGB pixel values of every position in the patch as features.
Looping tasks

Looping tasks are a generalization of linear tasks, so that in the running phase,
each run of the task iterates over a set of targets. For example, a linear task always
prints a unique PDF file in a folder, but a looping task prints all PDF files in a folder
by looping over each PDF file icon.

For looping tasks, the instructor shows the task once on a single looping target,
but the system needs to repeatedly perform the task on all looping targets that are
similar to the pattern the instructor, or the teacher, or the end-user had specified. In
the Demonstration Phase, the instructor is asked to show more than one example of
a looping target after demonstrating one complete iteration of a task. In the Teach-

ing Phase, the system trains an RF with the provided positive examples, and uses

3.2. Learning to Perform Tasks from Demonstration 56

(a)

(b)

Figure 3.8: Example screenshots of HILC when it asks users for supporters. (a) HILC asks
users to add supporters when there are confusing patterns (red boxes) which
look similar to the user intended patterns (green box). In this case, NCC scores
of the confusing patterns are higher than a threshold. The system uses only the
NCC detector for the intended pattern at the Running Phase, unless the users
provide supporter(s). (b) HILC asks users to add supporters when a confusing
pattern (red box) has the same NCC score to the intended pattern (green box).
Unless the users provide at least one supporter, HILC trains RF detector for the
intended pattern.

random patches as negative examples. Next, the system validates the RF predictions
by asking the teacher to verify the predicted positive and negative examples, and/or
add supporters. Figure 3.9 illustrates an example screenshot when HILC queries
users in a looping task.
Monitoring tasks

In monitoring tasks, the system in the Running Phase perpetually runs in
standby, looking for a specified visual pattern, to invoke the rest of the script. In
the Demonstration Phase, the instructor indicates when the invocation pattern ap-

pears, then demonstrates the task itself. In the Teaching Phase, the system asks the

3.2. Learning to Perform Tasks from Demonstration 57

Figure 3.9: An example screenshot of HILC when it asks users for additional information
during the Teaching Phase of looping tasks.

teacher to indicate which pattern needs to be detected.
Figure 3.10 displays an example screenshot while HILC is in the Teaching
Phase, and asks for the visual cue. Examples of visual cues are illustrated in Fig-

ure 3.15 and 3.16.

Figure 3.10: An example screenshot of HILC when it requests a user to provide the visual
cue (yellow box) which is the visual pattern that invokes the system to run the
rest of the script whenever the system finds it.

3.2.3 Running Phase

The main reason the running phase is separated from the demonstration phase and
the teaching phase is that the ultimate goal of HILC is to help end-users who are
non-regular computer users, and disabled users, to complete tasks that might be
hard for them but easy for others. The separated system is easy to execute by voice

command or any other kind of triggering methods.

3.3. Evaluation and Results 58

In the running phase, HILC sequentially executes each action of the interpreted
sequence of actions from the teaching phase. When a special signal like Looping
or Standby is found, the system executes the specific module for each signal. The
Running phase’s system flow is shown in Figure 3.11. For each normal basic action,
the system starts by taking a screenshot of the current desktop and then looks for
the target pattern and supporters (if available) using the trained detector(s). For the
looping part, after taking a screenshot of the current desktop, the system evaluates
every position on the screen with the trained RF detector, and applies the spatial vot-
ing from the supporter(s). After that, the non-maxima suppression and thresholding
are applied respectively to the result, to get the list of positions to loop over. For the
standby task, the system continuously takes a screenshot of a current desktop and
evaluates the specified positions whether the target pattern may appear. When the
target pattern is found, the system triggers the sequence of actions that the instructor

designed, and then proceeds to the standby loop again.

3.3 Evaluation and Results

The algorithm is evaluated quantitatively through a small user study, and qualita-
tively to probe the system’s functionality. The only viable baseline PbD system
available for comparison is Sikuli Slides[5], because it too assumes users are non-
programmers, and it too has sniffer-like access to user events. Nine use cases are
reported in this chapter. To construct the set of use cases, a large list of scenarios
were populated through a survey which inquires about tasks for which the users
would like a virtual personal assistant to complete. The scenarios from the list were
then prioritized. The scenarios that spanned the different basic actions, different
lengths, different applications, and different programming paradigms were picked.
Here the three scenarios tested in the seven-person user-study are listed, and the
results are showed in Table 3.1. Just these three linear tasks were picked because
Sikuli Slides can not handle looping or standby tasks. Further scenarios are dis-

cussed in the qualitative evaluation.

The task in each scenario was assessed in terms of 1) transcription accuracy

3.3. Evaluation and Results 59

Start Programme

For Each Action in actions list

<Theck if the action is a standby signa

,,,,,,,, Start endless loop

Take Screenshot of that moment heck if the action is a looping signal

Perform a Pre-defined Action

Take a Screenshot at that moment.

Use Loop detector (RF or NCC) to list Yes

all possible locations or Ask user

to provide the locations to loop through Check if the action is a Typing

eck if found the given patter
at the specific location

For each action
Looping actions list Take a Screenshot at that time

No

For each action in
Standby actions

Use the detector(s) of that action
to find the location to perform the action

i
i

i

i

i

i

i

| Performing a Pre-difined Action
i

i

i

i

i

i

| Performing a Pre-difined Action
i

,,,,,,,,,, End Loop If there are more than one

location that pass the threshols

Ask user to provide the correct location
and keep it as one additional information

Perform the action

&

X
4

Figure 3.11: The system workflow for the running phase. The yellow box indicates user
interaction.

Basic Actions + Typing

v %D é é o0 Demonstration Time

s |A |00 | &
Scenario) 3 2 %J E Transcription Reproduction VS

C Qg & Refining Time (average)
Sikuli Slides | HILC | Sikuli Slides | HILC | Sikuli Slides HILC

1 Mute Audio playback (Linear) 2100|010 v v vF v 10s/49s 10s/27s
2 Turn on High-Contrast-Mode (Linear) 6 1 {0]0 0 v* v Vi v 27s/10m 27s/170s
3 Remote access with Team Viewer (Linear) 11} 0]0]0 4 v* v X v 40s/o0 40s/4m
3.2 Remote access with Team Viewer (Linear) 13/0(0|4)| 0 vE v X v 37s/e0 37s/7Tm
4. Skip YouTube ads (Monitoring) 110]010| O X v X v N/A 10s/5.5m
5. Close YouTube ads (Monitoring) 1 01010 0 X v X v N/A 125/6.9m
6. Create slides out of jpgs folder (Looping) 2x [1x | O] O | O X v X v N/A 35s/10m
7. Create spreadsheet of filenames (Looping) 4x | 2x | 0| O | 4x X 4 X 4 N/A 60s/6.6m
8. Create BibTex from spreadsheet (Looping) 9% | 0| 0| 0| 8 X v X v N/A 86s/12.5m
9. Move MSWord files to a folder (Looping-Video) | 4 | 1x | 0| 2 | O X v X v N/A 25s/22m

Table 3.1: User study on HILC compared to Sikuli Slides. Scenario 3.2 is an alternative way to perform Scenario 3, without pressing shortcut key
combinations that Sikuli Slides is known to be missing. Nevertheless, we eventually realized that Sikuli Slides is not detecting the right click
actions either. (v'= successful, v'* = partially successful, v'** = can be successful with guidance from the operator, X= can not succeed at
the task at all). x represents the number of repeated loops needed to complete the task. Please note that 90% of the refining time for Task 9
is offline - devoted to the time spent on processing video to produce the log-file.

3.3. Evaluation and Results 61

(evaluating the classification and segmentation algorithm), 2) task reproduction, i.e.,
measuring pattern detection generalization, and 3) time users took to demonstrate
and then refine the task model. In the user studies, four of the participants had no
programming exposure, two had taken a school-level course, and one was a trained
programmer. Participants needed 1.5 - 2 hours because each completed all three
tasks under both systems: they randomly started with either HILC or Sikuli Slides,
and then repeated the same task with the other system before proceeding to the next
task. Before using both systems the users were briefed about the goal of the study
as well as how to use both systems for 20 minutes. In addition, the users were
shown the videos of the instruction phase for each task before performing the task

to ensure the users understand what are the tasks.

3.3.1 User Study Scenarios

The first three basic scenarios (linear tasks) are evaluated quantitatively against

Sikuli Slides. Monitoring and looping tasks are evaluated qualitatively.

3.3.1.1 Linear Task

Linear tasks are simply linear sequences of actions. They are the most basic type
of task, and run only once. To record and edit all kinds of tasks, two common
steps need to be done: First, at the end of a task-demonstration, the user presses the
special key combination Shi ft+Esc, to indicate the end of the sequence. Second,
also in the teaching phase, if HILC cannot clearly distinguish between an input
pattern and the other on-screen content, the system asks the teacher to click on

supporter(s) near that pattern.

1. Mute audio playback (Linear) This simple and short task was actually non-
trivial because the speaker icon in some Windows installations is not unique (Fig-
ure 3.12). Half the users had to refine the model, which for the system meant adding
a supporter. All users produced a working model of this task using HILC, and some
users were able to produce a working model of the task using Sikuli Slides (the right

speaker icon was correctly selected by chance).

2. Turn on High-Contrast-Mode (Linear) Some visually impaired end-users may

3.3. Evaluation and Results 62

Figure 3.12: The instructor clicked on the speaker in the green box, but the system also
detected a similar pattern - the speaker in the red box. In this situation, the
system asks the teacher for a supporter(s), the yellow box, to help with detect-
ing the intended pattern.

want to trigger this task through a speech recognition system. Here, HILC’s sighted
instructors were ultimately successful using both systems, but the study-supervisor
had to walk users of Sikuli Slides through the extra steps of re-demonstrating the
task and making and editing of screen-shots to refine that model. This task involves
the Click Drag action, which Sikuli Slides was never able to recognize when tran-
scribing. Figure 3.13 illustrates the High-Contrast vs default desktop modes, and
HILC synthesized script for switching. It is noteworthy that High-Contrast-Mode

also modifies the scale of objects on the screen.

Figure 3.13: High-Contrast-Mode comparing with Normal Mode and (in the red box) the
transcribed steps of the task demonstrated by HILC.

3. Remote access with TeamViewer (Linear) This sysadmin (or mobile-phone

testing) task consists of running the TeamViewer application and logging into an-

3.3. Evaluation and Results 63

other device, using an ID and password provided in a spreadsheet file. The teaching
phase of the task involves helping the system clarify ambiguous patterns by adding
supporters. The task and the transcribed steps are illustrated in Figure. 3.14. In-
advertently, this task proved impossible for Sikuli Slides users because it involves
copy-pasting text, which that system is not able to capture the key combination
shortcut. One user invented an alternate version of this scenario (3.2) where she
tried to right-click and use a context menu to copy and paste, but it was then real-

ized that right-clicks are also not captured by Sikuli Slides.

Figure 3.14: Steps to complete remote access via TeamViewer. Red lines link related pat-
terns on the screen with the pattern in the transcript. It is noteworthy that
performing the basic action DragTo from and to the same pattern has a similar
effect as performing the basic action Click on that pattern. Participants of-
ten unintentionally perform the basic action Dragto instead of the basic action
Click. HILC is robust to this type of different-but-interchangeable action.

Qualitative Evaluation

The remaining scenarios can not be addressed using Sikuli Slides because they en-
tail monitoring or looping tasks. HILC’s new capabilities are outlined here, along

with qualitative findings, and task illustrations, to better gauge success.

3.3.1.2 Monitoring

Monitoring tasks run perpetually and then respond to specific patterns. When the

specified pattern is detected, the script triggers the sequence of predefined actions.

3.3. Evaluation and Results 64

In the Demonstration Phase, instructors press the special key combination
(standby signal), Ctr1+Shift+w or Ctrl+Shift+PrtScr, to indicate that
the pattern, which the system is programmed to detect, has appeared. The instruc-
tor then performs a desired sequence of actions, such as a linear task. There is an
extra step in the Teaching Phase, where HILC asks the teacher to indicate where the
invocation pattern can occur (e.g., anywhere, or in the taskbar).

4. Skip YouTube ads (Monitoring) is a standby task that clicks the text Skip Ad
if/when it appears during a YouTube video. This task illustrates the need for spon-
taneous responses, because the Skip Ad advertisement banners appear randomly, for
varying periods of time, ranging from 10 seconds to a few minutes, during playback

of the requested content. Figure 3.15 demonstrates an example of the Skip ad task.

Figure 3.15: YouTube Skip Ad. These advertisements show before or during a playing
video for varying periods of times, and HILC successfully closes them in
Scenario 4, as soon as the text appears. The visual cue is highlighted by the
magenta rectangle.

5. Close YouTube ads (Monitoring) creates a standby script to close advertisements
that may appear, despite various changing backgrounds, as shown in Figure 3.16.
The first line of the script directs the system to monitor an area where the given
pattern can appear. When the system detects the pattern, the system triggers a script,

in the second line, to click on that pattern.

3.3.1.3 Looping

HILC allows a loop to be a step in a linear action, or to be a stand-alone script.

Looping tasks are the tasks that execute the same sequences of linear actions multi-

3.3. Evaluation and Results 65

Figure 3.16: Close-ups of YouTube Ads. These ads appear at the bottom of a playing video,
and HILC detects and successfully closes them in Scenario 5. The visual cues
are pointed by magenta arrows.

ple times on similar looking yet different objects. To indicate the start and stop of a
loop, the demonstrator inputs the looping signal key combination Ct r1+Shift+1
or Ctrl+Shift+Break, before and after performing one sequence of actions
that need to be repeated. Thereafter, the instructor gives examples of patterns that
needed to be a starting point of the loop by pressing a Ctr1 key while clicking
on an example pattern. When the instructor is happy with the examples, they then
input the looping signal, Ct r1+Shift+1, once more. The script can be followed

by linear actions or can finish right after the third looping signal.

The teaching phase of a looping task has one additional step. HILC displays
the result of the trained Random Forest, and lets the teacher add positive examples,
remove false positive results and provide supporters. This triggers the re-training

process.

6. Create slides out of jpgs folder (Looping) The task is to create a presentation
where each slide features one image from a given folder. To create the script, a
demonstrator only shows how to create one slide from one jpg, and gives a few
examples of what the jpg file-icon looks like. In the running phase, HILC steps
through all the jpg files in a given folder, making each one into a separate slide of
the LibreOffice Impress presentation. Not only does this show that the system can
loop, the task also demonstrates that the system can help the user complete repeated
steps across different applications (LibreOffice Impress and Windows Explorer).

An example screen of the task and the generated script are shown in Figure 3.17.

3.3. Evaluation and Results 66

Figure 3.17: Scenario 6: create slides from folder full of images. The generated script is
shown in the red frame. HILC starts by building a list of locations that will
be the starting points for each iteration. The list is formed by the Trained RF,
which trained and refined in the teaching phase with a few examples stem-
ming from the demonstration phase. The system then iteratively executes a
sequence of actions from line three to five (DragTo, Click, Click). In this
scenario, the two applications are displayed side-by-side.

7. Create spreadsheet of filenames (Looping) The purpose of this scenario is to
create a list of filenames in a spreadsheet program, see Figure 3.18. In the running
phase, HILC copies the filenames from within a given folder into successive Mi-
crosoft Excel cells. While repeatedly successful, the paste operation targeted the
cell below the previously-selected (dark outline) cell on the spreadsheet. So the first

entry will always be pasted below the initially selected cell.

8. Create BibTex from spreadsheet (Looping) This is the most complex of all the
scenarios listed here. The task involves switching between three different applica-
tions (eight different screens). An instructors needs to plan out the task’s steps, to
ensure each application is in a state that is ready for the same action of the next
loop to be executed. In the running phase, HILC works through a Microsoft Excel
file that lists titles of papers that should be cited. The system then uses Google
Scholar website to search for the BibTex of each paper, and produces a single Bib-

Tex file listing all the citations using the Notepad program. Figure 3.19 illustrates

3.3. Evaluation and Results 67

Figure 3.18: Two application screens from Scenario 7, where file names are being collected
into a spreadsheet. The script of the task, in the red frame, involves switching
back and forth between the two applications, and pasting the text into similar-
looking cells.

the generated script.

9. Move MSWord files to a folder (Looping-Video) In this scenario, a further
proof of concept of HILC was tested. The system successfully uses only video
from a screencast software as input, instead of data from the sniffer, illustrating that
instructors could post how-to-videos online, which can then easily be refined into a

working script.

3.4. Discussion and Future Work 68

Figure 3.19: A synthesized script of Scenario 8, where a BibTex file is automatically con-
structed from a list of paper titles. Three different desktop GUI’s were in-
volved. The user was able to train the system quite easily, and can just run the
task without further instructions when writing her next research paper.

The scenario starts by executing a sequence of linear basic actions to create a
new folder. It then continues to iteratively Drag and Drop each Microsoft Word file

into the newly created folder. The script is shown in Figure 3.20.

3.4 Discussion and Future Work

The two sets of evaluation scenarios showed that the proposed approach substan-
tially extends the Programming by Demonstration functionality that was available
to non-programming users of desktop-automation tools. The main innovation is the
sanity-check performed when the instructor demonstrates their task: given a coop-
erative human, it allows the system to transition from a winner-takes-all template-
matching view of targets and actions, into a supervised-classification interpretation

of the instructor’s intentions.

3.4. Discussion and Future Work 69

Figure 3.20: HILC successfully use videos of a screencast software as input of the system,
instead of generating the input log-file from the sniffer, to create a working
script. It is noteworthy that the system failed to remove mouse pointer from
the target patterns in the first and the seventh lines.

