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 1 

Summary 1 
 1 

The ability of cells to exchange neighbours, termed intercalation, is a key feature of 1 

epithelial tissues. Intercalation is predominantly associated with tissue deformations that 2 

drive morphogenesis. More recently, however, intercalation that is not associated with large-3 

scale tissue deformations has been described both during animal development and in 4 

mature epithelial tissues. This latter form of intercalation appears to contribute to an 5 

emerging phenomenon that we refer to as tissue fluidity – the ability of cells to exchange 6 

neighbours without changing the overall dimensions of the tissue. Here we discuss the 7 

contribution of junctional dynamics to intercalation governing both morphogenesis and 8 

tissue fluidity. In particular, we focus on the relative roles of junctional contractility and cell-9 

cell adhesion as the driving forces behind intercalation. These two contributors to junctional 10 

mechanics can be used to simulate cellular intercalation in mechanical computational 11 

models, to test how junctional cell behaviours might regulate tissue fluidity and contribute to 12 

the maintenance of tissue integrity and the onset of disease. 13 
 1 
 1 

Planar Cell Intercalation and the Role of Cell-Cell Junctions 1 

 1 

Cell intercalation (here referred to purely as intercalation) is the process through 1 

which cells within an epithelium exchange neighbours (Figure 1a). While intercalation can 2 

occur perpendicular to the plane of an epithelium (termed radial intercalation), for instance 3 

when producing a stratified epithelium from a monolayered precursor, this review will focus 4 

exclusively on planar intercalation. Furthermore, although there are multiple mechanisms 5 

through which intercalation can occur (cell protrusive activity (1, 2), tissue stress (3-5)), we 6 

will focus on intercalation that is mediated by the dynamics of intercellular junctions. 7 

Specifically, we will discuss the contribution of adhesion at adherens junctions and 8 

contractility to intercalation. Adherens junctions are the predominant sites of intercellular 9 

adhesion (mainly through Cadherin homophillic adhesion molecules) and are coupled to the 10 

contractile cortical actomyosin cytoskeleton (6). Therefore, adherens junctions represent a 11 

region within the cell that both generates and integrates mechanical forces across cells and 12 
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tissues (7). 1 

An emerging picture is that cell intercalation can act in two ways in a tissue. The first 2 

is to deform a tissue, resulting in morphogenesis, which involves a change in the 3 

dimensions of the tissue (Figure 1b). The second is to allow cells to exchange neighbours 4 

without a change in the size or shape of the tissue (Figure 1c). In such a situation, cell 5 

intercalations are analogous to the rearrangement of molecules in a fluid in a container that 6 

does not change its dimensions. We therefore refer to this as “tissue fluidity”. A common 7 

feature of these examples is that intercalation behaviours can be explained at the level of 8 

cell-cell junctions. In this review, we aim to discuss how intercalation is regulated to achieve 9 

these two functions and how computational modelling approaches can be used to 10 

understand the mechanical basis of intercalation at the level of cell-cell junctions. 11 

 12 

 13 

Intercalation Can Deform Developing Tissues 14 

 15 

A conserved element of animal development is the extension of a tissue in one axis, 16 

concomitant with a narrowing of the tissue in the orthogonal axis. This process is termed 17 

convergent extension (or convergence and extension) and is driven by polarised 18 

intercalation in many examples. The contribution of intercalation to convergent extension 19 

can be clearly illustrated by two developmental morphogenetic processes - axis extension 20 

and tubule elongation. 21 

 22 

Axis Extension 23 

 24 

Perhaps the most striking example of convergent extension in animal development is 25 

the extension of the embryonic body axis (Figure 2a). Classically, embryos will extend along 26 

their anteroposterior axis and converge along the orthogonal axis (referred to as 27 

dorsoventral or mediolateral depending on the system). 28 

Arguably, the most thoroughly studied example of axis extension is in the embryonic 29 

germband in Drosophila (germband extension, GBE). As intercalation is a dynamic process, 30 

it is best studied through live imaging and the simple epithelium of the germband in 31 

Drosophila embryos is particularly well suited to this technique. It is likely that this is the 32 

reason that the majority of our understanding of intercalation comes from work in 33 

Drosophila, as is reflected in this review. During GBE, the germband extends roughly 34 

twofold along its AP axis, while narrowing by the same magnitude along its DV axis (Figure 35 

2a). This process is characterised by many polarised intercalation events (8), in which DV 36 

oriented cell-cell junctions preferentially shrink and a new junction grows along the AP axis 37 

(9). 38 

GBE intercalation can take two forms. The first involves a tetrad of cells and is often 39 

described as a “T1 process” using terminology from dynamics within foams (10). A DV 40 

junction shared between two neighbouring cells (much like a wall shared between two 41 

bubbles within a soap foam) initially shrinks to a single point, producing a 4-way junction in 42 

which all four cells of the tetrad come into contact (Figure 2a). Subsequently, a new junction 43 

grows along the AP axis, resulting in an exchange of neighbours within the tetrad (9). The 44 

