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Abstract: Leucine-rich repeat kinase 2 (LRRK2) is a large protein of unclear function. Rare mutations in
the LRRK2 gene cause familial Parkinson’s disease (PD) and inflammatory bowel disease. Genome-wide
association studies (GWAS) have revealed significant association of the abovementioned diseases at
the LRRK2 locus. Cell and systems biology research has led to potential roles that LRRK2 may have
in PD pathogenesis, especially the kinase domain (KIN). Previous human expression studies showed
evidence of mRNA expression and splicing patterns that may contribute to our understanding of
the function of LRRK2. In this work, we investigate and identified significant regional differences
in LRRK2 expression at the mRNA level, including a number of splicing events in the Ras of
complex protein (Roc) and C-terminal of Roc domain (COR) of LRRK2, in the substantia nigra (SN)
and occipital cortex (OCTX). Our findings indicate that the predominant form of LRRK2 mRNA
is full length, with shorter isoforms present at a lower copy number. Our molecular modelling
study suggests that splicing events in the ROC/COR domains will have major consequences on the
enzymatic function and dimer formation of LRRK2. The implications of these are highly relevant
to the broader effort to understand the biology and physiological functions of LRRK2, and to better
characterize the role(s) of LRRK2 in the underlying mechanism leading to PD.

Keywords: LRRK2 mRNA expression; Human brain substantia nigra; Parkinson’s disease (PD);
ROC/COR domain splicing events; WD40 domain in protein structure

1. Introduction

Non-synonymous coding mutations in the leucine-rich repeat kinase 2 (LRRK2) gene on
chromosome 12p12 were identified as a cause of autosomal dominant Parkinson’s disease (PD) in
2004 [1,2]. Since then, an extensive amount of research has been conducted to identify the function
and dysfunction, activity, and localization of this protein. The complex domain architecture of LRRK2,
shared with its paralog LRRK1, provides membership in two distinct protein families: The ROCO
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family, and the receptor-interacting protein (RIP) kinase family [3]. The ROCO family proteins are
characterized by their tandem Ras of complex proteins (ROC)/GTPase domain, followed by the
C-terminal of ROC (COR), domains. In humans, there are 4 members of this family, LRRK1, LRRK2,
death associated protein kinase 1 (DAPK1), and malignant fibrous histiocytoma-amplified sequence
1 (MFHAS1, also known as MASL1) [4]. The human RIP kinase family has seven known members,
distinguished by common and functionally overlapping interacting partners and signalling pathways,
linked to the plasma membrane “death receptors” and the NF-κB network [5]. LRRK2 has been
implicated in a wide range of physiological processes, including neurite growth, vesicle trafficking,
cytoskeletal maintenance and autophagic protein degradation [3]. Additional genetic studies, most
notably genome-wide association studies (GWAS) have revealed the association of variants at the
LRRK2 locus with inflammatory bowel disease, Leprosy and PD [6–10].

LRRK2 is a large gene located on chromosome 12p12 consisting of 51 exons. The golden
Havana/Ensembl database reports a total of seven transcripts for the LRRK2 locus, four of which
are protein-coding; 2 with retained introns; one processed transcript and one nonsense-mediated
decay. The longest, full-length transcript encodes a 2527 amino acid protein [11,12]. Until recently,
very little is known about the mRNA expression and splicing patterns of LRRK2 in human tissues.
In a previous study, we investigated the expression and splicing data of LRRK2 from 134 healthy
control individuals in 10 human brain regions (Braineac dataset, UK brain expression consortium
(UKBEC)) [13,14]. Microarray analysis of LRRK2 gene mRNA expression revealed evidence of regional
mRNA transcript variability. Specifically, expression profiling of the LRRK2 transcript demonstrated a
2.4 fold change (FC), (p value = 2.7 × 10−51) across the analysed brain regions, with the occipital cortex
(OCTX) showing the highest expression, while cerebellum (CRBL) showed the lowest expression.
Importantly, this study also provided evidence of significant splicing events existing in different brain
regions, especially in OCTX and SN. Furthermore, expression and exon Quantitative Trait Loci (QTLs)
were reported in this study, highlighting that splicing pattern observed for the LRRK2 gene is under
genetic control [13]. An exon/splicing QTLs (sQTL) was identified within exon 32 and 33, indicating a
possible relevance in splicing in this region. The sQTLs associated with an increase of the expression
of exon 32 and 33, showed the highest significance (FDR ranging from 2.70 × 10−7 to 6.47 × 10−2) in
the CRBL, medulla and white matter regions. These results motivated us to translate and model these
splicing events at the structural level to better understand the functional consequences.