This prototype has important opportunities for improvements. Basic actions
are occasionally misclassified, when none of them has a high probability. Tests
showed the joint segmentation and classification algorithm has an average accuracy
of 95.4% for classifying each basic action. HILC allows users to fix misclassified
actions instead of requiring a user to re-record the instruction again. Users were
more successful and could do more with the system, but found the concept of sup-

porters somewhat foreign, at least as presented in the provided instructions.

Currently, the system works without the awareness of states of the computer.
For example, if a task expects to work with a pre-opened folder (or to open a closed
one), the end-user must prepare their desktop appropriately. In addition, short fixed-
length sleep() after each action to account for loading time of the computer is in-
serted because the system cannot know if the OS task has finished/ web-page has
loaded. Therefore, shorter sleeps would make automated tasks go faster, but could
ask for actions before the GUI is ready. This could be addressed in the future by

training the system to recognize computer states from visual signals.

Furthermore, the current appearance models have fixed size and aspect ratio,
which can hurt accuracy when items in a list are short and wide. Learned appear-

ance features, even spanning across devices, could emerge, given enough training

3.4. Discussion and Future Work 70

footage.

This chapter successfully proofs that Computer Vision and user feedbacks can
replace the need for the special APIs of the PbD systems. Although using key com-
binations to distinguish between different programming paradigms and to indicate
different parts of the demonstration are effective, it restricts usability of the sys-
tem to users who understand basic programming concept such as looping. In the
next chapter, a new demonstration procedure is introduced to improve usability and

robustness of the visual-based PbD system.

Chapter 4

Looping GUI Action Automation

After it has been shown in the previous chapter that visual-based programming by
demonstration is viable in learning tasks from various programming paradigms, a
question has been raised that “What make the demonstration hard for casual users
and how that can be remedied?” In this chapter, a new demonstration procedure for
looping task, which is easier for casual users to perform, is designed and a prelim-
inary user study had been carried out to identify all issues. The study showed that
while users demonstrated loops, they usually included both intentional and acciden-
tal variations. To answer the research question, this chapter focuses on improving

demonstration and learning of looping tasks.

Looping tasks are tasks which require performing a similar set of steps at all
semantically related objects. Teaching HILC to generate a script for a looping task
involves executing special key combination at the right moments and require users
to have basic notions of looping iterators. The proposed system in this chapter,
RecurBot, on the other hand, only requires users to demonstrate a few example
loops similar to when human teaches a task to other humans. From that demon-
stration, the system automatically discovers where the start and the end of each
loop are, and finally performs, auto-complete, the remaining actions in the task.
For example, a user can send customized SMS messages to the first three contacts
in a school’s spreadsheet of parents; then the proposed system loops the process,

iterating through the remaining parents.

Software agents, known as bots, are still very far from fulfilling the seamless

72

learning and skill-transfer dreams of Maes [65], Negroponte [74], and Kay [49].
Karpathy’s Mini World Of Bits [48], part of OpenAI’s Universe platform, will be a
proving-ground for bots, especially ones that exploit reward functions to perform re-
inforcement learning. It is a truism that even computer-literate users over-estimate
modern bot capabilities until they are asked to automate a repetitive task them-
selves. There are two main misconceptions. Myth 1: “Modern bots can see, but
just lack good human interfaces.” Bots can indeed grab screenshots, and they can
attempt local Optical Character Recognition. However, they can not systematically
understand the GUI elements in terms of grouping widgets [42] or identifying in-
teractive buttons. The diversity in mobile app GUIs makes this harder than ever.
Without training data, scene-understanding of GUIs is not especially easier than
scene-understanding of satellite images. Myth 2: “The bot can just ask the oper-
ating system (OS) without computer vision of the GUIL.” Even Open Source OS’s
like Android restrict developers (within an app) to the narrow parameters of ac-
cessibility API’s, and those cannot retrieve the complete visual information of a
GUI [58]. Even though OS-specific sniffer software can detect that a mouse button
was pressed twice at some position, it cannot even be sure if the particular applica-

tion interpreted it as two clicks or one double-click.

RecurBot, proposed in this chapter, addresses a desktop version of the Pro-
gramming by Demonstration problem. It lies at the intersection of intention-
inference, software usability, and action recognition and prediction. It lets a user
teach a bot, much like they would teach a human, to perform a repetitive task. Con-
sider the example shown in Figure 4.1. Here, the user is renaming each file in
Google Drive to match a list of names given in an Excel spreadsheet. This type
of looping task is common to most computer users, and it is only the experts, who
have access to the scripting tools required, to automate them. The proposed algo-
rithm takes the user’s mouse/keyboard events as inputs, and from that initial user-
demonstration of the task, it segments and extrapolates what was different about
each loop, to complete the task automatically. Like Microsoft Excel’s AutoFill,

users want to extrapolate from these first few inputs, rather than cloning them.

73

Figure 4.1: A looping GUI task, where the user is renaming files on Google Drive to match
names in an Excel spreadsheet. This type of task is long and tedious, and hard
for a typical computer user to automate. Our system is designed to learn to
complete such tasks by watching a user performs a few demonstration itera-
tions.

Aptly, Excel’s FlashFill is touted as an important milestone [37] for practical in-
ductive programming, because it extrapolates non-sequential patterns, e.g., parsing
of initials from people’s names. Unlike Microsoft’s applications, RecurBot’s in-
put comes from many diverse apps, bitmaps of heterogeneous content, and noisy

time-series human demonstrations, where order matters.

Figure 4.2: An example problem setup. This diagram shows that the proposed system al-
lows detour actions, Windows’ popup asks for restarting the system, that can
accidentally happen during the demonstration process. Without that mecha-
nism the user need to re-record everything again from scratch. It is noteworthy
that the diagram shows extracted objects, PDF file icons, buttons, etc., which
linked with actions instead of in reality the system only has access to whole
screen screenshots and their corresponding mouse pointer locations.

4.1. Overview 74

4.1 Overview

The main contribution of this chapter is an algorithm for programming by demon-
stration of looping GUI tasks. The proposed visual motif analysis overcomes three
main challenges: (1) The user-demonstrated loops are non-identical. The commu-
nity working on set-based Motif-finding has avoided visual problems, and seeks to
identify a perfect subsequence that was repeated K times, given N actions and the
number of motifs K. (2) The demonstrated actions are typically iterating through the
initial loops of a lengthy task. To automatically predict and execute the remaining
loops, one must detect the one or more iterators implied by the demonstration. (3)
Compared to passive action-recognition, recognizing and then predicting GUI tasks
requires a video dataset annotated with acceptable-interaction meta-information.
Motif-finding and action-prediction are formidable challenges because human-
computer interactions are highly variable. When a user does the first three loops of
a task, each loop may have both extra and missing actions. Actions may be missing
because a window already had focus or a text-entry was already filled in. Extra ac-
tions can occur when the user performs extra clicks without a specific purpose (e.g.,
double-clicking a hyperlink) or gets interrupted by a tangential task, like suppress-
ing an update message (see Figure 4.2). This variability is captured in the proposed
new dataset (see Table 4.1), which motivates this work and establishes metrics for
progress toward the goal of interactive software agents. The supplemental video,
in the project page, further illustrates the algorithm’s prototype, where predicted

action-previews are shown to the user for approval before being performed.

4.2 Looping Action Recognition

The goal of this work sets out to recover and predict looping actions from input data.
The algorithm takes as input a sequence of basic actions, A = (Ap,A1,Az,...,AN),
obtained using [43], which is otherwise unhelpful here. Figure 4.2 shows the in-
put sequence for a simple example task, where the user has used click actions in
different locations to sequentially delete one type of file from a folder. Each basic

action A, is a tuple containing the action type a,, together with, where appropri-

4.2. Looping Action Recognition

No. of Sequences Actions/Sequence Actions/Loop
55 16.36 4.33
Missing Actions /Seq | Noisy Actions/Seq | % Variation Seq
0.29 0.65 38%

75

Table 4.1: Average statistics of the proposed Demonstration Dataset. These data serve for
training and testing of just the analysis part of the visual motif-finding, analo-
gous to typical (non-visual) motif-finding challenges. Here, each sequence is a
unique task, made of basic GUI interactions (Actions), performed by 7 different
computer users. Test users performed the first 3 or 4 loops of each task, and these
were labeled to quantify experimental performance. Loops within the same se-
quence naturally differ from each other by having extra, missing, or iteratively
changing actions. % Variation Seq is the % of sequences that have at least one
user variation, either noisy or missing.

ate, a screenshot and mouse cursor location. The action types which are used are:

LeftClick,RightClick,DoubleClick,ClickDrag, and Typing.

Assuming that there is a sequence of actions T which, in the user’s mind, is

the ‘true’ sequence. Template T contains the ground truth sequence of events that

the user wishes to be repeated to complete their long chain of iterative tasks. If,

in demonstrating the task, the user just perfectly performed T once, the problem

would still be difficult, as:

1. The computer vision system seeks to find visual similarity between elements,

and if the loop is only performed once, then the system only has a single

training example for each future loop prediction.

2. The prediction of future actions relies on knowing about iterative changes

between user actions in different loops. For example, loop two might require

a click below the corresponding click in the first loop. This cannot be learned

from a single loop.

3. In reality, even when a user tries to complete a sequence correctly, they typi-

cally deviate from the true sequence. Multiple repetitions help the algorithm

to discover the ‘true’ intention of the user.

RecurBot therefore asks that the user performs several loops. The proposed motif-

finding algorithm is then used to recover a set of divided subsequences, given A.

4.2. Looping Action Recognition 76

The only assumption which is made is that the input full sequence A contains at
least one ‘good enough’ sequence T which is functionally equivalent to the true
sequence T. A sequence T is a sequence of actions which performs the same task
as T, despite having some minor additions or deviations from the ideal. Other
instantiations of T in A may be subject to extra, unwanted actions being performed,
or missing actions from the sequence. This proposed motif-finding algorithm is

usually able to deal with these issues.

4.2.1 Basic Motif Finding

Given a sequence A, the purpose of basic motif finding algorithms is to identify just
a pair of subsequences (S;,S;), each of which is composed of equivalent actions
executed in the same order [70, 71]. Because only a single pair is identified, this
is not suitable for the purpose of this work where all loops in A are desired to be

discovered.

Bagnall et al. [11] propose two greedy algorithms for finding a set of motifs
from an input sequence. They find the best matching pair of subsequences from all
the existing subsequence pairs in A first, then greedily match other non-overlapping
subsequences to this bootstrap pair. There are, however, fundamental limitations to
this greedy style algorithm. The largest problem is that it can be trapped in a local
minimum — if a bad initial pairwise match is found, then the algorithm can not
recover. These issues are demonstrated experimentally in Section 4.5. Further, they
require the motif length to be specified by the user. In comparison to these basic
methods, the proposed algorithm in this chapter maintain a set of candidate matches

while iterating over different length subsequences.

4.2.2 Distance Between Two Sequences Dist(S;,S)

Crucial to the motif finding algorithm is a method for determining the similarity
between a pair of candidate subsequences (S;,S ;). The algorithm requires a distance

measure Dist() which is small when the two subsequences perform the same task,

4.2. Looping Action Recognition 77

and is large otherwise. For example, given the following three sequences:

A:(, —)

B:(, ,) 4.1
(o)

It is expected A to have a smaller distance to B than it does to C. Each action is a
tuple containing the basic action a and, where applicable, screenshots at the start
and end of the basic action, and the respective mouse locations. For clarity, in this
example only the extracted screenshots are depicted. Dist is defined as the sum of

individual differences between corresponding pairs of actions, i.e.,

L
Dist(S;,S;) = Zd(S,-Z,SJ-Z), where
z=0
d(Siz,S}z) = daction(SizSjz) +dowj(SizsSjz)- 4.2)

The difference between actions, dacsion, 1S @ simple binary indicator function, ap-
plying infinite penalty if the basic actions (e.g., LeftClick, ClickDrag) per-
formed did not match, and a fixed cost of € where they do. € is a small constant
which makes the distance between different subsequence length different. dg,; is a
visual matching penalty, evaluated by comparing the Normalized Cross Correlation
between shifted sub-images of the screenshots extracted from the region around the

cursor position when the action took place.

The difference between actions, da sion, 1S defined as a simple binary indicator

function, applying infinite penalty if the basic actions performed did not match:

3] ifa; = aj;
dAction(Sth) - (43)
oo otherwise.

While dacrion compares two actions performed by the user, dgy; captures dif-

ferences between the visual data captured along with the two actions:

4.2. Looping Action Recognition 78

NCCoax (8,5}) +NCCoax (57,5}
o, (8:,8;) = 1= Sl o) (4.4)

NCCrnax (S, Sj) is the maximum value from the result of the Normalized Cross
Correlation between the screenshot images of §; and §;. The cursor position during
the interaction is used to extract a sub-image from the screenshot. Superscript s in-
dicates that a small sub-image is extracted and used for matching, while superscript
[indicates that a larger sub-image is used. The small and large image sizes in our
experiments are 61 x 61 and 101 x 101 respectively.

Only using Dist strongly favors trivial pairwise matches of length 1. Therefore,

a normalized distance, which favors longer subsequences, defined as
NormDist(S;,S;) = o~ SDist(S;,S;), (4.5)

is used where o is a small constant.

4.2.3 The Proposed Method for Multiple Motif Finding

The algorithm extends the exact time series motif discovery [70, 11] by jointly
adding to a setr of motifs instead of just a single pair. By assumption, the user has
provided K, the number of times they have performed the loop. The algorithm
starts by finding a set ¢ of candidate pairs of single actions. This set includes all
pairs which have a NormDist smaller than a threshold . Each of these pairs is
one possible candidate seed (ideally, two-of-a-kind), which could grow into a full

solution. For the example in Figure 4.2, this might be:

O (S Q== N G

Each pair is then grown by finding the closest matching action from .7 not yet

in the pair. This creates a set of 3-tuples:

(4.6)

4.2. Looping Action Recognition 79

Some of these lists correctly contain multiple occurrences of the same action, while
others do not. A second pruning stage shrinks this set to a manageable size. The al-
gorithm then extends each 3-tuple of single items in % into 3-tuples of two-actions,

by adding subsequent actions from A:

This process continues until there are no more items to add to each list. A score
of each candidate in % is assigned by measuring the average normalized distance
between each pair of subsequences. The list in 4" with the lowest score is returned

as the discovered set of motifs R. In this example, the expected output is

; ; ; 4.7)

It is noteworthy that the three separate loops have been correctly identified and
segmented, and the equivalent actions in each loop have been aligned. Also, the
extra action (of dismissing the popup window) has been correctly identified as noise,
and is therefore not shown in this final result. In practice, several strategies are
incorporated to make this process tractable, including ‘early abandon’ as the lists

grow — full details are given in Algorithm 1.

4.2.4 Artificial Subsequences for Robustness

The algorithm so far has been assumed that each version of R contained in A is a
perfect, unmodified copy. However, as has been discussed, many users will miss out
actions or include extra unneeded actions. The user variations can be categorized
into three classes: (a) Missing actions, where the user omits a single step; (b) Noisy

actions between two subsequences, and (c) Noisy actions within a subsequence.

4.2. Looping Action Recognition 80

Algorithm 1 Looping Action Recognition

Input: a sequence of actions A and the number of demonstrated loops K.
Output: a ranked list of identified looping subsequence alternatives (R, ...,R;)

—_—
—_—

—_—
[SSI]

—_
~

15:
16:
17:

18:
19:
20:
21:
22:
23:

24:

25:
26:

27:
28:
29:

30:

31:

D AN AN~ S oy

_
e

R+ 0

avgDists < 0

Dist <— buildDistanceMatrix() > Cache distances to save computation
C— {(A,A)) VA, € A VA, € AJA # A} > L = 1 candidates

for each (A,,Ay) in C do

thisAns < {A,,A,}

thisDist <— Dist(Ax,A,)

fornn=1:K—2do
NN < getNN(Ay,Ay) > getNN finds closest example to both A, and A,
thisAns.append (NN)
thisDist += (Dist(Ay,NN) + Dist(A,,NN))

R.append (thisAns)

avgDists.append (DIt

: R« getBestTop(R,r) > Sort all the candidates by avgDist, and retain only

the best r
minDist < min(avgDists)
for each Lin (2,3,.. ,%’) do
C,D < GenArtificial Subsequences(C,D) 1> Create artificial subsequences
(Algorithm 2)
for each (S,.r,S¢cn),D in C,D do
thisAns < {S,er,Sgen}
thisDist < %
fornrn=1:K—-2do
if thisDist > minDist then
go to 18 > Early abandon
SNN getNN(S,ef, Sgen)
thisDist += L7 (Dist(Sy.r, SNN) + Dist(Sgen, SNN))
thisAns.append(Snn)
if thisDist < minDist then
R.append (thisAns)
avgDist.append (thisDist)
R «+ getBestTop(R,r) > Sort all the candidates by avgDist, and retain
only the best r
minDist < Rllast|.distance()

4.3. Prediction of Future Actions 81

Figure 4.2 shows an example of a noisy action within a subsequence, where the
user has dismissed a system dialogue with a click while demonstrating the loops.
To cope with these user variations, the algorithm generates artificial subse-
quences during the solving process. It extends 4 with copies of items within €,
each of which has some user actions removed, or extra ones appended. These sim-
ulate user variations, helping to improve the matching between noisy input subse-
quences. Distance measures computed from or to any of these generated subse-

quences has an additional penalty I" added, defined as

I(S;) =n“+sB, (4.8)

where a is the number of appended actions and s is the number of skipped
actions; 7 and f are penalty costs added for each appended actions and skipped
actions respectively. Full details are given in Algorithm 2.