T1 mode of intercalation predominates early during GBE, but later, a second form of 45 

intercalation is initiated. This involves the shrinkage of multiple connected DV-oriented 46 

junctions shared by more than four cells, which ultimately produces a multicellular structure 47 

known as a rosette (11). This rosette is then resolved along the AP axis, again resulting in 48 

exchanges of neighbours (Figure 2a). 49 
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GBE intercalation has a mechanical basis, as it relies on the combined activity of the 1 

contractile actomyosin cytoskeleton and intercellular adhesion. Cell surface mechanics 2 

predicts that a contractile junction will shrink, while an adhesive junction will be prone to 3 

grow (12). Indeed, there is a striking polarisation of both actin and myosin II in the 4 

germband, which are both preferentially enriched at shrinking DV-oriented junctions in both 5 

T1s (9, 13) and the multicellular cables generating rosettes (11, 14). Myosin II activity is 6 

required for both active intercalation and axis extension (9). Moreover, myosin II and its 7 

activity must be planar polarised, otherwise again both intercalation and axis extension fail 8 

(11, 13, 15, 16). Furthermore, components of cell-cell adhesion complexes such as E-9 

Cadherin (E-Cad) and β-catenin are polarised in the opposite orientation (11). Interestingly, 10 

planar polarised endocytosis of E-Cad is required to downregulate adhesion at DV-oriented 11 

junctions (17). When endocytosis is blocked, intercalation fails almost entirely leading to a 12 

drastic reduction in GBE. Therefore, increased contractility and decreased adhesion act in 13 

concert to permit junction shrinkage (Figure 2b).  14 

Polarised junctional myosin not only promotes junction shrinkage during Drosophila 15 

GBE, but also drives intercalation in chordate systems undergoing axis extension. During 16 

convergent extension of the chordate notochord, cells intercalate mediolaterally (18-20). 17 

This process is most often described as being driven by polarised protrusive activity and 18 

directed cell crawling (1, 2). However, more recently a role for polarised junction dynamics 19 

has emerged in Xenopus. Phosphorylated myosin localises strongly to mediolaterally 20 

oriented junctions in the notochord, which are also under increased tension, suggesting an 21 

additional role for junction shrinkage in notochord convergent extension (21). 22 

In chick embryos, myosin cables form perpendicular to the direction of primitive 23 

streak formation and drive polarised junctional shrinkage (22). Similarly, mediolaterally 24 

oriented actomyosin cables form in the neural plate of chick embryos. These are required 25 

for shrinkage of mediolateral junctions, leading to the convergent extension of the neural 26 

tube (23). Relatively little is understood about the contribution of junctional adhesion to axis 27 

extension in vertebrate systems. There is some evidence that Cadherins play a role in 28 

Xenopus axis extension (24, 25), however it will be interesting to see whether reciprocal 29 

roles of contractility and adhesion are conserved. 30 

Although myosin is strongly polarised at the level of cell-cell junctions, during GBE a 31 

second pool of myosin also has a role in generating the forces required for DV junction 32 

shrinkage. Myosin also localises in a medial pool, in the centre of cells, away from junctions. 33 

During GBE, the medial pool of myosin coalesces into “pulses” that appear to flow into DV-34 

oriented junctions (Figure 2b) and these flows are temporally correlated with a reduction in 35 

junction length (26). Interestingly it appears that these pulses are required to shorten the 36 

junctions, while the pool of myosin tightly associated with the junctions stabilises this length 37 

reduction (26), apparently through scission of Rab35 compartments and membrane removal 38 

(27). The flows are dependent on planar polarised distributions of E-Cad (26), which display 39 

transient asymmetries (due to E-Cad endocytosis) that permit the flow of myosin towards 40 

regions of strongest anchoring of the actomyosin meshwork where E-Cad concentration is 41 

highest (28). 42 

Historically, the GBE field has been dominated by work focussing on apical cell 43 

behaviours. However, cells are polarised along their apicobasal axes and more recently a 44 

role for basal cell behaviours in GBE intercalation has emerged. In the majority of cases, 45 

rosettes resolve basally first, suggesting basal dynamics are the main driving force of 46 

intercalation. Basal cell protrusions are observed during GBE and when they are abolished, 47 

many rosettes fail to resolve and GBE is reduced (29). However, when either basal 48 

protrusions or myosin activity throughout the cell are abolished, a subset of rosettes still 49 

resolve apically and basally (29) suggesting mechanical cooperativity between apical and 50 

basal sides of the same cell. 51 
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So far we have focussed on the early stages of intercalation, when junctions 1 

