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Abstract 

Biorefineries allow for the sustainable production of higher value products from 

biomass. In addition to bioethanol, they can produce added value chemicals and 

pharmaceutical intermediates from isolated component compounds such as sugars. 

Sugar beet pulp (SBP) is a high volume, low value by-product from sugar beet 

processing with a low lignin and a high carbohydrate content, making it an attractive 

biomass feedstock for biorefinery processing. The pectin fraction of SBP can be 

isolated via steam explosion, which, after complete acid hydrolysis, gives a 

hydrolysate rich in monosaccharides: primarily L-arabinose (Ara) and D-galacturonic 

acid (GA), with some D-galactose (Gal) and L-rhamnose (Rha). Isolation of these 

sugars is therefore a critical step in realising an integrated, whole crop biorefinery. 

Currently, little work has been reported on the separation and utilisation of SBP 

hydrolysates. 

The aim of this thesis is to establish novel, scalable separation processes for the 

isolation of the component monosaccharides from crude hydrolysed sugar beet pulp 

pectin. 

Centrifugal partition chromatography (CPC) is a liquid-liquid separation technique 

with no solid stationary phase and offers an alternative to traditional resin-based 

chromatographic techniques. As such it can more easily cope with crude feedstreams 

such as hydrolysates. Hydrophilic ethanol : ammonium sulphate two-phase systems 

were examined based on monosaccharide partition coefficients and phase settling 

times. An ethanol : aqueous ammonium sulphate (300 g L-1) (0.8:1.8 v:v) system was 

chosen for CPC separations of the crude SBP hydrolysate and was shown to be capable 

of removing the coloured contaminants and isolating three sugar fractions in a single 

step: Rha, Ara and Gal, and GA. The separation was optimised and the throughput was 

increased by maximising the sample loading. Operation in an elution-extrusion mode 

allowed for reproducible separations in 100 min without additional column 

regeneration. The process was scaled up from a 250 to a 950 mL column providing a 

final throughput of 1.9 gmonosaccharides L
-1

column h
-1 using the crude SBP. The following 

purities and recoveries of the three main fractions were achieved: Rha at 92% purity 
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and 93% recovery; Ara at 84% purity and 97% recovery; and GA at 96% purity and 

95% recovery. 

Simulated moving bed (SMB) allows for continuous chromatographic separations 

using multiple columns, improving separation performance and throughputs. Isolation 

of Ara from the neutral sugars Gal and Rha was performed with resins and conditions 

screened on single columns leading to the selection of a Dowex 50W X8 resin in the 

Ca2+ form. SMB separation using 8 columns was performed in the 4-zone and 3-zone 

setups and achieved 94% purity with 99% recovery at a throughput of 4.6 gmonosaccharides 

L-1
column h-1 with a synthetic mixture of the neutral sugars (Ara, Gal and Rha). 

However, equivalent separations could not be achieved using the crude SBP 

hydrolysate which needed pretreatment before SMB.  

Decolourisation with activated carbon was able to remove 97% of the coloured 

contaminants with sugar losses of 15% (w/w) in a batch process demonstrated to 50 

mL scale. Anion exchange chromatography using a Dowex 1x8 resin was then found 

to be capable of isolating GA from a synthetic crude mixture of GA and neutral sugars 

with a dynamic binding capacity of 1.31 mmol mL-1
resin. However, further work is 

needed to enable this anion exchange step to achieve satisfactory separations with the 

decolourised crude hydrolysate. The isolated neutral sugars, after GA removal, can be 

processed on the SMB with comparable separation performance and throughput to a 

mixture of neutral sugars prepared without GA. 

In summary, this thesis presents two possible process paths each with their own 

benefits and drawbacks. CPC is capable of processing the crude SBP hydrolysate 

directly, isolating the sugars and removing the coloured contaminants in a single step. 

However, Ara co-elutes with Gal providing a stream that is only 84% pure. In SMB, 

the potential throughputs and separation performance are higher, however, this could 

only be experimentally demonstrated with synthetic crude mixtures of sugars and not 

with the crude SBP hydrolysate. Further pretreatment or SMB method development 

would be required in order to process the crude hydrolysate, and the resulting multistep 

processes may reduce the overall viability. Overall this thesis demonstrates two 

feasible approaches to the preparative scale separation of SBP pectin hydrolysates and 

supports development of an integrated SBP biorefinery.  
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 Impact Statement 

Biorefineries convert biomass into a range of added-value chemicals and products such 

as bioethanol. However, there often remains a portion of the crop which is 

underexploited with high potential for upgrading. A major hurdle in the further 

development of these processes is the isolation of the main components from these 

by-products. The work presented in this thesis provides two scalable separation 

methods for the isolation of monosaccharides, a key building block in many 

biorefinery feedstreams. While hydrolysates from sugar beet pulp are examined, the 

impact is applicable to a wide range of biomass sources and hydrolysates. 

Traditionally, monosaccharide separations have been performed on cleaner 

feedstreams such as sugar juices. Hydrolysates tend to contain more contaminants and 

the presence of D-galacturonic acid as a major target compound further complicates 

pretreatment. The process options presented explore different methods of dealing with 

these contaminants as well as two different separation methods. This thesis thus 

provides additional options for the processing of biomass by-products and 

hydrolysates.  

Overall, the work in this thesis will help towards the development of whole crop 

biorefineries by providing additional applications for biomass by-products and 

hydrolysates. 
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Nomenclature and abbreviations 

Nomenclature 

BV0% Breakthrough volume (initial breakthrough) mL 

BV10% Breakthrough volume (10% breakthrough) mL 

BV100% Breakthrough volume (complete breakthrough) mL 

Cads Concentration adsorbed to resin mg mL-1 

CD Column diameter cm 

CF Concentration in the feed mg mL-1 

CL Column length cm 

Cliq Concentration in liquid phase mg mL-1 

CLP Concentration in the lower phase mg mL-1 

CM Concentration in the mobile phase mg mL-1 

CS Concentration in the stationary phase mg mL-1 

CUP Concentration in the upper phase mg mL-1 

DBC0% Dynamic binding capacity at initial breakthrough mmol g-1 

DBC10% Dynamic binding capacity at 10% breakthrough mmol g-1 

Hi Henry constant of component i - 

kR
i Retention factor of component i - 

kR'i Adjusted retention factor of component i - 

Ki Partition coefficient of component i - 

KLP/UP Partition coefficient (lower phase over upper phase) - 

ṁi Mass flow rate of component i mg min-1 

mn Flow rate ratio in zone n - 

mresin Mass of resin g 

Pq Backpressure on pump q psi 

Q Flow rate mL min-1 

QD Desorbent flow rate mL min-1 

QE Extract flow rate mL min-1 

QF Feed flow rate mL min-1 

Qn Flow rate in zone n mL min-1 

QRaf Raffinate flow rate mL min-1 

QRec Recycle flow rate mL min-1 

RSD Relative standard deviation - 

SF Stationary phase retention % 



 24   
 

t0 Void retention time min 

t'0 Adjusted void retention time min 

ti Retention time of component i min 

t'i Adjusted retention time of component i min 

TS Valve switch time min 

VC Column volume mL 

VD Dead volume mL 

VE Elution volume mL 

VI Injection volume mL 

VS Volume of stationary phase mL 

VS-eluted Volume of stationary phase eluted from the column mL 

αR Selectivity - 

αR' Adjusted selectivity - 

αi Separation factor of component i - 

ε Void fraction - 

σ Population standard deviation - 

µ Mean  - 

  



 25   
 

Abbreviations 

ACN Acetonitrile 

AFEX Ammonia fibre explosion 

Ara L-arabinose 

AS Ammonium sulphate 

ATPS Aqueous two-phase systems 

BD Blue dextran 

BuOH n-butanol 

CCC Countercurrent chromatography 

CCS Countercurrent separations 

ChMWat Chloroform : methanol : water 

CPC Centrifugal partition chromatography 

DBC Dynamic binding capacity 

DMSO Dimethyl sulfoxide 

EBuWat Ethyl acetate : butanol : water 

EtOH Ethanol 

G.U.E.S.S Generally useful estimation of solvent systems 

GA D-galacturonic acid 

Gal D-galactose 

Glu D-glucose 

HEMWat Hexane : ethyl acetate : methanol : water 

HMF Hydroxymethyl furfural 

HPAEC High performance anion exchange chromatography 

HPLC High performance liquid chromatography 

HPLC-RI High performance liquid chromatography with refractive index detection 

HSCCC Highspeed countercurrent chromatography 

ICS Ion chromatography system 

LP Lower phase 

LP-Disp Lower phase with displacer 

MeOH Methanol 

MW Molecular weight 

NaOAc Sodium acetate 

N.D. Not determined 

PEG Polyethylene glycol 

PrOH Propanol 
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RCF Relative centrifugal force 

Rha L-rhamnose 

RI Refractive index 

RT Room temperature 

SBP Sugar beet pulp 

SMB Simulated moving bed 

SMCC Sequential multicolumn chromatography 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

TMB True moving bed 

UP Upper phase 

UP-Exch Upper phase with exchanger 

v/v Volume per volume 

v:v Volume ratio 

w/v Weight per volume 

w/w Weight per weight 

Xyl D-xylose 
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 Introduction 

1.1 Sugar beet pulp as a renewable feedstock for biorefinery applications 

1.1.1 Sustainable chemical feedstocks 

Biomass is increasingly being used for the production of biofuels and chemicals as a 

result of volatility in oil price and availability, a desire for energy independence, and 

a need to reduce greenhouse gas emissions from fossil fuels [1]. Utilising biomass for 

the sustainable production of added value chemical and pharmaceutical intermediates 

could provide economic advantages to biorefineries, while working towards the 

concept of a whole crop biorefinery, as well improving the sustainability of industries 

currently reliant on petrochemical derived feedstocks. 

Lignocellulosic biomass is available cheaply and abundantly from a number of sources 

from both agricultural residues and waste by-products such as wheat straw, corn 

stover, sugarcane bagasse and sugar beet pulp (SBP) [2]. These biomass feedstocks 

comprise a number of biological polymers in varying proportions: cellulose, made up 

of polymeric D-glucose; hemicellulose, a polymer made up of other sugars such as D-

xylose and D-mannose; pectin, a polymeric D-galacturonic acid (GA) backbone with 

neutral sugar side chains containing sugars such as L-arabinose (Ara), D-galactose 

(Gal) and L-rhamnose (Rha); and lignin, a polymer of phenolic and other aromatic 

compounds [2]. The isolation of the sugars or aromatics from these polymers allows 

for conversion into a number of products [3] as discussed in Section 1.1.6. 

Considerable progress has been made towards the production of bioethanol from 

biomass by-products such as wheat straw and commercial biorefineries are currently 

producing bioethanol on an industrial scale [4]. However, there remains a large amount 

of other lignocellulosic material that may be unsuitable for bioethanol production still 

being used for animal feed, such as SBP, that has potential for the production of value-

added chemicals within the context of a whole crop biorefinery [5]. 
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1.1.2 Sugar beet pulp as a renewable feedstock 

Over 8 million tonnes of sugar beet are grown annually in the UK and SBP is a 

significant by-product product from beet processing. The Wissington Factory, 

operated by AB Sugar, processes sugar beet in an already highly integrated process as 

shown in Figure 1-1. It produces sugar products, primarily sucrose; bioethanol, betaine 

and vinasse from sugar side streams; topsoil and stones, cleaned from the sugar beet; 

and even tomatoes, utilising the low-grade heat from the onsite combined heat and 

power plant.  

 

Figure 1-1: Sugar beet processing at AB Sugar’s Wissington Factory – modified from 

graphic provided by AB Sugar. The highlighted black box represents the current 

processing method for the conversion of sugar beet pulp to animal feed. 

Sucrose is isolated from sugar beet in a hot water extraction step known as diffusion. 

After pressing to remove more of the sucrose, the remaining solids, the sugar beet pulp, 

is dried and pelleted before being sold as animal feed [6]. This process is highlighted 

in Figure 1-1. The SBP is still a rich source of carbohydrates, consisting primarily of 

cellulose, polymeric Glu; and sugar beet pectin, a polymeric GA backbone with side 

chains of Ara and Gal [7]. It has a reported total carbohydrate content of up to 85% 
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(w/w, dry basis) and a very low lignin content of 1-2% (w/w, dry basis) [6]. Figure 1-2 

shows the overall composition of sugar beet pulp as calculated by Micard et al. [7], 

showing a total carbohydrate content of ~72%. It shows almost equal amounts of Ara, 

GA and Glu with lesser amounts of Gal, Rha and Xyl. The Glu was found to be entirely 

present in the cellulose [7] and so could potentially be isolated during initial hydrolysis 

of the SBP. The “other” portion in Figure 1-1 contains a number of components, 

including methanol, acetic acid, ash and lignin. 

 

Figure 1-2: Total composition of sugar beet pulp. Data taken from Micard et al. [7]. 

Adding value to this SBP process stream to produce sustainable chemical feedstocks 

can be realised through a chemical processing route outlined in Figure 1-3. Hydrolysis 

involves methods of breaking down the SBP into the constituent sugars and is 

discussed in Section 1.1.4. The separation stage will be the emphasis of this thesis, 

focussing on the isolation of the component monosaccharides and removing any crude 

contaminants remaining after the hydrolysis steps. Synthetic applications of the 

isolated sugars are discussed in Section 1.1.6. The overall aim and objectives are 

detailed in Section 1.7. 
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Figure 1-3: Schematic process overview for producing sustainable chemical feedstocks 

from sugar beet pulp. 

1.1.3 Biomass hydrolysis methods 

Hydrolysis of biomass has a critically important role in the production of bioethanol 

and other products from lignocellulosic feedstocks. The primary goal is to hydrolyse 

the biomass into the component monosaccharides, usually for fermentation into 

products such as ethanol or butanol, without producing too many toxic degradation 

products [8]. Methods of hydrolysing the biomass fall into three categories: physical, 

chemical or biological hydrolysis [9]. 

Physical hydrolysis breaks down the biomass without further addition of chemicals, 

such as steam explosion and liquid hot water treatment. Steam explosion uses high 

pressure steam followed by explosive decompression to hydrolyse the polymers [10]. 

Liquid hot water treatment is similar to steam explosion but uses pressurised water in 

the liquid phase at a lower temperature to reduce the amount of degradation products 

formed [10]. Steam explosion and liquid hot water treatment act primarily on 

hemicellulose, pectin and lignin, solubilising them and leaving the cellulose as a solid 

phase for easier isolation and further processing [8]. The hydrolysis releases acidic 

groups, such as GA, which leads to further catalysis of the hydrolysis and the formation 

of degradation products [9] although they tend to be lower than for chemical methods.  

Chemical methods include dilute acid hydrolysis, acid catalysed steam explosion, 

ammonia fibre explosion, and alkaline hydrolysis. Dilute acid hydrolysis uses a strong 

acid such as sulphuric acid at concentrations of <4% (w/w) to hydrolyse the 

polysaccharides. Its use for hydrolysing biomass is well researched. It is effective at 

hydrolysing both hemicellulose and cellulose at different severity levels, however, it 

is more likely to produce degradation products and fermentation inhibitors [10] and 

can cost more than physical methods due to the reagents needed and the additional 

treatment required to remove the neutralised salts [9]. Catalysed steam explosion 

employs steam explosion with the addition of an acid to catalyse the hydrolysis. This 

Hydrolysis Separation Synthesis
Sugar
Beet
Pulp

Products
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results in the increased hydrolysis of hemicellulose but also an increase in the amount 

of degradation products formed [9]. Ammonia fibre explosion (AFEX) is very similar 

but uses added liquid ammonia instead of acid. It is less effective for lignin removal 

but provides a nitrogen source for subsequent fermentation [8]. Alkaline hydrolysis is 

effective at removing lignin and solubilising hemicellulose. Furthermore it can operate 

at much milder conditions, or even ambient, however, the hydrolysis time is 

considerably longer than other methods, often lasting hours or days [9]. 

Biological hydrolysis utilises enzymes or microorganisms such as fungi or bacteria, to 

degrade the biomass. Enzymes allow for the breakage of specific polymer bonds, 

however, accessibility of enzymes to the polysaccharides can dramatically effect 

hydrolysis rates and so enzyme treatments are sometimes performed after a physical 

or chemical hydrolysis [2]. It is also possible to use microorganisms such as white rot 

fungi to selectively degrade lignin however, these methods can be limited by extended 

operating times [2].  

1.1.4 Hydrolysis of sugar beet pulp 

A number of different hydrolysis methods have been applied to sugar beet pulp to 

isolate the component sugars. In general, milder methods than for other biomass 

sources are required due to the lower lignin content and easier accessibility of the 

polysaccharides. It is possible to directly use enzyme preparations in order to 

selectively hydrolyse the sugars using pectinase [7][11] or arabinase [12]. Zheng et al. 

used cellulases and pectinases to fully hydrolyse all of the polysaccharides in a 

simultaneous enzyme saccharification and fermentation into ethanol [6]. Dilute acid 

hydrolysis has also been used, either as a sole hydrolysis method [13] or prior to 

complete enzyme hydrolysis [14][15], for ethanol fermentation. A modified AFEX 

process has been used for SBP hydrolysis, followed by complete hydrolysis using 

cellulases and pectinases, however, it only benefitted enzymatic hydrolysis of 

cellulose and not pectin [16].  

Finally, steam explosion has been used effectively by Hamley-Bennett et al. to 

solubilise the pectin without the addition of enzymes, acids or ammonia, while leaving 

the cellulose intact [17]. This allowed for a simple solid-liquid separation to obtain 
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cellulose for ethanol fermentation and pectin for further processing. While it may be 

possible to selectively, enzymatically hydrolyse the solubilised pectin and separate the 

monosaccharides from the remaining polymer, it will still require some form of 

ultrafiltration. It is noted by Kuhnel et al. that enzymatic methods may provide 

efficient hydrolysis of the sugars but current methods are not feasible due to the costs 

and amounts of the enzymes required [14]. Dilute sulphuric acid hydrolysis can fully 

hydrolyse the pectin into monomeric sugars and so the method proposed by Hamley-

Bennett et al. can provide a selective removal of cellulose as well as full hydrolysis of 

the pectin into monomeric sugars. However, there will be more degradation products 

produced than in an enzymatic hydrolysis step and these could cause further 

downstream processing difficulties. These degradation products are discussed in 

Section 1.1.5 and often require further treatment such as decolourisation (discussed in 

Section 1.3) before the hydrolysate can be used for synthetic applications. 

The work in this thesis will focus on the separation of the monosaccharides present in 

this crude SBP pectin fraction after steam explosion and full acid hydrolysis, provided 

by Bath University (for a photograph of the material see Figure 2-1). This will be 

referred to throughout this work as “crude hydrolysate”. It contains a number of 

monosaccharides, primarily Ara and GA; lesser amounts of Gal, Rha and Glu; and a 

number of degradation products, discussed in Section 1.1.5. The pyranose ring 

structures of the four main monosaccharides present in the crude (Ara, Rha, Gal and 

GA) are shown in Figure 1-4. 
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Figure 1-4: Pyranose ring structures of the main monosaccharides present in the SBP 

pectin crude hydrolysate. 

1.1.5 Degradation products 

While a hot acidic environment is effective at hydrolysing polymeric sugars, it can 

also degrade those sugars into other products. For example, a number of products can 

be produced from the acid-catalysed degradation of a single sugar, fructose, including 

furans, such as furfural, as well as formic acid and acetic acid [18]. Ara and GA are 

the primary sugars in SBP and both are known to form browning products under heated 

acidic conditions [19], however, the reactions involved are complex and produce a 

wide variety of compounds and, so, characterisation is difficult [20]. GA is known to 

undergo decarboxylation to Ara and thus produce similar degradation products, 

however, most of the GA does not follow this pathway and produces other colour 

precursors and different predicted coloured compounds [21]. Furthermore the presence 

of amino acids leads to additional browning products such as pyrroles [20][22]. Amino 

acids could be present in crude hydrolysed SBP due to the hydrolysis of any protein 

present.  

Both Zheng et al. [15] and Kuhnel et al. [14] found the presence of furfural and 

hydroxymethylfurfural (HMF) in dilute acid treated SBP hydrolysate, however, Zheng 
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et al. noted that furfural and HMF yields were significantly reduced under milder 

conditions. Hamley-Bennett et al. could not detect furfural or HMF in the acid 

hydrolysed SBP pectin (crude hydrolysate), as will be used here, after steam explosion 

[17].  

The hydrolysis step can also release non-sugar products into the liquid phase. In SBP, 

acetic acid, methanol and ferulic acid can be formed during hydrolysis from the 

de-esterification of the pectin due to the presence of acetyl, methyl and feruloyl esters 

[14].  

Phenolic compounds can also be released due to the degradation of lignin during the 

hydrolysis step [23]. However, this may be limited relative to other lignocellulosic 

feedstocks due to the low lignin content in SBP, as discussed in Section 1.1.2. 

The crude used in this thesis, described in Section 1.1.4, is dark in colour, indicating 

that, although there is no detectable furfural, HMF or acetic acid, there are browning 

products from the sugars present in the pectin. It is also possible it contains some 

methanol and ferulic acid, from deesterification during the hydrolysis process; and 

sulphates, from the sulphuric acid used for hydrolysis and the subsequent 

neutralisation. Full characterisation of the browning and degradation products formed 

is beyond the scope of this thesis. Methods of decolourisation and removal of 

degradation products is discussed in Section 1.3. 

1.1.6 Separation targets and applications 

The crude hydrolysate used in this thesis, contains a number of monosaccharides: Rha, 

Glu, Gal, Ara and GA, as described in Section 1.1.4, as well as a number of unknown 

contaminants, discussed in Section 1.1.5. The overarching separation targets are the 

isolation of GA and Ara, as the two primary monosaccharides in SBP pectin, from the 

remaining sugars and from any other contaminants. The potential applications of Ara 

and GA are discussed below. 

Bioethanol is an established, high volume, product that can be produced from almost 

all biomass hydrolysates [3], however the fermentation of ethanol from Ara remains 

difficult [24] and, although it is improving with engineered strains [25], the metabolic 
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pathway involved is more complex than for using D-xylose or D-glucose [26] limiting 

its potential. GA cannot be fermented into ethanol by yeasts [14] although it is possible 

using engineered bacterial strains [27].  

The possibility to produce higher value products from both Ara and GA, avoiding the 

associated limitations of bioethanol production, represents an important factor in 

developing SBP as a renewable feedstock for biorefinery applications. Oxidised 

sugars, such as GA, have been highlighted as important building blocks from biomass 

for the production of hyperbranched polyesters and plasticisers [28]. It has also been 

used to produce adipic acid, a precursor to nylon-6,6 [29]. Ara can be used to produce 

biopolymers [30] or reduced to arabinitol, listed as an important value added chemical 

from biomass, for the production of unsaturated polyester resins [28]. Recent work has 

examined biocatalytic approaches to producing products from sugars from biomass. 

For example, Ara can be upgraded using transketolase to produce L-gluco-heptulose, 

which has potential therapeutic applications [31].  

1.2 Countercurrent separations 

1.2.1 Countercurrent separations 

Countercurrent separations (CCS) are a range of liquid-liquid separation techniques 

which utilise the partitioning of dissolved solutes between two immiscible liquids in 

order to separate them. The process holds one of the phases stationary with the aid of 

a centrifugal field and flows the other (mobile) phase past it. The phases repeatedly 

mix and settle allowing the solutes to partition between the phases; the more the solute 

partitions into the stationary phase the slower it elutes through the column. CCS is 

similar to partition chromatography, except the stationary liquid phase is retained 

through centrifugal force rather than on a solid support. CCS can also be thought of as 

a method of sequential liquid-liquid extraction.  

CCS overcome many of the disadvantages associated with solid-liquid 

chromatography systems. The most important difference is the use of a liquid 

stationary phase and the lack of a solid support. Some advantages of the liquid 

stationary phase are outlined below: 
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• The system is much more robust than systems such as resin-based 

chromatography: contaminants, unreacted compounds and ions are generally 

tolerable, passing through, dissolved or in suspension, without damaging or 

clogging the column [32].  

• Recovery of the product can reach as high as 100%. Solutes strongly retained 

in the stationary phase can be recovered simply by extruding, or pumping out, 

that phase from the column [33]. 

• Sample loading can be up to 10-30% of the column volume, much higher than 

for preparative, resin-based chromatography, as a result of the high fraction of 

the column that is stationary phase rather than solid support [34]. 

• Elution profiles are both predictable and reproducible as no irreversible 

binding or denaturation occurs in the column [34] and separation occurs 

through partitioning alone [35]. This also means that there is no permanent 

damage to the stationary phase and fresh stationary phase can be used every 

time. Furthermore, column packing is not a concern, the column is filled by 

simply pumping the stationary phase. 

1.2.2 Types of CCS 

There are two major categories of CCS machines, differing in the way that they retain 

the stationary phase. Countercurrent chromatography (CCC) utilises a continuous tube 

coiled around a rotating bobbin on a coil planet centrifuge. This is an example of a 

hydrodynamic CCS device, where, if the flow stops, the upper phase will "rise" to one 

end of the column while the lower phase will "fall" to the other end.  

The coil planet centrifuge has a multitude of configurations, the most popular of which 

is the type-J coil planet centrifuge (referred to as HSCCC). This involves a column 

wound around a bobbin and rotating around its own axis on a “planet” gear which is, 

in turn, revolving around a stationary “sun” gear to provide two rotational fields. As 

the bobbin rotates and revolves with the same angular velocity, such that one “day” 

(bobbin rotation) is equal to one “year” (bobbin revolution), the motion is described 

as synchronous [36]. Figure 1-5 shows the two gears and axes of rotation and 

revolution.  
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Figure 1-5: Type-J planetary motion with a multilayer coil. The angular velocities (ω) of 

the stationary sun gear and the planetary gear are the same, giving synchronous motion. 

From [37]. 

Synchronous planetary motion allows for continuous rotation, and therefore 

continuous elution through the column without the use of rotary seals, preventing 

leakage, corrosion and contamination [38]. CCC is operationally robust and scalable 

[39] and able to generate stationary phase retentions of greater than 95% in some 

instances [40]. The stationary phase retention is a key characteristic of CCS 

performance and represents the percentage of the column which is stationary phase. 

Stationary phase retention is discussed in detail in Section 1.2.3.3.  

While older HSCCC machines needed a counterweight, newer ones simply operate 

with two bobbins opposite each other connected in series, eliminating the need to 

balance the system. Column geometry is also important to the performance, each with 

different mixing and retention patterns. The multilayer coil is the most common 

geometry but toroidal and spiral columns are sometimes used, offering improved 

mixing and retention of more difficult, polar phase systems [41]. 

The alternative to CCC is a hydrostatic device, termed centrifugal partition 

chromatography (CPC). In this instance, a single rotational axis is used with the flow 

path made up of twin cells to retain the stationary phase with interconnecting channels 

on a disk (Figure 1-6). The twin cell geometry has been shown to improve the 
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stationary phase retention [42]. Multiple disks are stacked on top of each other to form 

the column, with gaskets in between. The flow path is such that stopping the flow does 

not affect the distribution of stationary phase throughout the column. Mass transfer is 

a result of cascade mixing as the mobile phase cascades through the stationary phase 

in each cell [43]. The number of partition steps is equal to the number of cells and a 

single axis of rotation provides a constant centrifugal field [44].  

There are two possible operating directions, or modes: ascending and descending 

(Figure 1-7). In the ‘ascending’ mode, the heavier phase acts as the stationary phase 

and the mobile phase is fed from the bottom where it ascends to the top of the column. 

In this mode the mobile phase flows against the direction of the centrifugal force within 

each cell. In the ‘descending’ mode, the lighter phase acts as the stationary phase and 

the mobile phase is fed from the top where it descends to the bottom of the column. In 

this mode the mobile phase flows in the direction of the centrifugal force within each 

cell. 
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Figure 1-6: Individual disk (~6.7 cm radius) from an Armen CPC machine (Vannes, 

France) featuring a twin cell design. 

 

Figure 1-7: Schematic showing the ascending and descending CPC modes with the 

mobile flow direction relative to the centrifugal field. 

The hydrostatic nature of CPC can assist in the retention of the stationary phase, 

particularly for systems which are difficult to retain such as highly polar two-phase 

systems [35]. CPC also suffers less when the hydrodynamic equilibrium is briefly 

disrupted, e.g. by changes in rotational speed, however, rotary seals are required, 

which can be prone to leaking and require frequent replacement. Furthermore, the 

narrow interconnecting channels make it more sensitive to disruption or blocking from 

solids or precipitate [35]. As a hydrostatic device, the CPC builds hydrostatic pressure 
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throughout the column, and the use of rotary seals limits the maximum pressure drop 

to around 80 bar [45] which can lead to practical limitations of flow rate and rotational 

speed. CPC performance is also more dependent on the hydrodynamics of mixing in 

the cells [46]; although, its ability to retain the stationary phase, particularly for highly 

polar phase systems, makes it a promising candidate for the separation of hydrophilic 

compounds such as sugars. The rest of this section will therefore focus on CPC, 

although, the majority of the concepts discussed are applicable to CCS in general, 

including hydrodynamic CCC. 

1.2.3 CPC operational considerations  

1.2.3.1 Phase system 

As CCS is a liquid-liquid separation technique, it utilises two immiscible phases (the 

phase system) and the difference in partitioning of solutes between them to perform 

separation. The phase system consists of a stationary phase and a mobile phase, which 

can be alternated by switching the flow direction. The mobile phase, like in other 

chromatography techniques, carries the injected sample through the column. The 

stationary phase, retained by centrifugal forces, slows down the solutes at different 

rates dependent on the ratio at which the components partition between the stationary 

and mobile phases (the partition coefficient – see Section 1.2.3.2). The phase systems 

that can be used for CCS have essentially no limitations beyond the requirement that 

they form two phases. The phase systems need not be limited to two components but 

frequently utilises three, four or even five solvents [47]. Furthermore, phase systems 

are not restricted to pure solvents and can incorporate salts and other additives in order 

to enhance or fine-tune the properties of the phase systems e.g. solute partition 

coefficient [46]. 

 This is one of the most powerful advantages of CCS: an unlimited number of potential 

phase systems and a wide scope to fine tune the composition to optimise performance. 

In solid-liquid chromatography the solid phase is generally not easily modified 

meaning that optimisation is restricted to the mobile phase [48]; this further illustrates 

the advantage of CCS where both phases can be fine-tuned. Selecting an appropriate 

phase system in CCS is thus analogous to selecting both the column and the mobile 
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phase simultaneously in solid-liquid chromatography [48], and can be the most time 

consuming part of developing a CCS separation method [37]. 