The parameters ¢, 3, and 1 are learned using ground truth data to create dis-
tance matrices where perfectly matched actions have distances 0.1, otherwise o.

The optimization is

a,p,n:argmin{— Z(F(Ai|a,[3,n):fl~)}, (4.9)

a,B.n feT
where T is the training set and F (x) is the proposed looping action recognition algo-
rithm, which takes as input sequence of actions A and outputs a list of subsequences

R.

4.3 Prediction of Future Actions

The discovered sets of loops are used to predict the user’s intended actions. The
best discovered set of subsequences R effectively forms a training set to enable
this inference. See, for example, the columns in Figure 4.6, or the corresponding
elements in each tuple in Eq 4.7.

For each discovered action A;, the set of corresponding actions is constructed

using each of the K subsequences in R. This gives up to K cropped training images

4.3. Prediction of Future Actions 82

Algorithm 2 Generating Artificial Subsequences

Input: a list of length L candidate pairs C = {(Sref0, Sgen0), -+, (Srefcs Sgenc) }» the
list of distances between subsequences of the pairs D = {Dy,...,D¢}, the se-
quence of actions A, and the best so far minimum distance min.

Output: a list of length L+ 1 candidate pairs C = {(Sref0,Sgen0) s -5 Speses Sgenc J)}

and the list of distances between subsequences of the pairs D = {Dy, ...,Ds}}.
function GenArtificialSubsequences(C,D)

1:
2
3
4.
5:
6
7
8
9

10:
11:

12:
13:
14:
15:
16:
17:
18:

19:
20:

C+0
D« 0

for each (Sf(x),Sgen(y)),D in C,D do
if Avi1+1 & Sgen then

Siet-append (Axir+1)

Sgen-append (Axirt1)

if D—Jrcgi < minDist then > add an appended sequence
C.append ((Sref,Sgen))
D.append(D+n*t1)

for each sin {0,...,n} do > add a normal sequence (s = 0) and

skipped sequences s =0,...,n

ifAy 114 ¢ Srer then

return f!, D

iref +—x+L+1

lgen < y+L+1+s

nDist <— D+ sf + Dist(A;,,,Ai,,,)

if % < minDist then
Ster.append(A; f)
Sgen-append(Ai,)
Q-append((srefa Sgen))
D.append(nDist)

for each action in the loop. This set of crops associated with action A; is denoted as

;. The system iteratively plays back each action A; at time ¢ at a predicted screen

location (x*,y*), computed using Bayes’ Theorem as

x*,y* = argmax P(x,y| 4,1)
Xy

= argmax P(J4,1|x,y)P(x,y), (4.10)
Xy

4.3. Prediction of Future Actions 83

*
4

-

K User

inputs

/‘ >};T1Sirts Predicted

*\A p clicks '

*
y

Predicted
t ~clicks
* -
(a) Linear spatial prior (b) Pattern matching only

Figure 4.3: The proposed future action prediction algorithm chooses where to apply action
events, based on the small number of user demonstrations. (a) If the demon-
stration events follow a linear pattern, the spatial prior uses linear regression to
predict action locations. (b) If the demonstration events do not exhibit spatial
correlation, then the spatial prior becomes uniform and the pattern matching
likelihood becomes dominant. Here, it learns to locate the ‘.pdf*’ files on a

cluttered desktop.

where [is the current screenshot. The evidence is computed as

P(A1x,y) = [] NCCy,(I,H), 4.11)
Hest;
where NCC, , computes the normalized cross-correlation when the crop H is over-
laid on the screenshot I at location x,y. Eq 4.11 effectively finds the x,y location
in the current screenshot which best agrees with the visual appearance of the user-
demonstrated actions.

Eq 4.10 includes a location prior P(x,y), which is based on the relative offset
of user clicks over time. While some actions always occur at the same x,y location,
others occur at a different location each time, for example when sequentially click-
ing on each checkbox on a web page or each row in a spreadsheet. These behaviors
are modeled by assuming a linear relationship between locations being clicked on
the same action of each loop (Figure 4.3(a)). Due to the low number of exemplars

for each action, P(x,y) is modeled using a linear regression model, assumed to be

4.3. Prediction of Future Actions 84

independent for each dimension:

P(x,y) = P(x)P(y) (4.12)

= Norm, [¢,¢, 6] Normy|[@yt, Gyz], (4.13)

where 672, Gyz, ¢, and @, are inferred from the training examples using maximum
likelihood learning. Where GXZ and Gy2 are above a threshold, it is assumed that
there is no spatial dependency between iterations of the loop, and the visual match-
ing should dominate (Figure 4.3(b)). To ensure this, the prior probabilities which
overlap with previously clicked locations is set to zero to prevent the trivial solution
of previously selected locations being re-suggested. Here, additive smoothing is ap-
plied to the probabilities in Eq 4.10 to prevent issues arising from zero probability

areas.

4.3.1 Human-in-the-loop

A good PbD system should let users know the next action that the system is going to
execute, and allow users to approve or, if necessary, modify the action [52]. After
predicting the most likely action location x*,y* at time step ¢, RecurBot shows the
user an animation of the proposed action and asks them to approve or correct the
action. The user’s response is added to the information ‘bucket’ for this action, used
for recomputing ¢y, ¢y, 62, and Gy2 for the action at the next iteration. This means
that as the human interacts with the system, it learns more about relative offsets

between action locations.

The stopping condition for looping is set to 70% of the first detected maxi-
mum posterior, max(P(x,y|%;,1)). When the maximum posterior falls under the
threshold, the system asks the user whether to stop or continue. If the user elects
to continue, the stopping threshold is then updated to 90% of the current maximum

posterior.

4.4. Datasets 85

4.4 Datasets

For experimental validation of the algorithm two datasets were created. Col-
leagues were informally surveyed to identify GUI tasks that they found repeti-
tive. From those, tasks that span different lengths, input modalities, apps and
GUI interfaces, complexities, and repetitions were distilled. The proposed al-
gorithm were tested with the two datasets in aspects of looping action recogni-
tion and the complete pipeline. These fully annotated datasets are made avail-
able with the proposed algorithm. The datasets can be found in the project page:

http://visual.cs.ucl.ac.uk/pubs/RecurBot/

4.4.1 Demonstration Dataset

The dataset comprises 55 tasks for quantitative evaluation of the motif-finding al-
gorithm. Each sequence was recorded by asking 7 experienced computer users to
perform the first four or so loops of specific repetitive GUI tasks. While working
with their knowledge, they were recorded by the sniffer-software that captured both
mouse/key events, and screenshots throughout each task. The mouse/key events
in this dataset, and all sniffer-events observed at test-time, are converted into ac-
tions (e.g., single-click, double-click, click-drag, etc.,) using the basic version of
[43]. Each task’s action-transcript was then annotated, identifying the boundaries
between loops and tagging the parts of each loop that included either extra actions
or were missing actions, as compared to the other loops in the task.

Table 4.1 demonstrated statistics of this dataset. On average, each loop in this
dataset has 4.33 actions. A test user performed the first 3 or 4 loops of each task, and
these were labeled to quantify experimental performance. Because real users are not
perfect, loops within the same sequence naturally differ from each other by having
extra, missing, or iteratively changing actions. On average, 65% of sequences have

noisy actions, and 29% have missing actions.

4.4.2 Looping GUI Automation Dataset

This dataset is used to benchmark the complete pipeline of the algorithm, the Loop-

ing Action Recognition and the Action Prediction. The systems evaluated on this

http://visual.cs.ucl.ac.uk/pubs/RecurBot/

4.5. Validation of the Algorithms 86

dataset are challenged with correctly predicting the type and location of future ac-
tions, given the user demonstrations as training data. The dataset comprises 15 tasks
of fully annotated basic actions, including a user’s demonstration, all subsequent in-
teractions required to complete the task, and the mask for every basic action. This
action mask enables future action predictions to be evaluated. Any prediction, of
the correct action type, which falls within the marked area in the mask is deemed to
be correct. The testing protocol is outlined in Appendix A and B, which is itself a

contribution, necessary for making reproducible GUI-action evaluations.

4.5 Validation of the Algorithms

First, the system’s ability to recognize looping actions in the user’s demonstrated
loops is measured using the Demonstration Dataset. The proposed looping action
recognition algorithm is able to produce a ranked list of possible answers, sorted by
the average value of normalized distances between every pair of motifs inside the
answer. The fraction of tasks, where the correct answer is within the top k& answers
returned by the algorithm, is counted up and this success rate is plotted against
different values of k. Figure 4.4 demonstrates the performance of the algorithm

compared to three baselines: Division, Motif and Greedy motif.

Division is the simplest baseline, which assumes that there is no human varia-
tion in the demonstration, thus the input sequence of actions can be segmented into
K equal-length subsequences at every % actions. This algorithm therefore does not
rely on the distance measures. greedMotif [11] is a standard motif-finding algorithm
which first finds the best pair of motifs, then grows a set of motifs from that. Motif
is an improved version which is modified from the standard motif-finding algorithm
to grow a set of motifs from all possible subsequence pairs instead of growing only
from the best pair of each length. Both Motif and greedMotif perform equally well,
gaining around 10% improvement over Division. This improvement is due to the
robustness that these motif discovery algorithms have when presented with noisy
actions between looping subsequences. It is noteworthy that the greedy algorithm

is very sensitive to the distance function between two visual patterns. When greed-

4.5. Validation of the Algorithms 87

Motif does not have access to the ground truth distance matrix, NCC-greedMotif,

the performance is far worse than the Division algorithm.

NCC+Noisy is the proposed algorithm without the missing actions solver. It
gains about 15% improvement from Motif. This shows that there are two types
of noisy actions. The first are actions between looping subsequences, which can
be solved using the ordinary motif discovery algorithm. The second are the noisy
actions within a looping subsequence, which can be addressed by including artifi-
cial skipping actions to the list of candidates. Lastly, GT+Noisy+Missing shows
the performance of the proposed looping action recognition algorithm when it has
access to the ground truth distance matrix between actions. So what happens to
the prediction when motif-finding fails? The 4% of sequences which failed in this
case did not have even one good enough looping subsequence in the input. Hence,
they violate the only assumption of the algorithm. By disapproving and overriding
predictions, the system gets extra chances to improve. Figure 4.6 demonstrates an

example output of our looping action recognition algorithm.

Next the action prediction algorithm is evaluated on the Looping GUI Au-
tomation Dataset. The prediction is masked as correct if the user simply accepts
the default suggestion using the space bar. If the human was required to modify a
predicted action, this is counted as an Incorrect prediction. The correctly predicted
actions, the number of incorrectly predicted actions, and the number of human in-
terventions needed when the prediction scores are below the stopping threshold are
counted. The system’s success in assessing when to stop iterating is also mea-
sured. When the system prematurely prompts the user to halt iterating, this failure

is counted as an ‘Early-stopping’ failure.

After training each task with 3 demonstrated loops, how many actions were
correctly predicted (so the user simply approved the default: either an action or
the decision to terminate) are measured. 85.78% of sequences had all their actions
correctly predicted. In 6.90% of tasks the score fell below the stopping criterion and
so the system recommended exiting; this included tasks where the next prediction

would have been correct. The final 7.33% of tasks were confidently predicted,

4.5. Validation of the Algorithms 88

Figure 4.4: Quantitative results of the proposed looping action recognition algorithm on
the Demonstration Dataset. The proposed algorithm, NCC+Noisy+Missing, is
compared against three baselines: Division, greedMotif, and Motif algorithms.
GT in the name indicates that the algorithm has access to the ground truth dis-
tance matrix instead of using Eq 4.2, while NCC indicates that the algorithm
use the proposed Normalized Cross Correlation as the distance function be-
tween two visual objects. GT Motif, NCC Motif and GT greedMotif share the
same graph at { GT,NCC}-Motif, GT greedMotif. GT+Noisy+Missing demon-
strates the accuracy of the proposed algorithm when it has access to the ground
truth distance matrix. NCC+Noisy is the ablation study, showing the result
when the artificially appended actions is removed.

but not approved by the human user. Quantitative detail of each task is shown in
Table 4.2.

Although simple computer vision techniques are used for appearance match-
ing, the results show that they suffice when paired with action-analysis in the user-
in-the-loop scheme. Figure 4.5 shows the ability to generalize to different test pat-
terns. Here, the user is presented with a web page which links to many different
users’ homepages. The task is to follow each link, and save each homepage as a
pdf file. RecurBot successfully iterates through the links, prompting the user for
help when required. More qualitative views of action prediction are shown in Ap-
pendix C.

Figures 4.1, 4.5 and 4.7 show difficult examples that can be completed by the

system. Figure 4.7 shows the user adding mobile contacts from a desktop spread-

4.5. Validation of the Algorithms 89

Figure 4.5: Prediction / execution / improvement of future actions. Top: An illustrated

event history in 14 steps. In this unseen test task the user demonstrated three
loops, each starting with a left-click on a hyperlink (shown as red boxes). Boxes
in blue show the bot’s subsequent predictions. For each such prediction (e.g.,
bot 4), the user presses the spacebar to confirm they are happy for the system to
proceed automatically. If the prediction’s score falls below the stopping thresh-
old, the system asks the user to approve, correct, or additionally, to terminate —
these events are labeled as green boxes followed by a question mark. “hum X
shows when the human terminated the loop. Here, “Bot 5 ?” asked the user
to confirm whether the pattern in the box is the next target; the user instead
corrected the system by specifying the next correct target as “hum 6”. Bottom:
The figure shows what the user sees when autocompleting the task. The system
visualizes the action it will take next, rendered as a virtual mouse-arrow. It asks
the user for approval through large rendered messages, though two-way audio
interfaces could be easier for other users to access.

4.5. Validation of the Algorithms 90

Figure 4.6: An example output of the proposed looping action recognition algorithm. The
task here is to make a list of filenames from a folder of files. The system
outputs a rendering showing discovered loops in rows and matched actions
across loops in the same column. Numbers before the actions indicate the order
in the input sequence. Here, there are three missing actions and one noisy
action (not shown), all of which were detected by the algorithm. The images
are extracted from the screenshots at the position each action was performed. It
can be seen here that the variation in spatial location of user interaction; images
within each column are shifted, or worse. It is this variation that makes it hard
to parse a user’s demonstration.

Figure 4.7: Another example that can be easily completed by RecurBot: Adding mobile
contacts from a spreadsheet program via an Android remote access program,
Vysor [28]

Task Correct Correct Incorrect Incorrect | Total actions
(Auto) | (Approval) | (Approval)
C.1 Automaing SMS sending 64.7% 9.7% 0.3% 0.3% 344
C.2 Adding contacts on phone from spreadsheet via 3rd party app 87.8% 12.2% 0.0% 0.0% 224
C.3 Saving area chairs’ homepage as PDFs (icons clicked in regular order) | 78.3% 18.8% 0.0% 2.9% 69
C.4 Saving area chairs’ homepage as PDFs (icons clicked in random order) | 81.2% 14.5% 1.4% 2.9% 69
C.5 Renaming files on Google Drive 76.4% 8.3% 6.3% 9.0% 144
C.6 Deleting specific files on a cluttered desktop 68.0% 28.0% 0.0% 4.0% 25
C.7 Deleting foles in folder (smaller icon) 68.0% 12% 0.0% 20% 25
C.8 Creating list of filenames from a folder (files selected in regular order) | 82.0% 13.1% 4.9% 0.0% 61
C.9 Creating list of filenames from a folder of remote computer (regular) 87.7% 11.3% 0.0% 1.0% 97
C.10 Creating list of filenames from a folder of remote computer (random) | 82.7% 12.4% 3.9% 1.0% 97
C.11 Creating Slides of images from folder of images 78.2% 13.5% 8.3% 0.0% 96
C.12 Zipping every file in a folder 70.6% 17.6% 5.9% 5.9% 34
C.13 Unzipping every file in a folder and renaming the files 75.7% 15.3% 0.0% 9.0% 111
C.14 Taking screenshots of list of websites 79.4% 6.5% 13.0% 1.1% 92
C.15 Taking screenshots of list of websites on mobile 87.5% 12.5% 0.0% 0.0% 106

Table 4.2: Quantitative evaluation of the task completion system on the Looping GUI Automation Dataset. After training each task with 3 demonstrated
loops, how many actions were correctly predicted and automatically run (Correct (Auto)). How many action were correctly predicted but
the score fell below threshold, so need user approval (Correct (Approval)). If the system make mistake on the prediction and the confident
score is below threshold, the system wait for user approval or modification (Incorrect (Approval)). If the system make incorrect prediction
with high confident, it is counted as “Incorrect”. Qualitative views of action prediction are shown in Figure 4.5 and more detail on the tasks
can be found in appendix C.

4.6. User Feedback 92

sheet program to an Android phone via Vysor remote access [28]. This is difficult
because it involves transferring back and forth between a spreadsheet program on
a PC and a third party program that allows users to control the mobile device via
GUL This is an example where visual data is crucial; accessibility APIs cannot cap-
ture information from both operating systems. Figure 4.1 shows renaming files on
Google Drive. Computer-literate users can perform this easily on files on their own
computer. However, for novice users or web-based storage, programmatic solutions
are not always possible. RecurBot successfully completes the task after watching
a user demonstrates using names from a spreadsheet program to rename Google

Drive files. More details of these tasks are given Appendix C.