decrease in length to produce vertices shared by more than three cells. For cells to acquire 2 

new neighbours, however, this multicellular vertex must be resolved to produce two or more 3 

tricellular junctions (Figure 2a). This is achieved by the formation of a new cell-cell junction, 4 

a process that like junction shrinkage, is dependent on actomyosin contractility. Unlike 5 

junction shrinkage, new junction growth is a cell non-autonomous process driven by myosin 6 

activity in the cells that were previously neighbours (30, 31) (Figure 2c). Pulses of 7 

actomyosin, much like those contributing to junction shrinkage, form at regions within these 8 

cells close to the newly formed tricellular junctions (32) and this is coupled with transient 9 

contractions of apical cell area (30). The activity of myosin causes these cells to exert a 10 

local pulling force on the new junction, which in turn is thought to promote junction 11 

elongation, initially independently of E-Cad in the growing junctions (32). Local cell non-12 

autonomous forces are also required for junction elongation in the Drosophila amnioserosa 13 

(33), suggesting that this may be a general mechanism of junction growth. In the germband, 14 

an additional tissue scale pulling force from the invagination of the posterior midgut (32, 34) 15 

aligns new junction growth along the AP axis (32). 16 

For intercalation to be successful, there must therefore be tight spatiotemporal 17 

regulation of junction shrinkage and new junction growth. If there is no temporal separation 18 

between the two processes, they will antagonise each other (as a junction cannot both grow 19 

and shrink at the same time) resulting in a failure of cell intercalation. Evidence that this is 20 

true comes from work performed in the pupal wing of Drosophila. The pupal wing displays 21 

significant intercalation when undergoing morphogenesis to produce the shape of the adult 22 

wing blade (3, 35). Timely removal of myosin II (and its activator Rho kinase (Rok)) from 23 

new junctions is crucial to allow multicellular vertices to resolve and for these new junctions 24 

to grow (31). Myosin II removal from new junctions in the pupal wing is controlled by 25 

Phosphatase and tensin homologue (PTEN), which drives the conversion of PIP3 to PIP2 26 

(36). When this pathway is disrupted, myosin II remains concentrated in the new junctions 27 

and cells fluctuate back and forth through four-way vertices. Therefore, it appears that 28 

dissipation of tension in growing junctions is required for their growth (Figure 2c), which was 29 

supported by computational modelling of pupal wings (31). The same is likely to be true 30 

during GBE, as when an constitutively active, phosphomimetic form of myosin regulatory 31 

light chain (MRLC) is expressed in place of wildtype MRLC, there is an increase in the 32 

number of junctions that fail to resolve correctly (16). 33 

 34 

Tubule Elongation 35 

 36 

While axis extension is a key process driven by convergent extension, there are 37 

other developmental processes which require the simultaneous elongation and narrowing of 38 

a tissue. Tubule elongation is one such example where intercalation can contribute to 39 

organogenesis. 40 

Tubule elongation can involve oriented growth and cell shape changes among other 41 

mechanisms, however, often the process instead relies on the rearrangement of cells (37). 42 

Again, much work has been performed on the role of intercalations in tubule elongation in 43 

Drosophila embryos, particularly in the Malpighian Tubules (which form the fly’s renal 44 

system) and tracheal network (which is the site of gaseous exchange). The Malpighian 45 

Tubule lumen is initially lined by up to twelve cells when viewed in cross section (38). 46 

However, at later stages of development, only two cells contact the lumen in cross section, 47 

which is achieved by cells intercalating between each other in the circumferential axis 48 

(Figure 2a). This reduction in luminal cell number is associated with a vast proximodistal 49 

elongation and concomitant circumferential convergence. Circumferential intercalation in the 50 

tubule is, as in Drosophila GBE, driven by polarised pulses of myosin II. However, unlike 51 
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during GBE, these pulses are localised to the basal surface of the tubule cells (38). 1 

Intercalation in the Malpighian Tubules is therefore cell autonomous, as evidenced by 2 

intercalation and extension of Malpighian Tubules cultured externally to the embryo (39). 3 

This is in contrast to intercalation in the tracheal network, which is a cell non-autonomous 4 

process (40). In the developing dorsal branches of the tracheal network, the distal most 5 

cells (known as tip cells) mechanically pull on the tubules to generate a proximodistally 6 

oriented force. Intercalation in the tracheal branches can be entirely supressed by ablation 7 

of the leading tip cell. 8 

Interestingly, intercalation in the trachea still relies on junction dynamics to some 9 

extent, but in terms of adhesion (41) rather than actomyosin based contractility (42). 10 