From a structural perspective, a crystal structure for the human ROC/GTPase domain was
elucidated in 2008 [15], and a number of structures for the ROC/COR and KIN domains have been
reported for orthologous proteins from other organisms [16,17]. Further studies have utilized homology
modelling and in silico docking studies using proteins with similar domains and domain architectures
as templates. In a recent example, a model for full-length LRRK2 derived from electron microscopy
(EM) data, inter-domain interaction data from mass spectrometry, and homology modelling was
proposed by Guaitoli and colleagues [18]. The resulting 3-dimensional model for full-length dimeric
LRRK2 revealed close conformational positions between relatively distant domains, such as the
C-terminal kinase domain and N-terminal ankyrin repeats. Importantly, although the final model
presented was based upon the overall topology of purified LRRK2 particles revealed by negative
stain EM, and further constrained by cross-linking, there was evidence for marked variability in the
3-dimensional organisation of the LRRK2 particles observed, an indication that multiple configurations
of dimeric LRRK2 are possible. This is likely to be accentuated by the wide variety of putative binding
partners identified thus far [19].

In this current study, we report evidence supporting the existence of multiple LRRK2 splice
variants (removal of exons 32–33 [ROC-COR], exons 42–43 [kinase (KIN)] and exons 48–50 [WD40])
within multiple brain regions, and model the projected structural implications of LRRK2 splice variants
on the resulting protein.



Int. J. Mol. Sci. 2018, 19, 2784 3 of 13

2. Results

Based on our previous identification of differences in LRRK2 mRNA exon abundance in targeted
regions between different regions, of the human brain [13] we set out to test whether these are, due to
altered splicing of LRRK2 transcripts. A summary of the relationship between exon number and the
domains of LRRK2 gene is shown in Figure 1.
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Figure 1. Schematic view shows the physical position for certain exons corresponding to certain
functional domains in LRRK2 gene.

Reverse transcriptase polymerase chain reaction (RT-PCR) experiments were performed to cover
the following regions: (A) Ras-like G-domain (Roc)- C-terminal of Roc domain (COR) (exons 32–36,
870 bp), (B) COR-kinaseKIN-WD40 (exons 32–50, 3 kb), (C) Kinase domain (KIN) (exons 40–44, 1 kb),
and (D) WD40/C-terminus (exons 48–50, 550 bp) domains. These domains play a fundamental role in
the enzymatic function of LRRK2 protein. This characterization was applied to confirm and define
mRNA splicing patterns of the LRRK2 present in the SN and OCTX and to understand the impact
of these splicing events on the predicted protein product. These two regions were selected, because
SN is an important brain area to investigate in some neurodegenerative diseases, particularly in PD,
while, OCTX showed the highest expression level of LRRK2 between the other 10 brain regions in
our previous microarrays study [13]. Both regions represented the splicing events in the microarray
data [13]. In the ROC-COR region (encoded by exons 30–36), in addition to the expected band of
870 bp, other bands of sizes were approximately 520 and 700 bp (in OCTX) and 340, 400, 520 and
700 bp (in SN) were observed (Figure 2A). Similarly, for the COR-KIN-WD40 region, spanning exons
32–50, in addition to the primary expected fragment (3 kb), other bands of sizes 540 bp, 900 bp and
2 kb (OCTX), and 400 bp, 650 bp, 1 kb, and 2 kb (SN) were amplified (Figure 2B).

For the kinase domain (encoded by exons 40–44), in addition to the primarily expected fragment
(3 kb), additional bands at sizes of 500 bp and 1.2 kb were observed and targeted in OCTX and SN
(Figure 2C). Exon 41 encodes part of the kinase domain containing the G2019 and I2020 residues,
both of which are mutated in familial forms of PD (to a serine and threonine respectively). For the
last domain, the WD40/C-terminus (encoded by exons 48–50), in addition to the expected band of
550 bp, other bands at sizes of 100 and 300 bp (in OCTX), and 120 and 150 bp (in SN) were detected
(Figure 2D).