Timings

An average user can complete the 7 steps in one loop of the ‘Google Drive files’
task in 12 seconds, ‘printing people’s homepages’ in 36 seconds (5 steps per loop),
and ‘adding mobile contacts remotely’, a 13-step loop, in 37 seconds. The shortest
task comprises 13 loops, and takes the average user 2 minutes to complete manu-
ally, taking their full attention. In contrast, once the prototype is trained, the user
spends only a second to check and approve each action, and about half a second to
correct the action if a wrong target is predicted (so 13-20 seconds instead of 2 min.,
after the one-time cost of recognition). Presently, the looping task recognition part
takes most of the processing time. While it averages 18 minutes, this is trivially

parallelizable unoptimized code, and runs unattended.

4.6 User Feedback

A user study to evaluate the user feedbacks to the prototype system had been con-
ducted. Ten users, who are white-collar workers, participated in this study. The
group consisted of seven females and three males, their ages varying between 24 to
40 years. One of the participants works as a programmer, and the rest have little to
no programming skills (the average score of ten participants on the question I can

do programming” is 2.4 on 7-point Likert scale). All of the participants reported

4.7. Conclusions and Future Work 93

that they used computers in their daily work.

The participants were introduced to the RecurBot system and each of them was
asked to complete two looping tasks in rounds: the first round has them complete a
task manually (without the system), while they complete the task using the system
in the second round. The tasks set to the users were “creating a list of filenames from
the files in a folder”, and “creating slides of images from a folder of images”. After
completing the tasks, participants were asked to fill out the USE questionnaire [64],
which consisted of 30 items measuring the usability of the system in terms of its
usefulness, ease of use, ease of learning, and satisfaction. Each item was rated on a
7-point Likert scale, with values from ”Strongly Disagree:1” to ”Strongly Agree:7”.

The overall averaged score of the system was 5.70, and the breakdown of
scores across categories is shown in Table 4.3. Participants agreed in the open
ended comments, that the system reduced tedium in completing looping work, is
easy to learn and use, and gains users’ trust by asking the users when a prediction
is uncertain. Users expressed that they would like the initial analysis to run faster,

and for the pattern matching to be more robust (e.g., to occlusions).

Category Score /7
Usefulness 5.65+0.36
Ease of use 5.51+£0.30

Ease of learning | 6.05+0.06
User satisfaction | 5.86+0.14
Overall average | 5.701+0.32

Table 4.3: Results of the user study on the prototype system. Each question was scored
on a Likert scale out of a maximum of 7, and the questions in each of the four
categories were averaged for display in this table.

4.7 Conclusions and Future Work

This chapter has shown how to recognize repeated actions in hybrid visual-sniffer
data, when a user interacts with a GUI. The system recognizes and predicts further
actions, showing improvements over the baselines of existing motif finding algo-
rithms.

For future work, it is challenging to deal with situations where the scrollbar

4.7. Conclusions and Future Work 94

or navigation buttons are required to access GUI elements required for interaction.
Extending the matching algorithm using OCR is also a sound improvement. This
would help to find matches in cases where the text is important. Even without these
enhancements, RecurBot demonstrates a new problem within action-recognition,
and shows strong potential for enabling repetitive GUI-based tasks to be performed
quickly, which has special benefit for motor-impaired and hands-free computer
users.

This chapter shows that with RecurBot casual users can create automation
script by simply demonstrating the task. To improve further on usability and ro-
bustness of the system, the need for sniffer program has to be eliminated. The
research on learning the user demonstrations from videos will greatly improve us-
ability of the visual-based PbD system by allowing the system to learn from richer
sources such as existing instruction videos on YouTube. The next chapter focuses
on using machine learning to predict the sniffer-like output from the demonstration

video.

Chapter 5

Generating Log-file from Video

In the last two chapters, a visual-based Programming by Demonstration system
which generates automation scripts for basic computer tasks from user demonstra-
tion screenshots and an algorithm which allows the system to work with more chal-
lenging looping tasks are presented. Although both of them are less intrusive com-
pared to traditional PbD systems, i.e., work without using special APIs of Operating
Systems or the applications, they still rely on a sniffer or key-cast program to log

user demonstrations and save related screenshots.

This leads to the third aspect of the main research question, “Is it possible to
remove all instrumented tools needed to observe the demonstration?” This chapter
attempt to answer the question by developing a computer vision system which can
do the same job as an existing sniffer program. In other words, a system which
learn to predict log-file solely from demonstration video is proposed. Due to ac-
tions on Computer Desktop environments are obscure and the screenshot images
can vary drastically, this study starts with simpler environments: console game en-

vironments.

Game and player analysis would be much easier if user interactions were elec-
tronically logged and shared with game researchers. Understandably, sniffing soft-
ware is perceived as invasive and a risk to privacy. To collect player analytics from
large populations, the millions of users who already publicly share videos of their
game playing are examined. Though labor-intensive, it is a truism that someone

with experience of playing a specific game can watch a screen-cast of someone

96

else playing, and can then infer approximately what buttons and controls the player
pressed, and when. This chapter seek to automatically convert video into such

game-play transcripts, or logs.

To capture a player’s experience means watching them, probing them with dif-
ferent scenarios, and interviewing them to understand how they felt in the game
and afterward. Game analytics and large scale game evaluations are also impor-
tant, to supplement such careful analysis of individual players. But practical con-
straints influence the balance between these kinds of depth vs breadth analyses. For
example, when studying how players experience different game levels, important
insights about play-tuning and interfaces come from both small focus-groups, and
global-scale cohorts of players. When available, just the log files themselves pro-
vide invaluable insights [97, 86, 85, 87]. Critically, the sampled population size for

each study is partly a question of time and cost.

DeepLogger, a Convolutional Neural Network (CNN) which is custom-built to
generate player-computer interaction log-files from gameplay videos, is proposed in
this chapter. An example of its intended use would be to collect information about a
specific game, and how players do better/worse depending on whether they play us-
ing a keyboard, game controller, or a particular mobile phone model. A DeepLogger
CNN would first be trained by a cooperative game-player. She would record video
and key/button logs on a computer with a sniffer program installed. The trained
DeepLogger could then be run on each of the 10%...10° relevant gameplay videos
of that game. The resulting log files could reveal trends and advantage-giving inter-
faces. Additionally, for interface-researchers who don’t own the game’s copyright
or code, they can avoid the copyright infringement risks that sometimes go along

with building emulators [24].

The proposed network is evaluated on a spectrum of quantitative metrics,
through different scenarios: training and testing on different players’ videos, dif-
ferent levels, and different video encoders. Two classic games from two popular
console systems: Tetris (NES) [76] and Mega Man X (SNES) [18] were picked as

the test cases, shown in Figure 5.1.

5.1. Baselines and Challenges They Face 97

Figure 5.1: Classical titles: Tetris from Nintendo Entertainment System (NES) and Mega
Man X from Super Nintendo Entertainment System (SNES) are used in the
experiments. Cover art © Nintendo Co., Ltd.

Both obvious and unexpected challenges are set out in the next section. These
are challenges faced by both humans and baseline networks, as they try to convert a
video into a log file. The rest of the chapter works through the proposed solutions,

and evaluation criteria for validating the DeepLogger approach.

5.1 Baselines and Challenges They Face

Initially, the performance of human gamers when asked to estimate what buttons
were pressed during the middle frame of a short video clip of someone else’s game-
play is illustrated. The challenges faced by both a human and the automated sys-

tems, as they attempt to generate interaction logs from videos, are then discussed.

5.1.1 Baseline: Human Performance

In this section, how people fare, when estimating user input logs from gameplay
videos, is analyzed. The small user study was conducted online, with 8 gamers
recruited to participate. The gamers were first screened, selecting only those gamers
who had experience playing Tetris and Mega Man X. In questionnaires, the gamers
had to answer 50 questions for each of the two games. Each question displays a
short video clip (Figure 5.2), randomly extracted from the gameplay videos. The

users were asked to select all the check-boxes for game-control buttons that they

5.1. Baselines and Challenges They Face 98

think were pressed in the short video clip.

Figure 5.2: Example of a question in the questionnaires: an example video clip of Tetris
gameplay, with check-boxes for a user to indicate what buttons they think were
pressed at the middle frame. While this is a demanding and time-consuming
task, users were fairly successful when “transcribing” Tetris.

Table 5.1 summarizes the human subjects’ and previews DeepLogger’s per-
formance on the task of predicting input logs from the video. It can be seen that
the system performs better than human experts on a harder game like Mega Man X
where there are many possible button-combinations, but it performs worse than hu-
man experts on Tetris, a game that is visually easier to decipher, with fewer possible

button-combinations.

5.1.2 Challenge: Class Imbalance

Class imbalance happens when some controls or button-combinations are used more
often than others. See button-combination statistics for Tetris and Mega Man X in
Figure 5.3. It is quite common for game logs to have substantial imbalance. For
instance, in a side-scrolling game such as Mega Man X, the character progresses by
moving steadily right, so other direction-controls are pressed less often.
Substantial class imbalance, as found here, severely impacts the training of

machine learning systems, and colors the performance metrics. For example, if one

5.1. Baselines and Challenges They Face 99

(a)

(b)

Figure 5.3: Button-combination Frequencies for Tetris (a) and Mega Man X (b). For Tetris,
the dominant input is Idle (nothing pressed), followed by three main buttons:
Down, Left, and Right. For Mega Man X, the two main classes are Idle and
Shoot, followed by the “Right and Shoot” combination. Y-axis represents
button-combination (Class) and X-axis represents frequency of the combina-
tion.

button-combination occurs 90% of the time, and the training optimization focuses
on subset accuracy (no partial credit for imperfect key combinations), then regard-

less of input, the network will simply always predict that one combination.

In the Architecture Section, the details of training DeepLogger CNN while

accounting for imbalanced data is given.

5.1. Baselines and Challenges They Face

Tetris Human DeepLogger
Single-label Accuracy 0.8400+0.00 0.7885
Multi-Label Accuracy 0.8400+0.00 0.7911
Fl1-score (Example-based) | 0.8644+0.00 0.8882
F1-score (Label-based) 0.7794+0.02 0.5691

Mega Man X Human DeepLogger
Single-label Accuracy 0.2250+0.18 0.5356
Multi-Label Accuracy 0.4420+0.20 0.7060
F1-score (Example-based) | 0.5936+0.19 0.8325
F1-score (Label-based) 0.472240.18 0.5363

100

Table 5.1: The performance of both human experts and the proposed DeepLogger system,
on estimating a gamer’s controller inputs (the log) from gameplay videos only:
Tetris and Mega Man X. The criteria (rows) are explained in the text, but higher
accuracies and F1 scores are better. Humans are better with Tetris videos, while
DeepLogger does better with Mega Man X, possibly due to the UI complexity.

5.1.3 Challenge: Multiple Control Buttons Per Record

For each time step, gamers can and tend to press multiple control keys at once. This
leads to many possible unique button-combinations. For NES, eight control buttons
can generate 8> combinations. For SNES, twelve control buttons can generate 122
combinations, though “select” and “start” are rarely pressed, leaving 10> most of

the time.

Notation: Q is the number of input buttons. x is the input of the classifier,
so in practice, a short gameplay video clip. Instead of a single output y, Y is the
classifier’s output vector, representing the state of all the controller buttons. Y is

the ground truth label associated with x.

The proposed CNN would normally be trained using a standard multi-class

loss function H,

0
Hy/(Y) := =) Y logY/, (5.1)
q

that compares the ground truth output vector Y’ to the softmax output tensor of

the network Y*. Y* is y

e

1_ 2
Y2 el ©:2)

softmax(Y,) :=

Training the CNN by minimizing the normal multi-class loss (5.1) will not

5.2. Architecture 101

work here for two reasons. First, if each button is a disjoint class, then the loss will
encourage the CNN to treat each button as mutually exclusive of others, discourag-
ing chords. Second, if each button-combination is deemed as a class, the network

will not be able to predict classes that weren’t present in the training set.

The Losses section in the Architecture description details how the multi-label
loss and the proposed multi-label-multi-choice loss are designed to cope with these

problems.

5.1.4 Challenge: Many-to-One

This is a problem that was not anticipated, and it may surprise readers who have
not analyzed interaction logs. In most games, there are times when pressing two
different buttons (or button-combinations) produces the same in-game result. These

situations is referred here as functionally equivalent, or as many-to-one situations.

Figure 5.4 depicts the confusion statistics of the two sample games. This chal-
lenge is the obstacle that most affects human performance on the video-to-log task.

For simplicity, a multi-button-combination is considered as a single class label.

Many-to-one happens when many classes generate one output. For example,
when the game is unresponsive, no matter which keys are pressed, the subsequent
frames are the same. To account for video examples with more than one associ-
ated label, the multi-label-multi-choice loss is proposed. The result is analyzed in

section 5.3.6.

5.2 Architecture

Convolutional Neural Networks (CNN’s) have proved successful in a wide range of
applications, especially on computer vision tasks such as image classification. In
this research a new CNN architecture for transcribing user input logs from videos of
gameplay is devised, by combining existing CNN components and carefully choos-
ing appropriate training procedures to tackle gameplay video challenges. Moreover,
a new loss function, multi-label-multi-choice loss, is proposed to tackle the many-

to-one challenges, described in the section 5.1.4. The network is implemented in

5.2. Architecture 102

button-combination(class)

button-combination(class) (b)

Figure 5.4: Functionally equivalent button-combinations for Tetris, shown in (a), and Mega
Man X shown in (b), are visualized through confusion matrices. Each numer-
ical entry indicates how many times the button-combination (of that row) pro-
duces the same visual output as another button-combination (column).

5.2. Architecture 103

Tensorflow [6]. The dataset and the codes can be found at the project page.' It is
worth to note here that all the network setting: the number of convolution and fully
connected layers as well as dropout ratio and learning rate were achieved empiri-

cally through a number of experiments which are omitted in this report.

5.2.1 The Network

The DeepLogger network is composed of five 3D convolutional layers, each of
which has rectified linear units (ReLLU) as activation functions. The network then
has five fully connected layers with dropout between layers. Table 5.2 demonstrates

the diagram of the proposed CNN network.

Layers | Kernel Dimensions \ Number of kernels
Input input dimensions = Dx1xW xH
Convl 3x5x%5 24
Conv2 3x5%5 36
Conv3 3x5%5 48
Conv4 3x3x%x3 64
Conv5 3x3x%x3 64
Dense6 output dimensions = 1164
Dropout keep =0.8

Dense7 output dimensions = 100
Dropout keep =0.8

Dense8 output dimensions = 50
Dropout keep = 0.8

Dense9 output dimensions = 30
Dropout keep =0.8

Output output dimensions = C

Table 5.2: Diagram of the proposed DeepLogger Network where D is the number of frames
per clip, which are 21 frames and 11 frames for Tetris and Mega Man X respec-
tively. W xH are the image dimensions of the gameplay videos, which are the
default screen dimensions of NES, 256 x224 for Tetris, and SNES, 586x448
for Mega Man X. C is the number of buttons, with 8 buttons for Tetris and 12
buttons for Mega Man X.

5.2.2 3D convolution layers

In this work, a video is deemed as a stack of temporal 2D images (frames). Before

passing each frame to the network, the RGB frame is transformed into a grayscale

'ttp://visual.cs.ucl.ac.uk/pubs/DeepLogger/

http://visual.cs.ucl.ac.uk/pubs/DeepLogger/

5.2. Architecture 104

image. While 2D convolution layers look at a whole temporal block at a time which
does not consider relations between consecutive frames and the frames order, 3D
convolution layers look at smaller temporal blocks. In Table 5.2, “Conv” are 3D
convolution layers. The temporal dimension of each layer is set to 3 which means
that the network is restricted to consider temporal relations of every three consecu-

tive frames of the given temporal block.

5.2.3 Training

Since user input log data is extremely imbalanced, as shown in Figure 5.3, the
network is trained by over-sampling all other classes. The effect is that in each mini-
batch, the non-majority classes (button-combinations) have comparable numbers of
samples to the majority class.

One data point for Mega Man X and Tetris are set to +5 and £10 consecu-
tive frames per short clip respectively. The network is trained with the mini-batch
scheme using batch size 16 for 50 epochs. The learning rate for both games are
fixed to 1E-5.

The imbalanced training procedure is compared with the normal training pro-

cedure on both games in the Experiments section.

5.2.4 Losses

As discussed in section 5.1.3, each input button can be pressed at the same time
and pressing one button is independent of pressing another button. This problem
is framed as the multi-label problem where each class can occur independently. To

train a multi-label NN classifier, sigmoid cross entropy loss is used:

Hy/(Y) := =) Y log(c(Y,)), (5.3)

where o (1) = ﬁ is the result of applying the sigmoid function to the output of
the network.

However, an extremely challenging characteristic of gameplay video is the
many-to-one issues are not yet addressed; and from an inspection of the training

data, these situations happen a lot, as shown in figure 5.4.

5.3. Experiments and Results 105

To tackle the issues, The sigmoid cross entropy loss is modified to consider
multiple label choices. When there are more than one class (button-combination)
which generates the same visual output as another class, functionally equivalent
class, the loss should not penalize those classes even if they are not the ground truth
label.

To make the network aware of that, a new ground truth is generated by re-
playing the emulator with the ground truth input logs and checking which button-
combination is functionally equivalent to the ground truth label. By doing that,
the new ground truth label for each example become a set of labels. It is called
multi-choice labels.