Intercalation can be supressed genetically in the trachea (43) and this appears to be due to 11 

a reduction in E-Cad turnover. It is thought that this may render junctions fixed in one 12 

confirmation, unable to remodel to allow intercalation to proceed (41). Despite a lack of 13 

intercalation in this situation, trachea are still able to elongate to a large extent (40). 14 

Therefore, elongation drives intercalation, rather than the reverse being true as in GBE. 15 

Cell intercalation in tubule elongation is not a peculiarity of Drosophila, as similar 16 

observations have been made during vertebrate tubulogenesis. In the developing renal tube 17 

of Xenopus, rosette-based intercalations are prevalent and associated with tubule 18 

elongation (44). Furthermore, both elongation and rosette formation are dependent on 19 

polarised distributions of myosin II, arguing that cell rearrangements are vital for elongation. 20 

Multicellular rosettes can also be found in developing mouse kidney collecting ducts (44) 21 

and cochlea (45), suggesting that this mechanism of tubule elongation may be conserved 22 

throughout vertebrates. 23 

 24 

 25 

Intercalation Without Tissue-Level Deformation 26 

 27 

It is clear from the examples above that cell intercalation has the capacity to drive 28 

tissue morphogenesis. More recently, however, evidence has emerged that intercalation 29 

can equally be associated with tissues that are comparably static in nature. In these 30 

examples, although cells exchange neighbours, the overall boundaries, and therefore the 31 

shape of the tissue, remain unchanged. As we describe earlier, we term this phenomenon 32 

“tissue fluidity”. 33 

 34 

 35 

Non-morphogenetic Intercalation in the Drosophila Notum 36 

 37 

The pupal notum of Drosophila is an example of a tissue undergoing intercalation 38 

events that do not contribute to tissue deformation (Figure 3). In this tissue, although 39 

intercalations are frequent, the tissue itself does not undergo any overall deformation (46). 40 

In other words, its overall boundary conditions do not change significantly. Instead of highly 41 

deterministic changes in junction length, intercalations appear to occur as a consequence of 42 

stochastic fluctuations in junction length. Long junctions can shrink and grow without 43 

inducing an intercalation event. However, when a short junction shrinks completely the 44 

resulting four-way vertex can sometimes resolve in the orthogonal direction, leading to an 45 

exchange of neighbours. The non-deterministic nature of these intercalations is particularly 46 

highlighted by a subset of intercalations which only result in a transient neighbour 47 

exchange, something that appears to be shared by the larval wing imaginal disc of 48 

Drosophila (47). 49 
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The non-deterministic nature of intercalations not only applies to the length of 1 

junction changes, but also to the orientation of these changes. Surprisingly, given what is 2 

known about intercalation in the systems described above, notum intercalations are not 3 

polarised and are not driven by highly polarised distributions of actomyosin. Instead these 4 

intercalations occur due to stochastic variations in junctional myosin levels, which occur in 5 

random orientations. The importance of fluctuations in myosin have been demonstrated 6 

through computational modelling (46) (see section below). 7 

As well as being controlled by local stochastic fluctuations in myosin concentration, 8 

the rate of intercalation in the notum is controlled by the global average level of junctional 9 

tension (46). Early in notum development, myosin concentration and junctional tension are 10 

low, which is associated with a high intercalation rate. Later in development, the 11 

concentration of myosin and junctional tension are much higher and this correlates with a 12 

reduction in the rate of intercalation. The notion that myosin contractility might in fact be 13 

inhibitory to cell intercalation in the notum was confirmed by genetically perturbing myosin 14 

activity throughout the notum. Hyperactivation of myosin led to a decrease in intercalation, 15 

while inactivation of myosin increased the rate of intercalation (Figure 3). The increase in 16 

junctional tension over time, and the corresponding decrease in intercalation rate, is 17 

associated with a gradual improvement in cell packing (46). As tension gradually increases, 18 

so too does the proportion of hexagonal cells (also verified by computation modelling, see 19 

later), suggesting that the regulation of tissue fluidity in the notum has a role in tissue 20 

patterning. 21 

The role of myosin II in intercalation in Drosophila therefore appears to be highly 22 

context dependent. In polarised systems such as the germband and Malpighian tubule, 23 

myosin II directs the selective shortening of junctions along a single axis. In an unpolarised 24 

system, global tissue properties dominate, however this must be coupled with fluctuations in 25 