Ito outlined four main requirements for any phase system [37]: 

1. Solutes must be stable and soluble in both phases; 

2. A two-phase system should form with similar volume ratios to avoid wastage; 

3. Suitable partition coefficients should be achieved for the solutes; 

4. Satisfactory stationary phase retention should be attainable. 

Point 1 is a standard requirement for any phase system. Degradation of compounds or 

poor solubility in the phase system will hinder the performance of any separation 

process. Point 2 requires the ratio of volumes in the upper and lower phases to be 

similar. While not a strict requirement, this can assist in the amount of solvent wasted 

by not producing too much of one phase in order to form enough of the other. This 

requirement can be neglected if the phases can be made up independently. Points 3 

and 4 are more subjective in what defines a suitable partition coefficient and a 

satisfactory stationary phase retention and will be discussed in Section 1.2.3.2 and 

1.2.3.3 respectively. 

1.2.3.2 Partition Coefficients and Separation Factors 

The partition coefficient (K) is probably the most important parameter for any CPC 

separation. It is defined as the concentration ratio of a solute between the two phases 

at equilibrium. Convention in CPC literature is to use the ratio of concentration in the 

stationary phase (CS) to the concentration in the mobile phase (CM) (Equation 1-1). 

Importantly, it also gives an indication of when a solute will elute from the column. 

 
𝐾 =

𝐶𝑆

𝐶𝑀
 Equation 1-1 

A partition coefficient of K = 1 indicates an even concentration distribution between 

the two phases and is considered to be the best partition coefficient for separating a 

target compound with an optimal resolution [49]. Solutes with higher partition 

coefficients are retained more by the stationary phase, taking longer to elute and giving 

broader peaks, while those with lower partition coefficients are less retained in the 
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stationary phase, eluting quickly through the column with peaks getting closer together 

[50].  

Partition coefficients are entirely independent of the CPC device, dependent only on 

the phase system and the solute. They can easily be determined in a simple shake flask 

method by adding a solute to a two-phase system, vigorously mixing the two phases 

two ensure equilibrium and allowing to settle [51]. The concentration of solute in each 

phase can then be analytically measured by any means (TLC, spectroscopy, HPLC 

etc.). 

Generally, it is preferable to operate such that K<1 so that the solute partitions more 

into the mobile phase, thus eluting more quickly, resulting in shorter elution times, 

higher product concentrations and reduced solvent usage. The partition coefficients 

are thus generally used to determine the operating mode (ascending or descending), 

i.e. which phase operates as the stationary phase and which as the mobile phase (see 

Figure 1-7). Switching the operating mode will entirely reverse the elution order about 

the point K=1, with each compounds partition coefficient becoming the reciprocal of 

its original value.  

Although aiming for a partition coefficient of close to 1 is generally accepted as good 

practice, there is little consensus on any upper or lower limit on this value to achieve 

a suitable separation and recommendations generally stem from personal experience. 

Friesen and Pauli recommended a “sweet spot” range of between 0.4 < K < 2.5 [50] in 

2005 while Ito recommended a partition coefficient of between 0.5 < K < 1 [37] in the 

same year, with the stationary and mobile phases reversed if necessary to ensure 

partition coefficients below 1. In a 2008 review of CCS, it was found that over half of 

separations took place within the range 0.5 < K < 2 while over 85% were in the range 

0.25 < K < 4 [35].  

It is not enough to make sure that all the relevant solutes have partition coefficients in 

the "sweet spot"; if two solutes have very similar partition coefficients, they will co-

elute and not be separated. The separation factor (α) demonstrates this 

chromatographic selectivity. Defined as the ratio of the partition coefficients of the 

two solutes (Equation 1-2), the separation factor is recommended to be greater than 
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1.5 in order to provide good resolution between solutes [37]. Although, resolution is 

ultimately dependent on the stationary phase retention achievable (Section 1.2.3.3), 

and so is phase system and device dependent. 

 𝛼 =
𝐾1

𝐾2
 Equation 1-2 

1.2.3.3 Stationary phase retention 

In CPC, the stationary phase is a liquid and not retained by a solid support but by the 

centrifugal force and the cell geometry [52]. The amount of stationary phase that can 

be retained in the column is vital to separation performance. Broadly speaking, the 

greater the stationary phase retention, the greater the contact with the mobile phase, 

and thus improvements in partitioning and separation are achieved (as shown in Figure 

1-8); although, hydrodynamics and mixing within the cells is also important [53]. 

While Figure 1-8 uses data from a CCC separation, the same principle holds in CPC. 

Additionally, Figure 1-8 demonstrates how the column volume marks a centre point 

for the separation (compounds with K>1 will elute after this point, and compounds 

with K<1 will elute before this point), and how peak width increases retention volume. 
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Figure 1-8: Effect of stationary phase retention (SF) on a CCC chromatogram showing 

that increased SF values give higher resolutions. The column volume (VC = 120 mL) is 

represented by the vertical line in retention volume. From [54]. 
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The stationary phase retention (SF) is expressed (Equation 1-3) as the fraction or 

percentage of the total column volume (VC) that is filled with stationary phase (VS). It 

is calculated from the volume of stationary phase eluted (VS-eluted) from the column 

when mobile phase is first introduced until a hydrodynamic equilibrium is reached 

(Equation 1-4). As a dimensionless parameter, the stationary phase retention is also 

useful for comparing different CCS equipment [44]. 

 𝑆𝐹 =
𝑉𝑆

𝑉𝐶
 Equation 1-3 

 𝑉𝑆 = 𝑉𝐶 − 𝑉𝑆−𝑒𝑙𝑢𝑡𝑒𝑑 Equation 1-4 

Through a combination of the volume of stationary phase in the column, the partition 

coefficient, and the volume of mobile phase (VM, simply calculated from VC) it is 

possible to predict the elution volume for each solute using Equation 1-5. 

 𝑉𝑅 = 𝑉𝑀 + 𝐾 ∙ 𝑉𝑆 Equation 1-5 

The stationary phase retention is heavily affected by the phase system used. Retention 

has been shown to be dependent on the interfacial tension, density difference and, more 

recently, the viscosity ratio of the two phases [52]. As a general rule a phase system 

should have a short settling time for good retention [37]. Advances in both CPC and 

CCC have sought to improve the stationary phase retention in difficult to retain 

systems such as aqueous two-phase systems (ATPS).  

Adelmann et al. discovered that stationary phase retention behaviour can be markedly 

different between the ascending and descending modes of operation [53], and so a 

phase system should ideally be tested in both modes if retention is low. 

In CCC, the stationary phase retention drops linearly to the square root of the flow rate 

[55], however, the relationship between retention and flow rate is more complicated in 

CPC. Retention is found to decrease linearly with increasing flow rate, however, this 

appears to hold true only up to a certain linear velocity, at which point, increasing the 

flow rate further reduces the retention without improving the linear velocity [56]. The 
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rotational speed was found to have little impact on retention at lower flow rates [53], 

but it has been shown to increase the maximum linear velocity achievable [56].  

Settling time has frequently been used as a guide to the level of stationary phase 

retention that can be achieved. The settling time is essentially a manifestation of the 

interfacial tension between the two phases. The higher the interfacial tension, the 

shorter the settling time, and the higher the stationary phase retention [39]. Multiple 

settling times have been recommended as a maximum value: Ito recommends a settling 

time of less than 20 seconds (based on 2 mL of each phase in a test tube or graduated 

cylinder) [37] while Oka et al. recommend less than 30 seconds. While these 

guidelines have found their way into most solvent selection criteria [36][57][58] they 

should not be used as hard and fast rules. Improvements in modern CPC equipment 

and cell design allows for the retention of phase systems with long settling times such 

as ATPS [42]. ATPS are further described in Section 1.2.4.4.  

1.2.4 Phase system selection 

As discussed in Section 1.2.3.1, there are an unlimited number of potential phase 

systems that can be prepared with mixtures of any number of different solvents or 

additives. Thus, it becomes necessary to have clear guidelines and systematic ways of 

developing a method for any potential solute. Without such a method, selection is 

limited to existing literature and trial and error based development. The lack of 

guidelines was reported as a major stumbling block towards the general acceptance 

and application of CCS [50] in 2005 and since then, a number of phase system 

selection strategies have been introduced [59][60][61][62][63].  

For the purposes of processing a low value feedstock such as SBP, CPC process 

development must be considered from a preparative perspective and, as such, the cost 

of solvents, safety and disposal concerns must be addressed and play a role in selection 

from the earliest stages [35]. 

1.2.4.1 Best solvent method 

One of the earliest methods of developing a phase system relied on the "best solvent". 

This involves finding an intermediate solvent that the compound of interest is most 

soluble in and then adding two other solvents to create a two-phase system in which 
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the intermediate solvent is soluble in. The partitioning of the "best solvent" brings 

about the partitioning of the solute [48]. While this method can be a useful way of 

selecting a family of phase systems it gives no indication of the proportions that may 

give an effective separation, or even if effective separation is possible, while still 

requiring a fair amount of experimental work in finding the "best solvent". For highly 

hydrophilic compounds, this method is not particularly helpful as the "best solvent" is 

frequently water with no suitable intermediate solvents.  

1.2.4.2 Screening tables 

An alternative is to use solvent screening tables to rapidly narrow down semi-

optimised conditions based on phase system families (a selection of solvents that can 

give a wide range in polarity depending on their relative proportions). The 

predominant family, HEMWat (hexane - ethyl acetate - methanol - water) has been 

described as the "workhorse" of CCS and is usually the first port of call when 

developing a method [35]. Hexane and water are the primary two-phase forming 

solvents while ethyl acetate and methanol act as modifiers to adjust the partition 

coefficients. Partitioning into the organic phase is enhanced by increasing the ethyl 

acetate proportion while partitioning into the aqueous phase is enhanced by increasing 

the proportion of methanol [33]. Hexane is often replaced by heptane to prevent the 

toxicity problems of using hexane for industrial applications [47]. Furthermore, 

limonene has been proposed as a “green” and renewable replacement for heptane [45]. 

While the HEMWat system is suitable for covering a wide range of solutes, it has poor 

performance for more polar solutes [50].  

If a compound’s polarity falls outside of the range of HEMWat then other phase 

systems must be used. The HEMWat system can be further added to with extra 

modifiers such as TFA or NaCl for more polar compounds [37] but it is often necessary 

to use an entirely different phase system family and thus a different screening table. 

The addition of acids assists in the separation of negatively charged solutes by 

protonating them. The result is that the peak slims as only 1 form is present and the 

partition coefficient moves slightly towards the non-polar phase [37].  

The EBuWat (ethyl acetate – n-butanol - water) system acts as an extension of the 

HEMWat table and allows for the screening of phase systems for more polar 
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compounds [59]. Table 1-1 shows a combined EBuWat (1-6) HEMWat (6-28) 

screening table [47] with highlighted starting points with simple volume ratios to 

simplify phase system selection. The EBuWat system only provides a small extension 

of the polarity range; at its most polar (butanol – water) it is still essentially an 

organic/aqueous phase system and, as such, it is unlikely to be suitable for extremely 

hydrophilic compounds such as monosaccharides. 
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Table 1-1: Combined EBuWat (1-6), HEMWat (6-28) phase system screening table 

showing volume proportions of each solvent for each phase system. Highlighted rows 

show simple solvent proportions for rapid screening of partition coefficients. From [47]. 

No. Heptane EtOAc MeOH Butanol Water 

1 0 0 0 2 2 

2 0 0.4 0 1.6 2 

3 0 0.8 0 1.2 2 

4 0 1.2 0 0.8 2 

5 0 1.6 0 0.4 2 

6 0 2 0 0 2 

7 0.1 1.9 0.1 0 1.9 

8 0.2 1.8 0.2 0 1.8 

9 0.29 1.71 0.29 0 1.71 

10 0.33 1.67 0.33 0 1.67 

11 0.4 1.6 0.4 0 1.6 

12 0.5 1.5 0.5 0 1.5 

13 0.57 1.43 0.57 0 1.43 

14 0.67 1.33 0.67 0 1.33 

15 0.8 1.2 0.8 0 1.2 

16 0.91 1.09 0.91 0 1.09 

17 1 1 1 0 1 

18 1.09 0.91 1.09 0 0.91 

19 1.2 0.8 1.2 0 0.8 

20 1.33 0.67 1.33 0 0.67 

21 1.43 0.57 1.43 0 0.57 

22 1.5 0.5 1.5 0 0.5 

23 1.6 0.4 1.6 0 0.4 

24 1.67 0.33 1.67 0 0.33 

25 1.71 0.29 1.71 0 0.29 

26 1.8 0.2 1.8 0 0.2 

27 1.9 0.1 1.9 0 0.1 

28 2 0 2 0 0 
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These phase system screening tables all represent established phase system families. 

The fact that so many separations and so much guidance focuses on just a few families 

and a relatively small range of solvents shows that a major advantage of CCS, the 

flexibility and limitless range of phase systems, is not being fully exploited [61]. The 

HEMWat family, by far the most popular, does work well for an intermediate polarity 

range, however, it is possible that this has led to little development of other phase 

system families which may provide improved performance [35]. 

1.2.4.3 Generally useful estimation of solvent systems 

The “generally useful estimation of solvent systems” (G.U.E.S.S.) is a method for 

phase system selection based on the performance of 22 commercially available natural 

products in a range of HEMWat or ChMWat (chloroform, methanol, water) phase 

systems [50]. By comparing the performance of a new solute to those in the 

‘G.U.E.S.S. Mix’ based on TLC experiments, the performance in CCS can be 

predicted. The ‘G.U.E.S.S. Mix’ has also been applied to other phase system families 

including EBuWat [59], however, this may not be a suitably polar phase system for 

the partitioning of extremely hydrophilic solutes such as sugars. 

1.2.4.4 Aqueous two-phase systems 

ATPS are two-phase systems with water as the main component in both phases. They 

have applications for liquid-liquid extraction and CCS of very polar compounds, due 

to the high polarity of both phases; and biomolecules, due to the gentler conditions of 

ATPS over organic solvents for maintaining biological activities [64]. ATPS are 

generally categorised as either polymer-salt systems or polymer-polymer systems [65], 

however, there are also ionic-liquid based ATPS, and alcohol-salt ATPS [64]. There 

are also micelle-based and reverse-micelle-based ATPS for the separation of proteins 

but as these are based on the electrostatic interaction between the protein and the 

surfactant, they will not be discussed further in this thesis [66].  

Polymer-salt ATPS are two-phase systems produced between a polymer, usually 

polyethylene glycol (PEG), and a salt, usually a phosphate or a sulphate [65]. They are 

useful for separating a range of biomolecules, such as proteins, while retaining their 

structures and biological activity [67]. The partitioning of proteins in a stable polymer-

salt phase system can be modified by changing the molecular weight or concentration 
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of the polymer, concentration of the salt [64], or by adjusting the pH of the system 

[68]. 

Polymer-salt ATPS do, however, suffer from high viscosities, low interfacial tensions 

and similar densities when compared with organic-aqueous phase systems. This can 

lead to poor stationary phase retention in CCS [69], and while modern CPC equipment 

is much more capable of retaining these systems, it can still be difficult [68]. Polymer-

salt ATPS are also associated with stationary phase bleed, continuous loss of the 

stationary phase throughout a separation [68][70]. 

Polymer-polymer ATPS are two-phase systems produced by two water-soluble 

polymers, usually PEG and dextran. Polymer-polymer ATPS, however, are generally 

less suitable than polymer-salt ATPS due to their increased cost, higher viscosity, 

reduced density difference, and lower selectivity [65] which limit their potential 

applications in CPC.  

The sheer number of possible combinations of polymer-salt and polymer-polymer 

ATPS, including different salts and different molecular weight PEG compounds, 

complicates the development of a screening table for extremely hydrophilic 

compounds. Extensive use of statistical “Design of Experiment” software is often 

required to develop ATPS extraction methods [65]. 

Ionic liquids cannot generally be used directly in CCS due to their high viscosity, 

however, by adding them to an organic solvent or an aqueous salt, a two-phase system 

can be formed with acceptable physical characteristics and have been used for the 

separation of a range of products [71]. Research into their use in CCS appears to be 

focussed on their applications as modifiers rather than phase-forming components 

[46]. 

Alcohol-salt phase systems are generally not useful for the separation or extraction of 

biomolecules due to denaturation and the loss of biological activity, however they can 

be useful for the separation of hydrophilic compounds such as dyes [72], butanediol 

[73] and sugars [74]. These phase systems form such that the upper phase has a high 

alcohol concentration and the lower phase has a high salt concentration. Furthermore, 
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they are cheaper and have lower viscosities and shorter settling times [64], assisting 

stationary phase retention in CCS. 

While methanol, ethanol and propanol are fully miscible in water, they are still organic 

compounds. Furthermore, the primary application of ATPS in CPC is for biomolecule 

separations, and the use of alcohols in the phase system can lead to denaturation or 

loss of bioactivity. Throughout this thesis, alcohol-salt phase systems will be referred 

to simply as “alcohol-salt phase systems”, rather than as a type of ATPS.  

Polymer-salt and polymer-polymer phase systems may be useful for the separation of 

hydrophilic separations but the problems mentioned above, including their cost, 

viscosity, difficulty of retention and stationary phase bleed are causes for concern. In 

addition, their primary advantage, maintaining biological activity, is not of importance 

to the separation of sugars. As such, phase system selection in this thesis will focus on 

alcohol-salt phase systems. 

1.2.5 Separation of sugars in CCS 

The application of CCS to the separation of sugars is limited in comparison to the 

separation of natural products [48][50][60][75][76][77][78][79] (which has sparked a 

number of reviews [35][46][80]) and even protein separations 

[67][68][81][82][83][84], with only a handful of articles published on the separation 

of sugars. 

While some research has been performed on natural products containing sugars (for 

example glycosides [79][85][86] and glucosinolates [75][87][88]), they often contain 

large non-polar or ionic regions which allows for the use of organic-aqueous phase 

systems or ion exchange CCS (described in Section 1.2.7). Looking specifically at the 

separation of carbohydrates, there are only a few literature examples: 

• Lau et al. were able to separate a number of xylose oligomers using a DMSO : 

THF : water (1:6:3 v:v:v) phase system [89], and improved the separation 

further using a butanol : methanol : water (5:1:4 v:v:v) phase system [90]. The 

separation of xylose oligomers has also been applied to dried crude feedstocks 

[91][92], although separation times are between 300-350 min. Zhang et al. 
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even managed to apply a non-aqueous phase system to the separation of xylose 

oligomers based on a heptane : butanol : acetonitrile (9:4:5 v:v:v) phase system 

[93], however, the requirement to fully dry crude aqueous samples prior to 

separation and the limited solubility in organic solvents dramatically hinders 

the practical application of this method. 

• Chevolot was able to separate sulphated oligofucans using an ion-exchange 

method with a methyl tert.-butyl ether : water phase system [94]. Amberlite 

LA2 was used as an ion exchanger in the organic phase and NaOH as displacer. 

However, these oligofucans are charged and the separation method takes 

advantage of this, so this cannot be used for the separation of monosaccharides 

from crude hydrolysed sugar beet pulp except, perhaps, for the isolation of GA. 

The above CCS separations have examined oligosaccharides but have not attempted 

the separation of monosaccharides as will be attempted in this work. Monosaccharides 

have very similar structures and sizes to each other (Figure 1-4) and so their separation 

is extremely challenging. The few CCS studies to address monosaccharide separations 

are described below: 

• Early work was carried out by Murayama on the separation of sugars using 

CCC with a butanol : ethanol : water (10:2.5:10 v:v:v) phase system. The 

monosaccharides used had very low partition coefficients, with the sugars 

partitioning very strongly into the aqueous phase, leading to very long retention 

times and poor separation [95]. 

• Shinomiya improved on this work slightly using a butanol : acetic acid : water 

(4:1:5 v:v:v) phase system, however, the partition coefficients were still poor. 

Partition coefficients for GA, Ara, Gal and Rha were 0.14, 0.27, 0.29 and 0.31 

respectively. The phase system was heavily flow rate limited (0.1 mL min-1 on 

a 26.5 mL column) with separation times of 400 min for the separation of 

sucrose and fucose [96]. 

• Shinomiya and Ito were able to further improve their earlier separation of 

sugars in CCC using an ethanol : aqueous 2 M ammonium sulphate (3:5 v:v) 

phase system [74] to give improved partition coefficients. They achieved 

partition coefficients for GA, Ara, Gal and Rha of 0.18, 0.64, 0.39 and 0.97 
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respectively. However, retention of the stationary phase was limited even at 

flow rates of 0.2 mL min-1 on a 26.5 mL column, leading to excessive 

separation times. 

The literature on monosaccharide separations using CCS is thus extremely limited and 

has primarily focussed on CCC, using the non-conventional cross-axis coil planet 

centrifuge to increase the stationary phase retention. The studies in the literature have 

also focused on model mixtures of pure monosaccharides rather than the crude 

hydrolysates that are more relevant in biorefinery applications (Section 1.1). With 

advances in CPC technology, allowing for much greater retention of the stationary 

phase, it may be possible to overcome the flow-limitations experienced in the literature 

and dramatically reduce separation times and increase throughput. Alcohol-salt phase 

systems could be a useful place to start for the separation of sugars in CCS. 

1.2.6 Preparative CPC and scale-up 

The problems associated with solid supports in resin-based chromatography are still 

present at large scale for these systems, notably limited lifetime through irreversible 

effects (permanent adsorption, denaturation etc.) on the solid support, contamination 

and blockages. Some analytical resins can even be far too costly to run at preparative 

scale and so alternative columns and resins must be sought. This can add further 

development steps to find suitable packing materials and can limit the application of 

preparative scale resin-based chromatography or lead to decreased performance [97]. 

Also, non-specific adsorption in resin-based chromatography can lead to regulatory 

issues [34].  

CPC overcomes many of these problems and retains all of the features that make it 

useful at an analytical scale, most notably: flexibility, the whole column contents can 

be pumped out and new stationary and mobile phases pumped in with no resultant 

cross contamination; and 100% sample recovery, any highly retained solute can be 

recovered by extruding the stationary phase [98]. Furthermore, any problems with 

column packing and flow-distribution for resin-based chromatography are inherently 

removed due to the lack of solid-phase, and CPC is more tolerant than resin-based 

chromatography to the presence of particulate matter, improving process robustness 
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[99]. Reduced solvent consumption can also be achieved relative to preparative resin-

based chromatography [76].  

Scale-up in resin-based chromatography features the equivalence of residence times 

over the column between scales. As the column length is generally kept constant 

(resulting in short, wide columns), chromatographs can be almost identical to their 

analytical counterparts. In CPC scale-up, larger machines requires larger volume 

equipment with possible variations in cell number or cell design, which can alter the 

performance and lead to variations between scales [79]. However, fundamentally, the 

partition coefficients and stationary phase retention determine the solute elution 

volume. Therefore, the elution volume (i.e. the x-axis on a chromatogram) can be 

normalised to partition coefficients by taking into account the amount of stationary 

phase lost throughout the separation [100]. 

Scale-up can be performed linearly, generally with improvements in process 

performance as scale increases [70]. However, improvements in performance 

effectively underestimates the potential of the larger scale, and so recent efforts have 

been made to optimise large scale performance directly from smaller-scale 

experiments (free space between peaks method) [101], and to determine scale-up 

invariants in order to understand the non-linear phenomena during scale-up [99][102]. 

Linear scale-up has been performed in CPC by scaling up the flow rate and sample 

volume using the ratio of the two column volumes as a linear scale-up factor 

[70][103][104]. Sutherland et al. used this method to scale-up a protein separation 

using an ATPS (12.5% (w/w) PEG-1000 : 12.5% (w/w) K2HPO4) from a 500 mL CPC 

to a 6.25 L CPC [70]. A scale-up factor of 12.5 was therefore applied to the flow rate, 

increasing it from 10 mL min-1 to 125 mL min-1, and sample volume, increasing from 

40 mL to 500 mL. Improved separation performance was achieved at the larger scale, 

with the resolution increasing from 1.28 to 1.88. The rotational speed was adjusted in 

order to maintain the centrifugal force between scales due to different rotor diameters 

[70].  

The linear scale-up method underestimates the performance of larger scale CPC 

equipment. The improved separation performance on the larger scale could have 
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allowed for a larger sample injection to be performed, further increasing the 

throughput at the larger scale. It is even possible for linear scale-up to be restricted 

based on pressure limitations on the column, forcing reduced rotational speeds and 

resulting in reduced separation performance [105]. Bouju et al. developed a novel 

scale-up methodology, allowing for the prediction of maximum loading on a large-

scale column based on an optimised smaller scale CPC separation and a single 

analytical injection on a large scale column [101]. The “free-space between peaks” 

method determines the free space volume between two peaks at both the small (ΔV1) 

and large scales (ΔV2). The ratio of the free-spaces between the peaks (ΔV2/ ΔV1) is 

used as a scale-up factor for the sample volume of the maximal loading on the small 

scale equipment. 

An alternative approach to scale-up was made by attempting to determine more useful 

scale-up invariants associated with scale-up, rather than simply tying mobile phase 

flow rate to the total volume ratio. Kotland et al. utilised a “global mass transfer 

coefficient”, linked to the efficiency of the column design; and the stationary phase 

retention, a measure of the capacity of the column as scale-up invariants [102]. 

Keeping stationary phase constant between scales is relatively simple, whereas the 

global mass transfer coefficient is column dependent and involves more detailed 

calculations on both columns. The results, however, allow for more predictive scale-

up between column types of different designs. 

1.2.7 Alternative operating methods 

Due to the liquid nature of the stationary phase in CCS (Section 1.2), it can be 

manipulated much more easily than in resin-based chromatography. In resin-based 

chromatography, gradients are often required in order to more rapidly elute strongly 

retained components [106]. With a liquid stationary phase, these compounds can 

simply be pumped out by switching from the mobile phase to the stationary phase 

(elution-extrusion). Strongly retained compounds which may take significant volumes 

of mobile phase to eventually elute in broad bands can be rapidly eluted with much 

reduced solvent usage in narrower peaks [106]. Furthermore, it is possible to use 

elution-extrusion to reduce band broadening for all peaks by extruding as soon as 

bands are separated within the column rather than waiting for them to elute and 
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broaden further [107]. Another benefit is that after extrusion, the column is regenerated 

with stationary phase and so can be immediately used for further separations [108]. 

This could be an important factor in increasing process throughput. 

Dual-mode CPC involves switching from ascending to descending mode within a run. 

This involves switching both the phase being pumped and the direction of flow [109]. 

The method is similar to elution-extrusion but the change in flow direction reverses 

the elution order after the switch [35]. This allows for rapid elution of very strongly 

retained compounds that may still be towards the start of the column [110]. Multiple 

switches can be made (multiple dual-mode), allowing for an artificially longer column 

while maintaining a higher resolution than a classical elution mode [111]. It is thus 

useful for difficult to separate compounds where longer column volumes would 

otherwise be required. However, while the elution-extrusion mode can be performed 

by programming the run method into the pump software, the dual-mode and multiple 

dual-mode require manual switching of the flow direction valve. 

Chiral separations, ion exchange, and pH zone refining in CCS involve the addition of 

selectivity modifiers to the phase system. Chiral separations utilise chiral selectors in 

the stationary phase, allowing for the selective modification of one of the enantiomer’s 

partition coefficients [112]. Ion exchange CPC takes advantage of a retainer, often an 

ionic liquid, in the stationary phase; and a displacer, a salt, in the mobile phase. 

Operation without displacer in the mobile phase allows for partitioning into the 

stationary phase and then addition of the displacer shifts these compounds back into 

the mobile phase, eluting in reverse order of their affinity for the retainer [113][114]. 

This displacement mode allows for highly selective separations. Another displacement 

technique for ionisable analytes is pH zone refining. Acids and bases are used as 

retainers or displacers and manipulate the pH through the column. Compounds are 

confined into pH zones based on their dissociation constants due to differences in 

partition coefficients between their neutral and ionised forms [115][102]. This leads to 

sharp peak boundaries with much increased capacities and solute concentration [116]. 

In principle it is similar to ion exchange CPC but using pH rather than ionic strength 

[46]. These techniques demonstrate that it is possible for phase system additives to 

have an important impact on separation selectivity and performance.  
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1.3 Pretreatment options for crude SBP hydrolysate 

The crude hydrolysate used in this thesis (steam exploded, fully hydrolysed SBP 

pectin, as described in Section 1.1.4) is a black solution, containing sugars, salts, and 

a number of unknown coloured contaminants. Unlike CPC, resin-based 

chromatography for the separation of sugars requires a much cleaner feed stream due 

to the solid nature of the stationary phase as it is susceptible to variation and 

irreversible binding by certain compounds and contaminants. Furthermore, as 

explained in Section 1.5.1, the resins often used for the separation of sugars tend to be 

cation exchange resins and so the presence of certain cations could prove problematic 

to separation performance and reproducibility. Pretreatment and decolourisation is 

likely required before the crude hydrolyse SBP can be used for separations of the 

sugars using resin chromatography and simulated moving bed technologies. The two 

primary methods of decolourisation are the use of resins or activated carbon [117] and 

are discussed in Sections 1.3.1 and 1.3.2 respectively. 

1.3.1 Resins for decolourisation 

While activated carbon has historically been used for decolourisation of sugar juices, 

the use of resins for pretreatment and decolourisation has been used since 1970 [118]. 

However, it has primarily been applied to sugarcane decolourisation and not for sugar 

beet decolourisation. This is due to the level of coloured compounds present in the 

sugar beet juices being an order of magnitude higher than in sugar cane juices [119]. 

Resin based treatments allow for robust and reproducible decolourisation and 

regeneration, reducing the extra costs associated with replacing the resins. 

Decolourising resins are routinely used in the manufacture of sucrose, from sugar cane 

or sugar beet [120]; and fructose syrups [117]. 

1.3.1.1 Ion exchange resins 

Ion exchange resins are the most common type of resin used for decolourisation of 

sugar juices and hydrolysates [121]. They contain functional groups associated with 

either an anion or cation that can exchange for ions of the same charge. Equation 1-6 

shows the reversible process of sorption and desorption of an anionic contaminant onto 

an anion exchange resin in the Cl- form. In contaminant sorption (left to right), the 
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contaminant exchanges with the Cl- ion, releasing Cl- ions in the effluent. In 

contaminant desorption/regeneration (right to left), NaCl is passed through the column 

and exchanges with the contaminant, releasing the contaminant and regenerating the 

column back into its original Cl- form.  