In summary, our RT-PCR results support the existence of smaller fragments suggesting complex
exon splicing (exclusion) events spanning different domains of LRRK2. Minor splice isoforms exist,
albeit in low abundance; however, our findings indicate that the majority of LRRK2 transcripts in
these tissues are likely to be full length. It is important to note that these data do not exclude the
possibility of other mRNA fragments that were not amplified under these conditions. Nor do our
findings rule out the possibility of specific splice isoforms occurring in greater abundance in LRRK2
mutation carriers.

Different specific targeted bands in addition to lower sized bands were obtained, amplified,
extracted and purified followed by nested PCR reactions. Nested PCR was performed in order
to amplify the low-intensity bands of the minor isoforms, followed subsequently by direct Sanger
sequencing. Different PCR product clean-up protocols were applied to the nested PCR products before
the sequencing reactions to increase the likelihood of obtaining high-quality sequencing reads from
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low the abundance isoforms. Sanger sequencing data were analyzed by using the Sequencer DNA
sequence alignment and analysis software Version 5. Unfortunately, only one sample in the forward
direction was of sufficient quality to be aligned and read in comparison to the reference sequence.
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Figure 2. (A) RT-PCR results confirming differential splicing in targeted region (exon 32–36)
corresponding to functional ROC-COR domains in LRRK2 gene in occipital cortex (OCTX) and
substantia nigra (SN) (SNIG). It is clear the two regions have different patterns from same nine
individuals for OCTX and eight individuals for SN. The expected band for this primer pair is
~870 bp, in OCTX 2 bands at ~520 and 700 bp are shown. In SN more bands are shown, one at
340, 400, 520 and 700 bp; (B) RT-PCR results confirming differential splicing in targeted region (exons
32–50), corresponding to the functional COR-KIN-WD40 domains in LRRK2 gene in OCTX and SN.
The expected band for this primer pair is ~3 kb, in OCTX the expected band is shown, in addition to
other bands ~540, 900 and 2 kb. SN has different bands, at 400, 650, 1 kb, 2 kb and more; (C) RT-PCR
results confirming differential splicing in targeted region (exons 40–44). It is corresponding to the
kinase domain in the LRRK2 gene in OCTX and SN. The expected band for this primer pair is ~1 kb,
in OCTX the expected band is shown, in addition to other bands ~500 and 1.2 kb. SN has similar bands,
at 500, 1 kb (expected band), 1.2 kb and more; (D) RT-PCR results confirming differential splicing in
targeted region (exons 48–50). It is corresponding to the WD40/C-terminus domains in the LRRK2
gene in OCTX and SN. The expected band for this primer pair is ~550 bp, in OCTX the expected band
is shown, in addition to other bands ~100 and 300 bp. SN has similar bands, at 120, 150 and 550 bp
(expected band) and more.

RNA sequencing, as an additional technique to capture and confirm the minor isoforms, as well
as to identify the splicing junctions at low abundance for the region of ROC-COR (exons 32–36) was
recently used [13]. In this study, four OCTX and four CRBL samples were assessed. Results revealed
a minority of exon 31–34 exon-exon junction reads (from 3 to 5 reads) and 14 reads for exon 31–33
exon-exon junctions out of 430 reads for the exon-exon junction of exon 31–32; in comparison to other
exon-exon junctions along the transcript. In addition, the ability to detect expression of the minor
isoforms, in contrast to the major isoforms, was significantly reduced; likely due to the small sample
size. and we believe this reflects the complexity of splicing events, particularly for a gene of the size of
LRRK2 gene.

After confirming the corresponding splicing patterns to specific functional LRRK2 domains in
this report, the 3D structures of the ROC-COR, kinase (KIN), and WD40 domains of LRRK2 were
modelled in an effort to structurally assess the effect of three splicing events. As described above,
splicing event 1 involves the removal of exons 32–33; the second involves the removal of exons 42–43
respectively, and the final splicing event modelled here affected the WD40 domain, exons 48–50.
The removed exons 32–33 correspond to the loss of the following amino acid sequence located
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principally within the COR domain: “1513IRDQLVVGQLIPDCYVELEKIILSERKNVPIEFPVIDRKRLL
QLVRENQLQLDENELPHAVHFLNESGVLLHFQDPALQLSDLYFVEPKWLCKIMAQ1609”; whereas
the removed exons 42–43 correspond to the loss of the sequence: “2037GFRAPEVARGNVIYNQQADV
YSFGLLLYDILTTGGRIVEGLKFPNEFDELEIQGKLPDPVKEYGCAPWPMVEKLIKQCLKENPQER
PTSAQ2127”, located within the kinase domain, spanning sub-domains 8–11. Splicing event 1
accounts for the loss of a total of 97 amino acids, while splicing event 2 involves the loss of 91 amino
acids. The splicing of exons 48–50 corresponds to the loss of 144 amino acids between residues
2343FSYAAFSDSNIITVVVDTALYIAKQNSPVVEVWDKKTEKLCGLIDCVHFLREVMVKENKESKH
KMSYSGRVKTLCLQKNTALWIGTGGGHILLLDLSTRRLIRVIYNFCNSVRVMMTAQLGSLKNVM
LVLGYNRKNTEGTQKQK2487.