Myosin activity. 26 

The gradual decrease of tissue fluidity in the notum is reminiscent of an epithelial 27 

fluid-to-solid jamming transition (48, 49). Jamming terminology is derived from the physics 28 

of particulate matter where a fluid-to-solid jamming transition occurs when particles can no 29 

longer move past each other due to increased density (50). In a cell layer a fluid-to-solid 30 

jamming transition occurs when cells can no longer exchange neighbours through 31 

intercalation. The latter is distinct from jamming in particulate matter, as it is independent of 32 

the density of cells (48). The theory that explains unjamming, which sheds light on tissue 33 

fluidity in certain contexts, will be explored in the following sections 34 

 35 

Tissue Fluidity and Disease 36 

 37 

The epithelial jamming transition has been recently implicated in disease; specifically, 38 

asthma. Cultured monolayers of differentiated human bronchial epithelial cells (HBECs) 39 

undergo a transition from a solid-like jammed phase to a fluid-like unjammed phase when 40 

subjected to an apicobasal compression of a magnitude that mimics that encountered 41 

during asthmatic bronchospasm (49). Furthermore, during HBEC layer maturation after 42 

reaching confluency, a fluid-to-solid jamming transition is observed. Cell fluidity is high on 43 

early culture days but decreases with age of the culture, until the cell monolayer is almost 44 

completely static. This may be a general property of maturing epithelial cell layers, as 45 

recently the same has been observed in epidermal progenitor cell (EPC) monolayers (51). It 46 

is unclear what drives this jamming transition during maturation at the cellular level, 47 

however it is likely to be related to cell-cell adhesion and cortical contractility (and this will 48 

be explored in the following section). 49 

Intriguingly, the fluid-to-solid jamming transition is delayed in monolayers of HBECs 50 

derived from asthmatic donors. What the functional significance of this is remains to be 51 
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seen, however it suggests that hyperfluidity of epithelial layers might contribute to 1 

pathogenesis. Furthermore, it remains to be tested whether HBEC layers derived from 2 

asthmatic patients respond in the same way to compression. 3 

Like in the Drosophila notum, the induced fluidity does not contribute to changes in 4 

the dimension of the cell layer. For HBEC layers, the confines of the culture dish provide a 5 

clear physical boundary to the cell layer that cannot be deformed. This then raises the 6 

question of whether static boundaries (meaning the tissue does not change size or shape) 7 

contribute to fluidity or whether the stochastic nature of intercalations maintains the 8 

boundary’s dimensions. This is challenging to test, as by removing a boundary you create a 9 

free edge in the cell layer which is likely to induce effects independent of intercalation, such 10 

as an increase of boundary contractility (52). One possible method that could be used to 11 

explore this question is computational modelling, which will be discussed in the following 12 

section. 13 

This potential contribution of unregulated tissue fluidity to disease is to our 14 

knowledge a first. With the advent of more physiological culturing systems such as lung-on-15 

a-chip (53) and organoid technology (54), both amenable to live cell imaging, it will be 16 

fascinating to see if tissue fluidity might relate to underlying causes of other epithelial 17 

diseases. 18 

 19 

Why Do Tissues Regulate Their Fluidity? 20 

 21 

In the Drosophila notum, it appears that the regulation of tissue fluidity is connected 22 

to the preservation of cell shape, patterning and packing. As junctional tension increases 23 

through development, the notum becomes increasingly hexagonally packed (Figure 3) (46). 24 

Another striking example of tissue fluidity is that of the chick epiblast (55). During 25 

gastrulation, many intercalation events occur, which are associated with cell divisions. 26 

Epiblast fluidity shares parallels with the Drosophila notum, as reduced cortical tension 27 

facilitates cell division-mediated intercalation (55). Fluidity in the epiblast appears to have a 28 

clear role in patterning gastrulation movements, possibly by relaxing forces generated by 29 

cell behaviours in the neighbouring primitive streak. When fluidity is inhibited by blocking 30 

cell division (and subsequently the majority of intercalations) the characteristic “Polonaise 31 

movements” of chick gastrulation are strongly disrupted (55). However, why the bronchial 32 

airway epithelium should undergo an unjamming transition in response to compression 33 

remains unclear. Future work investigating the fluidity of other tissues in contexts such as 34 

development and tissue homeostasis will hopefully begin to shed more light on the function 35 

of tissue fluidity. On the other hand, the regulation of tissue fluidity during cell layer 36 

maturation raises the intriguing possibility, that the ability of a mature tissue to be fluid under 37 

certain conditions might be linked to tissue robustness. A specific example is after tissue 38 

wounding. Tissues may need to fluidise after injury, explore new configurations, then 39 

resettle into a new solid like state. 40 

When an epithelial tissue is wounded, a gap is created that the existing cells need to 41 

fill. One possible way cells could “flow” into this gap is to rearrange relative to each other in 42 

a directional manner, similar to intercalation during convergent extension. Such an 43 

observation has been made in the Drosophila embryonic ectoderm. Here, the strategy for 44 

intercalation during germband extension appears to be “redeployed” to allow these epithelial 45 

wounds to close (56). Cells a few rows from an ectodermal wound edge undergo 46 

intercalation events driven by pulsatile flows of myosin that are qualitatively identical to 47 

those seen during GBE. The role of these intercalations appears to be to allow the wound 48 

edge to move forwards, as when intercalation is inhibited by reducing myosin activity, 49 

wound healing is slower (56). Strictly speaking, while these wounds are healing and cells 50 

are intercalating, the outer boundaries of the ectoderm do not change. Therefore, this 51 
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represents an example where tissue fluidity is driven by polarised localisations of myosin. 1 