𝑅𝑒𝑠𝑖𝑛+𝐶𝑙− + 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑛𝑡−  ⇄ 𝑅𝑒𝑠𝑖𝑛+𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑛𝑡− + 𝐶𝑙− 
Equation 

1-6 

As coloured contaminants from sugar hydrolysates and liquors are generally anionic, 

anion exchange resins in the Cl- form are predominantly used for decolourisation, with 

further anion and cation exchange resins used for softening and demineralisation [118]. 

Decolourisation of sugar liquors using resins was initially prevalent primarily for 

sugarcane juices [120][122]. Sugar beet juices have proved more difficult to 

decolourise due to much increased colouration relative to sugarcane juice [119][120]. 

A large amount of related research, however, has been focussed on the decolourisation 

of agricultural waste hydrolysates [123][124][125][126]. 

There are two main types of resins based on the material used for the matrix: 

polystyrene resins and acrylic resins [118]. The different materials allow for different 

interactions with the coloured contaminants. Polystyrene resins have higher 

decolourisation efficiencies [118], however they are more easily fouled and have more 

difficult to regenerate due to hydrophobic interactions in addition to ion exchange 

interactions [122]. Acrylic resins tend to only exhibit ion exchange interactions and 

so, while the decolourising potential may be lower, they are less easily fouled and 

much easier to regenerate using only NaCl [118]. 

Coca et al. [120] decolourised sugar beet juice using Lewatit 6368 anion exchange 

resin in the Cl- form and succeeded in removing 75-80% of the colour. The authors 

note that a demineralisation step would be required before further processing due to 

the high Cl-
 concentration present in the decolourised product stream, a result of the 

Cl- ions released after organic coloured compounds and other inorganic anions 

exchanged with the Cl- on the anion exchange resin (Equation 1-6). 

De Mancilha and Karim examined the use of ion exchange resins in the detoxification 

of corn stover hydrolysates, focussing on the recovery of D-xylose [123]. From a range 
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of ion exchange resins, including both anion and cation exchange resins. All of the 

resins were able to remove a considerable amount of the colour (41-95%), recover 

almost all of the D-xylose (94-100%) while only one of the resins was able to remove 

any acetic acid. This resin (Purolite A 103 S in the NH3 form) performed the best out 

of all of the resins for colour and contaminant removal. The removal of acetic acid 

could be problematic as it indicates that GA could also be removed if present, however 

the other anion exchangers in the Cl- form did not remove any acetic acid indicating 

that this could be a preferred ionic form for decolourisation, even if the colour removal 

is not as great. 

Gong et al. [125] examined the pretreatment of sugar cane bagasse hemicellulose after 

acid hydrolysis using a cation exchange resin (Dowex 50W-X4) for the production of 

ethanol and demonstrated an improvement on the ethanol production by the removal 

of inhibitory compounds.  

Chandel et al. used an anion exchange resin to remove furans and phenolics from a 

sugarcane bagasse hydrolysate to produce ethanol [126]. They also found that the 

anion exchange resin performed better than activated carbon treatment for removal of 

contaminants and yield of ethanol.  

For the work to be conducted in this thesis, it is important to consider the effects of 

any pretreatment method on the removal of GA from the crude sample (Section 1.1.4). 

While sucrose and high-fructose corn syrup productions can use a wide range of resins 

capable of removing effectively all contaminants other than neutral sugars, the ionic 

nature of GA makes things more difficult in the case of the crude hydrolysate examined 

in this thesis. It would not be possible to simply run a complete demineralisation using 

a combination of anion and cation exchangers in the OH- and H+ forms respectively, 

as the GA would also be lost. 

1.3.1.2 Adsorption resins 

In addition to ion-exchange resins, adsorption resins have also been examined for 

decolourisation. These operate in a similar method to activated carbon, utilising 

hydrophilic or hydrophobic adsorption of compounds to the resin, and while they have 

a reduced effective surface area, they are more durable and chemically stable while 
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maintaining high capacities [124]. Furthermore the regeneration is simple with the use 

of alcohols, allowing for solvent recycling to reduce the amount of liquid waste [127]. 

These resins have predominantly been used for the adsorption of phenolic compounds 

[128][129][130], which could arise from the degradation of any lignin present. Okuno 

and Tamaki used an octadecylsilyl-silica gel to adsorb polyphenols from sugarcane 

juice [127]. A colour reduction of 90% was achieved and the resin used can be 

regenerated with ethanol and water rather than salts. Optipore SD-2 was used by Van 

Duc Long et al. [131] as part of a de-ashing step for decolourisation, followed by a 

cation and anion exchange column in order to completely demineralise a sugar mixture 

for simulated moving bed separation of psicose and fructose. The resin was also used 

for the decolourisation of apple juice by adsorption of phenolic compounds without 

affecting the levels of sugars or organic acids [132]. This is important for the proposed 

SBP decolourisation as it would not be desirable to remove any of the neutral sugars 

or the GA from the feedstream during a decolourisation step. 

1.3.2 Activated carbon for decolourisation 

Activated carbon is an extremely versatile adsorbent that can be used for the bulk 

adsorption of a wide variety of compounds in both gaseous and liquid phases [133]. It 

has a polymodal porous structure and variable surface composition, which, combined 

with its large surface area and adsorption capacity makes it an effective adsorbent 

[134]. The adsorption capacity is dependent on both the internal surface area and the 

pore size and differences in chemical structure affect specificity of adsorption of 

different compounds [135], thus, activated carbons produced from different sources 

and with different activation methods can result in different capacities and adsorption 

specificity. This allows a broad range of compounds to be adsorbed, useful for 

decolourisation in the sugar industry where there are many contaminants. The 

relatively non-polar nature of activated carbon also provides a specificity for less polar 

compounds, meaning that polar sugars are less likely to be adsorbed. 

The use of carbon-based adsorbents has long been used for water purification, both for 

industrial wastewaters [134][136][137][138] and drinking water [139][140]. They 

have also been used for centuries in sugar decolourisation with the use of wood 
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charcoals [141] before being replaced with bone char [127] and activated carbon with 

much higher capacities [141].  

Activated carbons are commonly used for decolourisation of sugar liquors 

[142][143][144][145][146] after the diffusion step (Figure 1-1) and prior to softening 

and demineralisation steps. They are also used for the decolourisation of 

lignocellulosic hydrolysates, and this is where most research on activated carbon 

decolourisation of liquids containing sugars has developed. Research in this area is 

primarily focussed on the decolourisation and detoxification of these hydrolysates [8] 

to increase the productivity of fermentation of the sugars into xylitol 

[147][148][149][150][151][152] and ethanol [126].  

The hydrolysates examined are from a range of different biomass sources including 

corn fibre [151], corn stover [153] eucalyptus [150] and other hardwoods 

[148][152][154], and sugarcane bagasse [126][149]. However, only one previous 

article has described the decolourisation or detoxification of a sugar beet pulp 

hydrolysate using activated carbon [13]. This examined the use of SBP hydrolysate for 

fermentation into ethanol, and uses activated carbon to primarily remove furans and 

phenolic compounds as well as acetic acid. It was found that 98% of furans and 71% 

of phenolic compounds could be removed, however, no mention is made of the colour 

of the hydrolysate either before or after detoxification. 

Activated carbon can be produced from any lignocellulosic material [144] and is 

commonly produced from coal or agricultural residues [133][145][146][155]. It can 

be produced through physical activation: pyrolyzing the material at high temperature 

(<800°C) in the absence of oxygen and then adding a non-oxidising gas such as steam, 

air or CO2; or chemical activation, by adding chemicals such as ZnCl2, KOH or H3PO4 

and heating to ~800°C [133].  

A lot of research has focussed on producing activated carbon from a range of different 

agricultural residues [133] including sugarcane bagasse [136][144], sugar beet pulp 

[143], rice hulls [155] and a wide variety of nut shells [133] to produce activated 

carbons for decolourising sugar juices and cleaning up wastewaters. 
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Regeneration of the activated carbon adsorbent is a key consideration for the economic 

feasibility of an adsorption process [124]. It can be performed in a similar way to 

activated carbon production, primarily pyrolysis and high temperature addition of 

steam or CO2 [156]. However, regeneration changes the internal structure of the 

adsorbent, affecting pore size and total surface area and so tends to decrease the total 

capacity of the activated carbon [157]. 

1.3.3 Other adsorbents 

Other novel methods of decolourisation of sugar juices include the use of pulp 

materials as an adsorbent after modification, such as unmodified sugarcane bagasse 

(59% decolourisation) [158] and sugar beet pulp (44% decolourisation) [159], 

although it is noted that decolourisation was not complete using these adsorbents and 

further decolourisation would be required, likely using either ion exchange resins or 

activated carbon. Ultrafiltration has also been used for the decolourisation of cane 

sugar juice [160], although the use of ion exchange resins afterwards was still required. 

1.4 Isolation of GA from neutral sugars 

Similar to the decolourisation step (Section 1.3), it is perhaps easiest to isolate GA 

from the other neutral sugars in the crude hydrolysate (Section 1.1.4) using an anion 

exchange resin, with the galacturonate ions binding and the neutral sugars not binding. 

The galacturonate ions could then be eluted using a regenerating salt. 

Anion exchange resins have been utilised for the separation of uronic acids and the 

isolation of uronic acids from neutral sugars. Suzuki et al. [161] separated a mixture 

of oligogalacturonic acids on a DEAE Sephadex A-25 resin using NH4HCO3 as the 

eluent. The reported advantage of this eluent is that it can be completely removed by 

lyophilisation, allowing for simplified further purification of the fractions. However, 

this would not be feasible at the scale and throughputs required. Khym and Doherty 

were able to separate GA and glucuronic acid using a Dowex 1 anion exchanger in the 

acetate form with acetic acid as an eluent [162]. The isocratic method they used also 

fractionated the uronic acids from the neutral sugars Gal and Ara which were also 

present in the mixture. This method could easily be used as a starting point for the 

development of a step elution method to maximise the capacity of the anion exchange 
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resin as no glucuronic acid is likely to be present in the crude sample. This anion 

exchange method, using acetate as an eluent, is also employed for analytical 

separations of neutral sugars and uronic acids [163] using high performance anion 

exchange chromatography (HPAEC). 

Selectivity of the anions to the exchanger is also important. Too strong an anionic form 

and the galacturonate will not bind. Too weak and desorption will take a much higher 

volume of desorbent (diluting the GA); or require a stronger desorbent, adding an 

additional regeneration step to convert the resin back to its original form. The Dow 

Chemical Company (Midland, Michigan, United States) provide selectivity 

coefficients indicating the relative strength of common anions for type 1 and type 2 

anion exchangers [164]. For type 1 anion exchangers, acetate is 3.2 times as strong as 

OH-, while Cl- is 22 times as strong as OH-. In HPAEC, NaOH cannot be used to elute 

galacturonate from the column, indicating that it is stronger than OH-, while it readily 

elutes using NaOAc. This indicates that its strength is around that of acetate and thus 

likely lower than Cl-. This is particularly useful due to the general preference for Cl- 

anion exchange resins used for decolourisation, discussed in Section 1.3.1, indicating 

that GA may not readily bind to these columns. 

1.5 Neutral sugar separations 

1.5.1 Cation exchange chromatography 

Cation exchange resins have long been used for the separation of neutral sugars for 

preparative separations. Kumanotani et al. worked on preparative separations of acidic 

and neutral monosaccharides using a cation exchange resin in the H+ form in 1979 

[165]. Hicks et al. [166] were able to use preparative HPLC in 1987 to separate a range 

of sugars, sugar acids, lactones and other sugar derivatives on silica columns, and 

cation exchange columns in the H+ and Ca2+ forms. They found that silica gel gave 

better resolution for monosaccharides but cation exchange columns had better 

capacity, durability and economics. Further advantages for the use of cation exchange 

columns over silica gel columns was the recovery of 100% of the injected sugars and 

a more robust separation media, with much reduced need for regeneration or repacking 

and reusability over several years [166].  
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These works are based on scaling up the processes used for analytical separations of 

sugars and generating purified samples from a single column. While this may be useful 

to develop a generic method for routine preparative separations of unknown mixtures 

of sugars, industrial scale separations of sugars generally work with known separation 

criteria. As a result, they are able to work with lower resolution, higher capacity 

systems and take advantage of multiple columns, or recycling of partially separated 

compounds in order to achieve the desired separation most effectively. Simulated 

moving bed (SMB) systems are generally used to fill this role, allowing for continuous 

binary separations based on strict input criteria but allowing for much increased resin 

utilisation, capacity and throughput. SMB is discussed further in Section 1.6.1. 

Cation exchange resins are often used for the separation of sugars both analytically 

[167], at preparative scale [131] and industrially [168], however, the method of 

separation is not obvious due to the non-ionic nature of these sugars. Water is often 

used as an eluent with little need for regeneration unless any other ions are present in 

the stream [169], although at preparative and industrial scales ions can be removed 

with the use of de-ashing and demineralisation prior to loading onto the columns [131]. 

Importantly, the cation form of the resin (the cation that is normally exchanged in 

cation exchange chromatography) dictates the retention times of different 

carbohydrates [169]. This indicates that while there is no direct exchange, there is 

some interaction between the immobilised cation on the ligand and the carbohydrates 

in the sample. The use of water as an eluent and the lack of a regeneration step is a key 

factor in the use of cation exchange resins for the separation of sugars. 

The actual separation is based on complex formation between the sugars and the metal 

ions and the mechanism can be described as a combination of ligand exchange, steric 

exclusion, partitioning, hydrophobic adsorption, and electrostatic attraction and 

repulsion [170]. It is generally referred to as ligand exchange chromatography. The 

metal cation is associated with a number of water molecules which are displaced by 

the carbohydrates as they pass the ligand, forming a donor-acceptor complex [170]. 

The stability of the complex varies between sugars, with more stable complexes 

retaining the sugar for longer on the column, resulting in longer elution times [169]. 

The result is a separation mechanism that is capable of separating sugars yet does not 

require the addition of any modifiers or regular regeneration of the stationary phase. 
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This puts cation exchange resins as prime contenders for use in preparative and 

industrial scale separations where the operating costs of modifiers and regeneration 

must be considered. 

1.5.2 Other resin based chromatography methods 

Reverse phase liquid chromatography of sugars is difficult, even at an analytical scale, 

due to the high polarity of the sugars. As a result, sugars tend to elute very early off 

the column unresolved and this method is rarely used without some form of 

derivatisation [171], which limits the applications to purely analytical. 

Hydrophilic interaction liquid chromatography (HILIC) has been used to analytically 

separate a number of carbohydrates [172][173], however, high percentages of 

acetonitrile are used in the mobile phase and so this method was deemed unsuitable 

for further exploration.  

Anion exchange resins can also be used to separate monosaccharides with high pH 

causing ionisation of the sugars [174]. While these resins may be useful for analytical 

systems, such as HPAEC, the use of high pH in order to ionise the sugars could cause 

issues at an industrial scale. Ideally it would be possible to operate using a water 

mobile phase, as with cation exchange resins. 

1.6 Simulated moving bed chromatography 

1.6.1 Simulated moving bed concept 

The concept of simulated moving bed chromatography (SMB) stems out of a practical 

approach to the true moving bed (TMB) concept where the solid adsorbent and fluid 

move in countercurrent directions, with the feed injected into the centre of the moving 

bed. The countercurrent motion of the solid and liquid phases can be adjusted such that 

the faster eluting (least adsorbing) compound travels in the direction of the fluid, while 

the slower eluting (more adsorbing) compound travels in the direction of the solid. 

This is shown in the TMB schematic in Figure 1-9. This method allows for a much 

higher proportion of the resin to be active in achieving the separation at any one time, 

as opposed to batch chromatography, where the active portion of the resin is much 
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smaller and moves down the column. The result is high purity, high throughput, 

continuous processing, with reduced solvent/desorbent usage and reduced dilution of 

target compounds. 

 

Figure 1-9: Schematic diagram showing the principle of a true moving bed (TMB) 

process with four sections separating a mixture of A and B. The flow directions of the 

solid and liquid, and the relative movement of components A and B are shown. From 

[175].  

The movement of the solid phase provides a severe practical difficulty to the 

application of TMB systems. To fix this problem, the solid phase is split up into 

multiple smaller columns with adjustable inlet/outlet ports between each. The port 

position moves at intervals in the direction of fluid flow, thus simulating the 

countercurrent movement of the solid phase. This “Simulated Moving Bed”, shown in 

Figure 1-10, allows for the countercurrent nature of TMB to be achieved using 

ordinary solid-phase chromatography columns. 
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Figure 1-10: Schematic diagram showing the operation of a four-zone simulated moving 

bed (SMB) process separating a mixture of A and B. The clockwise direction of liquid 

flow and port switching is shown. From [175].  

There are a number of advantages to using SMB processes over batch chromatography. 

First is the issue of resolution and purity: batch chromatography generally requires 

high resolutions in order to achieve high purity products; in SMB, the extract and 

raffinate are effectively only collecting the peak tails and so high purity is achievable 

even with lower resolutions [176]. Second is the improvement in throughput: as a 

much higher proportion of the resin is active in separating the compounds of interest, 

throughputs per volume of resin can be significantly higher than batch separations 

[177]. Furthermore, the improvements in active resin usage leads to shorter solute 

migration distances resulting in reduced solvent consumptions and reduced product 

dilution [178].  

The most common SMB setup uses four sections, or “zones”, as shown in Figure 1-10, 

and each is responsible for a specific role. In zone 1, the resin is regenerated and the 

adsorbed components are desorbed and eluted in the extract [179]. Separation occurs 

in zones 2 and 3 with the weaker adsorbing compounds moving “forwards” relative to 

port switching, ending up in zone 4; and the stronger adsorbing compounds moving 

“backwards” relative to port switching, ending up in zone 1 [180]. The weaker 

adsorbing compound is moved “forwards” into zone 4 by the mobile phase where it is 
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retained. This allows the mobile phase, free of any solutes, to be recycled back into 

zone 1 and mixed with fresh desorbent. The weaker adsorbing compound retained in 

zone 4 is shifted back into zone 3 where it is then eluted as the raffinate. 

It is important during SMB method development to ensure that the port shifting timing 

is not so slow that it allows for the extract component to continue moving “backwards” 

from zone 1 into zone 4; similarly, that it is not so fast that it allows for the raffinate 

component to continue moving “forwards” through the recycle from zone 4 into zone 

1. 

1.6.2 SMB theory and method development 

A typical, four-zone SMB process has four key operating constraints [177]: 

• In zone 1, the strongly retained compound must be completely desorbed. 

• In zone 2, the weakly retained compound must be completely desorbed. 

• In zone 3, the strongly retained compound must be completely adsorbed. 

• In zone 4, the weakly retained compound must be completely adsorbed. 

A trial and error approach to the main operating flow rates and interval switch time 

would be extremely unlikely to find an optimal operating condition that meets these 

constraints. As a result, models have been developed in order to predict acceptable 

operating conditions. The equilibrium theory (or triangle theory) can be used to model 

SMB processes for separating components with linear isotherms [175].  

The equilibrium theory assumes there is no axial dispersion and no mass transfer 

resistance, and, thus, linear isotherms can be expressed in terms of the Henry 

adsorption constant (Hi) for each component (i) according to Equation 1-7, where Cads,i 

is the concentration of the component adsorbed to the adsorbent and Ci is the 

concentration of the component in the liquid phase [175]. Higher Henry constants 

result in stronger adsorption to the adsorbent and, consequently, longer elution times 

on a single column batch separation. For linear isotherms, these Henry constants can 

be calculated from the retention times of batch column experiments [181]. 

. 𝐶𝑎𝑑𝑠,𝑖 = 𝐻𝑖 ∙ 𝐶𝑖 Equation 1-7 
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The dimensionless flow rate ratios (mn) in each zone (n) (Equation 1-8) are then used 

for the SMB triangle theory model, calculated from the flow rate in each zone (Qn), 

the switch time (TS), the column volume (CV), the void fraction (ε), and the dead 

volume (VD). These flow rate ratios show the relative flow rates of the liquid and solid 

phases [175]. 

 𝑚𝑛 =
𝑄𝑛𝑇𝑆 − 𝐶𝑉𝜖 − 𝑉𝐷

𝐶𝑉(1 − 𝜖)
 Equation 1-8 

Applying the flow rate ratios and the Henry constants to the operating constraints 

described previously in this section yields four key inequalities to successful SMB 

separation [182] (Equation 1-9 to Equation 1-12). 

 𝐻𝐴 < 𝑚1 Equation 1-9 

 𝐻𝐵 < 𝑚2 < 𝐻𝐴 Equation 1-10 

 𝐻𝐵 < 𝑚3 < 𝐻𝐴 Equation 1-11 

 𝑚4 < 𝐻𝐵 Equation 1-12 

As the separation is dependent only on zones 2 and 3, the values of m1 and m4 are of 

less importance so long as the inequalities Equation 1-9 and Equation 1-12 are 

satisfied. The m2-m3 plane (Figure 1-11) is a useful tool to predict separation 

performance and shows the expected separation performance in different regions 

based on the Henry constants of the two components and the m2 and m3 values. The 

region where both the extract and raffinate are expected to be pure forms a triangle in 

the centre of the plane, giving the name to the triangle theory. The size of this region 

is therefore dependent on the selectivity between the two components (the ratio of the 

two Henry constants). Alternative methods have been studied which take into account 

the axial dispersion and mass transfer resistance [131], however, they increase the 

complexity of the models. 
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Figure 1-11: SMB separation regions on the m2-m3 plane for the separation of a mixture 

of A and B, based on linear adsorption isotherms. From [175].  

Separations with non-linear isotherms, where species propagate at rates that are 

dependent on the composition, pose an extra difficulty for SMB method development. 

Modified versions of the triangle theory for non-linear isotherms have been developed 

which can be used for Langmuir, Anti-Langmuir, and mixed isotherms [175]. These 

effectively result in models that deviate slightly from the m2-m3 triangular operating 

window. However, due to the strong linearity of isotherms for sugars on cation 

exchange columns [183][184] this will not be examined in further detail. 

1.6.3 Alternative SMB setups 

While SMB traditionally operates using a four-zone, closed loop setup, it is possible 

to remove zone 4 and operate without an internal recycle in a three-zone, open loop 

setup. In this setup, zone three feeds directly into the raffinate [181] and, as there is no 

risk of raffinate products being recycled back into zone 1, the triangle theory model 

can still be used, although without the zone 4 constraint (Equation 1-12). This can lead 
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to simpler setups but higher desorbent usage due to the lack of an internal desorbent 

recycle.  

SMB systems are generally restricted to the isolation of two fractions from a 

separation, the extract (more retained solutes) and the raffinate (the less retained 

solutes). Thus, if it is required to isolate multiple compounds or fractions from a 

sample, multiple SMB steps may be required. Tandem SMB has been developed to 

facilitate the isolation of multiple fractions using SMB. For example: Xie et al. 

developed a tandem SMB process to remove high molecular weight proteins from 

insulin in the first SMB and remove ZnCl2 from insulin in the second SMB [185]. Mun 

used tandem SMB for the removal of acetic acid and sulphuric acid from glucose and 

xylose for fermentation, demonstrated in Figure 1-12 [186]. 

 

Figure 1-12: Schematic diagram of a ternary separation using a tandem SMB to separate 

a four component mixture. The raffinate from the first SMB is used as the feed for the 

second SMB. G, X, S and A represent example components to demonstrate the 

separation. Adapted from Mun [186].  

Other modified methods also exist, such as the five-zone setup as an alternative to 

tandem SMB, incorporating 4 inlets (wash, regeneration, desorbent, and feed) and 4 

outlets (three waste and one product) [187]. Wooley [188] has even developed a nine-
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zone SMB system in place of a tandem SMB setup, however, this rapidly adds 

complexity to method development and optimisation.  

SMB processes are generally restricted to isocratic elution methods [177], whereas, in 

the vast majority of bioseparations, gradient elution methods are applied in 

discontinuous single column operations. As a way around this restriction, a number of 

alternative systems have been developed to allow for gradient elution.  

The main method of performing a gradient elution is the step gradient SMB, essentially 

adding a modifier to the desorbent or reducing the amount of modifier in the feed 

[189]. This allows for more selective adsorption and desorption of compounds in each 

zone rather than relying on a single isotherm for the whole separation [189], effectively 

splitting the SMB into two isocratic halves: before the feed (Zones I and II), with a 

higher desorbing potential; and after the feed (Zones III and IV), with a lower 

desorbing potential. However, this step gradient SMB requires a more complicated 

model due to the coupling of the two isotherm equations under different modifier 

concentrations [190].  

Linear gradients can be performed with an alternative method termed multicolumn 

countercurrent solvent gradient purification [191]. This method “short-circuits” some 

of the columns, allowing for batch gradient elution combined with SMB as well as 

ternary separations in a single unit operation [192]. It is worth noting that these 

gradient systems require additional hardware as they need a more complicated valve 

system allowing for independent port switching [193] relative to isocratic methods 

which are traditionally operated using a simpler rotary valve system [194]. 

The Varicol operating mode is similar to isocratic SMB but instead of a synchronous 

switching of all ports, the switching is non-synchronous with 4 subintervals, where 

some ports switch while others don’t, until all ports are switched as in a normal SMB 

interval [195]. This method adds flexibility to the SMB system and the additional 

optimisation can provide productivity increases of up to 30% [179]. 

“Intermittent SMB” (ISMB), sometimes referred to as “Improved SMB”, is another 

SMB operating mode used in the sugar industry [179]. Each interval is split up into 
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two steps: firstly, with no recycle flow in Zone IV; and secondly, with all system inlets 

and outlets closed, and the recycle between Zones IV and I activated. After the recycle 

the ports are switched one position and the process is repeated [196]. The ISMB 

method allows for a reduced number of columns, typically four, and a simpler setup, 

further reducing capital costs [175]. 

Other operating methods also exist such as PowerFeed, where the flow rate of the feed 

is modified [197]; ModiCon, where the concentration of the feed is modified [198]; 

and Fractionation and Feed-back SMB (FF-SMB), where the raffinate stream is 

fractionated within an interval and partially fed back into the feed [199].  

Sequential multicolumn chromatography (SMCC) is another method that can be used 

for applications with high selectivities such as Protein A affinity chromatography for 

monoclonal antibody purification. The method features the feed passing through 

multiple columns until the first is fully loaded, as shown in Figure 1-13. This column 

is then take out of the sequence for washing, elution and regeneration while the feed 

is loaded directly onto the partially loaded second column [200]. The result is a much 

higher utilisation of the resin than in traditional batch chromatography [201]. 
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Figure 1-13: Comparison of the loading step on a batch chromatography separation and 

a sequential multicolumn chromatography separation (SMCC) to demonstrate the 

increased resin loading achievable in SMCC. From [200].  

These operating modes show that SMB forms the basis of a number of flexible 

continuous chromatographic separations. They tend to increase the degrees of 

freedom, possibly complicating method development, but have the potential to provide 

considerable improvements to the traditional isocratic SMB method. 

1.6.4 Applications of SMB 

SMB was originally used for the separation of petrochemicals by Universal Oil 

Products titled the Sorbex Process, first patented in 1961 [202]. Since then, SMB has 

been transferred into a much wider range of chromatographic separations, from sugars 

[203] (most notably for fructose-glucose separations for the production of high 

fructose corn syrup [168][204][205]) to xylenes [206] 

While SMB has major applications in the sugar industry (where single column 

separations are difficult, the scales are large and the products are generally low value), 

it is also applied in the area of chiral separations for pharmaceuticals [175]; proteins, 
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for example insulin [185] and monoclonal antibodies [177]; as well as gas phase 

separations [207]. 

Isolation of other sugars and products from biomass is also a large research area such 

as sucrose and betaine from molasses [208][209]; dextran from fructose [210]; psicose 

from fructose [131]; xylose from glucose [188]; sucrose from salts [208]; fructose from 

cashew juice [211]; and rhamnose from xylose [212]. These SMB sugar separations 

primarily use cation exchange resins as adsorbents. SMB has also been used for the 

separation of fermentation products such as lactic acid [213] and other carboxylic acids 

[214]. Furthermore, research into isolating compounds from biomass hydrolysates 

such as ionic liquids from sugars [215][216] and other hydrolysate by-products 

(sulphates, acetates, furfural and HMF) from sugars [187] has been reported using 

SMB. 

1.6.5 Simulated moving bed reactors 

In addition to chromatographic separations, simulated moving bed technology has 

been used for reactions, termed simulated moving bed reactors (SMBR). SMBR is 

often applied to isomerisation or other enzyme reactions where conversions are 

inhibited by the presence of the product. SMBR allows for combined enzyme reaction 

and separation, allowing for much increased conversions in a continuous process. It 

has been applied to the production of p-xylene, combining isomerisation of xylenes 

into p-xylene and isolation of the p-xylene product [217]; lactosucrose, preventing the 

back reaction of lactosucrose and glucose into lactose and sucrose formation by 

separating the two products [218]; and high-fructose corn syrup production, combining 

inversion of sucrose and separation of fructose and glucose [219][220].  

An alternative method of high-fructose corn syrup production was sought by Zhang et 

al. who coupled the isomerisation of glucose to fructose with the glucose-fructose 

separation traditionally used for high-fructose corn syrup production [221]. This 

allows for the direct production of 55% fructose HFCS directly from an inverted 

sucrose mixture of glucose and fructose. Furthermore, the overall desorbent usage is 

much reduced across the isomerisation and separation steps than the standard method 
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of producing 90% fructose via SMB and blending with 42% fructose from 

isomerisation. 

1.7 Aim and objectives 

As described in Section 1.1.2, SBP is currently a by-product from existing sugar beet 

biorefineries. It represents an interesting renewable feedstock due to its abundance, 

low cost, high in carbohydrate content and low lignin content. Current processing of 

SBP involves energy intensive drying and pelleting processes prior to sale as low value 

animal feed. Based on an integrated biorefinery approach SBP could become a 

significant sustainable feedstock for the production of chemical and pharmaceutical 

intermediates, producing a number of higher value products.  

It has already been shown that steam explosion can effectively isolate the cellulose 

from the SBP, leaving a solubilised pectin fraction (Section 1.1.4). The cellulose can 

be readily broken down using commercial cellulases and fermented by yeast to 

produce ethanol. Meanwhile, the pectin can be broken down into its component 

monosaccharides by dilute acid hydrolysis; it is this hydrolysed pectin fraction that 

will be used as an example crude feedstock throughout this thesis. This crude 

hydrolysate primarily contains Ara and GA with lesser amounts of Gal and Rha as well 

as a number of unknown impurities (Section 1.1.4). 