The 3D structure for the COR domain of LRRK2 suggests that it can tolerate the potential removal
of exons 32–33 as it is comprised of two large regions that are linked by a flexible stretch of two
structurally weak antiparallel beta-sheets (Figure 3A), which are lost with the removal of exons
32–33 (Figure 3A). As a result, the molecular dynamics simulation of the spliced molecular system
confirmed a more robust and compact conformation for the spliced ROC domain of LRRK2 (Figure 3A).
The resulting shortened COR domain has lost the ‘hinge’ properties of the wild-type COR and the
rather flexible interconnecting beta-sheets (Figure 3A). We predict that this may result in locally
increased structural robustness that may have an effect on the overall folding of LRRK2, and likely its
dimer formation.
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Figure 3. A molecular modelling study of the COR, KIN and WD40 domains of LRRK2 (A, B, and C
respectively). In the left column is the full 3D homology model of each one of the three aforementioned
domains of LRRK2. They are shown in ribbon representation and are color-coded by secondary
elements, where α-helices are red spirals, β-sheets are yellow arrows and loops are white coils.
The middle column depicts the same three 3D homology models as in the left column. Models
have also been rendered in ribbon representation, only this time they have been colored based on their
corresponding splicing events. The orange color is the full model, whereas in the green ribbon is the
part of the structure that is absent in the spliced form. The start and end points of each splicing event
have been highlighted on the 3D structure of the three models. Finally, the third column contains the
spliced 3D models of ROC, COR and WD40, and is shown in purple ribbon representation. Note that in
the case of COR, the spliced 3D model had to be stitched together as it is a mid-segment of the structure
that is spliced, whereas in the cases of KIN and WD40 the part of the structure was removed, and the
spliced structures were in silico energetically re-optimized.
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The KIN 3D model of LRRK2 is also made up of two distinct domains. One is a relatively larger
network of alpha-helices and the smaller one is a set of interacting beta-sheets. The larger sub-domain
within the KIN model consists of four primary alpha-helices that construct an antiparallel alpha-helix
bundle that is also supported by satellite shorter alpha-helices. Upon splicing of exons 42–43, two
of the four above-mentioned alpha-helices are lost and therefore the alpha helix bundle is disrupted
(Figure 3). Of interest, the hydrophobic core of the original four-helix bundle is now exposed to solvent,
which is predicted to have a destabilizing effect on the overall folding of the spliced KIN domain of
LRRK2. The LRRK2 protein with the novel spliced KIN domain is more compact and smaller in size,
but with a set of two antiparallel alpha-helices; and exposed to solvent the intra helix hydrophobic
interface. Based on these models, we hypothesize that this splicing event is used as an interaction
switch by LRRK2 as the resulting protein with spliced KIN domain is optimally folded to accept a
protein partner with the complementary two antiparallel missing alpha-helices to re-construct the
original four-helix bundle and secure the hydrophobic intra-helix interface. Further studies examining
this possibility are underway.

The model of the LRRK2 WD40 domain is comprised of a set of 28 antiparallel β-sheets in a
barrel-like formation (Figure 3). The β-sheets are interconnected via a consistent network of hydrogen
bonds and hydrophobic interactions. The 28 β-sheets are grouped in β-sheet bundles of four β-sheets
each. Each one of the seven β-sheet bundles is linked to the next one via a flexible hairpin loop.
The c-terminal loop has adopted a α-helical conformation of two and a half spirals. The region that is
spliced is the part of the template structure that interacts with a co-crystallized α-helix. The coordinates
of that α-helix were transferred to the model and it was confirmed that the interacting portion of WD40
falls exactly in the spliced region (Figure 3). There is a set of specific hydrogen bonds (mainly between
K/R–D/E residues) that secures the interaction (Figure S1). The anatomy and 3D conformational
arrangement of the interacting α-helix that was transferred from the eukaryotic translation initiation
factor eIF3i complex with eIF3b C-terminus eIF3i (Protein Data Bank (PDB) ID:3ZWL) crystal structure
is in good agreement with the conformational arrangement of the modelled WD40 structure that is
spliced (Figure S2).