The modified loss is designed to consider each ground truth label as a set. It the
looks for the best label from those label set, and computes multi-label loss against
that label. The loss is named multi-label-multi-choice loss. The multi-label-multi-

choice loss is mathematically defined as

Hy:(Y) := min (=} ¥glog((¥,))), (5.4)

where Y] is a multi-choice ground truth label of the example i

5.3 Experiments and Results

In this section, experiments which were used to validate different components of
the network as well as the whole system’s performance are discussed. Table 5.3
demonstrates the key figures from the CNN experiments. DeepLogger is the pro-
posed network; DeepLogger2D is the modified version of the proposed network,
using 2D convolutional layers instead of 3D convolutional layers, to validate per-
formance of using 3D filters in the convolutional layers; the VGGNet [88] is a

baseline CNN due to its broad acceptance in the computer vision community.

5.3.1 Data

The datasets of both Tetris and Mega Man X were collected using the BizHawk

Emulator version 2.1.1. Gamers for each game were recruited to play the game

5.3. Experiments and Results 106

multiple times. For Mega Man X, one playthrough recoded from one gamer is used
as the training data and another recoded playthrough from the same gamer as the
test data. For Tetris, the network was trained on twenty gameplay recordings of one
level from one gamer; and the test data comprises of gameplay recordings of three
different levels and two additional gamers. BizHawk records user control inputs at
each time step for each gameplay, in a log-file which can be played back later. This
user input log, Y;, and the associated screenshot image, im;, are used to construct the
training data for the model. For the training data, one data point is a clip of 2n+1
frames, x; = {imi_n, iMi_y 11,y ..., iMy, ...,iMiipy_1,imiyy }, where n = 5 for Mega Man
X and n = 10 for Tetris.

The data is split into 80% training set, 5% for the validation set, and 15% test
set, which amounts to 316,848 training examples for Tetris and 436,203 training

examples for Mega Man X.

5.3.2 Performance Metrics

The performance of the proposed system are benchmarked over a range of different
metrics [98]. All metrics and their characteristics are listed in this section.

Single-label Accuracy or Subset Accuracy is a performance metric that cap-
tures the fraction of perfectly correct predictions. This performance metric only
counts as a correct predictions when Y is identical to the ground truth for all but-
tons/controls. This metric is similar to the accuracy of the single-label problem.

Multi-label Accuracy evaluates the fraction of correctly classified labels in the
multi-label setting. It returns 1 if the predicted set of input buttons is identical to the
ground truth, similar to the subset accuracy above, but it returns non-zero numbers
if the predicted result is partly correct, so some of the input buttons match. This
metric can analyze more fine-grained performance measurements of the classifiers,
because it gives partial credit.

Example-based F1-Score measures the harmonic mean of Precision and Re-
call, where it first evaluates the performance of each example separately, and then
returns the average value across the test set. Precision and Recall are complimen-

tary performance measurements to Accuracy, because they take into account class

5.3. Experiments and Results 107

imbalance, via false positive and false negative statistics.

Label-based F1-Score computes an Fl-score by first evaluating the perfor-
mance of each class label (input button) separately, and then returning the average
value across all class labels, where every class label is given equal weight (Macro

average).

Although the Example-based F1-Score is good for being sensitive to imbal-
anced data, it can be misled by very large numbers of test examples. Label-based
F1-Score, instead, focuses on measuring the performance of predicting individual

class labels for each input button.

5.3.3 Result: Overall Results

Table 5.3 presents the performance of DeepLogger network on Tetris and Mega
Man X. It is clear that DeepLogger has better performance across all four crite-
ria, at least as compared to the 2D alternate version of DeepLogger, and against
VGGNet [88], which is a standard architecture used in thousands of computer vi-
sion tasks. The numerical results are discussed below, with respect to the different

challenges identified at the outset.

Figure 5.5 and Figure 5.6 demonstrate detailed analysis of how the network
performs on per button and per class (button-combination) predictions. For Tetris,
the per button accuracy chart (a) suggests that the class rotate block clockwise and
class rotate block counter-clockwise are harder for the network to distinguish than
the classes which translate the block. This leads to poor performance on the button-
combination prediction, where the classes have both direction and rotation buttons
being pressed. For Mega Man X, the per button accuracy chart (a) indicates that the
network always made mistakes at predicting the button X because this button does
not map to any action, Also, the network got relatively low scores on the button L
because L and R are sliding the inventory window left and right respectively, and

there is no visual distinction between the two.

5.3. Experiments and Results 108

(a)

(b)

Figure 5.5: Detailed analysis of DeepLogger network’s performance on Tetris for per but-
ton and per class prediction. (a) shows the performance of per button prediction
and (b) shows the performance of per class prediction. In both cases, rotation
is the hardest to recognize. Small red X’s on the per button accuracy chart
indicate there is no ground truth label for the buttons (Up and Select).

5.3. Experiments and Results 109

(a)

(b)

Figure 5.6: Detailed analysis of DeepLogger network’s performance on Mega Man X for
per button and per class prediction. (a) shows the performance of per button
prediction and (b) shows the performance of per class prediction. Binary la-
bels in (b) along the horizontal axis represent pressing (1) and not pressing
(0) that game controller button and The Binary codes preserve the button-order
from (a). Red X’s on the per button accuracy chart indicate there is no ground
truth label for the buttons (R and Select). X-axis represents button-combination
(class).

Tetris DeepLogger (-balanced) | DeepLogger2D (-balanced) | VGGNet [88] (-balanced)
Single-label Accuracy 0.7885 (0.7735) 0.5712 (0.6558) 0.6386 (0.6558)
Multi-Label Accuracy 0.7911 (0.7735) 0.5734 (0.6558) 0.6298 (0.6553)
F1-score (Example-based) 0.8882 (0.8754) 0.7675 (0.7921) 0.7841 (0.7921)
F1-score (Label-based) 0.5691 (0.1865) 0.0874 (0.0000) 0.03907 (0.0000)

Mega Man X DeepLogger (-balanced) | DeepLogger2D (-balanced) | VGGNet [88] (-balanced)
Subset Accuracy 0.5356 (0.6014) 0.4126 (0.5088) 0.2730 (0.4480)
Multi-Label Accuracy 0.7060 (0.7459) 0.6135 (0.6901) 0.5151 (0.6400)
F1-score (Example-based) 0.8325 (0.8587) 0.7740 (0.8278) 0.7179 (0.7970)
F1-score (Label-based) 0.5363 (0.4352) 0.3578 (0.3149) 0.2866 (0.2616)

of the networks when they were trained without over-sampling the non-majority classes.

Table 5.3: Performance of 3 CNN’s: DeepLogger, DeepLogger2D, and VGG on Tetris and Mega Man X. Figures in parentheses indicate performance

5.3. Experiments and Results 111

5.3.4 Result: Class Imbalance

Three different CNN architectures with/without over-sampling the non-majority
classes were trained, to balance the number of examples from each class of button-
combinations. The results are listed in Table 5.3 where training with the over-
sampling scheme is shown first, and results after training without the over-sampling
scheme are shown in parentheses.

From the table, it can be seen that for Mega Man X, training with the over-
sampling scheme can cause a slight performance drop on three metrics: single-
label accuracy, multi-label accuracy, and example-based Fl-score. However, the

over-sampling scheme always improves the label-based F1-score.

5.3.5 Result: 2D VS 3D Filters

This experiment demonstrates the benefit of using 3D filters for predicting an action
from a sequence of images. The performance of two identical network where one
uses 3D convolutional layers (DeepLogger) and another that uses 2D convolutional
layers (DeepLogger2D) are shown in Table 5.3. Please note that, VGGnet [88] also
uses 2D convolutional layers.

For both games 3D convolutions significantly improve the performance of the

CNN’s across all metrics.

5.3.6 Result: Many-to-One

Figure 5.7 shows the improvement in score when training with multi-label-multi-
choice loss, compared to training with ordinary sigmoid cross entropy loss.

The emulator is used here to generate multi-choice labels from a normal single-
choice input log. The recorded user input logs are replayed through the emulator,
where at each subsequent time step, the script tries all possible button-combinations,
looking for ones that generate the same visual output as the original single-label.
These functionally equivalent (at least in the short-term) extra combinations are
added to the list of multi-choice labels, supplementing the original ground truth.

This process takes substantial time per gameplay log-file, so figure 5.7 only

reports the performance when the network is fine-tuned with multi-choice-multi-

5.4. Discussion and Conclusion 112

Figure 5.7: Comparing loss functions. This bar-chart compares two DeepLogger networks
using four performance metrics. For the red bars, the network was trained with
normal multi-label loss, and for the blue bars, the network was first trained with
normal multi-label loss on 90% of the training data, and then fine-tuned with
multi-label-multi-choice loss on the remaining 10% of the training data. This
bar-chart is generated from the Tetris gameplay dataset. Under each measure,
fine-tuning with multi-label-multi-choice loss yielded better scores. Y-axis rep-
resents prediction accuracy.

label loss on 10% of the training data. This process is trivially parallelizable if

needed.

5.3.7 Result: Generalization

Table 5.4 shows experiments where the network is validated on further challenging
tasks: training on one person’s gameplay videos and then testing on another per-
son’s, training on one level and then testing on different levels, and training with
locally collected video, and then testing on different videos that were encoded by

YouTube and downloaded back again, as if scraped.

5.4 Discussion and Conclusion

It has been shown in this chapter that it is possible to extract Ul log information
from gameplay videos. While the accuracy of the proposed system still has room for

improvement, compared with the 100% one would get from using sniffer software,

Tetris Base | Diff 1level | Diff 2 levels | Diff Gamers | Diff Encoder
Single-label Accuracy 0.7885 0.7251 0.7988 0.7228 0.7633
Multi-Label Accuracy 0.7911 0.7269 0.8017 0.7235 0.7649
F1-score Example-based | 0.8882 0.8489 0.8870 0.8441 0.8743
F1-score Label-based 0.5691 0.4529 0.5504 0.4137 0.6690

Table 5.4: Generalization evaluation. Base is the performance of the system when testing on gameplay video from the same level, gamer, and encoder.
Diff 1 level shows the performance of the system when testing with gameplay videos from a different level than the training data, by 1
level, Diff 2 levels tests the same thing, but where the difference is 2 levels. Diff Gamers level shows the performance of the system when
testing with gameplay videos from different gamers. Diff Encoder level shows the performance of the system when testing gameplay videos
downloaded from video-sharing site YouTube, where compression and frame-rate changes can occur.

5.4. Discussion and Conclusion 114

the system could be applied to the millions of users’ videos that are generated each
month. Preserving users’ privacy while collecting broad-scale usage statistics has a

value that is presently hard to measure.

The proposed network, along with the learning algorithm that finds function-
ally equivalent user commands, outperforms the baseline networks in Table 5.3.
Presently, it performs on par with what humans can do when focusing their atten-
tion, as shown in Table 5.1. It seems from the Mega Man X experiments that human
performance is not a ceiling on accuracy or F1 scores (people are slightly worse on
Mega Man X), but further machine learning developments are needed to improve

on those metrics.

In addition, the secondary benefit of the system has some interesting opportu-
nities. Figure 5.8 visualizes what is learned by the network. The figure shows that
the network learns to ignore or at least tolerate the background of the screenshots,
and focuses on the main character action. While the estimated logs are the main
focus of this research, the neural network’s ability to embed “similar” frames near
each other in feature space is valuable for other kinds of analytics. For example, a
researcher could search, across all recorded gameplay of one or many users, for sit-
uations where the game takes a certain turn, or the player performs a certain chain of
actions. These would correspond to points in the CNN’s abstract feature space, but
could be found more reliably than, say, using the absolute time passed from the start
of a level - different players move at different speeds. Also, the same game played
across different devices may have different logs, but the appearance part of inter-
esting in-game situations will be comparatively consistent. The CNN-embedding
gives researchers new opportunities to compare gameplay across game levels and
across players. This is similar to the opportunity DeepLogger may present for Al

researchers who want to train game-playing Al’s, without relying purely on self-
play.
For limitations, the current network can only predict user input logs for a game

where training data is available. In further work, it would be attractive to learn from

many games, to try to generalize across games, increasing the pool of available

5.4. Discussion and Conclusion 115

Figure 5.8: The graph visualizes Euclidean distances between embedding features, pro-
duced by the “Dense9” layer of the network, for the query clip and other clips
from different videos. Minl, Min2, and Min3 clips are examples of the clips
which have the smallest distances to the query clip. Y-axis represents distance
and X-axis represents time steps in the video of the retrieved gameplay.

training data.

Due to the problem, in this research, is framed as a classification problem, the
system is limited to games with discrete control inputs. Further work on transcribing
games with continuous inputs is worth exploring because modern games tend to use
continuous inputs such as mouse trajectory, gyroscope, or gestures.

Furthermore, it would be interesting to extend the network to work with multi-
player games. For 2-player games which each of their two controllers is fixed to
the certain part of the screen, such as Super Mario Kart [90], or fixed to certain
character appearances, such as Contra [92], the network might need only a little
tweak to work. However, the more challenging research topic is to transcribe the
games of which the controllers are not fixed to a certain aspect.

Last but not least, in future work an interesting research to be pursued is to
build a visual-based PbD system for desktop environments which can learn from

demonstrated videos.

Chapter 6

Conclusions

Three key aspects of the main research question have been thoroughly explored in
Chapter 3-5. This thesis proposes three separate systems: HILC, RecurBot, and
DeepLogger. Each system helps answering the main research question in differ-
ent angles that “Human in the Loop Machine Learning helps casual users train a

computer to perform general GUI task”.

For the first aspect, HILC, the first visual-based Programming by Demonstra-
tion, was built to prove that Computer Vision techniques coupled with user feed-
back scheme can replace the APIs, which is required by existing PbD systems. The
study in Chapter 3 has shown that users with no programming skills can use HILC
to create scripts for GUI tasks of three different programming concepts. The system
bypasses special API restrictions of other existing PbD systems with simple pattern
matching techniques and, when necessary, the system asks for help from the user,

by posing questions to the user, to clarify confusing patterns.

For the second aspect, RecurBot was developed to solve one weakness of
HILC which is the demonstration procedure. Following up research in Chapter 4 at-
tempted to simplify the user demonstration process of the visual-based PbD system
in Chapter 3. In this chapter, looping tasks, which are tasks that users have to apply
the same sets of actions to several targets to complete the tasks, are the main focus.
From the user study, user demonstrations are often inconsistent. The users unin-
tentionally demonstrate extra actions or skip some actions when they were asked

to perform the same task more than one time. This chapter established another

6.1. Future Research Directions 117

evidence that Computer Vision, Data Mining, and User Interaction can solve the
problem of sloppy users and help simplify the demonstration process of HILC. In
the study, a new motif discovery algorithm, which works better with user inconsis-
tency than existing motif discovery algorithms, was proposed. Furthermore, two
datasets and their evaluation frameworks for the looping GUI tasks were proposed

for future research.

Lastly, an attempt to go full un-intrusive had been explored. It is noteworthy
that the systems in Chapter 3 and Chapter 4 rely on a sniffer program to perceive
the interactions. In Chapter 5, Computer Vision approaches which allow computers
to perceive interactions between users and application GUIs by watching videos of
users perform GUI tasks are studied. Although the study started with more tractable
environments, console game environments, the environments shared many prob-
lems of GUI in general. From the study, obvious and obscure problems faced by
both human and computer were identified. Solutions for each problem were dis-
cussed and DeepLogger the network which produce a sniffer-like log file from a

demonstration video was proposed.

6.1 Future Research Directions

The research in Chapter 3 and Chapter 4 has introduced a new research direction
which will bring together the Computer Vision community and the Human Com-
puter Interaction community to work on a challenging problem, which is “how to
allow an end-user who does not have programming expertise to create an automa-
tion script without domain-application restrictions”. This is important because, first,
non-programming end-users which are a majority of computer users should be able
to create their own automation scripts without struggling with a steep learning curve
of learning programming concepts. Second, without any prior knowledge, end-
users should be able to create automation scripts for any applications and across

application as they can perform the tasks manually.

At the end of Chapter 3 and Chapter 4, ideas to improve visual-based PbD

systems are discussed. First, the system can be improved by having the ability to

6.1. Future Research Directions 118

understand states of the application, such as whether the application is still in the
processing state or the application has already finished the execution of the previ-
ous action. Research on understanding state of applications from GUI manipulation
videos has it own challenges and is a very interesting topic to study further for both
the Computer Vision community and the Human Computer Interaction community.
The more robust system which can deal with an off-screen object by analyzing from
the GUI screenshots could be another direction to explore in future research. Under-
standing behavior of some widgets such as scroll bar might lead to the awareness
of the system about off-screen object. Additionally, including the Optical Character
Recognition ability extends the application of the visual-based PbD to work with a
much wider range of tasks. Although there are many attempts to recognize born-
digital text [47], this is still far from perfect. On the PbD side, the system still lacks
the abilities to learn and synthesize more sophisticated programming concepts such

as nested loop tasks and conditional tasks.

In chapter 5, a tool that allows game user researchers to work with large scale
data were introduced. These millions of gameplay videos published on the Internet
are important for the game user research because these large scale data are almost
impossible to be created in a lab setting and the gameplays were collected in-the-
Wild. This in-the-Wild data will allow the researchers to study the real-world ex-
perienced of the game users. Although it had been demonstrated in the chapter
that the proposed network can extract user interaction log information from game-
play videos with comparable performance to human experts, the system still has
rooms for improvement. Logging different GUI environments are the whole new
challenges to be solved in the future research. Furthermore, CNN-embedding video
clip which is the by-product of the network can be applied to a range of application

to facilitate scene and action retrievals.