Current research has largely focussed on the breakdown of lignocellulosic biomass, 

including SBP, for the production of bioethanol (Section 1.1.1). Specifically, for SBP, 

the pectin is often fully hydrolysed with the cellulose for bioethanol fermentation [15]. 

There remains considerable potential for the pectin fraction to be separated further into 

its component sugars, primarily Ara and GA. These have further applications in the 

production of higher value products such as biopolymers [28] or therapeutic 

intermediates [31] (Section 1.1.6). 

As described in Section 1.1, pretreatment and separation steps are key operations in 

overall biorefinery process design. The separation of carbohydrate components from 

renewable feedstocks is particularly challenging (Sections 1.3, 1.4 and 1.5). As 

described previously, there are a number of interesting novel separation methods for 
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sugar separations including centrifugal partition chromatography (CPC, Section 1.2) 

and simulated moving bed chromatography (SMB, Section 1.6).  

CPC is a liquid-liquid chromatography technique (Section 1.2) for which there has 

been little previous work on the separation of highly hydrophilic compounds such as 

carbohydrates (Section 1.2.5). However, its ability to process contaminated crude feed 

streams without prior clean-up [32] could be a major benefit to the processing of SBP 

hydrolysates within the context of an integrated biorefinery. In contrast, SMB 

technology (Section 1.6) uses traditional resin-based chromatography columns in a 

multicolumn, continuous setup to maximise productivity and product purity [179]. It 

is already well established within the sugar industry, however, its application tends to 

focus on separating sugars from sugar juices, such as glucose-fructose separations 

[211], which tend to be ‘cleaner’ process streams than waste stream hydrolysates. The 

application of SMB to separating sugars from hydrolysates is much less explored 

because of the pretreatment necessary to remove the contaminating compounds 

(Section 1.3). Both CPC and SMB will be examined in this thesis as potential 

separation technologies to facilitate the utilisation of SBP pectin components. 

The aim of this thesis is to establish novel, scalable separation pathways for the 

isolation of the component monosaccharides from crude hydrolysed sugar beet pulp 

pectin. The specific objectives are outlined below. Figure 1-14 provides a 

diagrammatic overview of the two process options, CPC and SMB, and highlights their 

relation to each chapter. 

• To develop a method for separating a model synthetic mixture of the 

monosaccharides in hydrolysed SBP pectin using CPC. This will involve the 

development of a two-phase system capable of partitioning the 

monosaccharides and demonstration separations of a synthetic 

monosaccharide mixture. This work is described in Chapter 3. 

• To demonstrate the potential of the CPC method developed in Chapter 3 to the 

processing of crude SBP hydrolysates. This will involve modification of the 

sample preparation methods to accommodate differences between the synthetic 

and crude hydrolysate mixtures as well as studies on optimisation and scale-up 
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of operating conditions to increase experimental throughput and yield. This 

work is described in Chapter 4. 

• To develop a method for isolating L-arabinose from a synthetic neutral mixture 

of the neutral sugars in hydrolysed SBP pectin using SMB. This will involve 

resin and condition screening in single column runs before an 8 column SMB 

separation. An SMB model will be used to predict SMB operating conditions 

in both a 4-zone and 3-zone setup. These conditions will be tested and 

optimised based on experimental results. This work is described in Chapter 5. 

• To develop a method of isolating D-galacturonic acid from a synthetic crude 

mixture and develop pretreatment methods to move towards complete 

processing of the crude hydrolysate. This will involve examining suitable anion 

exchange resins for D-galacturonic acid isolation and activated carbon and 

various resins for decolourisation of contaminants from the crude hydrolysate. 

It will also look at incorporating the decolourisation and D-galacturonic acid 

isolation from this chapter with the SMB separation of L-arabinose developed 

in Chapter 5. This work is described in Chapter 6. 

In addition, Chapter 2 describes all the equipment, methods and analytical techniques 

used in this thesis. Finally, Chapter 7 provides an overall summary and comparison of 

the two separation approaches and suggestions for further work. 
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Figure 1-14: Overview of the two process options and experimental strategies pursued in 

this thesis. 
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 Materials and Methods 

2.1 Reagents 

The sugars L-arabinose (99% w/w), L-rhamnose (99% w/w), D-galacturonic acid 

sodium salt (98% w/w) and D-galactose (99% w/w) were purchased from Sigma-

Aldrich (Gillingham, UK). The solvents acetonitrile, methanol, n-propanol, n-butanol, 

ethyl acetate and hexane were also purchased from Sigma-Aldrich. Dimethyl sulfoxide 

(DMSO) (99%) and sodium acetate trihydrate (HPLC grade) were purchased from 

Fisher (Loughborough, UK). Aliquat 336, sodium iodide and trifluoroacetic acid 

(TFA) were purchased from Sigma-Aldrich. Absolute ethanol was purchased either 

from Fisher or Sigma-Aldrich. Water was purified to 18.2 MΩ by either a Millipore 

Synergy UV Water Purification System (Watford, UK) or a Purite Select Fusion 

purification system (Thame, UK).  

The resins Dowex 50W X2 (200-400), Dowex 50W X4 (200-400) and Dowex 50W 

X8 (200-400) were purchased from VWR (Lutterworth, UK). Dowex Monosphere 99 

320/Ca was provided courtesy of the DOW Chemical Company (Chauny, France). 

Calcium chloride dihydrate was purchased from VWR (Lutterworth, UK). Glacial 

acetic acid was purchased from Sigma-Aldrich (Gillingham, UK). 

The resins Marathon A, Marathon A2, Marathon C and Marathon MSA were 

purchased from Sigma-Aldrich. The resins Amberlite IRA-400 and Dowex 1x8 (200-

400 mesh) were purchased from VWR. Activated carbon (Darco 100 mesh) was 

purchased from Sigma-Aldrich. NaOAc was purchased from Fisher Scientific. NaCl 

and NaOH were purchased from VWR. 

2.2 CPC phase system development and solute partition coefficients 

Two-phase systems were prepared by combining all components in the specified 

volume ratios, mixing to allow dissolution of any precipitated salts, and were then left 

to settle for 2 hours in a separation funnel prior to separation of the two phases. In each 

case the volumes of the upper phase (UP) and lower phase (LP) were recorded and the 
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interface was discarded. The fraction of LP to the total volume is referred to as the LP 

volume fraction and expressed as a decimal fraction between 0 and 1. 

Settling times were measured by adding 2 mL of each separated phase into a test tube, 

vortexing for 15 seconds, and measuring the time taken to settle completely; defined 

as the appearance of a distinct, flat interface. Three repeats were performed for each 

phase system. 

Solute equilibrium partition coefficients (K) were individually determined for the 

sugars (Rha, Ara, Gal and GA) by adding 10 mg of the sugar to 2 mL of the LP and 

leaving to dissolve completely. 1 mL of this solution was added to 1 mL of the UP, 

and thoroughly mixed for 45 min to reach equilibrium. The partition coefficients were 

calculated using Equation 2-1, where CLP and CUP
 are the concentrations in the lower 

and upper phases respectively. CLP and CUP were determined by HPLC-RI, as 

described in Section 2.8.1.  

 𝐾 =
𝐶𝐿𝑃

𝐶𝑈𝑃
 Equation 2-1 

Separation factors (α) between two solutes were calculated using the partition 

coefficients of each solute (K1 and K2) using Equation 2-2. The solutes are categorised 

such that K1>K2 and thus α>1. Unless otherwise stated, separation factors are given 

relative to Ara, meaning that Ara is one of the two solutes.  

 𝛼1/2 =
𝐾1

𝐾2
 Equation 2-2 

A number of phase systems were considered in this study. Initially, solvent-based 

phase systems were explored comprising either a traditional HEMWat system (hexane 

: ethyl acetate : methanol : water 1:5:1:5 v:v:v:v) or a polar EBuWat (ethyl acetate : 

butanol : water 0:1:1 v:v:v) system. HEMWat 1:5:1:5 is near the polar end of the 

HEMWat phase system family and EBuWat is the most polar of the EBuWat phase 

system family (see Section 1.2.4) [37]. Following this, a number of ammonium-
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sulphate based phase systems were used in order to increase the partition coefficients 

of the sugars. The phase systems investigated are detailed in Table 2-1. 
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Table 2-1: Summary of the highly polar phase systems investigated for fractionation of crude hydrolysed SBP pectin. Values represent volumetric 

ratios of solvents used in phase system preparation. Phase systems were formed as described in Section 2.2.  

Phase system Hex EtOAc MeOH EtOH PrOH BuOH DMSO ACN 
Sat. 

AS 

2 M 

AS 
Water 

2 M AS +1% 

TFA 

HEMWat 1:5:1:5 1 5 1 - - - - - - - 5 - 

EBuWat 0:1:1 - - - - - 1 - - - - 1 - 

I - - - 3 - - - - - 4 - - 

I + TFA - - - 3 - - - - - - - 4 

II - - - 3 - - - - - 5 - - 

II + TFA - - - 3 - - - - - - - 5 

III - - - 3 - - - - - 6 - - 

IV - - - - 1 - - 0.5 1.2 - 1 - 

V - - - 0.5 0.5 - - 0.5 1.2 - 1 - 

VI - - - 0.5 - 0.5 - 0.5 1.2 - 1 - 

VII - - - 1 - - - - 1 - 0.8 - 

VIII - - - 0.8 - - - - 1 - 0.8 - 

IX - - 0.1 0.8 - - - - 1 - 0.8 - 

X - - - 0.5 - - - 0.5 1 - 0.8 - 

XI - - 0.2 0.5 - - - 0.5 1 - 0.8 - 

XII - - 0.4 - - - - 0.5 1 - 0.8 - 

XIII - - - - - - 0.3 0.5 1 - 0.8 - 

XIV - - - 0.6 - - 0.1 - 1 - 0.8 - 

XV - - - 0.8 - - 0.1 - 1 - 0.8 - 

Hex, hexane; ETOAc, ethyl acetate; MeOH, methanol; EtOH, ethanol; PrOH, n-propanol; BuOH, n-butanol; DMSO, dimethyl 

sulfoxide; ACN, acetonitrile; Sat. AS, saturated amomnium sulphate; 2 M AS, 2 molar ammonium sulphate; TFA, trifluoroacetic 

acid. 
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Saturated ammonium sulphate was prepared by adding 550 g of ammonium sulphate 

to warm deionised water until it completely dissolved. This solution was then made up 

to 1 L before cooling to room temperature overnight and the supernatant decanted. A 

2 M ammonium sulphate solution was prepared by fully dissolving the required 

amount of ammonium sulphate in water and making up to the desired total volume. 

For phase systems containing TFA, 1% (v/v) TFA was added to the 2 M AS prior to 

formation of the phase system.  

A solution of saturated ammonium sulphate and water (1.0:0.8 v:v) was 

gravimetrically determined (see Section 2.8.2) to have a concentration of 

approximately 300 g L-1. This concentration was used with a relative volume of 1.8 

when preparing phase systems for CPC separations using phase systems VIII and XV 

in order to reduce phase system preparation time and improve batch to batch 

consistency. Phase system XV can thus be expressed as ethanol : 300 g L-1 aqueous 

ammonium sulphate (0.8:1.8 v:v). 

Additionally, an ion-exchange based phase system was examined, based on a butanol 

: water (1:1 v:v) phase system with the use of Aliquat 336 as an ion exchanger in the 

UP (UP-Exch) and NaI as a displacer in the LP (LP-disp). A phase system containing 

no ion exchanger or displacer was first prepared and the two phases separated. Ara and 

GA (2.5 mM of each) were added to the LP. The UP-Exch was prepared by adding 25 

mM of Aliquat 336 (10 times the concentration of GA) to a portion of the separated 

UP. The LP-Disp was prepared by adding 50 mM NaI (twice the concentration of ion 

exchanger in the UP-Exch) to a portion of the LP containing Ara and GA. There were 

therefore four phases: UP; LP; UP-Exch; and LP-Disp. Partition coefficients for this 

system were determined in three separate mixtures simulating the conditions in ion 

exchange CPC: UP – LP (normal partitioning when not in ion exchange mode); 

UP-Exch – LP (exchange of the GA into the UP); and UP-Exch – LP-Disp 

(displacement of the exchanged GA back into the LP). In each case, the sample was 

introduced in the LP and partition coefficients determined as described in Equation 

2-1. Settling times were also determined as stated previously. 
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2.3 Ethanol : ammonium sulphate : water ternary phase diagram 

A ternary phase diagram was established for ethanol : ammonium sulphate : water 

phase systems by adding ethanol, saturated ammonium sulphate and water in various 

volumetric ratios and observing the phase behaviour and settling times at room 

temperature. The mass ratios of each component were then calculated, taking into 

account the fact that the saturated ammonium sulphate contained both water and 

ammonium sulphate. Phase systems were categorised as ‘single-phase’, ‘two-phase’ 

or ‘precipitate’. ‘Precipitate’ describes any phase system where salt precipitation was 

observed, even if two immiscible liquid phases were still present, as these systems are 

not suitable for CPC operation due to the likelihood of precipitate formation within the 

column. 

2.4 Centrifugal partition chromatography equipment 

Centrifugal partition chromatography (CPC) was performed on an FCPC-A machine 

(fast centrifugal partition chromatography – Roussalet Robatel Kromaton, Annonay, 

France).  

The CPC was connected to one of two pumping and fraction collection setups. Firstly, 

in Chapter 3, it was connected to an Agilent G1361A preparative pump and an Agilent 

G1364B fraction collector (Agilent Technologies UK, Cheadle, UK). Secondly, in 

Chapter 4, it was connected to a puriFlash 450 system (Interchim, Montluçon, France), 

which provided a pump, injection valve and fraction collector. 

Two columns were used; a semi-preparative and a preparative one, detailed in Table 

2-2. Both columns feature a twin-cell design (Figure 1-6 in Section 1.2.2). Total 

volumes were experimentally determined for each column by filling the column with 

the LP of phase system VIII (prepared as described in Section 2.2) and eluting with 

the UP in the descending mode at a rotational speed of 1000 rpm. The total LP 

collected gives the total volume of the column. The reverse process was performed as 

a control, by filling the column with the UP and eluting with the LP in the ascending 

mode at 1000 rpm. These experiments were performed with the minimal possible extra 

tubing volume either side of the column. 
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Table 2-2: Volumes of the two CPC columns based on manufacturer provided data and 

experimentally determined data (determined as described in Section 2.4).  

Column 

Manufacturer 

stated volume 

(mL) 

Manufacturer 

cell volume 

(mL) 

Manufacturer 

total volume 

(mL) 

Number 

of cells 

Experimental 

total volume 

(mL) 

Semi-prep. 200 268 205 840 250 

Preparative 1000 1049 863 800 950 

For experiments performed using the Agilent pump system in Chapter 3, a sample loop 

of 10.8 mL was used for sample injection. Fractions were collected every 0.6 min into 

5 mL test tubes from 15 min after the sample injection. 

For experiments performed using the puriFlash Interchim pump system in Chapter 4, 

various sample loop volumes were tested. On the semi-preparative column, sample 

loops of 10, 20 30 or 40 mL were used with fractions collected every 2 min in the 

ascending mode and every 1 min in the descending mode. The ascending and 

descending mode are discussed in Section 1.2.3.2. Operating conditions and fraction 

collection for the preparative column are described in Section 2.6. All fractions were 

immediately sealed and kept at 4°C for subsequent analysis. 

For separations performed on the semi-preparative column, a mobile phase flow rate 

of 8 mL min-1 and a rotational speed of 1000 rpm were used unless otherwise stated. 

Operating conditions for the preparative column are discussed in Section 2.6. 

2.5 CPC operating conditions 

2.5.1 Stationary phase retention 

Stationary phase retention studies were performed in the ascending mode on the semi-

preparative column at various flow rates (2, 4, 8, 12 and 16 mL min-1) at 1000 rpm and 

various rotational speeds (600, 800, 1000, 1500 and 2000 rpm) at 8 mL min-1 and 

observing the total elution volume of stationary phase (VE) at initial mobile phase 

breakthrough. The stationary phase retention (SF) was then calculated using the total 

column volume (VC), given in Table 2-2, and the total dead volume (VD) either side of 

the column, according to Equation 2-3. 
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For CPC separations with the sample prepared in the mobile phase, Equation 2-3, was 

used to calculate the stationary phase retention, whereas, for CPC separations with the 

sample prepared in the mobile phase, Equation 2-4, was used to calculate the stationary 

phase retention, taking into account the injection volume (VI). 

The stationary phase retention values are calculated at the initial mobile phase 

breakthrough except where stated. The stationary phase retention throughout a CPC 

separation can be estimated by summing the volume of stationary phase in collected 

fractions to give a value for VE. The equilibration SF values are defined as the SF when 

no further stationary phase is observed in the collected fractions. 

2.5.2 Operating methods 

All CPC separations were performed in the ascending mode unless explicitly described 

as being performed in the descending mode. Ascending and descending modes are 

described in Section 1.2.3.2. Ascending mode separations used the LP as the stationary 

phase and the UP as the mobile phase; descending mode separations used the UP as 

the stationary phase and the LP as the mobile phase. All separations were performed 

without establishing hydrodynamic equilibrium prior to separation. Samples were thus 

injected with the first introduction of mobile phase to the column. Sample preparation 

methods are discussed in 2.7. 

Both the semi-preparative and preparative columns were filled by pumping the 

appropriate stationary phase for the operating mode used for the separation (LP in the 

ascending mode for ascending mode separations, or UP in the descending mode for 

descending mode separations). The stationary phase was pumped at a flow rate of 20 

mL min-1 at a rotational speed of 600 rpm. 

 𝑆𝐹 =
𝑉𝐶 − 𝑉𝐸 + 𝑉𝐷

𝑉𝐶
 Equation 2-3 

 𝑆𝐹 =
𝑉𝐶 − 𝑉𝐸 + 𝑉𝐼 + 𝑉𝐷

𝑉𝐶
 Equation 2-4 
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The elution-extrusion mode, described in Section 1.2.7, was performed by switching 

from pumping the mobile phase (UP) to the stationary phase (LP) after 72 min on both 

the semi-preparative and preparative columns. With the change in phase, the flow rate 

is kept constant (8 mL min-1 on the semi-preparative column, as described in Section 

2.4, and 30.4 mL min-1 on the preparative column, as described in Section 2.6). 

Sequential injections (sequential elution-extrusion) were performed on the semi-

preparative column using 30 mL of crude sample prepared in the UP as described in 

Section 2.7.3. Sequential injections were performed using the elution-extrusion mode. 

Extrusion was performed after 72 min, as described above, and stopped after a further 

28 min when the flow was switched back to the mobile phase. The next sample was 

immediately injected and the elution-extrusion process was repeated. This gave a total 

run time of 100 min per sample. A total of 3 sequential injections were performed.  

2.6 CPC scale-up 

Scale-up between the semi-preparative and preparative columns (detailed in Table 2-2) 

was performed linearly using the experimentally determined total column volumes 

based on work by Sutherland et al. [70]. Scale-up methods in CPC are discussed further 

in Section 1.2.6. The ratio of total volumes gives a scale-up factor of 3.8 which was 

used to linearly scale-up the mobile phase flow rate (from 8 to 30.4 mL min-1) and 

sample volume (from 40 to 152 mL). Both columns have the same diameter and so 

rotational speed was kept constant in order to maintain the same g-force between 

scales. Fractions were collected every 1.5 min from the start of separation giving a 

volume of 45.6 mL per fraction. During the elution-extrusion mode, the extrusion step 

was performed after 72 min, as on the semi-preparative column, and the flow rate was 

kept constant at 30.4 mL min-1 with the change in phase.  

2.7 Sample preparation 

2.7.1 Crude hydrolysate 

Fully hydrolysed, crude SBP pectin (“crude hydrolysate”) was prepared and donated 

by the Department of Biology and Biochemistry at the University of Bath, UK. The 

cellulose was fractionated from the SBP by steam explosion, described by Hamley-
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Bennett et al. [17], which solubilised the pectin fraction. This pectin fraction was then 

fully hydrolysed by adding H2SO4 up to 2.5% (v/v) and heating to 121°C in an 

autoclave before adjusting to pH 6 with NaOH. The crude contained a total dissolved 

solids content of ~100 g L-1 with a total sugar concentration of ~20 g/L-1. It is worth 

noting that there was some batch to batch variation in the total dissolved solids content, 

the total sugars concentration and the relative concentrations of the individual sugars 

in the crude. 

 

Figure 2-1: Photograph of fully hydrolysed, crude SBP pectin (crude hydrolysate). 

2.7.2 Synthetic CPC samples 

Two types of synthetic samples were employed with different monosaccharide 

compositions: an ‘illustrative mixture’ of Rha, Ara and GA, and a ‘model synthetic 

mixture’ of Ara, GA, Gal and Rha. Both synthetic samples were prepared by dissolving 

the sugars directly in the UP, unless explicitly stated, before being made up to the 

desired final volume with additional phase. All synthetic samples were filtered through 

a 0.45 µm syringe filter (Millex hydrophilic polyvinylidene fluoride syringe filter, 

Millipore, Watford, UK) prior to injection. 
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The illustrative mixture was prepared with Rha, Ara and GA at 50 g L-1 of each, giving 

a total dissolved sugars concentration of 150 g L-1. The model synthetic mixture was 

prepared with a monosaccharide composition of 43, 41, 11 and 5 g L-1 of Ara, GA, Gal 

and Rha respectively, giving a total concentration of 100 g L-1. These values were 

chosen prior to receiving the crude hydrolysate and so were based on the relative 

values of the sugars found in SBP by Micard et al. [7], with the exclusion of glucose 

based on the assumption of complete cellulose removal in the steam explosion step.  

2.7.3 Crude CPC samples 

Crude samples were prepared for CPC separation in four different ways described 

below: 

1. No additional preparation. 

2. Preparation in the UP: 44% (v/v) ethanol and 54 g L-1 ammonium sulphate 

3. Preparation in a lower salt modified UP: 44% (v/v) ethanol and 25 g L-1 

ammonium sulphate 

4. Preparation in the LP: 13% (v/v) ethanol and 332 g L-1 ammonium sulphate 

To maximise the solute dissolved in the sample, the crude solution took the place of 

water during phase system preparation. Ammonium sulphate was first dissolved in a 

small amount of crude before the required amount of ethanol was added. More crude 

was then added slowly to dissolve any precipitated salts caused by the addition of 

ethanol, and then up to the desired final volume. All crude samples were filtered 

through a 0.45 µm filter prior to injection, as described in Section 2.7.2. 

2.7.4 SMB samples 

For single column screening and SMB separations, samples were prepared by 

dissolving the required monosaccharides in a minimal volume of water and topping up 

to the desired volume in a volumetric flask.  

For single column screening experiments, individual samples were prepared for each 

sugar at a concentration of 10 g L-1. Additionally, a mixed sample was prepared with 



 92   
 

a concentration 10 g L-1 of each sugar (Rha, Ara and Gal). Blue dextran solution was 

prepared by first dissolving the blue dextran in a minimal volume of water; 

subsequently an appropriate volume of water was added to reach the desired 

concentration (1% w/v). 

For SMB separations, a “synthetic neutral mixture” was prepared at a concentration of 

13 g L-1 Ara, 3 g L-1 Gal, and 1 g L-1 Rha. These concentrations were selected as 

representative of the neutral sugars in the crude hydrolysate batch (determined as 

described in 2.8.3).  

2.7.5 Samples for the isolation of D-galacturonic acid 

Samples for the isolation of GA from the neutral sugars were prepared by dissolving 

the required monosaccharides in a minimal volume of water and topping up to the 

desired volume in a volumetric flash.  

For resin ionic form screening, a “synthetic crude mixture” was prepared based on the 

sugars composition of the crude hydrolysate and consisted of 13 g L-1 Ara, 3 g L-1 Gal, 

1 g L-1 Rha, and 5 g L-1 GA. This synthetic crude mixture is similar to the synthetic 

neutral mixture described in Section 2.7.4. 

2.8 Analytical methods 

2.8.1 HPLC-RI 

For partition coefficient calculations, concentrations of sugars were determined by 

HPLC using a Dionex P680 HPLC pump, an ASI-100 autosampler injector (Dionex, 

Hemel Hempstead, UK) and an Aminex-87H column (Bio-Rad, Watford, UK) kept at 

60°C. A mobile phase of 5 mM H2SO4 was used with an isocratic elution at 0.6 mL 

min-1 for 30 min. An injection volume of 10 µL was used and a refractive index (RI) 

detector (Shodex RI-101 (Shodex, Munich, Germany)) was used to monitor the 

separation. Quantitative analysis was performed by the integration of peak areas using 

the external standard method. Calibration was run daily due to small variations in the 

retention times. An example chromatogram and example calibration curves are shown 

in Figure A-1 Figure A-2 respectively in Appendix A. 
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This HPLC method was also used for the determination of ethanol and DMSO 

concentrations in each phase. An example chromatogram showing the retention of 

ethanol and DMSO is shown in Figure A-3 in Appendix A, with example calibration 

curves shown in Figure A-4.  

2.8.2 Gravimetric analysis 

Gravimetric analysis was of dissolved solids was performed by drying 0.5 mL of a 

solution in an oven overnight at 100°C and measuring the remaining mass. 

2.8.3 Ion Chromatography (ICS) 

Ion chromatography (ICS) was performed for the quantitative analysis of CPC 

fractions containing multiple sugar species. It was performed using a Reagent-Free Ion 

Chromatography System (ICS 5000+, Thermo Scientific, Hemel Hempstead, UK) 

fitted with either a CarboPac PA1 (4 x 250 mm) (Thermo Scientific) with 

corresponding guard column (4 x 50 mm) in Chapter 3 and an AminoPac PA10 (2 x 

250 mm) (Thermo Scientific) with corresponding guard column (2 x 50 mm) in 

Chapter 4. For both columns, an injection volume of 10 µL and a column temperature 

of 30°C were used. An electrochemical detector system (gold detector) was used for 

detection. Quantitative analyses were performed measuring peak height or area using 

the external standard method. Calibration curves were performed daily due to 

variations in the retention times over many injections. Example chromatograms are 

shown in Figure A-5 to Figure A-10 in Appendix A with example calibration curves 

shown in Figure A-11 and Figure A-12. 

For quantification of neutral sugars (Ara, Rha and Gal), 15 or 7.5 mM KOH was used, 

generated by a KOH 500 eluent generator cartridge. A flow rate of 1.5 mL min-1 was 

used with the CarboPac PA1 column. On the AminoPac PA10 column, a flow rate of 

0.25 mL min -1 was used.  

For quantification of GA on the CarboPac PA1, a mobile phase of 25% 0.5 M aqueous 

sodium acetate, 75% water at 1 mL min-1 was used, with a GA retention time of 3.0 

min. On the AminoPac PA10, a mobile phase of 5% 1 M aqueous sodium acetate, 95% 

water was used. 
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All CPC fractions were diluted with Milli Q water to “break” any two-phase systems 

which formed as a result of stationary phase bleed from the column, ensuring that the 

analytical methods were not affected by solute partitioning. 

Purity and recovery from CPC separations were calculated from ICS analysis. 

Recovery is defined as the mass of the target monosaccharide in a pooled fraction as a 

percentage of the mass of the same target monosaccharide in all fractions. Purity is 

defined as the mass of the target monosaccharide in a pooled fraction as a percentage 

of the mass of all the monosaccharides in that same pooled fraction. Both purity and 

recovery values are based on optimised pool fraction times to maximise their values 

and are given as percentages (w/w). 

2.8.4 Conductivity 

Conductivities of solutions were measured using a Mettler Toledo Seven2Go S3 

conductivity probe. 

2.8.5 UV scanning 

UV scanning was performed on a Tecan Infinite M200 microplate reader, with a scan 

range of 230-400 nm, a step length of 2 nm, and 5 flashes per well. 

2.9 SMB resins and column packing 

2.9.1 Resin preparation 

The resins examined for SMB separation in Chapter 5 are shown in Table 2-3. The 

number at the end of the three Dowex 50W X resins represents different crosslinking 

percentages. All resins used are made up of a polystyrene matrix with divinylbenzene 

crosslinking. Resin masses were measured directly from their container as shipped 

with no prior hydration or change in ionic form. Once weighed, the resins were 

hydrated in deionised water in a beaker for 2 hours.  
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Table 2-3: SMB resins examined in batch experiments for resin and condition screening 

in Section 5.2. 

Resin Particle size (µm) Ionic form as shipped 

Dowex 50W X2 37-74 H+ 

Dowex 50W X4 37-74 H+ 

Dowex 50W X8 37-74 H+ 

Monosphere 99 320 Ca2+ 

The hydrated resins were then poured directly into a column (GE XK16/20 with a 

packing reservoir funnel attached) half-filled with deionised water. This column has 

an internal diameter of 1.6 cm. The resin was left to settle for 30 min and the top 

adapter connected with the plunger adjusted to approximately 2 cm above the resin 

bed. The column was then attached to an Akta Purifier system (GE Healthcare, Little 

Chalfont, UK) with a conductivity detector. The ionic form was modified by pumping 

0.2 M of the desired ion (acetic acid for conversion to H+ form, CaCl2 for conversion 

to Ca2+ form) at 5 mL min-1 and waiting for the eluate conductivity to become constant. 

Excess ions were removed by pumping deionised water through the column until the 

conductivity again became constant. 

2.9.2 Column packing 

A resin-containing column, prepared as described in Section 2.9.1, was packed by 

removing the top adapter, topping up the column with deionised water and reattaching 

the top adapter to attain the maximum total column volume with no air bubbles. The 

column was then vigorously shaken until the resin formed a homogenous slurry within 

the column and then left vertical for 1 hour to settle. The column was then attached to 

the Akta Purifier system and deionised water passed through the column at 10 mL min-

1 for 20 min. The top adapter was then adjusted to the top of the packed bed of resin.  

2.10 SMB resin and condition screening 

For batch experiments, 20 g of each resin was prepared in the appropriate ionic form 

and packed into a column as described in Sections 2.9.1 and 2.9.2. For the three Dowex 

50W resins, both the H+ and Ca2+ ionic forms were examined. For the Monosphere 99 

resin, only the Ca2+ form was examined. All resins and their various ionic forms were 

examined at both room temperature and 50°C. The column temperature was elevated 

to 50°C by heating water in a water bath to 55°C and using a peristaltic pump to feed 
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the heated water to the column temperature-control jacket, recycling the water from 

the jacket outlet. By using a water bath temperature of 55°C, the temperature of the 

water leaving the temperature reached a steady state value of 50°C. 