Interestingly, this is reminiscent of another situation where a polarised tissue is challenged 2 

by introducing new static boundaries in the germband (32). With static boundaries, the 3 

tissue can no longer extend along the AP axis, however the rate of cell intercalation is 4 

unchanged and cells readily exchange neighbours (32), meaning that the tissue has 5 

become fluid by the terms of our definition of tissue fluidity. Therefore, it appears that the 6 

presence of unchanging tissue boundaries can induce tissue fluidity even in situations 7 

where intercalation is polarised. 8 

It will be interesting to see whether actively driven polarised intercalation events, 9 

when combined with fixed tissue boundaries, have a role in driving fluidity in other contexts. 10 

In particular, it remains to be seen whether polarised intercalation is used to induce fluidity 11 

during wound closure in more mature epithelia (and not just embryos), or whether stochastic 12 

junctional fluctuation-induced tissue fluidity might have a role. Certainly, there are other 13 

indications that tissue fluidity might contribute to wound closure. Maturation of a cultured cell 14 

monolayer shares parallels with wound closure, in that a functional barrier needs to be 15 

formed during the process. It is fascinating that asthmatic patients have impaired wound 16 

healing in the lung (57) and that asthmatic HBEC monolayers are fluid for longer during 17 

maturation (49). One might hypothesise that if an unjamming or jamming transition is 18 

delayed, this might be connected to failures in wound healing. However, this remains to be 19 

tested. 20 

Adhesions also play a role in wound closure. Eph-ephrin signalling is upregulated in 21 

wounded mouse and human skin and this is required to downregulate cell-cell adhesion at 22 

tight junctions and adherens junctions (58). In keratinocyte culture scratch wound assays, 23 

removal of Eph-ephrin signalling reduces the ability of cells to move into the wound, 24 

although it is unclear whether this is due to increased migration or through increased 25 

intercalation. However, increased Eph-ephrin signalling appears to downregulate tension in 26 

cells surrounding the wound by dissolving actomyosin stress fibres (58), which is consistent 27 

with the notion that decreased epithelial tension is associated with increased tissue fluidity. 28 

On the other hand, hyperactivation of Eph-ephrin signalling in wounded skin appears to lead 29 

to defective healing as a result of an almost total loss of adhesion between cells (58). This 30 

highlights that a delicate balance between cell cohesiveness and fluidity is likely key for 31 

intercalation mediated events, both in development and disease. 32 

 33 

 34 

Understanding Intercalation using Vertex-Based Models 35 

 36 

Above, we have described examples of experimental work that has furthered our 37 

understanding of intercalation in many contexts. However, dissecting the relative roles of 38 

tissue mechanics and biochemical signalling experimentally remains challenging. For this 39 

reason, the field is increasingly turning to computational models to understand how 40 

intercalation contributes to morphogenesis and how the mechanical properties of a tissue 41 

can contribute to fluidity. 42 

While a number of models exist (for instance the Cellular Potts (59), “cell-centre” (60) 43 

and “finite-element” (61) models), vertex-based models have arguably increased our 44 

understanding of intercalation the most. Vertex models (62) describe a layer of epithelial 45 

cells as a network of vertices (which represent tricellular junctions and vertices at the centre 46 

of higher order structures, such as rosettes) connected by junctions (representing bicellular 47 

junctions) (Figure 4a). Vertex modelling of an epithelium relies on the relationship between 48 

three key properties of cells that determine the movement of vertices; cell area elasticity, 49 

cell perimeter contractility and the line tension of individual junctions (described in detail in 50 
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Figure 4d). In combination, these define an energy function that the model aims to minimise 1 

(Figure 4b) (62). 2 

Vertex modelling has been used to understand how intercalation contributes to 3 

convergent extension during GBE in more detail. Key to modelling GBE is to use the line 4 

tension term to introduce polarity into the simulated system. In such models, intercalation 5 

events occur when junctions shorten to a threshold length and are then allowed to resolve 6 

orthogonally, provided this reduces the energy in the model (63-65) (Figure 4c). Taking this 7 

approach, vertex modelling has demonstrated that intercalation driven by polarised 8 

junctional tension can explain the convergent extension of 2D fields of cells (63), 3D 9 

aggregates and tubes (65). Interestingly, modelling suggests that polarised junction 10 

contraction only allows tissues to extend up to roughly 2.5 times their original length (65). 11 