Although the main research question has been answered in Chapter 3-5, there
are still more research to be done to achieve a perfect Visual-based Programming by
Demonstration system. This thesis reports initial attempts to build a more flexible

PbD system by bridging Human Computer Interaction with Machine Vision. The

6.1. Future Research Directions 119

research in Chapter 3 was presented in ACM IUI 2017 conference and received
very positive responses. The authors were invited to submit the extended version
of the paper to the TiiS Journal. The research in Chapter 4 was presented in CHI
2018 conference as a late breaking work poster. Lastly, the work in Chapter 5 was

accepted to present in CHI PLAY 2018 conference.

Appendix A

Pseudo-codes

Here the details of the algorithms used in the evaluation protocol for our Looping
GUI Automation Dataset, in Chapter 4, are presented in Algorithm 3 where Algo-

rithm 4 and 5 are the sub-functions of the Algorithm 3.

121

Algorithm 3 The Looping GUI Automation Dataset Evaluation Protocol

Input: the ground truth sequence of actions GT and the evaluated algorithm A.

Output: the list of evaluation results R = {ry,...,rg}
I: R0
2: A.observeDemo(GT.Demo) > provide the user’s demonstration to the
algorithm
3: sharedMasks < GT.sharedMasks
4: for each loop in GT.automation do
5: if not loop.terminate then
6: for each stepIndex in loop.steps.len do
7: action, position <— A.observeAutomation(loop|steplndex).screenshot)

> the algorithm makes a prediction given the screenshot image

8: if loop[steplIndex).isSharedMask then
9: Mask < sharedMasks|stepIndex]

10: else

11: loop[stepIndex|.gtMask

12: if action is “terminate” then

13: if position in Mask then

14: r < WRONG _TERMINATE

15: if loop|stepIndex).isSharedMask then

16: RemoveRegion(Mask, position) > update the shared
mask

17: else

18: r <~ INCORRECT

19: if loop[steplndex].isSharedMask then

20: RemoveRegion(Mask) > update the shared mask

21: else if action is loop|stepIndex].gt Position then

22: if loop|steplndex).isSharedMask then

23: r «<—EvaluateUpdateRegion(Mask, position) > update the
shared mask

24: else

25: r «—EvaluateRegion(Mask, position)

26: R.append(r)

27 else

28: action, position < A.observeAutomation(loop(stepIndex|.screenshot)
> the algorithm makes a prediction given the screenshot image

29: if action is “terminate” then

30: r <—CORRECT

31 else

32: r <~ INCORRECT

33: R.append(r)

return R

122

Algorithm 4 Function for evaluating position and updating the mask

Input: the ground truth mask Mask and the evaluated position position
Output: the evaluated result r
1: function EVALUATEUPDATEREGION(Mask, position)

2: if position in Mask then

3: r < CORRECT

4: RemoveRegion(Mask, position)

5: else

6: r < INCORRECT

7: RemoveRegion(Mask)
returnr

Algorithm 5 Function for updating the mask by removing a region from the mask

Input: the ground truth mask Mask and the position to be removed position
1: function REMOVEREGION(Mask, position =)
if position is not @ then
for eachRegion in Mask.regions do
if position in eachRegion then
eachRegion.remove()

else
Mask.regions.random.remove()

A T o

Appendix B

Datasets

For experimental validation of our algorithm, we informally surveyed colleagues to
identify GUI tasks that they found repetitive. From those, we distilled tasks that
span different lengths, input modalities, apps and GUI interfaces, complexities, and
repetitions. To test our algorithm in aspects of looping action recognition and the
complete pipeline, we created two datasets. These fully annotated datasets will be

made available with the proposed algorithm.

B.1 Demonstration Dataset

We collected and labeled one dataset of 55 tasks for quantitative evaluation of our
motif-finding. These are summarized in Table 4.1 of Chapter 4. They were recorded
by asking 7 experienced computer users to perform the first four or so loops of spe-
cific repetitive GUI tasks. While working and with their knowledge, they were
recorded by sniffer-software that captured both mouse/key events, and screenshots
throughout each task. The mouse/key events in this dataset, and all sniffer-events
observed at test-time, are converted into actions (e.g., single-click, double-click,
click-drag, etc.,) using the basic version of Intharah et al..’s system. We then an-
notated each task’s action-transcript, identifying the boundaries between loops, and
tagging the parts of each look that included either extra actions or were missing

actions, as compared to the other loops in the task.

One limitation of GUI-task data is that a computer’s exact state (including in-

stalled software/hardware/network, layout of open windows, and currently-running

B.2. Looping GUI Automation Dataset 124

programs) is hard to store or replicate. For this reason, motif-finding generally
works with fixed datasets (similar to our 55 tasks). User interactions are harder to

replicate, but still possible, as explained next.

B.2 Looping GUI Automation Dataset

For benchmarking the complete pipeline of the algorithm, the Looping Action
Recognition and the Action Prediction, we constructed this dataset and its corre-
sponding evaluation protocol. The dataset comprises 15 tasks of fully annotated ba-
sic actions, including a user’s demonstration, all subsequence interactions required

to complete the task, and the mask for every basic action.

The dataset needs a protocol to drive the evaluation of the sequence of inter-
actions between the evaluated system and the dataset ground truth. The protocol
requires the evaluated algorithm to have two functions to interact with the ground
truth which are the observeDemo() to provide the algorithm a user’s demonstra-
tion of the task, and the observeAutomation() to progressively provide screen-
shot of each remaining step to the algorithm and take the prediction result from
the algorithm. The user’s demonstration is in the form of a long sequence of ba-
sic actions, their locations, and their corresponding screenshot images. For the
observeDemo(), the algorithm need to figure out what is the next basic action and
where to perform, given a screenshot image. The image is shown to the algo-
rithm to the observeAutomation() where the algorithm returns the prediction re-
sult. The algorithm may output the prediction result action and position where
the action € {LeftClick,RightClick,ClickDrag, DoubleClick,Terminate} and the

position is the most probable target location of the screen to execute the action.

The pseudocode of the main evaluation protocol is illustrated in Algorithm 3
in Appendix A. For each basic action, the protocol evaluates the type of basic ac-
tion, target location of the action, and the termination step. The protocol assumes
user interception when the algorithm provides incorrect prediction. The protocol
uses the ground truth mask in a basic action to evaluate the algorithm’s predicted

location. Due to basic actions of the looping tasks can be roughly categorized into

B.2. Looping GUI Automation Dataset 125

normal basic actions and the basic actions which are iterators, the masks are also
categorized into two types: normal masks and shared masks accordingly. For a ba-
sic action which is an iterator, the protocol only evaluates task completion, not the
order of completion, so after an algorithm performs an action the mask is updated.

Although the dataset and the protocol were carefully constructed for repro-
ducibility of this paper, and they captured most aspects of the GUI automation, we
leave the loading time between actions of the dataset as future work because under-
standing system states from screenshot images holds it own challenges. Hence this
dataset assumes that processing time between basic actions is instant.

We tested our system with this dataset and recorded our algorithm interactions
as the bot attempted to complete the task. The recorded information includes the
sniffer logs, raw action-lists, data files and spreadsheets employed by the users. All

15 tasks, and our results on them, are detailed in Appendix C.

Appendix C

Looping GUI Automation Evaluation

and Datasets

In this section, we show an overview of each of our 15 test tasks. For each task, we

give:
* The description of the task
* A representative screen shot from each task

* A grid showing each action performed. Different symbols indicate whether
the action was performed by a human or a computer, and if the user had to

correct the computer’s action.

* The output of our motif-finding algorithm. We show cropped screenshots

from the original input video, as grouped together by our algorithm.

Some tasks are harder for the bot than
others. In general, the automatic task
completion by the bot reduces the hu-

man effort by a factor of 3.
Per-action evaluation charts in the follow-
ing sections indicate where human effort

was required.

C.1. Automating SMS sending 127

C.1 Automating SMS sending

Here, the task is to send a sequence of SMS messages. Given a spreadsheet of
telephone numbers and associated test scores, the user is required to send a fixed-
format message to each telephone number containing their test score. The mobile

telephone is accessed via VPN software.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

* Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.1. Automating SMS sending 128
Loop Actions

1 H H H H H H H H H H H H H H H H H
2 |H H H H H H H H H H H H H H H H H
3 /]H H H H H H H H H H H H H H H H H
N A A A A S A A A A S S A A A
s \v v oW v W S S WS WS NN
6 |v v W v W S S N S NS S NSNS
A S A A A R A R A R A A A A A A 4
I A A A A A A A R A A A A A A A A 4
I I R A A A R A R A A A A A A A A
w |\w W W NN NN NN NN NN NN NN
nw \w w W W NN NN NN NN NN NN W
2 |\w W N NN NN NN NN NN NN NN
B3 |\Ww W N NN NN NN NN NN NN NN
W |\w W W NN NN NN NN NN NN NN
5 |\Ww W W NN N NN NN NN N NN NN
6 |Ww W W NN NN N NN NN NN NN W
7 \w W NN N NN NN NN NN NN NN
8 |wWw W W NN NN NN NN NN NN NN
v |\w VNN N NN NN NN NN NN NN
0 |V X NN N NN NN NN KK NN N NN
21 | W E

Legend

H

H

H
v

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

finding algorithm.

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

C.1. Automating SMS sending 129

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

O] 1 o [B] . . O] . [10] . [13] . [15] 161
w W o o e = = o

Loop s (| 1291) [24] 126) 5 || By

s o o [Somer e QPR e e e o S e [e >) ‘Hf
ol — o = = = — =

7 o o o s [P i e e e Pl il [e o oo [

C.2. Adding contacts on phone from spreadsheet via 3rd party app 130

C.2 Adding contacts on phone from spreadsheet via
3rd party app

Here, the task is to add multiple entries of contact information to a mobile phone.
On the computer, there is a database of contact names, each of which has an email
address. Using VPN software, each contact is added to the mobile phone via the

contacts app.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

» Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.2. Adding contacts on phone from spreadsheet via 3rd party app 131

Loop Actions
1 H H H H H H H H H H H H H
2 H H H H H H H H H H H H H
3 H H H H H H H H H H H H H
4 v v v W v W/ v v v W/ v
5 v v v W v W/ v v v N/ v
6 v 4 v v v W/ v v v W/ v
7 v VNN NNV NNV
8 v VNN NN NNV NNV
9 v v NN NN NNV

)
N
2
N

v vwvawvw N NN
v v v NN
v v v v NN NN
v vV v NN NN
v vV v NN NN
v wa v v N NN
v wvawawNvw N NN
v wvwvwawvw N NN
v VN NN NN NN
v v v v v NN NN
v vV v N NN

[S T N S T e S S SOy SO Y
—_ O O 0 N N R WD =
NN N N N YR SR
NN N N NN
NN N

Legend

H Actions demonstrated by user

H

Extra, unneeded action provided by user
}7{ Missing action, omitted by user

v Correct prediction, approved by user
W Correct prediction, automatic mode

X Incorrect prediction, but score below thresh-

old so user is prompted to confirm

XX Incorrect prediction, but score above thresh-

old so user must intervene

E System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding
system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

C.2. Adding contacts on phone from spreadsheet via 3rd party app

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

CE 23] 121 o K - [6] : 1 ¢ o] o) 11 (12]

. 1 " 0))

Plasad plassd o bl s ol oo a5 oo [o Rl
(3] : [14] : (5] : o (7] o (9] : [20] : . [22] s [24] [25]

Loop) H N

1| click(|| criek(|| criek(D[EPeCeT™ [enec b {[33Pe (T evsexc || crick b 3PeTcvexc b [gypeccTmes (l)(k(-) (1)<k(-)
[26] [27] [28]) [30] . [32] [33] - [35] - 1371 138]

Loop ¢ e o(CTRL- - (CTRL-

TP cric y || c1ickc y [[c1ickc) g"“(”’“' Click() \‘g"‘"”' Click() || crick() g‘“(““ Click() x"‘(”’“ um(.) um(-)

C.3. Saving area chairs’ homepage as PDFs (icons clicked in regular order) 133

C.3 Saving area chairs’ homepage as PDFs (icons

clicked in regular order)

This task is to save each of the CVPR area chair’s home pages as a PDF file. This
task is hard, as the images on the website are in a grid format rather than a list, and
because the task involves some one-time settings changes such as setting the printer
to save as pdf. In this version of the task, the user chose to select each item from the
grid in turn, starting with the image in the top-left before proceeding across the top
row. This gives a low variance in the linear regression term (Equation (11) in the
main paper), meaning that the spatial prior is used to predict future events based on

previous click locations.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.
* Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.3.

Saving area chairs’ homepage as PDF:s (icons clicked in regular order) 134

Loop Actions

1 H H HHH H H
2 H H H H H
3 H H H H H
4 v 4 v v
5 Xx W 4 v v
6 A4 4 v 4
7 4 W
8 4 W
9 A4 4 W
10 W 4 W
11 W 4 W
12 W 4
13 W 4 W
14 W 4 W
15 W 4 W
16 W 4 W
17 W 4 W
18 v N 4 W
19 W W 4 W
20 W 4 W
21 XX

Legend

H
H

3

H
v

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

C.3. Saving area chairs’ homepage as PDFs (icons clicked in regular order) 135

[e] : e [5] : [6] : B
Loop p [4] : LA
o ||crick() ;gpe(CTRL' Type(enter) || Click(™ sme |) |[Click(&«)
[71 : 8] : [10] : (113 :
Loop , [9] : L | [AN
1 || ctick() p)’pe(CTRL' Type(enter) || Click(sme |)||Click(&)
[12] : [13] [15] : [16] :
13] [~ AR
Loop [14] :
2 || click() P)’pe(CTRL' Type(enter) ||Click(__swve |y |[click(&)
Noise:

[2] : Click(Y1131 : Click(|veasPoF
niernc-5 PS

C.4. Saving area chairs’ homepage as PDF’s (icons clicked in random order) 136

C.4 Saving area chairs’ homepage as PDF’s (icons
clicked in random order)

This task is equivalent to that described in Section C.3, but this time the user clicks
on the images in a random order. Now, the variance in Equation (11) of the main
paper is high. This means that the spatial prior is not used; instead, the algorithm

uses the method described in Section 4 to correctly select new locations.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

» Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.4. Saving area chairs’ homepage as PDF’s (icons clicked in random order) 137

Loop Actions

1 H H HHH H H
2 H H H H H
3 H H H H H
4 v 4 v v
5 v N 4 v v
6 A4 4 v 4
7 W 4 W
8 W 4 W
9 W 4 W
10 W 4 W
11 W 4 W
12 W 4 VA4
13 W 4 W
14 W 4 W
15 W 4 wWw o/
16 W 4 W
17 W 4 W
18 W 4 W
19 XX W 4 VA4
20 X W 4
21 XX

Legend

H
H

3

H
v

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

C.4. Saving area chairs’ homepage as PDF’s (icons clicked in random order) 138

[e] : e [5] : [6] : B
Loop p [4] : LA
o ||crick() ;gpe(CTRL' Type(enter) || Click(™ sme |) |[Click(&«)
[71 : 8] : [10] : (113 :
Loop , [9] : L | [AN
1 || ctick() p)’pe(CTRL' Type(enter) || Click(sme |)||Click(&)
[12] : [13] [15] : [16] :
13] [~ AR
Loop [14] :
2 || click() P)’pe(CTRL' Type(enter) ||Click(__swve |y |[click(&)
Noise:

[2] : Click(Y1131 : Click(|veasPoF
niernc-5 PS

C.5. Renaming files on Google Drive 139
C.5 Renaming files on Google Drive

The task here is to rename each file in a folder on Google Drive, to match a list of

pre-defined names in a spreadsheet application.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

» Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.5. Renaming files on Google Drive 140

Legend

H
H

3

H
v

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

demonstrated actions, as grouped by our motif-finding

Loop Actions
1 H H H H H H H
2 H H H H H H H
3 H H H H H H H
4 XX v 4 v v /A4
5 v v 4 v X W W
6 v v 4 v X A4
7 v v A4 X A4
8 wWw v W N X /A4
9 wWw v W N X /A4
10 W v NV N X /A4
11 W< WV NV N X /A4
12 W W W XX
13 wWw oW N X A4
14 W W W XX NN
15 W W W XX NN
16 V/ERR/AE /AR VA ¢ G A
17 W N N N XX NN
18 wWw oW N XX NN
19 W W W XX NN
20 W W W XX NN
21 W W W XX NN
22 W WV W XX W W
23 W WV W X XX W W
24 W W XX
Human
system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

C.5. Renaming files on Google Drive 141

o [: 3] : [4] :
Loop : A [2] : Name I ~ [5] : (6] :
o ||click(J) click(Fiteoor |y || YPeCCTRU |y cic D Click(l ¢y || TyPeCCTRL= |l 1 be (enter)
Fileo02 c) w | V)
(7] : [8] : (9] : [10] : [11] : [12]
Loop ’ File001 : : 137
1 ||click() || click(Fiteooz |y || TyPe(CTRL- RClick(*) Click(l B[y || Type(CTRL- Lypi(entep)
File003 ©) w v
[14] [15] : [16] [17] : [18] : [19]
Loop Filego2 | : w - : [20] :
2 || click() |[crick([Fimooz |y || TYPe(CTRL [pcrice w) Click(‘ r|) || TyPe(CTRL- 1Ll 2 (enter)
File004 c) w | V)

C.6. Deleting specific files on a cluttered desktop 142
C.6 Deleting specific files on a cluttered desktop

This task is to delete all the files of a certain type from a cluttered desktop.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

* Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.6. Deleting specific files on a cluttered desktop 143

Loop Actions

1 HH H H

2 H H H

3 HH H H

4 v v
5 v v
6 v v
7 W W W
8 W W W
9 W W
10 W W
11 v W W
12 XX

Legend

H
H

H
v

3

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

Create sh
Loop @||[1] : RClick() || [2] @ Click(| Delete [3] : Type(enter)
Rename
Create sl
Loop 1||[4] : RClick() || [5] : Click(| Delete [6] : Type(enter)
Rename
Create
Loop 2||[8] : RClick() [{[9] : Click(pelets [10] : Type(enter)
Renamr
Noise:
[@] : Click() : Click()

C.7. Deleting files in folder (smaller icon) 144
C.7 Deleting files in folder (smaller icon)

Like the task in Section C.6, here we aim to delete files of a certain type. However,

now the files are small icons in a folder.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

» Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.7. Deleting files in folder (smaller icon) 145

Loop Actions

1 H H H

2 H H H

3 H H H

4 v W
5 W
6 v W
7 Xx NV N
8 W N
9 Xx W N
10 Xx W W
11 XX W W
12 XX

Legend

N = £ o=

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

Loop @||[0] : Click([1] : Type(delete) ||[2] : Type(enter)
Loop 1||[3] : Click([4] : Type(delete) ||[5] : Type(enter)
Loop 2||[6] : Click([7] : Type(delete) ||[8] : Type(enter)

C.8. Creating list of filenames from a folder (files selected in regular order) 146
C.8 Creating list of filenames from a folder (files se-
lected in regular order)

The aim of this task is to iterate over each file in a folder, and create a list of names

of each of the files. This list is entered into a spreadsheet program.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

* Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.8. Creating list of filenames from a folder (files selected in regular order) 147

Loop Actions
1 H H H H W H L d
2 H H H H H H egen
3 H H H H H H
H Actions demonstrated by user
4 H H H H H H
5 S NN v/ v/ W H, Extra, unneeded action provided by user
6 W X a4 y{ Missing action, omitted by user
7 oW v v 4 v Correct prediction, approved by user
8 W v NN NN
W Correct prediction, automatic mode
9 W v N NN
10 NN N W X Incorrect prediction, but score below thresh-
1 NN N W old so user is prompted to confirm
12 WO N N NN XX Incorrect prediction, but score above thresh-
13 X NN N N W old so user must intervene
14 X WV W NV NN E System correctly predicts end of task
15 E

Human demonstrated actions, as grouped by our motif-finding

system

Each row depicts one loop, as performed by the human user.

Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

[e] : (2] : [3] : 4] :
Loop rules-updat [1] : . . s)
. T CTRL- . *EEM Hokk T CTRL-
0 Click(rules_ENG.p) || Type(f2) c))/pe(Click() 1ssing V))/pe(
[5] : (7] [8] : [9] : [10]
[- . : Spyfall_rL JE!TEII ru N
M cxnen el | ey || TYPRCETRE | sk) |[crick() || JypelcTRL-
1 s-updated_f Type(f2) Q) V)
: FNG.ndf —
[11] : [14] : [15] :
Loop e-sided No| ([[12] - [13] : 2 juNUW Jonuw 1 |[[16] :
2 || Click(ngsterted |y || Type(f2) || TYPECCTRL [l 1k 3 y || c1ick(y || Type(CTRL-
<) 4 V)
-updated_fi =
[17] : [20] : [21] :
[19] : INUW_Ge Nuw Ge| || [22] :
Loop =n.pdf [18] : _ - —_— B
3 || Click(lesided|) || Type (£2) P)’pe(CTRL Click(Y || crick() \Tlgpe(CTRL
tting Starte

C.9. Creating list of filenames from a folder of remote computer (regular ordered) 148

C.9 Creating list of filenames from a folder of remote
computer (regular ordered)

This task is equivalent to the task in Section C.8. However, this time we access the

files on a remote computer, rather than on the local machine.

This task demonstrates our ability to operate across networks, as we use the

visual on-screen data as input.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

» Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.9. Creating list of filenames from a folder of remote computer (regular ordered) 149

Loop Actions

1 H H H H H H
2 H H H H H H
3 H H H H H H
4 v W a4
5 v W/ a4
6 v NNV a4
7 v £ VNN NN
8 W v NN NN
9 W v N NN
10 w v NN NN
11 w v NN N
12 v VNN NN
13 v NN NN
14 v VNN NN
15 W VNN NN
16 Ww v NN NN
17 w v N NN
18 v NN
19 v NN NN
20 XX

Legend

H

H

H
v

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

Each row depicts one loop, as performed by the human user.

Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

el [3] : (4] :
Loop MName [1] : 1[,2] :CTRL] ES] :CTRL
@ ||Click(| @ piy|) || Type(f2) C’)’pe(~ || crick() || click(a) VgPE(-
[6] : 5 [o] : [10] : s
Loop [71 : p 1 |playba :
1 ||click()| Type(£2) Z))/PE(CTRL' Click() || Click(4) \T/;)/pe(CTRL-
[12] (4] - [15] : [16] : .
Loop Cilfiad [13] :) 2 |figure :
2 ||Click(®figu)) || Type(f2) P)’pe(CTRL' Click() || Click(,) \Tlx)/pe(CTRL—
= figu

C.10. Creating list of filenames from a folder of remote computer (random ordered) 150
C.10 Creating list of filenames from a folder of re-
mote computer (random ordered)

This task is equivalent to that in Section C.9. but in this example the files are chosen

by the user in a random (rather than regular) ordering.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

» Each row depicts one loop, and each column a group of equivalent actions.

 After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.10. Creating list of filenames from a folder of remote computer (random ordered)151

Loop Actions
1 H H H H H HH,,
2 H H H H H H
3 H H H H H H
4 \xx N N W Legend
5 v /A4 v v 4
6 v W v v 4 H Actions demonstrated by user
7 v AR LA A v H, Extra, unneeded action provided by user
8 w v NN NN 4
H Missing action, omitted by user
9 w v N NN 4
v Correct prediction, approved by user

—_
(=]

v NN NN

11 NN N N NN v/ Correct prediction, automatic mode
12 w v NV NV N X Incorrect prediction, but score below thresh-
13 o vV NV old so user is prompted to confirm

14 AR LA A v XX Incorrect prediction, but score above thresh-
15 WV VNN 4 o .
old so user must intervene

16 w v VN NN 4

E System correctly predicts end of task
17 X WV NNV N 4
18 X W< v NV N 4
19 X v < v NN 4
20 E

Human demonstrated actions, as grouped by our motif-finding

system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

C.10. Creating list of filenames from a folder of remote computer (random ordered)152
o] : . 4]
oop [e] . (2] : [3] : [4] -
o ||click()| [Typecra) || 3P LCTRE | cLick(Click(1) || ypeccTRL:
7] : . [11] :
[o] : [10] : 1 [figure [12] :
Loop Etest| ||[8] : i]
1 || Click(Eeea)) || Type(f2) g’pe(CTRL Click(Click(5) \T/gpe(CTRL
B test
[13] : [17] :
Loop [14] : [15] : [16] : 2 [testd [18] :
2 ||Click() || Type(f2) zgpe(CTRL' Click(Click(s) $§PG(CTRL-
Noise:
[6] : Type(enter)

C.11. Creating Slides of images from folder of images 153

C.11 Creating Slides of images from folder of images

Here, we assume we have a folder of image files. The aim is to create a slideshow,
where each slide displays a different image from the folder. For this we use Mi-

crosoft Powerpoint.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

» Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.11. Creating Slides of images from folder of images 154

Loop Actions
1 H H H H H
2 H H H H H
3 HH H H H H
4 v v v W/
5 v v v W/
6 v v v v/
7 w WV NN
8 w v N NN
9 w WV N NN
10 w £ v N NN
11 w v NN
12 v £ VNN
13 W v N NN
14 w W v NN
15 A2 SR A4
16 A SR A4
17 A7 SR A4
18 WX WV
19 WX W N
20 A2 S A4
21 A SR
22 A SR A4
23 E

Legend

H

H

H
v

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

C.11. Creating Slides of images from folder of images

[10] : Click()

[e] : (11 : [2] : (4] :
Loop [3] :
) Click() [|Click(Click(Type(enter) Click(
[5] : [6] : [7] : [9] :
Loop [8] :
1 Click() [|Click(Click(Type(enter) Click(
[11] : [12] : [13] : [15] :
Loop [14] :
2 Click() [|Click(Click(Type(enter) Click(
Noise:

155

C.12. Zipping every file in a folder 156

C.12 Zipping every file in a folder

This task tackles a common operation problem which is easy for skilled computer
users with programming knowledge, but difficult for novices. We desire each file in
a folder to be zipped into its own zip file. This involves right-clicking on each file,

and selecting ’Compress’ from the menu.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

* Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

Loop Actions

1 H H H

2 H H H

3 HH H H

4 v v
5 v v W
6 v v
7 W v
8 W W W
9 W W W
10 W W W
11 4 X W
12 W< VW
13 W W W
14 XX X W
15 XX

C.12. Zipping every file in a folder 157

Legend

H
H

3

H
v

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

Loop @ || [0] : RClick() |[[1] = Click([2] : Type(enter)

Loop 1|[[3] : RClick() || [4] = Click([5] : Type(enter)

Loop 2||[7] : RClick() || [8] : Click([9] : Type(enter)
Noise:

[6] : Click(

C.13. Unzipping every file in a folder and renaming the files to the names of zip files158

C.13 Unzipping every file in a folder and renaming
the files to the names of zip files

When students submit assignments as zip files, normally the zip files are named as
student ID but the file inside is sometime named without student’s identities. In this

task, the user sets out to rename each file with the corresponding zip file name.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

» Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.13. Unzipping every file in a folder and renaming the files to the names of zip files 159

Loop Actions

1 H H H H H H H H H H H
2 H H H H H H H H H H HHH,
3 H H H H H H H H H H H
4 H H H K H H H H H H H
5 VAR SR/ ¢ S S S A A 7
6 oW WX W W W W
7 V7N S S A A A A N
8 |W W W XX N NN N NN W
9 |\W W W XN N NN N NN
0 |W W W XX N N NN NN N
n |w W W XX NN NN NN N
2 |\W W W XN W NN NN W
B3 |\ v W W XX W N NN NN
14 WoW XX NN W W W
15 | E

Legend

H Actions demonstrated by user
H

Extra, unneeded action provided by user

3

}{ Missing action, omitted by user
v Correct prediction, approved by user
v Correct prediction, automatic mode

X Incorrect prediction, but score below thresh-

old so user is prompted to confirm

XX Incorrect prediction, but score above thresh-

old so user must intervene

E System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

C.13. Unzipping every file in a folder and renaming the files to the names of zip files 160

[ej : o [3] : [4] : [s] : [8] : (o)
Loop [: ; [6] : [71 : [9] : CTRL-
o |[click() || Type(£2) g"e“m' Click()| [ReLick() || cricke) || Type(delete) || Type(enter) || Click() || Typecs2) Jgpe“m

[11] : - [14] : [15] : [16] : [19] : 1)
Loop [12] : c [17] : [18] : [20] : i
1 |[crick() || Type(2) gpg("”‘ Click() || ReLick() || crick() || Type(delete) || Type(enter) || Click() || Typecs2) BPE“TRL'

[22] : (2] - [25] : [26] : [29] : (1) -
Loop [23] : : . [27] : [28] : [30] : I
2 ||criek(D | Topeca) | yPe(CTR | RSO lacieiq b | crickc) | 1vpedetete) | Typeentery || c1ick(b |[Typecsa) | 3PELCTRE

C.14. Taking screenshots of list of websites 161
C.14 Taking screenshots of list of websites

Given a list of website URLS, the task is to paste each in turn into a browser address

bar, and to save a screenshot of the rendered web page.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

* Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.14. Taking screenshots of list of websites 162

Loop Actions

1 H H H H H H H
2 H H H H H H H
3 HH H H H H H H
4 v A2 ¢ SR A A
5 v v WX WV VN
6 v v WX W
7 v £ VNN X W NN
8 v £ VNN X NN
9 v £ VNN X W NN
10 v £ NN X NN
11 A" S A A
12 W< VWX W N
13 W< W WX W NV
14 v VNN X W NN
15 v VNN X W NN
16 v £ NN X W NN
17 E

Legend

H Actions demonstrated by user
H Extra, unneeded action provided by user

3

}4 Missing action, omitted by user
v Correct prediction, approved by user
W Correct prediction, automatic mode

X Incorrect prediction, but score below thresh-

old so user is prompted to confirm

XX Incorrect prediction, but score above thresh-

old so user must intervene

E System correctly predicts end of task

Human demonstrated actions, as grouped by our motif-finding

system

» Each row depicts one loop, as performed by the human user.

» Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

1TTpi//Icey.
[14] : Click(ttps//om|)

fe] : [11 : . (3] : s
Loop y _ (_[1 5] s [6] :
o ||Chick(Beoktainy || clickCtpevpy || XPECCTRE | crick(s PR Typeenter) || Type (printscreen)
Review attnellirmu)
[7] : [8] : 9] [10] : [11]
ILLEE F VT B :
Loop _ _|fraz] [13] :
1 Click(Beokldsx|y || C1ick(ttp:/ficev|) P)/pe(CTRL Click(.com \T/))/pe(CTRL Type(enter) || Type(printscreen)
Review s e
[15] : [16] : [18] :
TP/ IV, [17] : [19] : . .
Loop || . Type(CTRL- || .. Type(cTrL- | [[28] (211 =
2 CLick(ot - | || CLick(ttpe//om) S} Click(ym v Type(enter) || Type(printscreen)
Noise:

C.15. Taking screenshots of list of websites on mobile 163

C.15 Taking screenshots of list of websites on mobile

This task is similar to the screenshot task from Section 3.14, but now we take
screenshots from a mobile phone accessed using VPN software. This situation is of

particular use for testing how sites look on a mobile device.

Illustrative screenshot of task

Per-action evaluation

* Here we show each action performed in the entire task as a symbol, to com-

municate both the input data and the successes and failures of our algorithm.

» Each row depicts one loop, and each column a group of equivalent actions.

» After the human demonstration (‘H’), our system predicts future events. An
ideal system would produce a screen of checkmarks (‘vv/’), while crosses (X)

indicate failures.

C.15. Taking screenshots of list of websites on mobile 164

Loop Actions

1 H H H H H H H H
2 H H H H H H H H
3 H HH H H H H H H
4 v v w o vy vV N/
5 v v w vy NV N/
6 v v w v v NV N/
7 v v NV NN NN
8 W v NNV NN NN
9 W v NN NN NN
10 Ww v NN NN NN
11 w v NN NN NN
12 v VNV NN
13 v v WV NV N NN
14 v v NNV NN NN
15 W v v N NN NN
16 4 W VNN NN
17 4 E

Human demonstrated actions, as

system

Legend

H
H

H
v

3

XX

Actions demonstrated by user

Extra, unneeded action provided by user
Missing action, omitted by user

Correct prediction, approved by user
Correct prediction, automatic mode

Incorrect prediction, but score below thresh-

old so user is prompted to confirm

Incorrect prediction, but score above thresh-

old so user must intervene

System correctly predicts end of task

grouped by our motif-finding

» Each row depicts one loop, as performed by the human user.

* Each column contains a group of equivalent actions, as grouped by our motif-

finding algorithm.

* Where extra actions have been identified, these are displayed below the main

grid as ‘noise’.

[e] : [1] : (2] : [3] : (4] : [7] :
Loop p , [5] : [6] :
o ||click() || click(L nepa)) g”e(CTRL’ Click() \T})’DE(CTRL’ Type(enter) || Type(printscreen) Click(n)
I —
[8] : [o] : ol [11] : . [15] :
Loop [13] : [14] :
1 || Click() || Click(X |http:/fi]) (T:))/pe(CTRL- Click() \T/))IPQ(CTRL— Type(enter) || Type(printscreen) CliCk(n)
t httn-/ /b J
[16] : [18] : [20] : [24] :
Loop I T— Pg](éTRL— EM](&TRL- [22] : [23] :
2 || click() || Click(s nttpfst]) Cipe Click() Vgpe Type(enter) || Type(printscreen) || Click()
Noise:
[17] : Click()

Bibliography

[1]

(2]

[3]

[4]

Ifttt. http://ifttt.com/.
Macrodroid. http://www.macrodroid.co.uk/.
Tasker. http://tasker.dinglisch/.

Mac OS X Automator. https://support.apple.com/en-gb/
HT2488,2014. Accessed: 181 April, 2017.

Sikuli Slides. http://slides.sikuli.org/, 2014. Accessed: 18th
April, 2017.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous distributed sys-

tems. arXiv preprint arXiv:1603.04467, 2016.

Hidenao Abe, Miho Ohsaki, Hideto Yokoi, and Takahira Yamaguchi. Imple-
menting an integrated time-series data mining environment based on temporal
pattern extraction methods: A case study of an interferon therapy risk mining
for chronic hepatitis. In New Frontiers in Artificial Intelligence: Joint JSAI
Workshop, 2006.

I. P. Androulakis, J. Vitolo, and C. Roth. Selecting maximally informative
genes to enable temporal expression profiling analysis. In Proceedings of

Foundations of Systems Biology in Engineering, 2005.

http://ifttt.com/
http://www.macrodroid.co.uk/
http://tasker.dinglisch/
https://support.apple.com/en-gb/HT2488
https://support.apple.com/en-gb/HT2488
http://slides.sikuli.org/

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bibliography 166

V. Antila, J. Polet, A. Lamsd, and J. Liikka. Routinemaker: Towards end-user
automation of daily routines using smartphones. In 2012 IEEE International

Conference on Pervasive Computing and Communications Workshops, pages

399-402, March 2012.

Amos Azaria, Jayant Krishnamurthy, and Tom Mitchell. Instructable intelli-

gent personal agent, 2016.