The column was connected to a Semba Octave 100 pump with a manual injection valve 

(with 100 µL loop) prior to the column and a Shimadzu RID-20A RI detector 

(Shimadzu, Milton Keynes, UK) after the column. Water at a flow rate of 2 mL min-1 

was used as the mobile phase. For experiments at 50°C the mobile phase bottle was 

placed in the water bath used for heating the column. 100 µL injections were 

performed and retention times measured on the RI detector. Solutions of individual 

sugars (Ara, Gal, Rha or Glu) and blue dextran were prepared as described in Section 

2.7.4.  

Retention times were taken from the peak maximum time from the RI detector. 

Retention factors (𝑘𝑖
𝑅) for each sugar were calculated using the blue dextran retention 

time (t0) as a void volume marker according to Equation 2-5, with the retention time 

of compound “i” (ti). 

 𝑘𝑖
𝑅 =

𝑡𝑖 − 𝑡0

𝑡0
 Equation 2-5 

The selectivity (αR) of the separation between two sugars was calculated according to 

Equation 2-6. In Chapter 5, the selectivity values are always given relative to Ara with 

Ara being the numerator in Equation 2-6. The “selectivity of Gal” therefore refers to 

the selectivity between Gal and Ara, with k1
R as the retention factor for Ara, and k2

R 

as the retention factor of Gal. 

 𝛼𝑅 =
𝑘1

𝑅

𝑘2
𝑅 

Equation 2-6 

2.11 SMB column packing comparison 

Once a desired resin and operating condition was selected, 28 g of the selected resin 

(Dowex 50W X8 (200-400)), exchanged into the desired ionic form (Ca2+), was packed 
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onto 8 columns as described in Section 2.9. Blue dextran, Ara, Rha and Gal samples, 

prepared as described in Section 2.7.4, were loaded onto each column at room 

temperature and the retention times, retention factors and selectivities of each sugar 

were calculated as described in Section 2.10. 

To compare the 8 columns, the retention times, retention factors and selectivities of 

each sugar, and the retention times of blue dextran were examined. The mean values 

(µ) and population standard deviations (σ) were calculated and used to calculate the 

relative standard deviations (RSD) as a percentage. These relative standard deviation 

values were used to directly compare the columns. 

 𝑅𝑆𝐷 =
𝜎

µ
∙ 100% Equation 2-7 

 

2.12 SMB equilibrium theory model 

2.12.1 SMB Model inputs 

The SMB equilibrium theory model uses data from the resin and condition screening 

tests, described in Section 2.10, to predict the outcome of SMB separation on the 

longer columns, as described in Section 2.11. The following input data is required from 

the batch experiments: column diameter (CD), column length (CL), flow rate (Q), 

retention times of the sugars (ti), retention time of blue dextran (t0), and the extra dead 

volume around the column (VD).  

For all these experiments, a column with a diameter of 1.6 cm (GE XK16/20) was used 

and the column length was calculated to the top of the resin bed. A flow rate of 2 mL 

min-1 was used for all batch experiments as described in Section 2.10. The retention 

times were also calculated as described in Section 2.10. The extra dead volume was 

estimated using the height between the top of the packed bed and the top adapter, and 

the volume of extra column tubing. 
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Adjusted retention times (𝑡𝑖
′) were calculated for the sugars, using Equation 2-8, and 

for blue dextran (𝑡0
′ ), using Equation 2-9, to remove the time added by the dead 

volume. This is important to calculate the effect of just the column on the retention 

times through adjusted retention factors and Henry constants. These values are 

independent of both the column dimensions and the dead volume either side of the 

column. 

 𝑡𝑖
′ = 𝑡𝑖 −

𝑉𝐷

𝑄
 Equation 2-8 

   

 𝑡0
′ = 𝑡0 −

𝑉𝐷

𝑄
 Equation 2-9 

Adjusted retention factors (𝑘𝑖
𝑅′) were calculated using Equation 2-10. In order to 

calculate the Henry constants, the void fraction (ε) of the resin was required, calculated 

using Equation 2-11. The Henry constants were thus calculated using Equation 2-12 

based on the assumption that the isotherms are linear [183][184]. 

 𝑘𝑖
𝑅′ =

𝑡𝑖
′ − 𝑡0

′

𝑡0
′  

Equation 2-10 

   

 𝜖 =
𝐹 ∙ 𝑡0

′

𝑉𝐶
 

Equation 2-11 

   

 
𝜖

1 − 𝜖
∙ 𝑘𝑖

𝑅′ = 𝐻𝑖 
Equation 2-12 

The adjusted selectivity (𝛼𝑅′) can then be calculated from either the adjusted retention 

factors or the Henry constants using Equation 2-13. 
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 𝛼𝑅′ =
𝑘1

𝑅′

𝑘2
𝑅′ =

𝐻1

𝐻2
 

Equation 2-13 

These Henry constant values form the basis of the SMB equilibrium theory model and 

are used for defining limits on operability (m2 and m3) which allow for theoretical 

separation of the compounds. The SMB model uses two Henry constants, one for the 

slower eluting compound and one for the faster eluting compound. As the target SMB 

separation is to isolate Ara from Rha and Gal, the Henry constants of Ara and the 

closest eluting other sugar were used, with the order of Henry constants in the adjusted 

selectivity calculation given such that the value is greater than 1. 

2.12.2 SMB equilibrium theory model 

2.12.2.1 General considerations 

The SMB equilibrium theory model uses the Henry constants, calculated as described 

in Section 2.12.1, and relevant inputs (CL, CD and VD) from the longer columns for 

SMB separation, packed as described in Section 2.11. The two SMB zone setups (4-

zone closed loop and 3-zone open loop) use different experimental configurations and 

so, while each model is similar, there are some differences between them including the 

number of variables. The 4-zone model is described in Section 2.12.2.2 and the 3-zone 

model is described in Section 2.12.2.3. Both models are based on the equilibrium 

theory, first proposed by Storti et al. [222] and further adapted by a number of authors 

including Rajendran [182] for SMB separation with linear isotherms. 

2.12.2.2 4-zone, closed loop SMB model 

For the 4-zone, closed loop SMB setup, there are 4 main variables: switch time (TS), 

feed flow rate (QF), desorbent flow rate (QD), extract flow rate (QE), and recycle flow 

rate (QRec). The flow rate in the raffinate (QRaf) can thus be calculated from an input = 

output flow rate balance, as described in Equation 2-14. 

 𝑄𝐹 + 𝑄𝐷 = 𝑄𝐸 + 𝑄𝑅𝑎𝑓 Equation 2-14 
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The 4-zone setup operates in a closed loop with an internal recycle between zones 4 

and 1, fed by a recycle pump before zone 1 (shown in Figure 2-2). The flow rates (Qn) 

in each zone (n), shown in Equations 2-15 to 2-18, can be calculated by looking at the 

inputs of each zone. 

 

Figure 2-2: Overview diagram of pumps and zones within the 4-zone SMB setup. 

 𝑄1 = 𝑄𝐷 + 𝑄𝑅𝑒𝑐 Equation 2-15 

   

 𝑄2 = 𝑄𝐷 + 𝑄𝑅𝑒𝑐 − 𝑄𝐸 = 𝑄1 − 𝑄𝐸 Equation 2-16 

   

 𝑄3 = 𝑄𝐷 + 𝑄𝑅𝑒𝑐 − 𝑄𝐸 + 𝑄𝐹 = 𝑄2 + 𝑄𝐹 Equation 2-17 

   

 𝑄4 = 𝑄𝑅𝑒𝑐 Equation 2-18 

Using the flow rate in each zone it is possible to calculate the flow rate ratios (mn) in 

each zone (n) which can be compared with the Henry constants in order to predict 

SMB performance. Flow rate ratios (or m-values) are calculated using Equation 1-8, 

taking into account the void fraction (ε) and, additionally, the dead volume. 

 𝑚𝑛 =
𝑄𝑛𝑇𝑆 − 𝐶𝑉𝜖 − 𝑉𝐷

𝐶𝑉(1 − 𝜖)
 Equation 2-19 

Zone 1 Zone 2 Zone3 Zone 4

QRec

QF

QE
QRaf

QD
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Successful SMB operation is modelled using these flow rate ratios and the Henry 

constants according to Equation 2-20 where H1 is the lower value Henry constant 

(faster eluting) and H2 is the higher value Henry constant (slower eluting). Plotting the 

m2 and m3 values on the m2-m3 plane with the Henry constant constraints gives an 

operating triangle where both the extract and raffinate should be pure. This is described 

in further detail in Section 1.6.2. 

 𝑚1 > 𝐻2 > 𝑚3 > 𝑚2 > 𝐻1 > 𝑚4 Equation 2-20 

2.12.2.3 3-zone, open loop SMB model 

The 3-zone, open loop SMB model is very similar to the 4-zone SMB model with some 

modifications. The recycle loop is removed (and the recycle pump) and so the SMB 

operates in an open loop format. The overview schematic demonstrating the pumps, 

zones, inputs and outputs is shown in Figure 2-3 and the flow rates in each zone are 

redefined in Equations 2-21 to 2-23. The removal of the recycle pump means that the 

3-zone SMB has one fewer variable than the 4-zone SMB. 

 

Figure 2-3: Overview diagram of pumps and zones within the 3-zone SMB setup. 

 𝑄1 = 𝑄𝐷 Equation 2-21 

   

 𝑄2 = 𝑄𝐷 − 𝑄𝐸 = 𝑄1 − 𝑄𝐸 Equation 2-22 

   

Zone 1 Zone 2 Zone3

QF

QE

QRaf

QD
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 𝑄3 = 𝑄𝐷 − 𝑄𝐸 + 𝑄𝐹 = 𝑄2 + 𝑄𝐹 Equation 2-23 

Calculation of the flow rate ratios for each zone uses Equation 2-19, as for the 4-zone 

SMB setup, in Section 2.12.2.2. Equation 2-20, used to predict successful SMB 

separation, was also modified to remove m4 and becomes Equation 2-24. 

 𝑚1 > 𝐻2 > 𝑚3 > 𝑚2 > 𝐻1 Equation 2-24 

2.13 SMB separation 

2.13.1 The SMB system 

SMB was performed on a Semba Biosciences Octave 10 SMB (Semba Biosciences, 

Madison, WI, USA) consisting of an Octave 10 Chromatography Valve Block, Octave 

Control Module and 4 Octave 12 Pumps. Nitrogen was supplied to the valve block at 

300 psi to enable valve switching. Each column was connected directly to the valve 

block. A Shodex RID-20 RI detector was attached to either the raffinate or the extract 

port. Back pressure regulators were attached to pump outlets to control the back 

pressure through each zone and maintain the correct flow direction. These were added 

such that the backpressure (Pq) on any pump (q) during SMB separation was below 

270 psi and that the pressure on each pump met the requirements defined in Section 

2.13.2 and 2.13.3 for 4-zone and 3-zone SMB setups respectively. 

Port switching was automated using the Semba Pro software, with an 8-step repeating 

cycle. Switch time and pump flow rates were kept constant for all steps. Each step 

shifts the inputs to the next column and loops from column 8 back to column 1. 

Specific column configurations for the 4-zone and 3-zone SMB setups are shown in 

Sections 2.13.2 and 2.13.3 respectively. The extract and raffinate outlet ports were 

manually directed to waste for the first three full SMB cycles to allow for steady state 

operation to be achieved. The outlets were then manually directed into collection 

bottles for 1 or more whole cycles.  
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The feed was a ‘synthetic neutral mixture’ unless otherwise stated. This solution of 

Ara, Gal and Rha, was representative of the neutral sugars found in the crude 

hydrolysate and was prepared as described in Section 2.7.4. The desorbent was 

purified water, unless otherwise stated.  

2.13.2 4-zone, closed loop SMB setup 

For the 4-zone SMB setup, four pumps, as shown in Figure 2-4, were used: feed and 

desorbent pumps for the inputs, fed directly into the valve block; extract pump on one 

of the outputs to control the extract flow rate; and a recycle pump fed from one of the 

outputs and into one of the inputs. There is no pump attached to the raffinate outlet as 

its flow rate is defined by the flow rate balance (Equation 2-14). 

 

Figure 2-4: Inputs and outputs of the SMB valve block in the 4-zone SMB setup with 

recycle. 

The backpressure regulators were set to meet the criteria (Equation 2-25 to Equation 

2-27) recommended by Semba Biosciences for 4-zone SMB setup to ensure the correct 

flow direction through the valve block and flow rates through the recycle, extract and 

raffinate outlets. 

 𝑃𝐸 > 𝑃𝑅𝑒𝑐 + 30 Equation 2-25 

   

 𝑃𝑅𝑒𝑐 > 𝑃𝐹 + 30 Equation 2-26 

   

QF QD

o            o o o

QE
QRaf

o            o o o

QRec

Inputs Outputs
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 𝑃𝑅𝑒𝑐 > 𝑃𝐷 + 30 Equation 2-27 

The columns were programmed in a 2-2-2-2 configuration (2 columns in each zone, 

as shown in Figure 2-5) in the Semba Pro software. 

 

Figure 2-5: Illustration of 2-2-2-2 column configuration and zone locations for 4-zone 

SMB setup with recycle. 

2.13.3 3-zone, open loop SMB setup 

For the 3-zone SMB setup, three pumps, shown in Figure 2-6, were used: feed and 

desorbent pumps for the inputs, fed directly into the valve block; and an extract pump 

on the extract output to control its flow rate. As in the 4-zone setup, there is no pump 

attached to the raffinate outlet as its flow rate is defined by the flow rate balance 

(Equation 2-14).  
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Figure 2-6: Inputs and outputs of the SMB valve block in the 3-zone SMB setup. 

The backpressure regulators were set to meet the criteria (Equation 2-28) 

recommended by Semba Biosciences for the 3-zone SMB setup to ensure the correct 

flow-rates through the extract and raffinate outlets. 

 𝑃𝐸 > 𝑃𝐷 + 30 𝑝𝑠𝑖 Equation 2-28 

The columns were programmed in a 2-3-3 configuration (2 columns in zone 1, and 3 

columns in zones 2 and 3, as shown in Figure 2-7) in the Semba Pro software. 

 

Figure 2-7: Illustration of 2-3-3 column configuration and zone locations for the 3-zone 

SMB setup. 
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2.13.4 Analysis of the extract and raffinate streams 

The collected extract and raffinate were analysed using ICS on the AminoPac PA10 

column as described in Section 2.8.3. Purity and recovery from SMB separations were 

calculated from ICS analysis of the extract and raffinate outlet streams. Purity is 

defined as the mass of the target monosaccharide in the extract or raffinate streams as 

a percentage of the mass of all the monosaccharides in that stream. Calculation of the 

recovery of each sugar in each outlet stream requires calculation of the mass flow rates. 

Mass flow rates (ṁ) of each sugar in each stream are calculated from the concentration, 

from ICS analysis, multiplied by the outlet flow rates of the extract (QE) and raffinate 

(QRaf) (Equation 2-29). The extract flow rate is set by the extract pump and the raffinate 

flow rate is calculated according to the flow rate balance (Equation 2-14) described in 

Section 2.12.2. The recovery of each sugar in each stream is then calculated from the 

mass flow rate of the sugar in the stream divided by the sum of the mass flow rates in 

both the extract and raffinate streams. The recovery of each sugar in the extract and 

raffinate streams thus add up to a total of 100%. 

 𝑚̇ = 𝐶𝑖 ∙ 𝑄 Equation 2-29 

2.14 D-galacturonic acid isolation from neutral sugars 

2.14.1 Resin hydration and column packing 

Resins for GA isolation were prepared and packed according to the protocol described 

in Section 2.9. The column was connected to an Akta Purifier system and the top 

adapter was adjusted to 2 cm above the resin bed to allow for any bed volume 

expansion due to changes in the ionic form. The ionic form was altered into either Cl-, 

OH- or C2H3O2- (acetate) by pumping 200 mM NaCl, NaOH or NaOAc respectively 

at 2 mL min-1 until the conductivity value became constant. Deionised water was then 

flushed through the column at 2 mL min-1 until the conductivity value became 

constant. The top adapter was then readjusted to 1 cm above the resin bed to allow for 

any bed volume expansion due to changes in the ionic form during experiments. 
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2.14.2 Resin ionic form screening 

Dowex 1x8 (200-400 mesh) resin was examined for use in different ionic forms. 3 g 

of the resin was packed as described in Section 2.14.1 without changing the ionic form. 

The column was connected to an Akta Purifier system. Three different ionic forms 

were tested: hydroxide, acetate and chloride.  

Resin ionic form screens were performed by injection of 10 mL of the “synthetic crude 

mixture”, prepared as described in Section 2.7.5. 

A flow rate of 5 mL min-1 was used with the following protocol: 

1. Load: 10 mL injection of 10 g L-1 GA 

2. Wash: 15 mL deionised water 

3. Elute: 50 mL 200 mM of NaCl, NaOH or C2H3NaO2 

4. Wash: 15 mL deionised water 

Each step was collected as a whole fraction and analysed by ICS for the presence of 

neutral sugars and GA as described in Section 2.8.3. 

2.14.3 Resin screening 

Four different resins, detailed in Table 2-4, were examined, with 3 g of the resin 

prepared and packed in the acetate form as described in Section 2.14.1. The columns 

were then connected between a Semba Biosciences Octave 12 Pump and a Shimadzu 

RID-20A refractive index detector. A solution of GA (10 g L-1), prepared as described 

in Section 2.7.5, was pumped directly onto the column at 5 mL min-1 for 40 min to 

allow for complete exchange of the anionic form from acetate to galacturonate. 
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Table 2-4: Resins examined for D-galacturonic acid isolation from neutral sugars. 

Particle size values are given in units provided by the manufacturers in the form shipped 

(Cl-) and converted to µm if necessary. For Marathon A and A2 resins, crosslinking 

values are not available. 

Resin 

Anion 

exchanger 

type 

Particle size 

range 

Exchange 

capacity 

(mEq mL-1) 

Crosslinking 

Marathon A 1 500-600 µm 1.3 n.a. 

Marathon A2 2 525-625 µm 1.2 n.a. 

Amberlite IRA-400 1 
20-25 mesh 

(0.707-0.841 µm) 
1.4 8% 

Dowex 1x8 1 
200-400 mesh  

(37-74 µm) 
1.2 8% 

Refractive index detection was used to allow for the detection of both the galacturonate 

and acetate eluting from the column. Comparisons were made based on the time and 

slope of the breakthrough curves observed. 

2.14.4 Dynamic binding capacities 

Columns containing 3 g and 14 g of Dowex 1x8 resin in the acetate form were prepared 

as described in Section 2.14.1. The columns were connected to an Akta Purifier system 

with a conductivity detector and fraction collector. The synthetic crude mixture, 

detailed in Section 2.7.5, was used for dynamic binding capacity studies. Prior to 

loading, the column was flushed with 200 mM NaOAc and then with deionised water 

until the conductivity became constant. Each binding capacity experiment was split 

into 4 steps, with each step performed for the length of time detailed in Table 2-5, 

dependent on the resin mass. A flow rate of 5 mL min-1 was used for all steps. 

1. Load - Synthetic crude mixture 

2. Wash – Deionised water 

3. Elute – 200 mM NaOAc 

4. Wash – Deionised water 
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Table 2-5: Step times at different column masses for dynamic binding capacity 

experiments. 

Step 3 g column 14 g column 

Load time (min) 80 325 

Wash time (min) 10 20 

Elute time (min) 20 50 

Wash time (min) 10 20 

On the 3 g column, fractions were collected every 2 min and analysed for GA 

concentration using the ICS analysis method as described in Section 2.8.3. The neutral 

sugars concentrations were not calculated individually with additional ICS runs but 

the area of the combined neutral sugars peak in the GA analysis was used to 

demonstrate the elution of neutral sugars. On the 14 g column, the load and elution 

steps were collected as single fractions.  

Dynamic binding capacity (DBC) was calculated at the volume of initial breakthrough 

(BV0%) using Equation 2-30, and at 10% breakthrough (BV10%) using Equation 2-31. 

Both equations have the units (mmol g-1
resin) and use the concentration of GA in the 

feed (CF = 5 g L-1), the molecular weight of D-galacturonic acid monohydrate (MW = 

212.15 mg mmol-1), and the mass of resin (mresin = 3 g or 14 g).  

 

𝐷𝐵𝐶0% =
𝐵𝑉0% ∙ 𝐶𝐹

𝑀𝑊 ∙ 𝑚𝑟𝑒𝑠𝑖𝑛
 Equation 2-30 

 

𝐷𝐵𝐶10% =
𝐵𝑉10% ∙ 𝐶𝐹

𝑀𝑊 ∙ 𝑚𝑟𝑒𝑠𝑖𝑛
 Equation 2-31 

On the 3 g column the breakthrough volumes BV0% and BV10% were calculated from 

either the GA analysis or based on the conductivity values. On the 14 g column, the 

breakthrough volumes were determined solely from the conductivity values. For the 

DBC from GA, the initial breakthrough BV0% represents the first fraction where GA 

was detected, and BV10% represents the first fraction where the GA concentration rises 

above 0.5 g L-1
 (10% of the feed concentration).  

Using the conductivity, the initial breakthrough volume (BV0%) was calculated from 

the volume at which the conductivity rises after the initial increase at the beginning of 
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the load step. The 10% breakthrough volume (BV10%) was calculated from the volume 

at which the change in conductivity before and after breakthrough reaches 10% of the 

total change. The breakthrough curve length was calculated from the difference in 

volume between initial breakthrough (BV0%) and complete breakthrough (BV100%) 

(when the conductivity becomes constant). The breakthrough volume per mass of resin 

was determined from the initial breakthrough volume (BV0%) divided by the resin 

mass. 

Noise reduction of the conductivity trace for the 14 g column was performed by 

applying a 21-point symmetric moving average, by taking the average value of the 

original volume and the 10 volume points before and after. 

2.14.5 Crude hydrolysate separations 

Crude hydrolysate separations for the isolation of GA were performed on a 14 g 

Dowex 1x8 column prepared in the acetate form as described in Section 2.14.1. Crude 

hydrolysate was loaded directly onto the column with no prior treatment. The method 

described in Section 2.14.4 was employed with varying load times. Column cleaning 

was performed after each run with 20 column volumes of 2 M NaCl and 1 M NaOH 

in succession at 0.5 mL min-1. 

2.15 Decolourisation of crude hydrolysate 

2.15.1 Batch decolourisation screening 

All resins for decolourisation were used in the ionic form as shipped (Cl- for anion 

exchange resins and Na+ for cation exchange resin) with no prior hydration or form 

change. Activated carbon was also used as shipped with no hydration or pretreatment. 

The mass of resin/carbon (200 mg unless otherwise stated) was contacted with 1 mL 

of the crude hydrolysate in a microcentrifuge tube and shaken horizontally on a 

thermomixer at room temperature for the desired contact time before centrifugation 

(Hettich Mikro 120) at 14,000 rpm (~18,000 RCF) for 4 minutes. Loadings are given 

as the mass of resin/carbon per mL of crude (mg mL-1). Experiments were run 

overnight (16 hours) unless otherwise stated. The supernatant was then taken for sugar 

and UV analysis. 
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Table 2-6: Properties of the resins examined for decolourisation of the crude hydrolysate. 

Resin Exchanger Type Form 

Marathon A Anion 1 Cl- 

Marathon A2 Anion 2 Cl- 

Amberlite IRA-400 Anion 1 Cl- 

Marathon MSA Anion 1 Cl- 

Dowex 1x8 (200-400 mesh) Anion 1 Cl- 

Marathon C Cation - Na+ 

Activated carbon - - - 

Analysis of GA and neutral sugars was performed as described in Section 2.8.3. 

Analysis of the UV profile was performed as described in Section (2.8.5). Samples 

were diluted to ensure the whole spectrum (230-400 nm) fell within detectable limits. 

The ‘level of decolourisation’ is given as the percentage change of the decolourised 

sample to the crude and is based on the average value between 230-400 nm unless 

otherwise stated. 

2.15.2 Larger scale batch decolourisation 

Larger scale decolourisation experiments were performed by maintaining both the 

loading and the contact time. An activated carbon loading of 100 mg mL-1 with a 

contact time of 10 min was scaled up to 5 g of activated carbon to decolourise 50 mL 

of crude hydrolysate. Decolourisation was performed by adding the activated carbon 

to a 50 mL centrifuge tube and adding the crude hydrolysate. The tube was then mixed 

horizontally on a shaker platform (Heidolph UNIMAX 2010) at 400 rpm for 10 min 

before being centrifuged (Eppendorf 5810 R) for 15 min at 4000 rpm (~3200 RCF). 

The supernatant was filtered through a 0.22 µm filter to remove any residual activated 

carbon before analysis of the GA and neutral sugars, as described in Section 2.8.3, and 

the UV profile, as described in Section 2.15.1. The material produced using this 

method is referred to as the ‘decolourised crude hydrolysate’. 

2.15.3 D-galacturonic acid isolation from decolourised crude hydrolysate 

The decolourised crude hydrolysate, prepared as described in Section 2.15.2, was 

loaded onto a 14 g Dowex 1x8 column in the acetate form, prepared as described in 

Section 2.14.1. Each injection followed the method described in Section 2.14.4 for a 

14 g column with the decolourised crude hydrolysate in place of the synthetic crude 

mixture and varying the load times (injection volumes).   
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 Phase system development and separation of 

synthetic monosaccharide mixtures using centrifugal partition 

chromatography† 

3.1 Introduction, aim and objectives 

It was described in Section 1.2.5 that CPC has considerable potential for biorefinery 

applications, although presently this has been relatively unexplored. CPC is able to 

process crude samples with little to no pretreatment and at high sample loadings 

(Section 1.2.1). Furthermore, the lack of any solid phase removes any risk irreversible 

adsorption and concerns over resin costs and lifetime. CPC could thus be an important 

addition to methods for the processing of crude hydrolysates of renewable feedstocks 

(Section 1.2.1). 

The aim of this first results chapter is to develop a method for separating a model 

synthetic mixture of the monosaccharides present in hydrolysed SBP pectin (Section 

1.1.4) using CPC. The specific objectives of this chapter are to: 

• Screen for a suitable family of phase systems based on the partition coefficients 

of the individual monosaccharides. 

• Develop ternary phase diagrams for further understanding the operating limits 

of the selected phase system family. 

• Optimise the phase system based on monosaccharide partition coefficients and 

settling times, and explore the effects of different additives on the phase system 

behaviour. 

• Examine the retention characteristics of the phase system in CPC and select 

preliminary operating conditions. 

                                                      
† The results presented in this chapter have been published as: Ward, David P., et al. 

"Centrifugal partition chromatography in a biorefinery context: separation of 

monosaccharides from hydrolysed sugar beet pulp." Journal of Chromatography A 

1411 (2015): 84-91. 
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• Perform example CPC separations based on model synthetic mixtures of 

monosaccharides. 

3.2 Phase system development 

3.2.1 Phase system requirements 

The first step in CPC method development is to identify suitable phase systems for 

separation. As discussed in Section 1.2.3, phase systems are selected based on solute 

partition coefficients and phase system settling times. Partition coefficients are 

indicators of retention factors and a value of K=1 is considered the target value to 

provide optimal resolution [49] while a “sweet spot” of 0.4<K<2.5 should provide 

sufficient performance for CPC separations [50]. The settling time of a two-phase 

system is an important metric for understanding stationary phase retention in CPC, 

with shorter settling times generally giving higher retention [37]. High stationary 

phase retentions, in turn, allow for higher mobile phase flow rates, increasing solute 

throughput. 

3.2.2 Organic : aqueous phase systems 

This section examines organic : aqueous two-phase systems as a first step in phase 

system development. Partition coefficients were determined for Ara, Gal, Rha, Xyl 

and GA, as described in Section 2.2, in HEMWat 1:5:1:5, one of the most polar 

HEMWat phase systems, and EBuWat 0:1:1, the most polar of the EBuWat phase 

systems. The HEMWat family of phase systems is a usual starting point for separating 

natural products and EBuWat 0:1:1 is one of the most polar organic : aqueous two-

phase systems. The partition coefficients of the sugars in these phase systems should 

give a gauge as to how polar the monosaccharides are and how feasible an organic : 

aqueous phase system would be for separating them. The partition coefficient results 

are shown in Table 3-1. 
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Table 3-1: Partition coefficients (KLP/UP) of L-arabinose, D-galactose, L-rhamnose and 

D-galacturonic acid and separation factors (α) relative to L-arabinose for two organic : 

aqueous phase systems. Phase systems were prepared as described in Section 2.2. 

Partition coefficient and separation factor values were determined as described in 

Section 2.2 and represent one standard deviation about the mean (n=2 for these initial 

studies). 

Phase system 
KAra 

(αAra/Ara) 

KGal 

(αGal/Ara) 

KRha 

(αAra/Rha) 

KGA 

(αAra/GA) 

HEMWat 

1:5:1:5 

200 

(1.0) 

120 

(1.7) 

460 

(2.3) 
N.D. 

EBuWat 0:1:1 
19 

(1.0) 
N.D. N.D. 

170 

(8.9) 

The results of both phase systems are poor, with the sugars almost exclusively 

partitioning into the aqueous lower phase (LP), and very little into the organic upper 

phase (UP). The Ara partition coefficient in EBuWat 0:1:1 (19) is an order of 

magnitude lower than for HEMWat 1:5:1:5 (200), but it is still far outside the “sweet 

spot” range of 0.4 < K < 2.5 given by Friesen and Pauli [50]. This shows that even 

with the most polar of the organic : aqueous phase systems, the partition coefficients 

do not support separation by CPC. While the separation factors appear acceptable 

(α>1.5) for all of the sugars relative to Ara, the poor partition coefficients would 

require excessive separation times and lead to band broadening, resulting in peak 

overlap and loss of resolution [56]. 

3.2.3 Ion exchange phase systems 

In an attempt to improve the partition coefficient of GA, an ion exchange phase system 

was examined. The process is detailed in Section 1.2.7 and briefly described in Figure 

3-1. In brief, it uses a soluble ion exchanger in the UP (UP-Exch) to adjust the partition 

coefficient of ionic compounds so that they partition more into the UP, and a modified 

LP containing a displacer (LP-Disp) to partition the ionic compounds back into the LP. 