3. Materials and Methods

3.1. Human Post-Mortem Brain Tissues Collection

The Substania nigra (SN) and occipital cortex (OCTX) samples from 10 individuals were selected
as a subset of this focused study from the full UK brain expression consortium (UKBEC) cohort.
The brain tissues originating from 137 control individuals were collected by the Medical Research
Council (MRC) Sudden Death Brain and Tissue Bank, Edinburgh, UK [20]. All samples had fully
informed consent for retrieval and were authorized for ethically approved scientific investigation
(Research Ethics Committee number 16/ES/0084, 5 June 2017; The National Hospital for Neurology
and Neurosurgery & Institute of Neurology Joint Research Ethics Committee). These are male brains
with age range from 16 to 62 years with average of 42 years old and post-mortem interval (PMI)
ranging from 38 to 95 h; with average of 62 h. Detailed phenotypic information for each sample is
described and published in more details in Trabzuni et al. [14].

3.2. RNA Isolation and Processing

Total RNA was isolated from human post-mortem brain tissues using a single-step method of
RNA isolation [21,22] with the miRNeasy 96 kit (Qiagen, Manchester, UK). The quality of total RNA
was evaluated by the 2100 Bioanalyzer (Agilent, Cheshire, UK) and RNA 6000 Nano Kit (Agilent).
Further details regarding RNA isolation, quality control and processing are reported in Reference [14].
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3.3. Semi-Quantitative Reverse-Transcriptase RT-PCR

In order to investigate the splicing events in the brain tissues and to follow up the published
preliminary results from Trabzuni et al. [13], QIAGEN Long Range 2step RT-PCR kit (Qiagen,
Manchester, UK) and iScript™ cDNA Synthesis Kit (BIO-RAD, Hertfordshire, UK) were used to
generate cDNA. Random primers and gene-specific designed primers were used to enhance the
targeting and the amplification of the interested regions. All gene-specific primers for this analysis
were designed using the Primer3 software (fokker.wi.mit.edu/primer3/input.htm) and were then
Basic Local Alignment Search Tool BLAST searched against University of California, Santa Cruz UCSC
human in-silico PCR tools.

cDNA was synthesized from 1–2 µg of total RNA from 10 samples, originating from two brain
regions (SN and OCTX) using random and gene-specific designed primers in a total reaction volume
of 30 µL under the following conditions: Incubation at 42 ◦C for 50–90 min, followed by enzyme
activation at 85 ◦C for 5 min, then stored at 4 ◦C or −20 ◦C ready for the next step. 2.5 µL of cDNA
was used to perform the semi-quantitative RT-PCR for the targeted exons in a total reaction volume of
25 µL under the following conditions: Initial activation at 95 ◦C for 5 min, followed by denaturation at
94 ◦C for 35 s, annealing 60 ◦C for 55 s, elongation 72 ◦C for 3 min for 40 cycles. PCR products were
run on different percentages of low-melt agarose gels (1.5, 2 and 3%) (Invitrogen, Loughborough, UK)
in modified Tris-acetate-Ethylenediaminetetraacetic Acid(EDTA) (TAE) buffer in cold room (4 ◦C),
and photographed using UV transilluminator to visualize GelRed staining. Images were captured
and saved using Gel-Doc (BIO-RAD). At this stage, after excluding bad quality samples, we have
9 individuals from OCTX and 8 individuals from SN to continue with for these experiments.

3.4. PCR Primers Used in This Study

The PCR primers used in this study are summarized in Table S1.