This may indicate that there is an inherent property of the germband that prevents it from 12 

attempting to extend continuously. 13 

A further vertex model of GBE was used to investigate the interaction between 14 

patterning of the germband and intercalation (64). The germband is patterned along its AP 15 

axis by a hierarchical cascade of spatially restricted genes into discrete domains (66). 16 

These “AP patterning genes” are required to polarise myosin activity to DV-oriented 17 

junctions (8, 13) at the boundaries of domains through local cell-cell interactions (64) 18 

mediated by Toll receptors (67). In the model, line tension was increased at boundaries 19 

between spatial domains, to mimic myosin polarisation. Myosin concentration increases at 20 

junctions as they shrink during GBE, therefore length dependency was introduced to the line 21 

tension term in the model. This model demonstrated that myosin polarity, like those above, 22 

could drive convergent extension of the germband. However, it also predicted that 23 

restricting myosin contractility to junctions between AP spatial domains was sufficient to 24 

maintain the order of these predefined AP domains along the body axis (64).  25 

The above examples demonstrate that intercalation can be successfully modelled by 26 

introducing polarised contractility into vertex models to explain morphogenesis and the 27 

maintenance of tissue order. However, vertex models have hugely furthered our 28 

understanding of how tissue mechanics might contribute to tissue fluidity in the context of 29 

tissue unjamming. Again, fluidity through unjamming can be explained theoretically by the 30 

mechanical properties of cell-cell junctions. Vertex modelling has been particularly useful to 31 

explain the transition from a jammed, immobile epithelium to an unjammed, fluid epithelium. 32 

In contrast to modelling polarised intercalation, when modelling intercalations 33 

associated with tissue unjamming, vertex model parameters do not vary across cells or 34 

between junctions. The relative contributions of perimeter contractility (determined by the 35 

sum of perimeter contractility and cell-cell junction line tension) and cell area interact to give 36 

cells a preferred cell shape. This can be described by a cell shape parameter (p0) which is 37 

the ratio between the preferred perimeter and square root of the preferred area (p0 = P/√A) 38 

(48). Therefore, the energy function of the vertex model can be phrased in terms of how far 39 

a cell’s shape deviates from its preferred shape. Inherently, cells must change shape to 40 

allow an exchange of neighbours. Thus, the magnitude of the energy cost of cell shape 41 

changes (specifically how easily a cell can deviate from its preferred shape) determines how 42 

easily cells can intercalate (49). This energy barrier is determined by p0 itself and as p0 43 

increases, the energy barrier decreases. When p0 reaches a threshold value of 3.81, the 44 

energy barrier to cell shape changes becomes vanishingly small (48) meaning that such a 45 

system can readily undergo intercalation and therefore is in a fluid regime. Accordingly, the 46 

shear modulus vanishes at this transitional p0 value (48). 47 

This apparent link between cell shape and fluidity has been probed using the HBEC 48 

monolayers described earlier. When p0 in jammed and unjammed HBEC monolayers was 49 

quantified, it was on average closer to the theoretical threshold value of 3.81 in unjammed 50 



10 

 

layers than jammed layers (49). This therefore supports the notion that the increased ability 1 

of cells to change shape promotes tissue fluidity. 2 

One failing of this model is that is does not describe a dynamic epithelium, but 3 

instead reaches steady state and infers fluidity from cell shape. Therefore, intercalation rate, 4 

per se, cannot be quantified from the model. Vertex modelling of the Drosophila notum 5 

introduced dynamics by having an additional term describing stochastic fluctuations in edge 6 

tension (46). In this model, edge tension fluctuations are derived from spatiotemporal 7 

quantification of myosin intensity from live imaging. This approach was able to recapitulate 8 

the fluidity of the notum. Moreover, increasing the average magnitude of line tension in this 9 

model was sufficient to increase the proportion of hexagonal cells in simulations. This was 10 

also observed in the more mature notum and is a hallmark of a jammed epithelium 11 

undergoing fewer intercalations (Figure 3) (46). 12 

Based on data from the Drosophila notum vertex model, it is possible that non-13 

deterministic fluctuations in cell edge tension (either through changes in contractility or 14 

adhesion) also contribute to the fluidity of HBEC monolayers in the same manner as the 15 

Drosophila notum. However, to confirm this, quantitative analysis of myosin and cell-cell 16 

adhesion must be performed in HBEC layers. 17 

 18 

 19 

Conclusion 20 

 21 

In this review we have discussed the contribution of intercalation to morphogenesis 22 

and tissue fluidity. The key difference between these two functions appears to be 23 

associated with whether the tissue undergoes a deformation or not. Much is understood 24 

about the role of intercalation in morphogenesis and how it is driven by a combination of 25 

regulated cortical contractility and cell-cell adhesion. Comparatively little is known about 26 

intercalation in tissue fluidity. However, it appears that it can similarly be explained by the 27 

properties of cell-cell junctions. The regulation of tissue fluidity may have more far reaching 28 

consequences, as it appears that the induction of a jammed state is important for both 29 

inducing cell differentiation and delamination from the embryonic mouse epidermis, to drive 30 

stratification (51). It will be fascinating to understand in more detail how tissue fluidity 31 

contributes to development, homeostasis and disease. 32 
 33 
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Figure and table captions 