This method could allow for the separation of GA from the neutral sugars directly from 

a crude sample, which may be difficult using ion exchange resins without some form 

of pretreatment. Ion exchange resins for the extraction of GA are discussed in Section 

1.4 and examined in 6.2.  



 115   
 

 

Figure 3-1: Schematic representation of how ion-exchange CPC could work for the 

isolation of D-galacturonic acid (GA) from neutral sugars. A: GA partitions more 

strongly into the UP-Exch stationary phase and the neutral sugars remain in the LP 

mobile phase. B: GA is thus retained in the UP-Exch while the neutral sugars elute from 

the column. C: Introduction of LP-Disp displaces the GA back into the mobile phase 

where it elutes from the column. 

A method was sought which gave a higher GA partition in a UP-Exch – LP mixture 

and a lower GA partition coefficient in a UP-Exch – LP-Disp mixture. An EBuWat 

0:1:1 phase system was used with 25 mM Aliquat 336 as the ion exchanger in the UP-

Exch and 50 mM NaI as the displacer in the LP-Disp. 2.5 mM of both Ara and GA 

were used in the LP and LP-Disp. Table 3-2 shows the partition coefficients of Ara 

and GA in the different phase systems. 

Table 3-2: Partition coefficients (KLP/UP) of L-arabinose and D-galacturonic acid in 

different combinations of UP, UP-Exch, LP and LP-Disp to mimic the conditions of ion 

exchange CPC. Phase systems were prepared as described in Section 2.2. Partition 

coefficient values were determined as described in Section 2.2 and represent one 

standard deviation about the mean (n=2 for these initial studies). 

 UP 

LP 

UP-Exch 

LP 

UP-Exch 

LP-Disp 

UP 

LP-Disp 

KAra 19.5±1.8 19.8±0.1 24.7±1.8 20.0±2.3 

KGA 164±15 1.5±0.1 ∞ ∞ 

The addition of the ion exchanger to the UP results in a greater than 100-fold reduction 

in the partition coefficient of GA, from 164 to 1.5, while it does not appear to affect 

the partition coefficient of Ara. This promotes the possibility of using this to remove 

GA in the Descending mode, slowing down only the GA and allowing the neutral 

Sample

Mobile Phase

Mobile Phase + Displacer

A

B

C

Stationary Phase + Exchanger

Mobile Phase

Stationary Phase + Exchanger

Stationary Phase + Exchanger

D-galacturonic acid

Neutral sugars



 116   
 

sugars to flow directly through the column. Addition of the displacer to the LP entirely 

displaces the GA from the UP or UP-Exch into the LP-Disp, with no GA detectable in 

the UP-Exch.  

In the UP – LP mixture and the UP-Exch – LP-Disp mixture the settling time is 

approximately 20 sec; however, the UP-Exch – LP mixture causes settling times in 

excess of 2 min, even in the absence of GA. This could cause difficulties in retaining 

the stationary phase in CPC, even at higher rotational speeds. Furthermore, as the GA 

still partitions primarily into the LP (K > 1) in the UP-Exch – LP, the application of 

this method to a liquid-liquid extraction step may also be limited.  

It is clear that there is potential for an ion-exchange step to isolate the GA from the 

neutral sugars, however, the current proposed system is limited by the settling time in 

the presence of the ion exchanger. It is possible that modifications to the phase system, 

ion exchanger, ion exchanger concentration or product:ion exchanger ratio could allow 

for an improved settling time and thus feasibility in a CPC separation. However, it 

remains unclear how the partition coefficients of GA would be affected in the crude 

hydrolysate, or if the anion exchanger would preferentially exchange other ionic 

contaminants in the crude hydrolysate with increased partitioning into the UP. As a 

result, ion exchange CPC methods were not explored further, and attention was 

directed towards more polar alcohol-salt phase systems. 

3.2.4 Alcohol : salt phase systems 

To improve the partition coefficients from the EBuWat 0:1:1 phase system in Section 

3.2.2, alcohol : salt phase systems were examined, primarily based on the ethanol-

ammonium sulphate phase system, discussed in Section 1.2.5). 

A ternary phase diagram for ethanol : saturated ammonium sulphate solution : water 

was developed based on the volumes of each (Figure 3-2). This data was then 

developed into a ternary phase diagram for ethanol : ammonium sulphate : water on a 

mass basis (Figure 3-3) to avoid the necessity of preparing saturated ammonium 

sulphate. The ternary phase diagrams demonstrate a relatively small range of 

compositions under which two-phase systems form which are suitable for CPC. 
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Figure 3-2: Ternary phase diagram (% v/v) showing the two-phase region of ethanol : 

ammonium sulphate : water phase systems. Experiments were performed as described 

in Section 2.3. 

 

 

Figure 3-3: Ternary phase diagram (% w/w) showing the two-phase region of ethanol : 

ammonium sulphate : water phase systems. Experiments were performed as described 

in Section 2.3. 
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While binodal curve data for ethanol : ammonium sulphate : water phase systems has 

been published previously [223], it does not demonstrate the effective two-phase 

region for CPC operation, nor the region in which precipitation occurs with further 

addition of ammonium sulphate or ethanol. Figure 3-4 represents the same data as in 

Figure 3-3 in the form of such a binodal curve showing both the single-phase boundary 

and the precipitation boundary.  

 

Figure 3-4: Binodal curve phase diagram (% w/w) showing the two-phase region of 

ethanol : ammonium sulphate : water phase systems. Experiments were performed as 

described in Section 2.3. 

The settling times of the phase systems should also be considered due to its relationship 

with the stationary phase retention in CPC. It was observed that systems containing 

more ammonium sulphate and ethanol (i.e. closer to the precipitate phase boundary) 

exhibit shorter settling times (<30 s) indicating a likely improvement in retention. 

Systems with a higher percentage of water (closer to the single-phase boundary) 

exhibit longer settling times (>60 s), indicating that the retention could be lower.  

Phase systems I-III (Table 2-1), from Shinomiya and Ito [74], use a constant salt 

concentration (2 M ammonium sulphate) in varying volumetric ratios with ethanol to 

demonstrate how the location of the phase system in the two-phase region affects 
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III – closer to the single phase boundary in Figure 3-3) the partition coefficients (KAra 

= 2.2) (Table 3-3) are closer to the target of 1 (Section 3.2.1) but the settling time is 

increased (31 s) (Table 3-4). A higher ethanol proportion (phase system I – closer to 

the precipitate boundary) results in a shorter settling time (21 s) but also partition 

coefficients further from 1 (KAra = 4.3). There is therefore a trade-off required between 

the separation achievable (K values) and the throughput (settling times). Using an even 

lower ethanol proportion (3:7) results in excessive settling times that would result in 

poor retention while a higher ethanol proportion (3:3) resulted in some salt 

precipitation. The requirement for short settling times (<30 s) effectively shrinks the 

practicable two-phase region in Figure 3-3, where phase systems with suitable 

characteristics can be formed.  

Table 3-3: Partition coefficients (KLP/UP) of the monosaccharides present in hydrolysed 

SBP pectin. Phase systems were prepared as described in Section 2.2. Partition 

coefficient values were determined as described in Section 2.2 and represent one 

standard deviation about the mean (n=2 for these initial experiments). 

Phase system 
Partition coefficient (KLP/UP) 

Ara Gal Rha GA 

I 4.3 ± 0.2 5.2 ± 0.1 1.3 ± 0.1 13.0 ± 1.9 

I + TFA 3.8±0.1 N.D. N.D. 7.1±0.1 

II 3.0 ± 0.2 3.5 ± N.D. 1.2 ± 0.0 8.7 ± 0.9 

II + TFA 3.0 ± 0.1 N.D. N.D. 5.0±0.5 

III 2.2 ± N.D. 2.5 ± 0.1 1.2 ± 0.1 4.2 ± N.D. 

IV 16 ± 2 24 ± 0  3.9 ± 0.0 33 ± 3 

V 7.7 ± 0.0 12 ± 0  2.1 ± 0.1 33 ± 8 

VI 10.0 ± 0.5 15 ± 0 2.4 ± N.D. 33 ± 2 

VII 4.0 ± 0.2 N.D. N.D.  N.D.  

VIII 2.8 ± 0.0 N.D. N.D.  7.2 ± 0.0 

IX 2.8 ± 0.0 N.D. N.D. 7.3 ± 0.1 

X 5.3 ± 0.1 N.D. N.D.  N.D.  

XI 4.0 ± 0.7 N.D. N.D.  N.D.  

XII 3.7 ± 0.1 N.D. N.D.  N.D.  

XIII 2.9 ± 0.1 N.D. N.D.  N.D.  

XIV 1.8 ± 0.0 2.1 ± 0.1 1.0 ± 0.0 3.6 ± 0.1 

XV 2.6 ± 0.0 3.5 ± 0.0 1.2 ± 0.1 7.2 ± 0.2 

Ara, L-arabinose; Gal, D-galactose; Rha, L-rhamnose; GA, D-galacturonic acid; N.D., not determined. 
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Table 3-4: Lower phase (LP) volume fractions and settling times of the highly polar phase 

systems described in Table 2-1. Experiments were performed as described in Section 2.2. 

Values represent one standard deviation about the mean (n=3). 

Phase system 
LP volume 

fraction 

Settling 

time (s) 

I 0.32 19.4 ± 0.3 

II 0.38 25.3 ± 0.1 

III 0.44 37 ± 1 

IV 0.47 16.0 ± 0.3 

V 0.44 14.6 ± 0.4 

VI 0.51 18.3 ± 0.4 

VII 0.44 20.3 ± 0.5 

VIII 0.53 29.5 ± 0.4 

IX 0.46 29.8 ± 0.5 

X 0.76 19.9 ± 0.4 

XI 0.43 20.6 ± 0.5 

XII 0.58 28.3 ± 0.5 

XIII 0.52 41.4 ± 0.8 

XIV 0.57 89.8 ± 0.4 

XV 0.42 31.4 ± 0.7 

Adding an acid to the phase system has the potential to modify solute partition 

coefficients, particularly for GA, by manipulating which ionic form it is present in. 

Phase systems I and II were modified by adding 1% (v/v) TFA to the 2 M ammonium 

sulphate solution used, as described in Section 2.2. This reduced the pH of both phases 

from ~5 to below 3 (see Table 3-5) which is below the pKa for GA of 3.5 [224]. This 

adjustment in the pH should force GA into the non-ionic form when dissolved in these 

phase systems.  

Table 3-5: pH of the upper (UP) and lower (LP) phases of phase systems I and II with 

and without TFA (Table 2-1). Phase systems were prepared as described in Section 2.2. 

Phase system LP UP 

I 4.9 5.4 

I + TFA 2.4 2.8 

II 4.9 5.4 

II + TFA 2.5 2.7 

Calculated partition coefficients of Ara and GA are shown in Table 3-3. The TFA 

appears to have little to no effect on the partition coefficients of Ara (no change in 
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phase system II and only a small change in phase system I). For GA, the changes are 

more pronounced, with the partition coefficient dropping from 13.0 to 7.1 in phase 

system I and 8.7 to 5.0 in phase system II. This represents a higher proportion of GA 

in the upper phase when in the non-ionic form, however, these changes bring the GA 

partition coefficient closer to that of the other sugars, reducing the separation factors. 

As a result, TFA was not added to future phase systems.  

In an attempt to improve both stationary phase retention and settling times, various 

other modifiers were tested in the ethanol : ammonium sulphate systems. Phase 

systems IV-VI use a combination of acetonitrile, propanol or butanol as phase system 

modifiers and have previously been used for the separation of glucosinolates 

[78][225]. For these phase systems, the settling times were shorter than 20 s (Table 

3-4), however, the partition coefficients were much higher than for phase systems I, II 

and III (Table 3-3) suggest long and poor CPC separations. It is evident that these 

systems, while useful for glucosinolate isolation, are not suitable for the separation of 

sugars, which partition too strongly into the lower aqueous phase. 

All of the phase systems I-VI followed the same order of partition coefficients (KLP/UP) 

for the SBP solutes i.e. Rha < Ara ≤ Gal < GA. It was therefore decided to look 

primarily at improving the Ara partition coefficient (bringing it closer to 1) by addition 

of further phase modifiers. 

Phase systems VII-XIII examine the effect of methanol and acetonitrile as alternatives 

to ethanol in forming two-phase systems with ammonium sulphate as well as 

modifying the partition coefficient in ethanol systems. From these systems, the lower 

phase volume fractions (defined in Section 2.2) were generally around 0.5 and settling 

times between 20 and 30 s (Table 3-4). Phase system VIII (ethanol : saturated 

ammonium sulphate : water (0.8:1.0:0.8 v:v:v)) shows a relatively high Ara partition 

coefficient (KAra = 2.8) but maintains a large separation factor (2.6) between the two 

main targets (Ara and GA) with a reasonable settling time (30 s). This phase system 

was used as the basis of further modifications and as a standard for comparison. 

Methanol, as a more polar alcohol than ethanol, could provide a way of improving the 

solute partition coefficients by reducing the polarity difference between the two 
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phases. Phase system IX introduces a small proportion of methanol (Table 2-1), which 

has no effect on the partition coefficients (Table 3-3) or the settling time (Table 3-4). 

The use of methanol as a modifier is limited as it readily precipitates the ammonium 

sulphate and so can only be used in low proportions, requiring another compound to 

stabilise the phase system. 

Replacing the ethanol in phase system VIII for propanol led to the formation of a two-

phase system with a much increased settling time of longer than 1 min. Furthermore, 

as it was seen in phase systems IV and V, increasing the proportion of propanol had a 

negative effect on the partition coefficients; hence, this solvent was not examined 

further as a phase system modifier. 

Phase system X examines the addition of acetonitrile to the phase system. While the 

settling time is reduced to 20 s from phase system VIII (30 s), the Ara partition 

coefficient almost doubles (KAra = 5.3) as shown in Table 3-3. To improve the partition 

coefficient, ethanol and methanol were examined as phase system modifiers (systems 

XI and XII). Settling times for these systems were 21 and 28 s respectively, however, 

the partition coefficients were much higher than phase system VIII containing only 

ethanol as organic solvent.  

DMSO was also investigated as a potential phase system modifier to improve partition 

coefficients of the monosaccharides. It is a polar aprotic solvent which is capable of 

dissolving a wide range of organic compounds with high loadings [226] and is 

effective at solubilising even long chain carbohydrates [227]. Adding DMSO to an 

acetonitrile-ammonium sulphate phase system reduced the partition coefficient of Ara 

from 5.3 (phase system X) to 2.9 (phase system XIII) but increases the settling time 

from 30 s to 41 s.  

DMSO was then tested in an ethanol-salt phase system, however, the addition of 

DMSO readily precipitated the salt and a low concentration was required in order for 

a two-phase system to form. Phase system XIV uses a lower ethanol proportion and 

provides the lowest achieved monosaccharide partition coefficients of all the phase 

systems tested (KAra = 1.8). The settling time, however, is 90 s, which is excessive and 

could lead to significant problems with stationary phase retention in the CPC column. 
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As SBP is a high volume feedstock (Section 1.1.2), increasing CPC throughput is 

considered to be an overriding consideration and so improvements in the settling time 

were sought to allow for higher mobile phase flow rates. An increase in the ethanol 

proportion to 0.8 (system XV) shortened the settling time to 31 s and increased the 

partition coefficient (KAra = 2.6). Importantly, the separation factor for GA and Ara in 

system XV (2.8) is higher than both phase system XIV (2.0) and VIII (2.6). Based on 

these results, phase system XV was selected for subsequent CPC separations in Section 

3.3.  

Analysis of the composition of the two phases formed showed that the ammonium 

sulphate concentration was 376 g L-1 in the LP and 63 g L-1 in the UP (determined 

gravimetrically, as described in Section 2.8.2). The ethanol concentration in the LP 

and UP was 97 g L-1 and 333 g L-1 respectively, while the DMSO concentration was 

23 g L-1 and 56 g L-1, respectively. Ethanol and DMSO concentrations were 

determined using HPLC-RI, as described in Section 2.8.1.  

3.3 CPC separations 

3.3.1 Stationary phase retention studies 

Initial CPC experiments with phase system XV were used to determine the retention 

of stationary phase at a rotational speed of 1000 rpm and flow rates (Q) between 2 and 

16 mL min-1. These experiments were performed as described in Section 2.5.1. A 

linear relationship was found for the stationary phase retention (SF) with varying flow 

rate as shown in Figure 3-5 (𝑆𝐹 = −3.7𝑄 + 86.6 with r2=0.996). Further experiments 

at 8 mL min-1 with various rotational speeds between 600 and 2000 rpm yielded no 

significant variation in the stationary phase retention (Figure 3-6). At higher rotational 

speeds, the column pressure increased, and at 2000 rpm, was close to the maximum 

operating pressure of 80 bar. This rotational speed would leave little allowance for any 

pressure increase caused by sample injection. A rotational speed of 1000 rpm was 

selected which gave a maximum pressure of 22 bar at 8 mL min-1. These conditions 

were selected for CPC separations, giving a stationary phase retention of 57%.  
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Figure 3-5: Effect of flow rate on stationary phase retention in the ascending mode on 

the semi-preparative CPC column at 1000 rpm using phase system XV (Table 2-1). 

Experiments were performed as described in Section 2.5.1. Stationary phase retention 

was calculated as described in Section 2.5.1. 

 

Figure 3-6: Effect of rotational speed on stationary phase retention in the ascending 

mode on the semi-preparative CPC column at 8 mL min-1 using phase system XV (Table 

2-1). Experiments were performed as described in Section 2.5.1. Stationary phase 

retention was calculated as described in Section 2.5.1. 
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3.3.2 CPC separations 

As the primary constituents of hydrolysed SBP pectin, Ara and GA were studied in 

initial separation experiments. Rha was also included as its partition coefficient is 

lower than both Ara and GA while providing a reasonable separation factor with Ara 

(2.2, based on partition coefficients values). The expected elution order from the 

partition coefficient data (Table 3-3) would thus be Rha – Ara – GA for CPC operated 

in the ascending mode, with the upper phase mobile and the lower phase stationary. 

In order to clearly demonstrate this predicted elution profile, equal concentrations of 

the monosaccharides were used at concentrations of 50 g L-1 each, prepared as 

described in Section 2.7.2. CPC separation was performed as described in Section 2.4 

and Figure 3-7 shows the CPC elution profile achieved with this ‘illustrative’ mixture 

based on ICS analysis of the monosaccharide composition in collected fractions. This 

matches the expected elution order from partition coefficient data and shows that there 

is good separation achieved between Rha and Ara, and baseline resolution achieved 

between Ara and GA. 



 126   
 

 

Figure 3-7: CPC separation of an illustrative mixture of L-rhamnose, L-arabinose and 

D-galacturonic acid using phase system XV (Table 2-1). Separation was performed in the 

ascending mode with a flow rate of 8 mL min-1, a rotational speed of 1000 rpm, at room 

temperature and with an injection volume of 10.81 mL. The illustrative mixture was 

prepared in the upper phase, as described in Section 2.7.2. Experiments were performed 

as described in Section 2.4. Concentrations were determined by ICS as described in 

Section 2.8.3. 

Subsequently, a CPC separation was performed using all of the four main sugars 

present in SBP pectin. This ‘model synthetic mixture’ contained the monosaccharides 

at a concentration ratio expected in hydrolysed SBP pectin after cellulose removal, i.e. 

43% Ara, 41% GA, 11% Gal and 5% Rha [7], and was prepared as described in Section 

2.7.2. A total solute concentration of 100 g L-1 was used. As shown in Figure 3-8, 

elution of Rha started after 22 min and the whole separation process was completed 

within 2 h. The ‘model synthetic mixture’ was separated into three main fractions; a 

highly pure Rha fraction (>90% w/w) eluted between 27 - 37 min, a mixed Ara-Gal 

fraction eluted between 38 – 63 min (comprising 76% Ara and 22% Gal) and a highly 

pure GA fraction (>90%) eluted between 67 - 111 min. 

Figure 3-9 shows example analytical chromatograms for specific points in the CPC 

elution profile demonstrating the sugars present in each fraction: Figure 3-9A, Rha 

fraction at 33 min; Figure 3-9B Ara and Gal fraction at 45 min; and Figure 3-9C, GA 

fraction at 79.8 min. Two analytical methods are required to fully analyse each 
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fraction: one for neutral sugars and one for GA (as described in Section 2.8). Fractions 

A and B showed no presence of GA and so only the neutral sugar analyses are shown. 

Similarly, fraction C showed no presence of neutral sugars and only the GA analysis 

is shown. It is important to note that, for biorefinery applications, complete 

fractionation of all four sugars into separate fractions is not necessarily required. For 

example, selective enzymatic modification of Ara in the presence of Gal could be 

performed. 

 

Figure 3-8: CPC separation of a model synthetic mixture of L-rhamnose, L-arabinose, 

D-galactose and D-galacturonic acid using phase system XV (Table 2-1). Separation was 

performed on the semi-preparative column in the ascending mode with a flow rate of 8 

mL min-1, a rotational speed of 1000 rpm, at room temperature and with an injection 

volume of 10.81 mL. The model synthetic mixture was prepared in in the upper phase, 

as described in Section 2.7.2. Experiments were performed as described in Section 2.4. 

Analytical chromatograms at the marked points A, B and C are shown in Figure 3-9. 

A comparison of Figure 3-7 and Figure 3-8 showed that the monosaccharide elution 

profiles and retention times did not change between the ‘illustrative’ and ‘model 

synthetic mixture’ separations. This indicates that the selected phase system (XV, 

Table 2-1) is stable to fluctuations in solute concentrations and the introduction of Gal 

into the feed stream. While the peaks appear in their expected order, the compounds 

eluted earlier than expected based on their partition coefficient values (Table 3-3). This 

is probably a result of the stationary phase stripping that occurs shortly after injection, 

resulting in a smaller stationary phase retention and compounds with K values higher 
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than 1 eluting faster [228]. The CPC separations were found to be reproducible after 

repeats with freshly prepared phase systems and samples. 

In terms of CPC operation, these results show that Rha could be collected as a first 

fraction with high purity prior to the elution of Ara. While Ara has good separation 

from Rha and baseline separation from GA, it co-elutes with Gal in the second fraction. 

GA can be taken as a third and final fraction with high purity. However, it elutes as a 

broad peak, taking approximately 60 min (480 mL) for full recovery. In order to 

decrease the time of this separation process, and therefore increase the throughput, 

extrusion of the column contents after the Ara and Gal fraction could be considered. 

This would have the benefit of increasing the concentration of GA in the fraction, 

ensuring complete recovery and preparing the column for further injections. In the case 

of this elution-extrusion mode [106], the estimated throughput based on the current 

operating conditions at this semi-preparative scale would be 0.9 g hour-1 with 0.62 L 

of solvent per gram of total sugars. This is based on an extrusion flow rate of 16 mL 

min-1 for 12 minutes after 1 hour of elution at 8 mL min-1.  
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Figure 3-9: Analytical chromatograms of CPC fractions from the model synthetic 

mixture separation at A, 33 min; B, 45 min; and C, 79.8 min; (as shown in Figure 3-8). 

Figure 3-9A and Figure 3-9B show the analysis of neutral sugars. Figure 3-9C shows the 

analysis of GA. The two analytical methods used are described in Section 2.8. 
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3.4 Chapter Summary 

This work represents an important first step in demonstrating the capability of CPC as 

a separation technology suitable for use within a whole-crop biorefinery context 

(Section 1.1.2). It demonstrates the ability to separate compounds in a low value 

feedstock like SBP, after hydrolysis, into various fractions for subsequent conversion 

into higher value products.  

The aim of this chapter was to develop a method for separating a model synthetic 

mixture of the monosaccharides in hydrolysed SBP pectin using CPC and this was 

achieved as shown in Figure 3-8. The main conclusions of this chapter are: 

• Organic – aqueous solvent-based phase systems are not capable of partitioning 

monosaccharides to a level suitable for CPC. The best partition coefficient 

achieved was 19 for L-arabinose in an EBuWat 0:1:1 phase system (Table 2-1). 

This is far from a desirable partition coefficient of K<2.5.  

• An ion-exchange phase system has some potential to isolate GA from the 

neutral sugars and it was possible to improve the partition coefficient more than 

100-fold from 164 to 1.5 without modifying the partition coefficient of Ara 

(Table 2-2 in Section 3.2.3). However, the ion-exchanger dramatically 

increased the settling time of the EBuWat 0:1:1 phase system, making it 

impractical for CPC separation. 

• An ethanol : aqueous ammonium sulphate phase system was studied in detail 

(Section 3.2.4) with the development of a ternary phase diagram (Figure 3-3). 

The impact of different ethanol and ammonium sulphate ratios, and solvent 

modifiers on the solute partition coefficients (Table 3-3) and settling times 

(Table 3-4) was examined. A highly polar ethanol : DMSO : aqueous 

ammonium sulphate (300 g L-1) (0.8:0.1:1.8 v:v:v) phase system was selected 

for CPC separations with the DMSO improving the partition coefficient of the 

Ara. 

• CPC stationary phase retention studies were performed varying the rotational 

speed and flow rate (Section 3.3.1). It was found that a rotational speed of 1000 
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rpm and a mobile phase flow rate of 8 mL min-1 in the ascending mode gave a 

suitable stationary phase retention of 57% (Figure 3-5). 

• CPC separation was performed on an illustrative mixture and a model synthetic 

mixture of SBP pectin monosaccharides (Section 3.3.2) using the DMSO 

modified phase system. It was found that the CPC method was able to isolate 

three relatively pure fractions from the four target sugars: Rha (>90%), Ara 

(76%) and Gal, and GA (>90%) as shown in Figure 3-8. 

In the next chapter, the focus will shift to the separation of crude SBP hydrolysate, 

examining crude sample preparation, throughput maximisation, and scale-up. 
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 Optimisation and scale-up of centrifugal partition 

chromatography crude hydrolysate separations‡ 

4.1 Introduction, aim and objectives 

In Chapter 3 a range of phase systems (listed in Table 2-1) were examined based on 

phase system settling times (Table 3-4) and partition coefficients for the target sugars 

(Table 3-3). Phase system XV, comprised of ethanol : DMSO : 300 g L-1 aqueous 

ammonium sulphate (0.8:0.1:1.8 v:v:v) was selected for CPC separations and was 

tested in a semi-preparative CPC column for stationary phase behaviour and 

determination of suitable operating conditions. It was shown that CPC separation of a 

model synthetic mixture of monosaccharides at 100 g L-1 total sugars concentration 

was possible (Figure 3-8), separating the target sugars into three fractions: Rha; Ara 

and Gal; and GA. 

This chapter will focus on transitioning the CPC method to the processing of crude 

SBP pectin hydrolysates as would be found in a sugar beet biorefinery (Section 1.1.4). 

As explained in Section 2.7.1, this crude hydrolysate was provided by the Department 

of Biology and Biochemistry at the University of Bath and is the soluble pectin fraction 

following steam explosion (Hamley-Bennett et al. [17]) and complete acid hydrolysis 

with H2SO4 to fully monomerise all of the remaining oligosaccharides. 

The aim of this chapter is to demonstrate the potential of the CPC method developed 

in Chapter 3 to the processing of crude SBP hydrolysates. Given the integrated 

biorefinery context of the work (Section 1.1.2) it will be important to consider 

maximisation of material throughput and scale-up of the separation onto a larger CPC 

column. The specific objectives of this chapter are to: 

                                                      
‡ The results presented in this chapter have been published as: Ward, David P., et al. 

"Centrifugal partition chromatography in a biorefinery context: Optimisation and 

scale-up of monosaccharide fractionation from hydrolysed sugar beet pulp." Journal 

of Chromatography A 1497 (2017): 56-63. 
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• Evaluate the benefits of DMSO on phase system development and CPC 

separation performance. 

• Establish a simple sample preparation method for dealing with crude pectin 

hydrolysates that will enable sample injection onto the CPC without a loss in 

separation performance. 

• Examine methods to improve the throughput of the CPC methods by either 

increasing the sample injection volume or implementing the elution-extrusion 

operation mode. 

• Scale up the CPC separation method from a semi-preparative (250 mL) to a 

preparative (950 mL) scale column. 

4.2 Impact of DMSO on CPC separation 

In Section 3.2.4, DMSO was added to the phase system in order to improve the 

partition coefficient of Ara (Table 3-3). DMSO, however, poses potential difficulties 

to any additional purification step or solvent recycling technique used due to its high 

boiling point of 189°C [229]. The impact of DMSO on the actual separation achieved 

by CPC was examined based on the chromatograms shown in Figure 4-1, with DMSO 

(phase system XV), and Figure 4-2, without DMSO (phase system VIII). The 

operating conditions used, and the operating conditions of all of the CPC separations 

in this chapter are detailed in Table 4-1. Fraction purities and recoveries are shown in 

Table 4-2. 
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Table 4-1: Summary of CPC phase systems and operating strategies used in Chapter 4. Phase systems as described in Table 2-1. Preparation of model 

synthetic mixtures and crude samples are detailed in 2.7.2 and 2.7.3 respectively. Details of the two columns given in Section 2.4 with additional 

operating requirements for the preparative column given in Section 2.6. The ascending and descending mode are discussed in Section 1.2.3.2. The 

elution-extrusion operating modes is detailed in Section 2.5.2.  