3.5. DNA Extraction from Low-Melt Agarose Gel and SANGER Sequencing

After DNA fragments were run and separated by agarose gel electrophoresis, individual DNA
bands of interest were sliced using a long-wavelength UV lamp transilluminator and extracted for
Sanger sequencing. Based on the weight of the gel slice, different gel extraction kits were used
to maximize DNA recovery. For the intense bands weighing >120 mg to 400 mg, Minelute gel
extraction kit (Qiagen, UK) was used. For less intense bands, which present minor expressed isoforms,
gel slices weighted between 50 to 120 mg and the Millipore DNA gel extraction kit (Montage, Millipore,
Watford, UK) was used. Protocols were applied according to the manufacturer’s manual. Except
at the precipitation step, the Ethanol was used for DNA precipitation instead of propanol as the kit
recommended protocol. For DNA sample concentration less than 50 ng/µL; the DNA was concentrated
to 70 ng/µL using Glycogen -Sodium acetate (3 M, NaOAc) (Sigma, Dorset, UK). For each 20 µL
of DNA solution 1 µL glycogen + 2 µL 3 M NaOAc +75 µL ethanol were added. Samples were
incubated at −20 ◦C overnight. Next day, samples were centrifuged for 60 min at maximum speed
(16,000 g), the pellet was washed with 70% ethanol twice and air dried. DNAs were suspended in
15 µL TE buffer. The concentration and purity of each DNA sample were assessed by measuring its
optical density (OD) at a wavelength of 260 nm, using the NanoDrop ND-1000 Spectrophotometer
V3.3.0. The concentration of each sample was calculated, together with the ratio of absorbance at
260 nm/280 nm and 260 nm/230 nm. Samples with 260 nm/280 nm ratio lower than 1.7 were
re-extracted from a fresh tissue block. Samples were then sent to (Source BioScience, Nottingham, UK)
for standard Sanger sequencing services. For fragments larger than 600 bp (700 bp to 3 kb) additional
pairs of primers were designed to overlap and cover the whole fragments. This was implemented into
the original protocol to enhance the quality of the Sanger sequencing reads.
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3.6. Molecular Modelling

All calculations and visual constructions were performed on a cluster supercomputer, using
Molecular Operating Environment (MOE) version 2013.08 software package [23], developed by
Chemical Computing Group (Montreal, QC, Canada).

3.7. Homology Modelling

The homology modeling of the LRRK2 ROC and COR domains were carried out using MOE.
The selection of template crystal structures for homology modelling was based on the primary sequence
identity and the crystal resolution. The model of splice variant 1, missing exons 32–33, was based on the
crystal structure of human choline kinase alpha (PDB ID: 3F2R). The model of splice variant 2, missing
exons 42–43, was based on the crystal structure of the Tie2 kinase domain (PDB ID: 2WQB). Finally,
for the model of splice variant 3, missing exons 48–50, the crystal structures of both the eukaryotic
translation initiation factor eIF3i (PDB ID:3ZWL) and PAF-AH holoenzyme-chain C (PDB ID:1VYH)
were selected and threaded together to produce a hybrid template structure. The sequence alignment
only marginally allowed for conventional homology modelling to be considered as sequence identity
and similarity was calculated to 27% and 43% for splice variant 1, 33% and 56% for splice variant 2,
respectively. The sequence identity and similarity of splice variant 3 were in the lower regions of
15–20% identity, and nearly 30–40% similarity.

The MOE homology model method is separated into four main steps. The first step is the initial
partial geometry specification, where an initial partial geometry for each target sequence is copied from
regions of one or more template chains. Secondly, the insertions and deletions task, where residues that
still have no assigned bac kbone coordinates are modelled. Those residues may be in loops (insertions
in the model with respect to the template), they may be out gaps (residues in a model sequence, which
are aligned before the C-terminus or after the N-terminus of its template) or deletions (regions where
the template has an insertion with respect to the model). The third step is the loop selection and
side-chain packing, where a collection of independent models is created. The last step involves the
final model selection and refinement, where the final models are scored and ranked after they have
been stereochemically checked.

3.8. Model Optimization

Energy minimization was performed in MOE initially using the Amber99 force-field implemented
into the same package until a root mean square deviation (RMSd) gradient of 0.0001 to remove the
geometrical strain. The models were subsequently solvated with simple point charge (SPC) water using
the truncated octahedron box extending to 7Å from the model. Molecular dynamics was performed
at 300 K, 1 atm, with 2-second step size for a total of ten nanoseconds, using the NVT (Number of
atoms, Volume and Temperature, held constant throughout the calculation) ensemble in a canonical
environment. The results of the molecular dynamics simulation were collected into a database by
MOE for further analysis. The produced models were initially evaluated within the MOE package
by a residue packing quality function, which depends on the number of buried non-polar side-chain
groups and on hydrogen bonding.