Figure 1. Cell intercalation is associated both with tissue deformation and with tissues 
having static boundaries. (a) During an intercalation event, a junction shared between two 
cells (green) shrinks to a single point creating a four-way vertex. This vertex then resolves in 
the orthogonal direction as a new junction (magenta) grows. This results in an exchange of 
neighbours. In a tissue, there are often multiple intercalation events associated with either 
(b) tissue deformation or (c) no tissue deformation (old shrinking and new growing junctions 
are coloured as in (a)). We refer to the latter example (c) as “tissue fluidity”. 
 
Figure 2. Polarised intercalation deforms tissues during morphogenesis. (a) 
Morphogenesis, particularly examples of convergent extension such as axis extension (here 
shown Drosophila GBE, germband in grey, direction of elongation shown by red arrow) and 
tubule elongation, is often driven by polarised cell intercalation. Intercalation can take the 
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form of either a T1 Process in a tetrad of cells or the formation and resolution of a 
multicellular rosette. In Drosophila, junction shrinkage (b) is driven by planar polarised 
distributions of myosin II and Cadherin adhesion complexes. Cortical junctional myosin is 
enriched at DV-oriented shrinking junctions, while Cadherin adhesion complexes are 
enriched at stable AP-oriented junctions. Junction shrinkage is further driven by pulsatile 
flows of medial myosin, which flow into shrinking junctions. To achieve new junction growth 
(c), junctional myosin II activity must be reduced in the growing junction. Junctions then 
grow due to cell non-autonomous forces generated by medial myosin pulses in adjacent 
cells, close to the ends of the new junction. 
 
Figure 3. Regulation of tissue fluidity in the Drosophila notum. A summary of experimental 
observations relating to the regulated tissue fluidity of the Drosophila notum (see text below 
schematics). This tissue can undergo a jamming transition from a fluid-like regime 
characterised by many intercalation events (left, shrinking junctions shown in green) and 
irregular packing to a solid-like regime with little intercalation and more regular hexagonal 
packing (right). 
 
Figure 4. Vertex modelling of intercalation. (a) Schematic representation of vertex model 
cells (α) and junctions (ij). (b) Vertex model behaviours are determined by an energy 
function comprising three key terms: Cell Area Elasticity, Cell Perimeter Contractility and 
Junction Line Tension. (c) Implementation of intercalation in vertex models. Intercalation 
can arise due to either polarised line tension (top) or fluctuations in line tension around a 
global mean (bottom). Line tension magnitudes are indicated by the thickness of green 
junctions. Old neighbours are in yellow, new neighbours in grey. Intercalations occur when 
junctions reach a threshold short length and the rearrangement induced by an intercalation 
reduces the total energy. (d) Summary of vertex model terms and parameters. 
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Cell Area Elasticity. Cells are ascribed a preferred area (A0), which in biological terms refers to the 

control of apical cell area by the relationship between cell height (determined by the apicobasal polarity 

network) and cell volume. Cell area (A) deviations from this preferred area increase the cell area term in 

the energy function and any deviation is therefore minimised.

Vertex-Based Models

∙

Cell Perimeter Contractility. Contractility of the cell's perimeter (P) through the activity of cortical 

actomyosin will lead the cell to try and reduce its perimeter. In the model, the perimeter term is 

therefore minimised by a reduction in perimeter length, however this will be counteracted by the 

preferred cell area (as logically a decrease in perimeter length will be accompanied by a decrease in cell 

area). The relative weights given to area elasticity and perimeter contractility in this balance, are 

determined by their respective coefficients (respectively K and Γ).

Junction Line Tension. While cell perimeter contractility is a "whole cell" property, the line tension term 

in the vertex model refers to single junctions (of length l) shared between two neighbouring cells 

(sometimes referred to as bicellular junctions). The addition of this term to the model has two 

advantages. Firstly, by ascribing different line tensions to junctions within the same cell, it is possbile to 

introduce polarised contractility into the model. Secondly, this term can be used to describe the relative 

contribution of cell-cell adhesion and actomyosin contractility to line tension. Cell-cell adhesion is 

predicted to decrease line tension, making the term negative, while the opposite is true for contractility 

(determined by the coefficient γ). The total tension in a single junction is therefore the sum of the 

proportional perimeter contractility and line tension terms, while the ratio of Γ and γ defines the preferred 

perimeter of a cell.
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