Experiment 
Phase 

system 
Sample type Column 

Sample 

preparation 

Injection 

volume 

(mL) 

Flow rate 

(mL min-

1) 

Rotational 

speed 

(rpm) 

Mode 
Operating 

Method 

Resulting 

Chromatogram 

1 XV Synthetic Semi-prep. UP 10 8 1000 Ascending Elution Figure 4-1 

2 VIII Synthetic Semi-prep. UP 10 8 1000 Ascending Elution Figure 4-2 

3 VIII Synthetic Semi-prep. LP 10 8 1000 Ascending Elution Figure 4-3 

4 VIII Crude Semi-prep. LP 10 8 1000 Ascending Elution 
Figure 4-5 & 

4-10A 

5 VIII Crude Semi-prep. LP 10 8 1600 Ascending Elution Figure 4-6 

6 VIII Crude Semi-prep. LP 10 8 1000 Descending Elution Figure 4-7 

7 VIII Crude Semi-prep. LP 10 8 1600 Descending Elution Figure 4-8 

8 VIII Crude Semi-prep. LP 10 6 1000 Descending Elution Figure 4-9 

9 VIII Crude Semi-prep. LP 20 8 1000 Ascending Elution Figure 4-10B 

10 VIII Crude Semi-prep. LP 30 8 1000 Ascending Elution Figure 4-10C 

11 VIII Crude Semi-prep. LP 40 8 1000 Ascending Elution Figure 4-10D 

12 VIII Crude Semi-prep. LP 30 8 1000 Ascending Elution-Extrusion 
Figure 4-11 & 

4-12 

13 VIII Crude Preparative LP 152 30.4 1000 Ascending Elution Figure 4-13 

14 VIII Crude Preparative LP 152 30.4 1000 Ascending Elution-Extrusion Figure 4-14 

15 VIII Crude Preparative LP 152 30.4 1000 Ascending Elution-Extrusion Figure 4-15 



 135   
 

 

Figure 4-1: CPC separation of a model synthetic mixture of L-rhamnose, L-arabinose, 

D-galactose and D-galacturonic acid in the UP using phase system XV (Table 2-1). The 

sample was prepared as described in Section 2.7.2. Separation was performed on the 

semi-preparative column in the ascending mode with a flow rate of 8 mL min-1, a 

rotational speed of 1000 rpm, at room temperature and with an injection volume of 10 

mL, as described in Section 2.4. Full experimental details are given under Experiment 1 

in Table 4-1. 
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Figure 4-2: CPC separation of a model synthetic mixture of L-rhamnose, L-arabinose, 

D-galactose and D-galacturonic acid in the UP using phase system VIII (Table 2-1). The 

sample was prepared as described in Section 2.7.2. Separation was performed on the 

semi-preparative column in the ascending mode with a flow rate of 8 mL min-1, a 

rotational speed of 1000 rpm, at room temperature and with an injection volume of 10 

mL, as described in Section 2.4. Full experimental details are given under Experiment 2 

in Table 4-1. 
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Table 4-2: Optimised purities and recoveries of target monosaccharides from CPC separation using phase systems XV and VIII (Table 2-1). Samples 

were 100 g L-1 model synthetic mixture samples prepared in the UP and prepared as described in Section 2.7.2. CPC separation was performed on a 

semi-preparative, 250 mL Kromaton CPC (full details of Experiment 1 and 2 given in Table 4-1). Purities and recoveries are given as % (w/w) as 

defined in Section 2.8. 

Experiment 
Phase 

System 

SF 

(%) 

Rha  Ara  GA 

Purity 

(%) 

Recovery 

(%) 

Time 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time 

(min) 

1 XV 55 96 87 28-40  81 98 42-68  94 98 70-118 

2 VIII 58 90 91 28-42  81 94 44-62  97 97 70-118 
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It is clear from comparing Figure 4-1 and Figure 4-2 that the presence of DMSO does 

not have a strong impact on the retention times of the neutral sugars and only a small 

change in the GA retention time, where DMSO increases the peak maximum from 82 

to 88 min. Furthermore, DMSO does not appear to affect the initial stationary phase 

retention value, and the fraction purities and recoveries are broadly the same (Table 

4-2). As any improvement in CPC performance with DMSO is minor, it was 

subsequently removed from the phase system for future CPC experiments in favour of 

a simpler solvent recycling process and solute recovery. Phase system VIII was thus 

used in all subsequent work. 

It is also worth noting that stationary phase retention values (Section 2.5.1) are 

calculated based on initial breakthrough and do not consider any stationary phase bleed 

caused by instability of the phase system or sample injection. Phase system XV, in the 

presence of DMSO, equilibrates at an SF value of 34% during separation, while phase 

system VIII, without DMSO, SF continues to drop during separation to approximately 

24%. This suggests that the presence of DMSO helps to stabilise phase system 

hydrodynamics within the CPC machine and could provide improved separation for 

other applications. The equilibration stationary phase retention values were calculated 

as described in Section 2.5.1. 

4.3 Crude sample preparation and impact on CPC separation 

The most straightforward option to access all the monosaccharides present in a 

complex feedstock like sugar beet pectin is to carry out acid hydrolysis (Section 1.1.4). 

This was performed on the aqueous pectin fraction following steam explosion of the 

sugar beet pulp by the Department of Biology and Biochemistry at Bath University as 

described in Section 2.7.1. After full acid hydrolysis in an autoclave and adjustment to 

pH 6, a dark brown solution is formed with a mass of dried solids of approximately 

100 g L-1 (determined gravimetrically, as described in Section 2.8.2) and a total 

monosaccharide concentration of approximately 20 g L-1 (Ara, 12 g L-1; GA, 4 g L-1; 

Gal, 3 g L-1; Rha, 1 g L-1, Glu 1 g L-1 as determined by ICS (Section 2.8.3)). The 

colouration could be the result of degradation of the GA [21,22] and neutral 

monosaccharides, such as fructose [18], during the hydrolysis step leading to the 

formation of browning products. These browning products are discussed further in 
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Section 1.1.5. Furthermore, some of the dissolved solids will be sodium sulphate salts 

due to the acid hydrolysis with H2SO4 and pH adjustment with NaOH. 

Being a liquid-liquid separation technique with a high proportion of stationary phase 

in the column, CPC can cope with a large volume of sample [34], however, it is 

important to find a balance between high throughput, purity and yield without 

disturbing the hydrodynamic equilibrium within the column. It has also been shown 

that column hydrodynamics and thermodynamic equilibrium between the two phases 

can be greatly affected by sample preparation [230]. For model synthetic mixtures, the 

monosaccharides could be prepared in either of the two phases (UP or LP), however, 

for the crude hydrolysate, it proved impossible to prepare in the mobile phase (UP 44% 

v/v ethanol, 54 g L-1 ammonium sulphate) without precipitation of ammonium 

sulphate. There was no such precipitation or solubility difficulties when preparing 

crude hydrolysate in the stationary phase (LP, 13% v/v ethanol, 332 g L-1 ammonium 

sulphate). Full details of the sample preparation methodology are described in Section 

2.7. Ethanol proportions for each were determined using HPLC-RI as described in 

Section 2.8.1. Ammonium sulphate concentrations were determined gravimetrically 

for each phase as described in Section 2.8.2. 

It was clear from these initial investigations that sample preparation would be an 

important consideration for separation of the crude hydrolysate. Therefore, a CPC 

separation was run in the ascending mode using a model synthetic mixture of sugars 

dissolved in the LP. The same model synthetic mixture sugar concentrations were used 

as in Chapter 3 (100 g L-1 total sugars, as described in Section 2.7.2) in order to 

replicate the total dissolved solids content in the crude of 100 g L-1. The resulting 

chromatogram is shown in Figure 4-3 which indicates a slight shortening of the 

retention times but similar separation performance when compared with sample 

preparation in the UP (Figure 4-2). Table 4-3 shows the maximum values of purity and 

recovery for the target monosaccharides in the pooled fractions from the CPC 

separation of the model synthetic mixture sample prepared in both the UP and LP. The 

purities and recoveries of Ara and GA are approximately the same between the two 

runs with a slight drop in Rha recovery from 90 to 80% (w/w).  
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Figure 4-3: CPC separation of a model synthetic mixture of L-rhamnose, L-arabinose, 

D-galactose and D-galacturonic acid in the LP using phase system VIII (Table 2-1). The 

sample was prepared as described in Section 2.7.2. Separation was performed on the 

semi-preparative column in the ascending mode with a flow rate of 8 mL min-1, a 

rotational speed of 1000 rpm, at room temperature and with an injection volume of 10 

mL, as described in Section 2.4. Full experimental details are given under Experiment 3 

in Table 4-1. 
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Table 4-3: Maximum purities and recoveries of target monosaccharides from CPC separation using different sample preparations. Model synthetic 

mixture samples (100 g L-1 of total sugars) were prepared in either the UP or LP as described in Section 2.7.2 and a crude sample (20 g L-1 total sugars 

and 100 g L-1 total solids) was prepared in the LP as described in Section 2.7.3. CPC separation was performed on a semi-preparative, 250 mL Kromaton 

CPC with full details given in Table 4-1 based on the Experiment number. Purities and recoveries are given as % (w/w) and calculated from ICS 

analysis as defined in Section 2.8.3. 

 

Experiment 
Sample 

Phase 

SF 

(%) 

Rha  Ara  GA 

 
Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 

M
o

d
el

 

S
y

n
th

et
ic

 

m
ix

tu
re

 

2 UP 58 90 91 28-42  81 94 44-62  97 97 70-118 

3 LP 64 92 80 28-36  78 95 40-58  95 96 60-110 

C
ru

d
e 

4 LP 51 94 96 28-44  88 97 46-66  99 99 78-110 
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It is worth noting that injection of a sample made in the stationary phase can overstate 

the loss of stationary phase, as sample injection will elute a volume of stationary phase 

equal to that of the sample injection volume (VI). Stationary phase retention (SF) for 

samples injected in the LP was therefore calculated using Equation 4-1, (where VC is 

total column volume, VE is total eluted volume until mobile phase breakthrough and 

VD is total dead volume). This equation should be used to take into account VI when 

running separations in this manner, particularly when varying the injection volume. 

Therefore, for the LP sample injection, the stationary phase retention becomes 64%; 

greater than that of the UP sample injection. Overall these results demonstrate that 

sample preparation in the stationary phase yields similar separation performance to 

that of the mobile phase and could be a useful option for crude samples that do not 

solubilise well in the mobile phase. 

 
𝑆𝐹 =

𝑉𝐶 − 𝑉𝐸 + 𝑉𝐼 + 𝑉𝐷

𝑉𝐶
 

Equation 4-1 

With little difference in recovery and purity between model synthetic mixture sample 

preparation in the mobile (UP) or stationary (LP) phases, separations were attempted 

with the crude hydrolysate. As stated previously, sample preparation of the crude sugar 

beet pectin in the mobile phase (UP) led to precipitation of the ammonium sulphate. 

Dropping the concentration of ammonium sulphate to 25 g L-1 allowed the salts to fully 

dissolve but led to complete stripping of the stationary phase when injecting a 10 mL 

sample volume. In an attempt to fully utilise the liquid nature of the stationary phase, 

10 mL of the neat crude sample (without mixing in either phase) was injected into the 

CPC column but this also resulted in complete stripping of the stationary phase. 

Preparing the crude hydrolysate in the LP (stationary phase) (13% v/v ethanol and 332 

g L-1 ammonium sulphate) led to its full solubilisation, however, a small volume 

(<10% v/v) of a new phase formed on top of the solution (Figure 4-4C). This new 

phase was black in colour, indicating a high concentration of impurities; conversely, 

the rest of the solution was a much lighter brown, indicating a reduction in the level of 

coloured impurities. It is likely that the impurities causing this colour were acting as 

phase forming compounds, interacting with the salt in a similar way to ethanol to 

partition into a new UP. By discarding the new upper phase, a proportion of the 
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impurities were removed with no effect on the concentration of monosaccharides in 

the sample (confirmed by ICS analysis), effectively utilising the sample preparation 

step as a form of purification. 

 

Figure 4-4: Crude CPC samples prepared A, in the UP; B, in a 50:50 mix of UP and LP; 

and C, in the LP. Samples were prepared as described in Section 2.7.3. 

It is possible that using ammonia to adjust the pH of the acid hydrolysed SBP pectin 

instead of NaOH could be beneficial. This would form ammonium sulphate in the 

crude, reducing the amount of ammonium sulphate that would need to be added during 

sample preparation.  

The purity and recovery values for injecting a crude sample prepared in the LP are also 

shown in Table 4-3 with the chromatogram shown in Figure 4-5. It is clear that the 

separation is improved relative to the LP model synthetic mixture separation despite a 

drop in stationary phase retention from 64% to 51%. This is likely a result of the lower 

monosaccharide concentration; the crude had a total dissolved solids loading of 100 g 

L-1, similar to that of the model synthetic mixture, but total monosaccharides of only 

20 g L-1. This demonstrates that an optimised sample preparation methodology, which 

provides a partial or complete removal of these impurities prior to CPC separation, 

could allow similar total monosaccharide loadings. In addition to the sugars shown, a 
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very small amount of Glu (less than 1 g L-1 in the sample) from the crude was eluted, 

however, it co-elutes entirely with Ara peak and so is not shown. 

 

Figure 4-5: CPC separation of a crude sample prepared in the LP using phase system 

VIII (Table 2-1). The crude sample was prepared as described in Section 2.7.3. 

Separation was performed on the semi-preparative column in the ascending mode with 

a flow rate of 8 mL min-1, a rotational speed of 1000 rpm, and with an injection volume 

of 10 mL, as described in Section 2.4. Full experimental details are given under 

Experiment 4 in Table 4-1. 

4.4 Optimisation through variations in rotational speed, operating mode and 

flow rate 

Further optimisation of CPC operating conditions can lead to improvements in 

separation performance as described in Section 1.2.3. An increase in the rotational 

speed was implemented to improve the stationary phase retention and interfacial area 

within the mixing chamber [52], and thus improve separation performance. Initially, 

the rotational speed was increased to the operating maximum of 2000 rpm, however, 

during a separation of 10 mL of crude, prepared in the LP, at 8 mL min-1 the pressure 

increased above 75 bar and so separation was halted. Repeating the experiment at a 

lower rotational speed of 1600 rpm allowed for a safe maximum working pressure of 

48 bar during separation. For comparison, at 1000 rpm, the maximum pressure was 22 

bar. 
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The resulting chromatogram at 1600 rpm is shown in Figure 4-6 and is very similar to 

the separation at 1000 rpm, as shown in Figure 4-5. The retention times of solutes in 

each separation and the purities and recoveries of each sugar are shown in Table 4-4. 

One main difference is that after 120 min at 1600 rpm, the GA peak is still eluting, 

whereas, at 1000 rpm, full elution of the GA peak had been achieved. This could be 

due to the small improvement in retention at 1600 rpm (55%, up from 51% at 1000 

rpm). Furthermore, the separation performance appears to be slightly worse for each 

of the fractions at the higher rotational speed. As a result, a rotational speed of 1000 

rpm continued to be used due to the slightly improved separation performance, reduced 

operating pressure and reduced run time. 

 

Figure 4-6: CPC separation of a crude sample at a rotational speed of 1600 rpm. The 

crude sample was prepared as described in Section 2.7.3. Separation was performed on 

the semi-preparative column using phase system VIII (Table 2-1) in the ascending mode 

with a flow rate of 8 mL min-1, a rotational speed of 1600 rpm, and with an injection 

volume of 10 mL, as described in Section 2.4. Full experimental details are given under 

Experiment 5 in Table 4-1. 
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Table 4-4: Maximum purities and recoveries of target monosaccharides from crude CPC separations with varying rotational speed and flow mode and 

flow rate. CPC separation was performed on a semi-preparative, 250 mL Kromaton CPC with full details given in Table 4-1 based on the Experiment 

number. Purities and recoveries are given as % (w/w) and calculated from ICS analysis as defined in Section 2.8.3. 

 

Exp. 

Rotational 

Speed 

(rpm) 

Mode 
Flow rate  

(mL min-1) 

SF 

(%) 

Rha  Ara  GA 

Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 

4 1000 Asc 8 51 94 96 28-44 

 

88 97 46-66 

 

99 99 78-110 

5 1600 Asc 8 55 97 76 30-42 

 

84 95 44-80 

 

96 100 82- >120 

6 1000 Desc 8 54 82 86 26-33 

 

83 98 20-25 

 

89 90 16-19 

7 1600 Desc 8 44 91 83 29-35 

 

81 98 23-28 

 

90 83 19-22 

8 1000 Desc 6 60 - - - 

 

83 99 27-43 

 

82 89 21-26 
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Due to the requirement of preparing the crude sample in the LP (Section 4.3), a 

separation was performed in the descending mode to assess whether any improvement 

in the separation performance could be achieved. Operating in the descending mode 

allows the UP to act as the stationary phase while the LP acts as the mobile phase and 

flows from the centre to the outside of each chamber and from the top of the column 

to the bottom between plates (Section 1.2.3.2). The descending mode also means that 

the LP sample is prepared in what is now the mobile phase and can start to partition 

with the stationary phase immediately after sample injection. Furthermore, the elution 

order should be reversed, with GA eluting first and Rha last. All other operating 

conditions were kept constant, including the rotational speed (1000 rpm), crude sample 

preparation (in the LP) and flow rate (8 mL min-1). 

Figure 4-7 shows the chromatogram obtained in the descending mode. The most 

noticeable difference is the much reduced total run time, with full elution of all 

components in just 35 min (down from 110 min in the ascending mode). An elution 

volume of 1 column volume represents the central point of a CPC separation and the 

elution time of a solute with a partition coefficient of 1, as detailed in Section 1.2.3.3. 

Peaks eluting after this point in the ascending mode will elute prior to this point in the 

descending mode and vice versa. In this case, 1 column volume (250 mL) would be 

eluted after 31.25 min at 8 mL min-1 which appears to be around the point of inversion 

when comparing the ascending mode (Figure 4-5) with the descending mode (Figure 

4-7). It is not possible to accurately plot the x-axis based on calculated partition 

coefficient values due to bleeding of the stationary phase during the separations and 

so a more theoretical comparison of the separations in the ascending and descending 

modes is not possible. The recoveries and purities, shown in Table 4-4, are lower than 

for operation in the ascending mode for all fractions, although the stationary phase 

retention is slightly increased from 51% to 54%.  
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Figure 4-7: CPC separation of a crude sample in the descending mode at 1000 rpm. The 

crude sample was prepared as described in Section 2.7.3. Separation was performed on 

the semi-preparative column using phase system VIII (Table 2-1) with a flow rate of 8 

mL min-1, and with an injection volume of 10 mL, as described in Section 2.4. Full 

experimental details are given under Experiment 6 in Table 4-1. 

Increasing the rotational speed to 1600 rpm also had little effect on the separation 

performance: the purity and recovery of Ara remain effectively constant, while for GA 

the recovery drops from 90% to 83%; although it did increase the retention times of 

all components. These results are also shown in Table 4-4 and the corresponding 

chromatogram in Figure 4-8. Furthermore, increasing the rotational speed led to an 

unexpected drop in stationary phase retention, from 54% to 44%. 
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Figure 4-8: CPC separation of a crude sample in the descending mode at 1600 rpm. The 

crude sample was prepared as described in Section 2.7.3. Separation was performed on 

the semi-preparative column using phase system VIII (Table 2-1) with a flow rate of 8 

mL min-1, and with an injection volume of 10 mL, as described in Section 2.4. Full 

experimental details are given under Experiment 7 in Table 4-1. 

Based on the above results it appears that the descending mode performs less well than 

the ascending mode for the same rotational speed at both 1000 and 1600 rpm, although 

separation times are dramatically reduced with full elution in descending mode before 

the elution of the first sugar in ascending mode. It is worth noting that the coloured 

impurities elute after the last sugars in the descending mode and they could take a long 

time to fully elute, making this a less attractive operating mode.  

While the separation performance is lower, the much reduced separation time must be 

taken into consideration. In a further experiment at 1000 rpm, the flow rate was 

dropped from 8 to 6 mL min-1 in order to improve the stationary phase retention and 

thus separation performance. The results, shown in Figure 4-9 and Table 4-4, indicate 

an increase in Sf from 54 to 60% with the drop in flow rate, however, separation 

performance remains broadly the same for all fractions. Rha values were not calculated 

due to the programmed fraction collection ending before full elution of the peak. 
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Figure 4-9: CPC separation of a crude sample in the descending mode at 1600 rpm and 

a flow rate of 6 mL min-1. The crude sample was prepared as described in Section 2.7.3. 

Separation was performed on the semi-preparative column using phase system VIII 

(Table 2-1) with an injection volume of 10 mL, as described in Section 2.4. Full 

experimental details are given under Experiment 8 in Table 4-1. 

Overall, the results in this section show that the descending mode did not provide 

improvements in the separation performance. Furthermore, while the descending mode 

could provide reduced run times and thus reduced solvent consumption, the fractions 

would be eluted in the LP and therefore contain a much higher concentration of 

ammonium sulphate which is likely to be more difficult and costly to remove than the 

lower salt, higher ethanol concentrations in the UP (Section 1.2.4.4). Taking these 

factors into consideration, it was decided to continue using the ascending mode, at 

1000 rpm and 8 mL min-1. 

4.5 Increasing throughput by increasing injection volume 

Throughput is a major consideration for any separation technique used in a biorefinery 

context where the quantities of feedstocks utilised can be large [3]. Separations using 

the crude hydrolysate were therefore performed with increasing injection volumes 

(from 10 - 40 mL, shown in Figure 4-10) to improve CPC throughput. In all cases, 

crude samples were prepared in the LP. As shown in Table 4-5, this quadrupling of the 
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sample volume resulted in relatively small reductions (within a 10% range) in purity 

and recovery of target monosaccharides in pooled fractions due to peak broadening. 

This broadening of the peaks extended the total elution time from 110 min to 140 min 

for 10 and 40 mL injections respectively.  
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Table 4-5: Maximum purities and recoveries of target monosaccharides from CPC separation of crude hydrolysate with varying sample volume. CPC 

separation was performed on a semi-preparative, 250 mL Kromaton CPC with full details given in Table 4-1 based on the Experiment number. Purities 

and recoveries are given as % (w/w) and calculated from ICS analysis as defined in Section 2.8.3. 

 

Experiment 

Sample 

Volume 

(mL) 

SF 

(%) 

Rha 

 
 Ara 

 
 GA 

 

Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 

4 10 51 94 96 28-44  88 97 46-66  99 99 78-110 

9 20 50 98 93 28-42  85 96 44-66  97 98 78-122 

10 30 56 90 88 28-42  79 96 44-66  94 92 76-124 

11 40 57 86 88 28-44  79 96 46-70  92 93 78-140 
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Figure 4-10: CPC separations of crude samples with varying sample injection volumes: A 10 mL; B 20 mL; C 30 mL; D 40 mL. The crude samples 

were prepared in the LP as described in Section 2.7.3. Separation was performed using phase system VIII (Table 2-1) on the semi-preparative column 

in the ascending mode at a flow rate of 8 mL min-1 and a rotational speed of 1000 rpm, as described in Section 2.4. Full experimental details are given 

under Experiment 4, 9, 10 and 11 for A, B, C and D respectively in Table 4-1.  
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Calculated throughputs for increasing injection sample volume are shown in Table 4-6. 

It is demonstrated that a four-fold increase in sample volume results in a three-fold 

increase in throughput, as peak widths increase with higher sample loads, increasing 

the total run time. Throughput values for operation in elution-extrusion mode and for 

CPC scale-up are also presented in Table 4-6 and will be discussed in detail in Sections 

4.6 and 4.7 respectively. 

Table 4-6: Monosaccharide and total solids throughputs for CPC separations with 

various operating strategies. Crude hydrolysate samples were prepared in the lower 

phase for injection, as described in Section 2.8. Throughputs are given in grams of 

monosaccharide processed, per litre of total column volume, per hour of run time. Run 

time is defined as the time taken for full elution of all solutes. CPC was performed on a 

Kromaton CPC with full details given in Table 4-1 based on the Experiment number. 

Elution-extrusion mode was performed, where stated, by switching to pump mobile 

phase 72 minutes after sample injection as described in Section 2.5.2. 

Experiment 

Column 

volume 

(mL) 

Sample 

Volume 

(mL) 

Mode 

Run 

Time 

(min) 

Total 

monosaccharide 

throughput  

(g L-1 h-1) 

Total solids 

throughput 

(g L-1 h-1) 

4 250 10 Elution 110 0.44 2.2 

9 250 20 Elution 122 0.79 3.9 

10 250 30 Elution 124 1.2 5.8 

11 250 40 Elution 140 1.4 6.9 

12 250 30 
Elution-

extrusion 
100 1.4 7.2 

13 950 152 Elution 117 1.6 8.2 

14 950 152 
Elution-

extrusion 
102 1.9 9.4 

 

4.6 Operation in elution-extrusion mode and reproducibility 

One of the advantages of CPC compared to conventional resin based chromatography 

is that it is possible to manipulate the column contents, particularly the stationary 

phase, within a run to improve separation performance or reduce separation times 

[106]. With increased injection volumes, as in Figure 4-10C and Figure 4-10D where 

30 mL (12% of column volume) and 40 mL (16% of column volume) samples 

respectively were injected, the GA peak becomes excessively broad, taking upwards 
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of 1 h to fully elute (50% of total elution time). This band broadening primarily occurs 

as solutes leave the column as noted by Berthod et al. [107]. The use of elution-

extrusion mode allows for shortening of the elution time of strongly retained 

compounds by rapidly extruding them from the column once the narrower, earlier 

fractions have eluted. Extrusion was performed by simply switching to pump 

stationary phase as described by Berthod et al. [106]. 

Extrusion also has the benefit of refreshing the stationary phase, an important aspect 

of improving throughput and reproducibility as separation will always occur on a 

regenerated column. Figure 4-11 demonstrates the performance of CPC separation 

using the elution-extrusion mode, with three sequential 30 mL injections of crude 

sample prepared in LP. The extrusion step was started 72 minutes after sample 

injection and lasted for 28 minutes, at which point the flow was switched back to the 

mobile phase (UP) and the next injection was started. This gave a total cycle time of 

100 minutes per sample. Figure 4-12 shows an overlay of the total monosaccharide 

concentrations for each of the three injections based on ICS analysis. While there is an 

apparent shortening of the Rha and Ara retention times after the first injection, the 

subsequent retention times appear consistent and separation performance does not 

appear to be affected, demonstrating good reproducibility of the method. 
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Figure 4-11: CPC separation of three sequential 30 mL crude hydrolysate samples 

performed in the elution-extrusion mode. The crude sample was prepared as described 

in Section 2.7.3. Separation was performed on the semi-preparative column, in the 

ascending mode, at a flow rate of 8 mL min-1 and a rotational speed of 1000 rpm, as 

described in Section 2.4. The chromatogram shows the concentrations of each individual 

sugar against the total elution time. Extrusion was performed 72 min after each injection. 

Injections 2 and 3 were performed 28 min after extrusion of the previous injection as 

described in Section 2.5.2. Full experimental details are given under Experiment 12 in 

Table 4-1. 
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Figure 4-12: CPC separation of three sequential 30 mL crude samples performed in the 

elution-extrusion mode. The crude sample was prepared as described in Section 2.7.3. 

Separation was performed on the semi-preparative column, in the ascending mode, at a 

flow rate of 8 mL min-1 and a rotational speed of 1000 rpm, as described in Section 2.4. 

The chromatogram shows the total concentrations of sugars against the elution time for 

each individual injection. Extrusion was performed 72 min after each injection. 

Injections 2 and 3 were performed 28 min after extrusion of the previous injection as 

described in Section 2.5.2. Full experimental details are given under Experiment 12 in 

Table 4-1. 

Throughput values are presented in Table 4-6 and show that throughput was increased 

from 1.2 g L-1 h-1 to 1.4 g L-1 h-1 using the elution-extrusion method, relative to full 

elution, based on total run time. As confirmed in Figure 4-11, this operating strategy 

had the added benefit of being able to perform consecutive injections immediately 

without the need for further column regeneration.  

4.7 CPC process scale-up 

Linear scale-up of the CPC column provides a further option for increasing throughput 

based on the volume ratio of the two columns. While this method can provide an 

effective method of scaling up, the separation behaviour is not expected to be strictly 

linear [105]. Improvements in separation performance can often be seen at the larger 

scale [70], and alternative scale-up methodologies have been developed to take 

advantage of this, including the free space between peaks method [101] and the use of 
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global mass transfer coefficients and the stationary phase retention as scale-up 

invariants [102].  

The linear method is demonstrated here due to its simplicity and uses the working 

volumes of the columns, including extra volume before and after the column, to scale 

up from a semi-preparative to a preparative scale CPC machine. It is therefore 

important that this extra volume is minimised when calculating the working volumes 

of the columns. The working volumes of the columns were determined to be 250 mL 

and 950 mL, respectively, giving a scale-up factor of 3.8 using the method described 

in Section 2.6. This scale-up factor was used to linearly scale-up the mobile phase flow 

rate, injection volume and stationary phase flow rate in the extrusion step. The 

extrusion time was maintained at 72 minutes between scales and rotational speed was 

kept constant at 1000 rpm to maintain the same g-force as the columns had the same 

diameter (Section 2.6). A summary of the scale-up parameters is detailed in Table 4-7.  

Table 4-7: Conditions used for linear scale-up of CPC separations from the semi-

preparative column to the preparative column. CPC Columns and equipment are 

described in Section 2.4. The scale-up method used is described in Section 2.6. 

Operating Conditions Semi-preparative Preparative 

Working volume (mL) 250 950 

Mobile phase flow rate (mL min-1) 8 30.4 

Injection Volume (mL) 40 152 

The scaled up separation process operated in full elution mode, shown in Figure 4-13, 

demonstrates good similarity in the elution profile compared with the semi-preparative 

scale, shown in Figure 4-10D. One difference is that the GA peak appears to be 

splitting into two separate peaks. On the semi-preparative scale the GA peak is very 

broad but it is not clear if the peak is splitting or it is just an effect of band broadening. 

At the preparative scale, the peak appears to be split in the middle which could be more 

noticeable due to improved separation performance at the larger scale [70]. However, 

it is unclear why the peak is splitting, and there is no apparent difference in the 

analytical chromatograms with either ICS analysis or HPLC-RI. The peak split could 

be due to the two ionic forms of GA (the ionised and non-ionised forms) which has a 

pKa of 3.5 [224]. However, the phase system has a pH 5.9 and 5.4 in the UP and LP 

respectively and the elution fractions containing GA also have a consistent pH of 5.8, 
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indicating that the GA may only be present in the acidic form. It is possible that adding 

an acid to the phase system would force the GA into the non-ionised form and elute as 

a single narrower peak. However, the solute partition coefficients in an acidified 

system were determined in Section 3.2.4 and, while the presence of TFA did shift the 

partition coefficient of GA, it shifted towards that of the other sugars, reducing the 

separation factor. This could shift the second peak earlier or into the first peak, and so 

may actually reduce separation performance. In the full elution mode, separation 

performance between the two scales, shown in Table 4-8, is comparable despite a drop 

in the stationary phase retention from 57 to 50%. This drop could be offset by 

improved mixing within the larger chambers of the preparative column.  