4. Discussion

The evidence presented here supports the central hypothesis of our study, that multiple splice
isoforms of LRRK2 are present in the human brain at different ratios. We have successfully
identified splicing events occurring, on a regional basis, in the substantia nigra and occipital cortex.
The implications of this are highly relevant to the understanding of the physiological role of LRRK2
in the brain and to efforts to target LRRK2 in Parkinson’s disease. In particular, the validation of
splicing events in the ROC/COR and KIN domains of LRRK2 raises the possibility that there are
important consequences for the enzymatic function of the LRRK2 complex in these regions. To test these
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consequences will require the generation of recombinant fragments of LRRK2 encoding these alternate
versions, and assessing the function of the truncated variant through assays predicted to selectively
evaluate ROC/COR/KIN-dependent activity (e.g., GTP binding and hydrolysis, dimer formation,
cellular localization, and kinase activity). We have not yet elucidated the full open reading frames of
the splice variants that are represented in these regions, as these studies are currently underway.

Previous work in over-expression models has shown that the loss of the WD40 domain results in
almost complete ablation of kinase activity from the full-length protein—with the G2385R risk variant
in this domain also reported to significantly reduce kinase activity [24,25]. Additionally, loss of this
domain affects the dimerization of LRRK2 and prevents neuronal death caused by pathogenic PD
mutations [24]. It is therefore crucial when analyzing alternative isoforms from the human brain that
any splicing events impacting on this domain are assessed in the context of a physiologically relevant
ORF of LRRK2.

The three splice variants modelled here affect key regions within LRRK2 that are critical for its
function. Namely, they affect the COR domain, the KIN domain, the WD40 domain, which is a key
protein/protein interacting region and the location where a PD risk factor is found in East Asian
populations, G2385R [26]. The COR and KIN domain splicing variants occur within the defining
ROCO region of LRRK2 do not affect residues with known linkage to PD. Nevertheless, the impact of
the loss of these regions on overall LRRK2 function is expected to be significant. For example, the COR
domain is predicted to be crucial for LRRK2 dimer formation [17,27], which in turn facilitates kinase
activity [28,29]. Current evidence indicates that LRRK2 functions as a GAD-type GTPase, which are
G-proteins that are activated by nucleotide-dependent dimerization, rather than strictly dependent
on the presence of GEF’s (guanine exchange factors) or GAP’s (GTPase activating proteins) [16,30].
In this form, residues within the COR domain stabilize the LRRK2 dimer, and the proximity of the
two adjacent ROC domains facilitate GTP hydrolysis. It is not known, however, if specific residues
within the COR domain that are necessary for LRRK2 dimer formation are present within the spliced
region modelled here. However, our structural model of the isolated COR region would suggest that
some inherent flexibility within this region is lost, which may impact the ability of LRRK2 to adjust to
the presence of a second LRRK2 molecule. We are currently examining the formation and stability of
LRRK2 dimers in the presence or absence of these residues in vitro.

Independently of the second splice variant modelled here, it is expected that the splicing of
these residues within the COR domain, particularly if dimer formation is significantly impacted,
will also affect LRRK2 kinase activity. Multiple reports now suggest that the bulk of total cellular
LRRK2 kinase activity resides within dimeric LRRK2 [28,29], possibly concentrated at the cellular
membrane [29], however, this may be cell-type dependent. Thus, if LRRK2 dimers are de-stabilized
in these variants, LRRK2 kinase activity may be compromised. However, given the complexity of
the domain architecture of LRRK2, particularly the existence of multiple protein interaction repeats,
it is possible that such kinase-deficient variants of LRRK2 could assume other scaffolding-based
cellular functions.

In most kinases, the region spanning the Mg2+ binding “DFG” (“DYG” in LRRK2) and the
Subdomain VIII “APE” motifs make up the activation segment. In the case of the second splice variant
modelled here, the splicing of exon 42–43, the C-terminal end of the activation segment containing
the “APE” motif is removed. The kinase activity of this spliced variant would almost certainly
be abolished. What is unclear is whether other LRRK2 cellular functions, such as GTP hydrolysis,
or protein localization and interactions, would also be similarly disrupted. It is also possible that the
various splice variants are still able to form protein dimers with full-length LRRK2, possibly leading
to the recruitment of novel protein substrates that could be potentially phosphorylated by the intact
partner. A complete understanding of the frequency of these splice variants, their co-existence with
full-length un-modified LRRK2 transcript, and co-occurrence with disease-linked mutations will help
resolve these outstanding questions. Further, it is difficult to predict with absolute certainty, based on
the models established here, whether the LRRK2 protein would withstand the loss of these residues
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without becoming unstable. Our models do suggest that the structural impact of the splicing of these
regions would be generally tolerated, at least within the isolated domain. However, the functional
consequences would clearly be significant.