Anthony Bagnall, Jon Hills, and Jason Lines. Technical Report CMPC14-03:
Finding Motif Sets in Time Series. arXiv:1407.3685v1, 2014.

M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deep-

coder: Learning to write programs. arXiv:1611.01989, 2016.

Nikola Banovic, Tovi Grossman, Justin Matejka, and George Fitzmaurice.
Waken : Reverse Engineering Usage Information and Interface Structure from

Software Videos. UIST 12, pages 83-92, 2012.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wain-
wright, Heinrich Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés,

Amir Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The
arcade learning environment: An evaluation platform for general agents. In
Proceedings of the 24th International Conference on Artificial Intelligence,

IJCAT’ 15, pages 4148-4152. AAAI Press, 2015.

Nadav Bhonker, Shai Rozenberg, and Itay Hubara. Playing snes in the retro

learning environment. arXiv preprint arXiv:1611.02205, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. OpenAl Gym.
arXiv:1606.01540, 2016.

Capcom. Mega Man X. Game [SNES], December 1993.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Bibliography 167

Vittorio Castelli, Lawrence Bergman, Tessa Lau, and Daniel Oblinger. Sheep-
dog, parallel collaborative programming-by-demonstration. Knowledge-

Based Systems, 2010.

Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. GUI Testing Using
Computer Vision. Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, pages 1535-1544, 2010.

Devendra Singh Chaplot and Guillaume Lample. Arnold: An autonomous

agent to play fps games. In AAAI, pages 5085-5086, 2017.

Jiun-Hung Chen and Daniel S. Weld. Recovering from errors during program-
ming by demonstration. In Proceedings of the 13th International Conference
on Intelligent User Interfaces, IUI *08, pages 159-168, New York, NY, USA,
2008. ACM.

Yun-Gyung Cheong, Arnav Jhala, Byung-Chull Bae, and Robert Michael
Young. Automatically generating summary visualizations from game logs.

In AIIDE, pages 167-172, 2008.

James Conley, Ed Andros, Priti Chinai, and Elise Lipkowitz. Use of a game
over: Emulation and the video game industry, a white paper. Nw. J. Tech. &

Intell. Prop., 2:261, 2003.

Allen Cypher and Daniel Conrad Halbert. Watch What I Do: Programming by
Demonstration. MIT press, 1993.

Morgan Dixon, Daniel Leventhal, and James Fogarty. Content and Hierarchy
in Pixel-Based Methods for Reverse Engineering Interface Structure. Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
page 969, 2011.

Morgan Dixon, A. Conrad Nied, and James Fogarty. Prefab Layers and Prefab
Annotations: Extensible Pixel-Based Interpretation of Graphical Interfaces.

UIST 14, pages 221-230, 2014.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Bibliography 168

Koushik Dutta. Vysor. https://www.vysor.io/, 2017.

Krzysztof Gajos and Daniel S. Weld. Supple: Automatically generating user
interfaces. In Proceedings of the 9th International Conference on Intelligent

User Interfaces, IUI °04, pages 93—100, New York, NY, USA, 2004. ACM.

Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman,
Pushmeet Kohli, Jonathan Taylor, and Daniel Tarlow. Terpret: A probabilistic

programming language for program induction. arXiv:1608.04428, 2016.

Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and Takeo
Igarashi. Generating Photo Manipulation Tutorials by Demonstration. ACM
Transactions on Graphics, 28(3):1, 2009.

Alexander GroB, Jan Friedland, and Friedhelm Schwenker. Learning to play
tetris applying reinforcement learning methods. In ESANN, pages 131-136,
2008.

Tovi Grossman, Justin Matejka, and George Fitzmaurice. Chronicle: Capture,
Exploration, and Playback of Document Workflow Histories. UIST ’10, pages
143-152, 2010.

Sumit Gulwani. Automating string processing in spreadsheets using input-

output examples. In ACM SIGPLAN Notices, 2011.

Sumit Gulwani. Programming by examples (and its applications in data wran-
gling). In Verification and Synthesis of Correct and Secure Systems. 10S Press,
2016.

Sumit Gulwani, William R Harris, and Rishabh Singh. Spreadsheet data ma-

nipulation using examples. Communications of the ACM, 2012.

Sumit Gulwani, Jose Hernandez-Orallo, Emanuel Kitzelmann, Stephen H
Muggleton, Ute Schmid, and Benjamin Zorn. Inductive programming meets

the real world. Communications of the ACM, 2015.

https://www.vysor.io/

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Bibliography 169

Yuan Hao, Mohammad Shokoohi-Yekta, George Papageorgiou, and Eamonn
Keogh. Parameter-free audio motif discovery in large data archives. In Inter-

national Conference on Data Mining, 2013.

Harrison Ho, Varun Ramesh, and Eduardo Torres Montano. Neuralkart: A

real-time mario kart 64 ai. 2017.

Minh Hoai, Zhen-Zhong Lan, and Fernando De la Torre. Joint Segmentation
and Classification of Human Actions in Video. Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 3265-3272, 2011.

Kevin Hughes. Tensorkart: self-driving mariokart with tensorflow. Blog, De-

cember 2016. Accessed April 13, 2018.

Amy Hurst, Scott E Hudson, and Jennifer Mankoff. Automatically Identifying
Targets Users Interact with During Real World Tasks. IUI 10, pages 11-20,
2010.

Thanapong Intharah, Daniyar Turmukhambetov, and Gabriel J. Brostow. Help,
it looks confusing: Gui task automation through demonstration and follow-up
questions. In Proceedings of the 22nd International Conference on Intelligent

User Interfaces, IUL ’17. ACM, 2017.

Bernard J. Jansen, Danielle L. Booth, and Amanda Spink. Determining the in-
formational, navigational, and transactionalintent of web queries. Information

Processing & Management, 44(3):1251 — 1266, 2008.

Daxin Jiang, Jian Pei, and Hang Li. Mining search and browse logs for web
search: A survey. ACM Trans. Intell. Syst. Technol., 4(4):57:1-57:37, October
2013.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The
malmo platform for artificial intelligence experimentation. In IJCAI, pages

4246-4247, 2016.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Bibliography 170

Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos Nicolaou, Suman
Ghosh, Andrew Bagdanov, Masakazu Iwamura, Jiri Matas, Lukas Neumann,
Vijay Ramaseshan Chandrasekhar, Shijian Lu, et al. ICDAR 2015 Compe-
tition on Robust Reading. In Document Analysis and Recognition (ICDAR),
2015.

Andrej Karpathy. Mini world of bits benchmark. http://alpha.

openai.com/miniwob/, 2017.
Alan C. Kay. Computer software. Scientific American, 1984.

Michat Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Woj-
ciech Jaskowski. Vizdoom: A doom-based ai research platform for visual re-

inforcement learning. In Computational Intelligence and Games (CIG), 2016

IEEE Conference on, pages 1-8. IEEE, 2016.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep
reinforcement learning. In AAAI, pages 2140-2146, 2017.

Tessa Lau. Why PBD systems fail: Lessons learned for usable AI. In CHI
2008 Workshop on Usable Al, 2008.

Tessa Lau, Lawrence Bergman, Vittorio Castelli, and Daniel Oblinger. Sheep-
dog: learning procedures for technical support. In International conference on

Intelligent user interfaces, 2004.

Uichin Lee, Zhenyu Liu, and Junghoo Cho. Automatic identification of user
goals in web search. In Proceedings of the 14th International Conference on
World Wide Web, WWW °05, pages 391-400, New York, NY, USA, 2005.
ACM.

Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. CoScripter :
Automating & Sharing How-To Knowledge in the Enterprise. Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, pages
1719-1728, 2008.

http://alpha.openai.com/miniwob/
http://alpha.openai.com/miniwob/

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Bibliography 171

O. Levy and L. Wolf. Live repetition counting. In International Conference

on Computer Vision (ICCV), 2015.

Liangda Li, Hongbo Deng, Anlei Dong, Yi Chang, and Hongyuan Zha. Iden-
tifying and labeling search tasks via query-based hawkes processes. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 14, pages 731-740, New York, NY, USA,
2014. ACM.

Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. Sugilite: Creating multi-

modal smartphone automation by demonstration. CHI *17, 2017.

Henry Lieberman. Your Wish is My Command: Programming By Example.
Morgan Kaufmann, 2001.

Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Pranav Patel. Finding mo-
tifs in time series. In ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining Workshop on Temporal Data Mining, 2002.

Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser
Kandogan. Koala: Capture, Share, Automate, Personalize Business Processes
on the Web. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 943-946, 2007.

Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and
Gabriele Tolomei. Identifying task-based sessions in search engine query logs.
In Proceedings of the fourth ACM international conference on Web search and

data mining, pages 277-286. ACM, 2011.

Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and
Gabriele Tolomei. Discovering tasks from search engine query logs. ACM

Trans. Inf. Syst., 31(3):14:1-14:43, August 2013.

Arnold M Lund. Measuring usability with the use questionnaire. Usability
interface, 8(2):3-6, 2001.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Bibliography 172

Pattie Maes. Agents that reduce work and information overload. Communica-

tions of the ACM, 1994.

Raphaél Marczak, Jasper van Vught, Gareth Schott, and Lennart E. Nacke.
Feedback-based gameplay metrics: Measuring player experience via auto-
matic visual analysis. In Proceedings of The Sth Australasian Conference on
Interactive Entertainment: Playing the System, IE *12, pages 6:1-6:10, New
York, NY, USA, 2012. ACM.

Rodrigo de A. Maués and Simone Diniz Junqueira Barbosa. Keep doing what
i just did: Automating smartphones by demonstration. In Proceedings of the
15th International Conference on Human-computer Interaction with Mobile
Devices and Services, MobileHCI 13, pages 295-303, New York, NY, USA,
2013. ACM.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Shiwali Mohan and John E Laird. Learning to play mario. Tech. Rep. CCA-
TR-2009-03, 2009.

A. Mueen, E. Keogh, Q. Zhu, S. S. Cash, and M. B. Westover. Exact discovery
of time series motifs. In SDM, 2009.

Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney S. Cash, M. Brandon
Westover, and Nima Bigdely-Shamlo. A disk-aware algorithm for time series

motif discovery. Data Mining and Knowledge Discovery, 2011.

Lennart Nacke, Craig Lindley, and Sophie Stellmach. Log whos playing: psy-
chophysiological game analysis made easy through event logging. In Fun and

games, pages 150—157. Springer, 2008.

Lennart Nacke, Jonas Schild, and Joerg Niesenhaus. Gameplay experience

testing with playability and usability surveys—an experimental pilot study. In

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Bibliography 173

Proceedings of the Fun and Games 2010 Workshop, NHTV Expertise Series,
volume 10, 2010.

Nicholas Negroponte. The Architecture Machine. MIT press, 1970.

John Walker Orr, Prasad Tadepalli, Janardhan Rao Doppa, Xiaoli Fern, and

Thomas G Dietterich. Learning scripts as hidden markov models. 2014.
Alexey Pajitnov and Vladimir Pokhilko. Zetris. Game [NES], June 1984.

Gordon W Paynter. Automating iterative tasks with programming by demon-

stration. 2000.

Karl Pichotta and Raymond J Mooney. Learning statistical scripts with Istm

recurrent neural networks. In AAAI, pages 2800-2806, 2016.

Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue Wang, Lubomir Bour-
dev, Shai Avidan, and Michael F. Cohen. Pause-and-Play: Automatically
Linking Screencast Video Tutorials with Applications. UIST 11, pages 135—
144, 2011.

Dino Ratcliffe, Sam Devlin, Udo Kruschwitz, and Luca Citi. Clyde: A deep

reinforcement learning doom playing agent. 2017.

Daniel E. Rose and Danny Levinson. Understanding user goals in web search.
In Proceedings of the 13th International Conference on World Wide Web,
WWW 04, pages 13—19, New York, NY, USA, 2004. ACM.

Rachel Rudinger, Vera Demberg, Ashutosh Modi, Benjamin Van Durme, and
Manfred Pinkal. Learning to predict script events from domain-specific text.
In Proceedings of the Fourth Joint Conference on Lexical and Computational

Semantics, pages 205-210, 2015.

Qinfeng Shi, Li Cheng, Li Wang, and Alex Smola. Human Action Segmen-
tation and Recognition Using Discriminative Semi-Markov Models. Interna-

tional Journal of Computer Vision, 93(1):22-32, 2011.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Bibliography 174

Qinfeng Shi, Li Wang, Li Cheng, and Alex Smola. Discriminative Human
Action Segmentation and Recognition Using Semi-Markov Model. 26th IEEE

Conference on Computer Vision and Pattern Recognition, 2008.
Val Shute. Stealth assessment in video games. 2015.

Valerie J Shute and Gregory R Moore. Consistency and validity in game-
based stealth assessment. Technology enhanced innovative assessment: De-

velopment, modeling, and scoring from an interdisciplinary perspective, pages

31-51, 2017.

Valerie J Shute, Matthew Ventura, and Diego Zapata-Rivera. Stealth assess-

ment in digital games, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Brian A. Smith and Shree K. Nayar. Mining controller inputs to understand
gameplay. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology, UIST 16, pages 157-168, New York, NY, USA,
2016. ACM.

Tadashi Sugiyama and Hideki Konno. Super Mario Kart. Game [SNES],
August 1992.

Amund Tveit and Gisle B Tveit. Game usage mining: Information gather-
ing for knowledge discovery in massive multiplayer games. In International

Conference on Internet Computing, pages 636642, 2002.

Shigeharu Umezaki and Shinji Kitamoto. Contra. Game [NES], Febuary
1987.

Cheng-Yao Wang, Wei-Chen Chu, Hou-Ren Chen, Chun-Yen Hsu, and
Mike Y Chen. EverTutor: Automatically Creating Interactive Guided Tutori-
als on Smartphones by User Demonstration. Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, pages 4027-4036, 2014.

[94]

[95]

[96]

[97]

[98]

Bibliography 175

Xiaopeng Xi, Eamonn Keogh, Li Wei, and Agenor Mafra-Neto. Finding mo-

tifs in a database of shapes. In SIAM International Conference on Data Min-
ing.

Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. Sikuli: using gui screen-
shots for search and automation. UIST 09, 2009.

Tom Yeh, Tsung-Hsiang Chang, Bo Xie, Greg Walsh, Ivan Watkins, Krist
Wongsuphasawat, Man Huang, Larry S. Davis, and Benjamin B. Bederson.
Creating Contextual Help for GUIs Using Screenshots. UIST ’11, page 145,
2011.

Loutfouz Zaman and I Scott MacKenzie. Evaluation of nano-stick, foam but-
tons, and other input methods for gameplay on touchscreen phones. In Inter-
national Conference on Multimedia and Human-Computer Interaction-MHCI,

pages 69—1, 2013.

Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algo-
rithms. [EEE transactions on knowledge and data engineering, 26(8):1819—
1837, 2014.

	Introduction
	Research Questions
	Contributions of This Thesis
	Scope of the Thesis
	Research Papers

	Literature Review
	Traditional Approaches to End-user Program Synthesis
	Programming by Demonstration
	Other End-user Program Synthesis Approaches

	Other Approaches to Comparable Domains
	Digital Game Domain
	Web Search Engine Domain

	Background Knowledge
	GUI Analysis
	Joint Segmentation and Classification of Action
	Discovering Looping Pattern

	Visual-based Programming by Demonstration
	Overview of Challenges
	Learning to Perform Tasks from Demonstration
	Demonstration Phase
	Teaching Phase
	Running Phase

	Evaluation and Results
	User Study Scenarios

	Discussion and Future Work

	Looping GUI Action Automation
	Overview
	Looping Action Recognition
	Basic Motif Finding
	Distance Between Two Sequences Dist(Si,Sj)
	The Proposed Method for Multiple Motif Finding
	Artificial Subsequences for Robustness
	Looping Action Recognition
	Prediction of Future Actions
	Generating Artificial Subsequences

	Human-in-the-loop
	Datasets
	Demonstration Dataset
	Looping GUI Automation Dataset

	Validation of the Algorithms
	User Feedback
	Conclusions and Future Work

	Generating Log-file from Video
	Baselines and Challenges They Face
	Baseline: Human Performance
	Challenge: Class Imbalance
	Challenge: Multiple Control Buttons Per Record
	Challenge: Many-to-One

	Architecture
	The Network
	3D convolution layers
	Training
	Losses

	Experiments and Results
	Data
	Performance Metrics
	Result: Overall Results
	Result: Class Imbalance
	Result: 2D VS 3D Filters
	Result: Many-to-One
	Result: Generalization

	Discussion and Conclusion

	Conclusions
	Future Research Directions

	Appendices
	Pseudo-codes
	The Looping GUI Automation Dataset Evaluation Protocol

	Datasets
	Demonstration Dataset
	Looping GUI Automation Dataset

	Looping GUI Automation Evaluation and Datasets
	Automating SMS sending
	Adding contacts on phone from spreadsheet via 3rd party app
	Saving area chairs' homepage as PDFs (icons clicked in regular order)
	Saving area chairs' homepage as PDF's (icons clicked in random order)
	Renaming files on Google Drive
	Deleting specific files on a cluttered desktop
	Deleting files in folder (smaller icon)
	Creating list of filenames from a folder (files selected in regular order)
	Creating list of filenames from a folder of remote computer (regular ordered)
	Creating list of filenames from a folder of remote computer (random ordered)
	Creating Slides of images from folder of images
	Zipping every file in a folder
	Unzipping every file in a folder and renaming the files to the names of zip files
	Taking screenshots of list of websites
	Taking screenshots of list of websites on mobile

	Bibliography