Lastly, in the third WD40 domain splice variant the α-helix belongs to the complex between the
yeast seven-bladed β-propeller eIF3i/TIF34 and a C-terminal α-helix of eIF3b/PRT1 [31]. The authors
report that structurally, the association pattern between those two proteins reveals universally
conserved interactions. Mutation studies in this interaction region have confirmed that reduced
or loss of interaction causes severe growth defects and eliminates association of eIF3i/TIF34, as well
as eIF3g/TIF35 with eIF3 and 40S subunits in vivo [31]. The predicted WD40 spliced region is likely
associated with this regulatory mechanism, due to its unique structural similarity [31]. The region that
is lost is precisely the region that interacts with the adjacent α-helix. Consequently, we propose that
this splicing event may serve as a switch that regulates the interaction of WD40 domain to the mRNA
initiation machinery in a similar fashion to that reported between eIF3i/TIF34 and eIF3b/PRT1.

There are two key natural extensions of this work. First, following part of our efforts to generate
sequence data for the splice junctions resulting from the alternative splicing events identified in
this study, it is essential to generate sequences relating to entire isoforms, resulting in full ORF for
each variant. Optimizing and obtaining high-quality full sequencing reads was challenging, as the
fragments were of quite low abundance in the RNA samples from human postmortem brain tissues.
This is especially problematic when targeting a long fragment of a minor isoform. These observations
confirming the presence of different mRNA isoforms at different ratios point to an important sign of a
specific complex pattern of the splicing events that affected and shifted the open reading frame (ORF)
in a way that might not be detected by the primer design and the downstream Sanger sequencing we
used in these experiments.

Secondly, functional analyses of the resulting transcript variants are necessary to understand the
biological consequences of the splicing events in a cellular context, as well as different in vitro assays.
As discussed previously, correlation of the observed transcript variants with endogenous protein
fragments will be challenging, due in part to the technical limitation of available antibodies mapping
to multiple epitopes of the protein, as well as the predicted low abundance of these variants. During
this work, an effort was made to correlate transcript sequencing to amino acid sequencing in samples
isolated from the human brain. To achieve this, we set out to validate immunoprecipitation protocols
using the MJFF-produced anti-LRRK2 antibodies (characterized in detail in Reference [32]). To date
we have been able to enrich LRRK2 as assessed by immunoblot, however, we have not been able to
do so to the point where the protein is abundant enough for mass spec analysis. We are continuing
to work towards this aim to achieve optimal conditions prior to attempting immunoprecipitation of
truncated LRRK2 from brain material.

Additional essential questions to be resolved include the regulation of such splicing events. While
multiple splice fragments were detected and amplified across different regions, including the SN,
a region critical for PD pathogenesis; the context in which they are generated needs to be defined,
as well as their relative abundance and contribution in a disease context. It is important to keep in
mind that we have a possibility of false negatives for low-abundance fragments were not amplified
under the used conditions, thus, these fragments cannot be excluded. Furthermore, it should be noted
that the patterns of the amplified bands vary between the two regions and in different individuals,
which reflect the brain region specificity and the effect of individual genetic background as a factor that
may alter the splicing mechanism, especially in SN. The present study is underpowered to determine
whether this variation is, due to inherent genetic differences between individuals, or due to the specific
environment of the SN in these individuals immediately prior to death. The genetic background of all
samples in the UKBEC have been determined by SNP microarray, however; genetic determination of
splicing events in this region as a cause of the observed variation can be tested with the inclusion of a
larger number of samples and deeper targeted sequencing in the future. This is important in order to
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allow us to investigate if the altered splicing events in combinations with different known mutations
and risk alleles are contributing to the disease mechanisms.

In light of recent studies emphasizing mRNA splicing as an important link to diseases [33,34],
we believe this type of study is an important addition to expand and build our knowledge around
the complexity of splicing events that occur. These variants can affect the molecular mechanisms,
the risk of mutation contributing to a disease, and functions of targeted genes in relation to
neurodegenerative diseases.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/9/
2784/s1.
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