 

Figure 4-13: CPC separation of a crude sample performed on a preparative (950 mL) 

column. The crude sample was prepared as described in Section 2.7.3. Separation was 

performed using phase system VIII (Table 2-1) in the ascending mode and a rotational 

speed of 1000 rpm as described in Section 2.4. Mobile phase flow rate and injection 

volume were scaled up linearly based on column working volume from Experiment 9 

(Table 4-1) from 8 to 30.4 mL min-1 and 40 to 152 mL respectively (Table 4-7) based on 

a scale-up factor of 3.8 as described in Section 2.6. Full experimental details are given 

under Experiment 13 in Table 4-1. 
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Table 4-8: Optimised purities and recoveries of target monosaccharides from CPC separation of a crude SBP hydrolysate at semi-preparative (250 

mL) and preparative (950 mL) scales. Scale-up parameters are outlined in Table 4-7. Extrusion was performed after 72 min in the elution-extrusion 

mode at preparative scale as described in Section 2.5.2. Full experimental details are given in Table 4-1 based on the Experiment number. Purities and 

recoveries are given as % (w/w) as defined in Section 2.8. 

Experiment Scale Mode 
SF 

(%) 

Rha 

 
 Ara 

 
 GA 

 

Purity 

(%) 
Recovery (%) 

Time* 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 
 Purity 

(%) 

Recovery 

(%) 

Time* 

(min) 

4 Semi-prep. Elution 57 86 88 28-44  79 96 46-70  92 93 78-100 

13 Preparative Elution 50 82 89 36-43.5  84 98 45-63  90 87 67.5-120 

14 Preparative 
Elution - 

Extrusion 
50 92 93 33-45  84 97 46.5-66  96 95 78-100.5 

15 Preparative 
Elution -

Extrusion 
49 91 93 34.5-45  81 98 46.5-66  98 95 75-102 
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Operation of the preparative scale CPC machine in the elution-extrusion mode 

(Section 4.6) was also demonstrated to further enhance throughput at the larger scale. 

As shown in Figure 4-14, the performance is again similar, with a further improvement 

of the GA purity and recovery (Table 4-8). The stationary phase retention is constant 

at 50% between the full elution mode and the elution-extrusion mode. This is expected 

as the two methods only deviate after 72 min, well after the initial stationary phase 

breakthrough. As in the full elution mode, the GA peak appears split into two, with a 

small peak eluting after the start of extrusion but prior to the extrusion peak. Run time 

is comparable to the elution-extrusion mode on the semi-preparative column with full 

elution of all compounds with no GA detected after 102 min. It is possible that 

performing extrusion earlier could reduce the separation between the two GA peaks, 

increasing the concentration of the GA fraction and reducing the total run time. 

 

Figure 4-14: CPC separation of a crude sample performed on a preparative (950 mL) 

column in the elution-extrusion mode. The crude sample was prepared as described in 

Section 2.7.3. Separation was performed using phase system VIII (Table 2-1) in the 

ascending mode and a rotational speed of 1000 rpm as described in Section 2.4. Mobile 

phase flow rate and injection volume were scaled up linearly based on column working 

volume from Experiment 9 (Table 4-1) from 8 to 30.4 mL min-1 and 40 to 152 mL 

respectively (Table 4-7) based on a scale-up factor of 3.8 as described in Section 2.6. 

Extrusion was performed after 72 min as described in Section 2.5.2. Full experimental 

details are given under Experiment 13 in Table 4-1. 

Overall, separation performance is similar at the two scales, demonstrating process 

stability and predictability with the elution-extrusion mode (Figure 4-14) again 
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outperforming the full elution method (Figure 4-13) in terms of product purity and 

recovery. Reproducibility has been confirmed at the preparative scale by repeating the 

elution-extrusion separation which generated a nearly identical chromatogram (Figure 

4-15). The stationary phase retention (49%) is almost identical to the previous 

preparative scale separations (both 50%), and the purities and recoveries of each 

fraction in the two repeats demonstrates the reproducibility of the separation (Table 

4-8). 

Furthermore, throughput values, shown in Table 4-6, are improved beyond the linear 

scale-up factor of 3.8; when normalised per litre of column volume, the results give a 

throughput of monosaccharides of 1.4 g L-1 h-1 at the semi-preparative scale and 1.7 g 

L-1 h-1 at the preparative scale under full elution conditions. Under elution-extrusion 

conditions, this throughput is increased even further to 1.9 g L-1 h-1.  

 

Figure 4-15: Repeat of CPC separation of a crude sample performed on a preparative 

(950 mL) column in the elution-extrusion mode (shown in Figure 4-14). The crude sample 

was prepared as described in Section 2.7.3. Separation was performed using phase 

system VIII (Table 2-1) in the ascending mode and a rotational speed of 1000 rpm as 

described in Section 2.4. Mobile phase flow rate and injection volume were scaled up 

linearly based on column working volume from Experiment 9 (Table 4-1) from 8 to 30.4 

mL min-1 and 40 to 152 mL respectively (Table 4-7) based on a scale-up factor of 3.8 as 

described in Section 2.6. Extrusion was performed after 72 min as described in Section 

2.5.2. Full experimental details are given under Experiment 13 in Table 4-1. 

Preliminary work on scale-up to industrial scale CPC devices is shown in Appendix 

B. 
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4.8 Chapter summary 

The aim of Chapter 4 was to demonstrate the potential of the CPC method developed 

in Chapter 3 to the processing of crude SBP hydrolysates. This represents a key step 

forward in showing that CPC is applicable to the separation of biorefinery feedstocks 

that can contain a large number of impurities and a high solids loading. As shown in 

Figure 4-5, the CPC separation method developed in Chapter 3 is applicable to the 

separation of the monosaccharides from crude hydrolysate simultaneously removing 

impurities and isolating the three target monosaccharides (Rha, Ara and GA) into 

separate fractions. The main conclusions of this chapter are:  

• DMSO, used in the method described in Section 4.2, was shown not to have a 

major effect on the CPC separation of the target monosaccharides (Table 4-2) 

and so was removed from the phase system in order to assist in future 

downstream processing and solvent recycling. 

• Crude sample preparation in the stationary phase (LP) allows for complete 

solubilisation of the sample without any precipitation of monosaccharides or 

salts. Furthermore, this approach enables removal of some coloured 

contaminants due to a small volume of a new phase forming on top of the 

prepared sample which can easily be discarded (Figure 4-4C). 

• CPC separation using the crude SBP hydrolysate (Figure 4-5) is improved 

relative to the model synthetic mixture. It is able to separate the sample into 

the same three fractions (Rha, Ara and Gal, and GA) at higher purities and 

recoveries (Table 4-3) while simultaneously removing the coloured 

contaminants earlier in the elution profile. 

• Increasing the sample volume from 4 to 16% v/v (Figure 4-10) allowed for a 

three-fold improvement in throughput with only minor losses in separation 

performance (Table 4-5).  

• The elution-extrusion mode reduced the total run time by 24% by extruding 

the column contents during the elution of the final GA fraction. This allowed 

for sequential injections to be performed without a separate stationary phase 

regeneration step (Figure 4-11). 
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• Linear scale-up based on the total column volumes from the semi-preparative 

250 mL column to the preparative 950 mL column showed comparable 

separation performance (Table 4-8) and an improvement in total sugars 

throughput. Final optimised throughput in the elution-extrusion 

(chromatogram shown in Figure 4-14) gave a total monosaccharide 

throughput of 1.9 g L-1 h-1 and a total solids throughput of 9.4 g L-1 h-1. 

The work presented in Chapter 3 and Chapter 4 has established a novel CPC 

methodology for the recovery and purification of hydrophilic solutes, such as 

carbohydrates, from crude biorefinery feedstocks. In the following chapters simulated 

moving bed chromatography (Section 1.6.1) is explored as an alternative to CPC 

separation for the isolation of monosaccharides from the crude hydrolysate. Chapter 5 

examines SMB as a method of isolating Ara from a synthetic neutral mixture of the 

neutral sugars present in the crude hydrolysate. 
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 Design of a simulated moving bed 

chromatography method for the isolation of L-arabinose from 

synthetic neutral monosaccharide mixtures.  

5.1 Introduction, aim and objectives 

As an alternative to CPC, as described in Chapter 3 and Chapter 4, SMB provides a 

proven large scale technology for sugar separations (Section 1.6). However, its 

industrial applications have focussed on cleaner feedstreams such as glucose-fructose 

separations (Section 1.6.4) rather than hydrolysates. The SMB separation examined in 

this chapter will focus on the isolation of Ara from a synthetic mixture of the neutral 

sugars (a synthetic neutral mixture – Section 2.7.4) present in the crude hydrolysate 

(Ara, Rha and Gal). GA will likely have to be isolated prior to this SMB separation. 

This will be examined in Chapter 6 along with the removal of contaminants from the 

crude hydrolysate and crude processing considerations for SMB. 

Design of an SMB system initially requires a detailed understanding of how the 

separation behaves on a conventional batch column. As such, a number of resin and 

condition screening experiments need to be run on a batch column in order to 

determine component retention times under different conditions (Section 1.6.2). These 

retention times can be used to calculate the selectivity of the resin under the operating 

conditions which can then be used to model SMB separations using the equilibrium 

theory. However, this SMB model does not consider peak shape or width, which must 

be used as qualitative metrics during resin and condition selection. The equilibrium 

theory model can be used to predict SMB operating conditions in the 4-zone, closed 

loop; and 3-zone, open loop setups, however, additional optimisation may be required 

based on experimental results.  

The aim of this chapter is to develop a method for isolating L-arabinose from a 

synthetic neutral mixture of the neutral sugars in hydrolysed SBP pectin using SMB. 

The specific objectives of this chapter are to: 
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• Screen a number of different resins, their ionic forms and chromatography 

operating conditions to provide a suitable separation factor and peak shape for 

subsequent SMB separation. 

• Pack 8 columns for SMB separation and compare their packing to ensure 

consistent column performance. 

• Predict operating conditions using an SMB model for SMB separations in the 

4-zone setup (Section 1.6.1), with an internal recycle; and the 3-zone setup 

(Section 1.6.3), without an internal recycle. 

• Perform SMB experiments in both the 4-zone (Section 5.4.2) and 3-zone 

(Section 5.4.3) setups based on the conditions from the SMB model and 

optimise performance by adjusting operating conditions. 

5.2  Resin and condition screening 

5.2.1 Monosphere 99 resin in the Ca2+ form 

Initially, a Monosphere 99 Ca/320 resin was examined and the retention factors of the 

different individual neutral sugars, and the selectivities relative to Ara, were 

determined. This resin is provided in the Ca2+ form and is primarily used for sugar 

separations (fructose from glucose) [231]. 20 g of dry resin was hydrated, packed and 

equilibrated according to the method described in Section 2.9. The resin’s size and 

high particle uniformity (320µm) makes it a good option for large scale SMB 

separations by providing more consistent column packing and a lower pressure drop 

[231]. However, it is possible that the large particle size could cause issues on small 

columns, such as broad peaks, and so the benefit would be restricted to larger columns.  

Blue dextran was used as an inert tracer to provide a zero-interaction front from which 

to calculate retention factors. Individual injections of Ara, Rha and Gal were used to 

examine the retention times, retention factors and selectivities (prepared as described 

in Section 2.7.4. Calculation of retention factors and selectivity were performed as 

described in Section 2.10. All injections were performed once and so error values are 

not available. However, Table 5-8 shows consistent retention times (within ~1%) for 
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all components performed on 8 individually packed columns, and so the lack of repeats 

was not thought to be a concern (Section 5.3). 

Figure 5-1 and Figure 5-2 show the overlaid chromatograms of Ara, Rha and Gal, as 

well as blue dextran as a void volume marker, at room temperature and 50°C 

respectively. It is apparent that retention factors are low for both columns, eluting 

rapidly after the blue dextran, however, the peak shape varies significantly with 

increasing temperature. At room temperature, the sugar peaks have exaggerated peak 

tails. This is much reduced, although still present, at 50°C. Peak retention times also 

increase with increasing temperature, although this is likely due to improved peak 

shape shifting the peak maximum to the right. The blue dextran peak does not shift 

with increased temperature and thus the increased retention times of the sugars results 

in increased retention factors. 

In terms of separation performance, Gal and Rha effectively co-elute, with only a very 

small difference in retention factors (shown in Table 5-1). Ara elutes slightly later, 

giving a higher retention factor. At 50°C a selectivity of 1.75 is produced, however, 

the resolution is poor due to the broad peaks.  

Table 5-1: Retention times (ti), retention factors (ki
R) and selectivities (αR) of individual 

sugars on a 20 g Monosphere 99 column in the Ca2+ form at room temperature (RT) and 

50°C. The retention time of blue dextran is also given for reference. Experiments were 

performed as described in Section 2.10 with retention factors and selectivities also 

calculated as described in Section 2.10. 

Sugar ti (RT) 𝒌𝒊
𝑹 (RT) 𝜶𝑹 (RT) ti (50°C) 𝒌𝒊

𝑹 (50°C) 𝜶𝑹 (50°C) 

Rha 6.2 0.15 2.07 6.9 0.28 1.75 

Ara 7.1 0.31 - 8.1 0.49 - 

Gal 6.4 0.19 1.63 7.0 0.29 1.69 

Blue 

Dextran 
5.4 - - 5.4 - - 
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Figure 5-1: Batch separations of neutral monosaccharides a Monosphere 99 column in 

the Ca2+ form at room temperature. 100 µL injections of individual sugars (Ara, Rha and 

Gal (10 g L-1 each)) and blue dextran (1% w/v) were performed as described in Section 

2.10 with the column prepared with 20 g of resin as described in Section 2.9. Rha, L-

rhamnose; Ara, L-arabinose; Gal, D-galactose; BD, blue dextran. 

 

Figure 5-2: Batch separations of neutral monosaccharides a Monosphere 99 column in 

the Ca2+ form at 50°C. 100 µL injections of individual sugars (Ara, Rha and Gal (10 g L-

1 each)) and blue dextran (1% w/v) were performed as described in Section 2.10 with the 

column prepared with 20 g of resin as described in Section 2.9. Rha, L-rhamnose; Ara, 

L-arabinose; Gal, D-galactose; BD, blue dextran. 
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While the selectivity is good, there are obvious problems with this resin under these 

conditions as both the peak shape and the resolution are poor. Figure 5-3 highlights 

this poor resolution. It shows a single injection of a mixture of all three sugars eluting 

as a single peak, with no evidence of its multicomponent composition. It is possible 

that these problems could both be rectified with the use of a longer column. Gotmar et 

al. [232] found that peak tailing could be reduced with the use of higher Stanton 

numbers (proportional to column length). This peak tailing could also be affecting the 

retention factors, as the values are taken from the maximum peak height, leading to 

inconsistencies at larger scales. It is possible that performance would thus improve on 

longer columns. Additionally, longer columns would improve the resolution by simply 

providing an increased number of theoretical plates. The use of longer columns, 

however, is somewhat limited by the pumps available for use on the SMB system, 

which have a maximum flow rate of 12 mL min-1. A doubling of column length 

requires a doubling of all flow rates to maintain the same flow-rate ratios in SMB. As 

a result, alternative resins were sought with a smaller particle size to demonstrate SMB 

separation on this scale. 
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Figure 5-3: Chromatogram of a mixture of neutral sugars (Ara, Rha and Gal) injected 

onto a 20 g Monosphere 99 column in the Ca2+ form at 50°C. The injection volume was 

100 µL containing 10 g L-1 of each sugar. This experiment was performed as described 

in Section 2.10 with the column prepared as described in Section 2.9. 

5.2.2 Dowex 50W resins in the H+ form 

Three Dowex 50W cation exchange resins with different crosslinking percentages (2, 

4 and 8%) were examined. Each had the smallest available mesh size (200-400 mesh 

≈ 37-74 µm) and was first examined in the H+ form. Larger mesh sizes for these resins 

are available and so can be used in much larger columns without introducing a 

significant pressure drop [233]. 

Figure 5-4 and Figure 5-5 show the overlaid chromatograms of individual Rha, Ara 

and Gal injections on a 20 g Dowex 50W X2 resin in H+ form at room temperature 

and 50°C respectively. While the sugars appear to be quite well retained by the column 

(relative to blue dextran) and have much narrower peaks than the Monosphere 99 resin 

(Figure 5-1 and Figure 5-2), the selectivity of Rha and Gal to Ara is less than 1.1. 

Furthermore, there is little apparent difference in the retention factors or peak shape 

between room temperature and 50°C. Retention times, retention factors and selectivity 

to Ara are shown in Table 5-2. 
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Figure 5-4: Batch separations of neutral monosaccharides a Dowex 50W X2 column in 

the H+ form at room temperature. 100 µL injections of individual sugars (Ara, Rha and 

Gal (10 g L-1 each)) and blue dextran (1% w/v) were performed as described in Section 

2.10 with the column prepared with 20 g of resin as described in Section 2.9. Rha, 

L-rhamnose; Ara, L-arabinose; Gal, D-galactose; BD, blue dextran. 
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Figure 5-5: Batch separations of neutral monosaccharides a Dowex 50W X2 column in 

the H+ form at 50°C. 100 µL injections of individual sugars (Ara, Rha and Gal (10 g L-1 

each)) and blue dextran (1% w/v) were performed as described in Section 2.10 with the 

column prepared with 20 g of resin as described in Section 2.9. Rha, L-rhamnose; Ara, 

L-arabinose; Gal, D-galactose; BD, blue dextran. 
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Table 5-2: Retention times (ti), retention factors (ki
R) and selectivities (αR) of individual 

sugars on a 20 g Dowex 50W X2 column in the H+ form at room temperature (RT) and 

50°C. The retention time of blue dextran is also given for reference. Experiments were 

performed as described in Section 2.10 with retention factors and selectivities also 

calculated as described in Section 2.10. 

Sugar ti (RT) 𝒌𝒊
𝑹 (RT) 𝜶𝑹 (RT) ti (50°C) 𝒌𝒊

𝑹 (50°C) 𝜶𝑹 (50°C) 

Rha 10.7 1.40 1.04 10.9 1.41 1.02 

Ara 11.0 1.46 - 11.0 1.44 - 

Gal 10.7 1.39 1.05 10.7 1.36 1.06 

Blue Dextran 4.5 - - 4.5 - - 

Separations on Dowex 50W X4, with 4% crosslinking in the H+ form, is shown in 

Figure 5-6 and Figure 5-7, at room temperature and 50°C respectively, for sugars and 

blue dextran. Retention factors are lower than at 2% crosslinking, but all three sugars 

still elute at very similar times, with selectivity of Rha and Gal at 1.05 and 1.14 

respectively at 50°C, slightly increased from the values at 2%. Similar to the 50W X2 

resin, temperature appears to have little effect on retention factors and selectivity. 

Retention times, retention factors and selectivities are shown in Table 5-3. 

Table 5-3: Retention times (ti), retention factors (ki
R) and selectivities (αR) of individual 

sugars on a 20 g Dowex 50W X4 column in the H+ form at room temperature (RT) and 

50°C. The retention time of blue dextran is also given for reference. Experiments were 

performed as described in Section 2.10 with retention factors and selectivities also 

calculated as described in Section 2.10. 

Sugar ti (RT) 𝒌𝒊
𝑹 (RT) 𝜶𝑹 (RT) ti (50°C) 𝒌𝒊

𝑹 (50°C) 𝜶𝑹 (50°C) 

Rha 8.4 0.79 1.08 8.6 0.84 1.05 

Ara 8.8 0.86 - 8.8 0.89 - 

Gal 8.3 0.75 1.13 8.3 0.78 1.14 

Blue Dextran 4.7 - - 4.7 - - 
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Figure 5-6: Batch separations of neutral monosaccharides a Dowex 50W X4 column in 

the H+ form at room temperature. 100 µL injections of individual sugars (Ara, Rha and 

Gal (10 g L-1 each)) and blue dextran (1% w/v) were performed as described in Section 

2.10 with the column prepared with 20 g of resin as described in Section 2.9. Rha, 

L-rhamnose; Ara, L-arabinose; Gal, D-galactose; BD, blue dextran. 
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Figure 5-7: Batch separations of neutral monosaccharides a Dowex 50W X4 column in 

the H+ form at 50°C. 100 µL injections of individual sugars (Ara, Rha and Gal (10 g L-1 

each)) and blue dextran (1% w/v) were performed as described in Section 2.10 with the 

column prepared with 20 g of resin as described in Section 2.9. Rha, L-rhamnose; Ara, 

L-arabinose; Gal, D-galactose; BD, blue dextran. 
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At 8% crosslinking (Dowex 50W X8 resin), the retention factors drop further, but 

selectivity increases further. The selectivity of Gal to Ara is 1.27 at 50°C, although the 

selectivity of Rha to Ara is just 1.09. It appears that only the Rha is strongly influenced 

by the temperature on this resin. While all peaks narrow at higher temperature, the 

retention factors of Ara and Gal are effectively constant, while Rha moves closer to 

Ara. Chromatograms are shown in Figure 5-8 and Figure 5-9 at room temperature and 

50°C respectively while retention times, retention factors and selectivities are shown 

in Table 5-4.  

Table 5-4: Retention times (ti), retention factors (ki
R) and selectivities (αR) of individual 

sugars on a 20 g Dowex 50W X8 column in the H+ form at room temperature (RT) and 

50°C. The retention time of blue dextran is also given for reference. Experiments were 

performed as described in Section 2.10 with retention factors and selectivities also 

calculated as described in Section 2.10. 

Sugar ti (RT) 𝒌𝒊
𝑹 (RT) 𝜶𝑹 (RT) ti (50°C) 

𝒌𝒊
𝑹 

(50°C) 
𝜶𝑹 (50°C) 

Rha 5.4 0.32 1.18 5.6 0.35 1.09 

Ara 5.7 0.38 - 5.7 0.38 - 

Gal 5.3 0.30 1.26 5.4 0.30 1.27 

Blue Dextran 4.1 - - 4.1 - - 
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Figure 5-8: Batch separations of neutral monosaccharides a Dowex 50W X8 column in 

the H+ form at room temperature. 100 µL injections of individual sugars (Ara, Rha and 

Gal (10 g L-1 each)) and blue dextran (1% w/v) were performed as described in Section 

2.10 with the column prepared with 20 g of resin as described in Section 2.9. Rha, 

L-rhamnose; Ara, L-arabinose; Gal, D-galactose; BD, blue dextran. 
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Figure 5-9: Batch separations of neutral monosaccharides a Dowex 50W X8 column in 

the H+ form at 50°C. 100 µL injections of individual sugars (Ara, Rha and Gal (10 g L-1 

each)) and blue dextran (1% w/v) were performed as described in Section 2.10 with the 

column prepared with 20 g of resin as described in Section 2.9. Rha, L-rhamnose; Ara, 

L-arabinose; Gal, D-galactose; BD, blue dextran. 
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The H+ form of these three Dowex resins clearly have some interaction with the sugars 

based on the retention factors. Retention decreases with increasing crosslinking 

percentage of the resin, while the selectivity increases. However, each resin acts very 

similarly with all three of the sugars examined, with poor selectivity for all resins in 

all conditions. The best selectivity was found using the Dowex 50W X8 resin at room 

temperature that was able to achieve a selectivity of 1.18 and 1.26 for Rha and Gal 

respectively to Ara. While the selectivity of these resins is poor when compared to the 

Monosphere 99 resin, which achieved an optimum selectivity of 1.69 and 1.75 for Gal 

and Rha to Ara respectively, the peak shapes are much more symmetric than the 

Monosphere 99, even at 50°C. This could be a result of the much smaller particle size 

(37-74 µm for the Dowex 50W resins compared to 320 µm for the Monosphere 99). 

The use of longer columns could help to reduce the asymmetrical peak shapes present 

using the Monosphere 99 resin and so could be more appropriate for larger scale. The 

use of longer columns is, however, limited due to the Semba Octave 20 SMB system. 

While pressure is unlikely to be an issue when using longer columns, due to the large 

resin size, the pumps have a maximum flow rate of 12 mL min-1 and so could prove to 

be a bottle neck in an SMB application using this resin. The 50W resins, however, are 

not limited to smaller column sizes as they are also available at larger particle sizes 

(mesh sizes of 16-50 (1140-297 µm) and 50-100 (297-149 µm)). At larger scale the 

Monosphere 99 resin may be preferential due to its narrower particle size distribution 

assisting separation performance [234].  

5.2.3 Dowex 50W resins in the Ca2+ form 

The Dowex 50W resins were next examined in the Ca2+ form in an attempt to improve 

the selectivity of the separations. Figure 5-10 and Figure 5-11 show the overlaid 

chromatograms for the three individual sugars and blue dextran on a 20 g 50W X2 

column in the Ca2+ form (room temperature and 50°C respectively). In comparison to 

all of the columns in the H+ form (Figure 5-4 to Figure 5-9) it clearly has an improved 

selectivity; this is verified by the retention factor and selectivity values (1.17 and 1.14, 

for Rha and Gal respectively, at 50°C compared to 1.02 and 1.04 at 50°C in the H+ 

form) shown in Table 5-5.  
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Figure 5-10: Batch separations of neutral monosaccharides a Dowex 50W X2 column in 

the Ca2+ form at room temperature. 100 µL injections of individual sugars (Ara, Rha and 

Gal (10 g L-1 each)) and blue dextran (1% w/v) were performed as described in Section 

2.10 with the column prepared with 20 g of resin as described in Section 2.9. Rha, 

L-rhamnose; Ara, L-arabinose; Gal, D-galactose; BD, blue dextran. 
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Figure 5-11: Batch separations of neutral monosaccharides a Dowex 50W X2 column in 

the Ca2+ form at 50°C. 100 µL injections of individual sugars (Ara, Rha and Gal (10 g L-1 

each)) and blue dextran (1% w/v) were performed as described in Section 2.10 with the 

column prepared with 20 g of resin as described in Section 2.9. Rha, L-rhamnose; Ara, 

L-arabinose; Gal, D-galactose; BD, blue dextran. 
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Table 5-5: Retention times (ti), retention factors (ki
R) and selectivities (αR) of individual 

sugars on a 20 g Dowex 50W X2 column in the Ca2+ form at room temperature (RT) and 

50°C. The retention time of blue dextran is also given for reference. Experiments were 

performed as described in Section 2.10 with retention factors and selectivities calculated 

as described in Section 2.10. 

Sugar ti (RT) 𝒌𝒊
𝑹 (RT) 𝜶𝑹 (RT) ti (50°C) 𝒌𝒊

𝑹 (50°C) 𝜶𝑹 (50°C) 

Rha 6.2 1.27 1.28 6.4 1.40 1.17 

Ara 7.2 1.63  7.0 1.63 - 

Gal 6.5 1.39 1.18 6.5 1.43 1.14 

Blue Dextran 2.7 - - 2.7 - - 

Increasing the degree of crosslinking to 4% has a clear improvement on the selectivity, 

with the peaks at room temperature (Figure 5-12) and 50°C (Figure 5-13) appearing 

much more separated, although not base line resolved. Similar to 2% crosslinking, 

increasing the temperature narrows the peaks and appears to shift the Rha closer to the 

Gal, causing it to completely co-elute, and the Ara slightly closer to the Gal peak. 

While this has an impact on the selectivity to Ara of both Rha (1.46 to 1.27) and Gal 

(1.31 to 1.25) of both Rha and Gal to Ara, the effect could be outweighed by the 

narrower peaks. Comparing with 4% crosslinking in the H+ form (Table 5-3), the 

lowest selectivity value at 50°C is improved from 1.05 (Rha) to 1.25 (Gal). The 

retention times, retention factors and selectivities are shown in Table 5-6.  

Table 5-6: Retention times (ti), retention factors (ki
R) and selectivities (αR) of individual 

sugars on a 20 g Dowex 50W X4 column in the Ca2+ form at room temperature (RT) and 

50°C. The retention time of blue dextran is also given for reference. Experiments were 

performed as described in Section 2.10 with retention factors and selectivities calculated 

as described in Section 2.10. 

Sugar ti (RT) 𝒌𝒊
𝑹 (RT) 𝜶𝑹 (RT) ti (50°C) 𝒌𝒊

𝑹 (50°C) 𝜶𝑹 (50°C) 

Rha 6.9 0.70 1.46 7.1 0.79 1.27 

Ara 8.2 1.02 - 8.0 1.00 - 

Gal 7.2 0.77 1.31 7.2 0.80 1.25 

Blue Dextran 4.1 - - 4.0 - - 
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Figure 5-12: Batch separations of neutral monosaccharides a Dowex 50W X4 column in 

the Ca2+ form at room temperature. 100 µL injections of individual sugars (Ara, Rha and 

Gal (10 g L-1 each)) and blue dextran (1% w/v) were performed as described in Section 

2.10 with the column prepared with 20 g of resin as described in Section 2.9. Rha, 

L-rhamnose; Ara, L-arabinose; Gal, D-galactose; BD, blue dextran. 
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Figure 5-13: Batch separations of neutral monosaccharides a Dowex 50W X4 column in 

the Ca2+ form at 50°C. 100 µL injections of individual sugars (Ara, Rha and Gal (10 g L-

1 each)) and blue dextran (1% w/v) were performed as described in Section 2.10 with the 

column prepared with 20 g of resin as described in Section 2.9. Rha, L-rhamnose; Ara, 

L-arabinose; Gal, D-galactose; BD, blue dextran. 
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A final increase in the percentage crosslinking to 8% lowers the retention factors but 

also appears to further improve the selectivity between Ara and the remaining sugars. 

At room temperature (Figure 5-14), the peak shapes show significant tailing, similar 

to the Monosphere 99 despite the much reduced particle size of the 50W X8 resin. At 

50°C (Figure 5-15) this peak tailing is much reduced with more symmetric peaks as in 

the other resins. While the retention factors are reduced, the selectivity improves and 

this is a vitally important factor for separation in SMB, determining the size of the 

SMB separation region in the triangle theory (Section 1.6.2). Furthermore, the lower 

retention factors can actually improve the flexibility of the SMB separation, allowing 

a greater operating range for optimisation. The retention times, retention factors and 

selectivities at room temperature and 50°C are shown in Table 5-7. 

Table 5-7: Retention times (ti), retention factors (ki
R) and selectivities (αR) of individual 

sugars on a 20 g Dowex 50W X8 column in the Ca2+ form at room temperature (RT) and 

50°C. The retention time of blue dextran is also given for reference. Experiments were 

performed as described in Section 2.10 with retention factors and selectivities calculated 

as described in Section 2.10 

Sugar ti (RT) 𝒌𝒊
𝑹 (RT) 𝜶𝑹 (RT) ti (50°C) 𝒌𝒊

𝑹 (50°C) 𝜶𝑹 (50°C) 

Rha 4.8 0.32 1.98 5.3 0.39 1.58 

Ara 6.0 0.62 - 6.1 0.62 - 

Gal 5.0 0.36 1.75 5.3 0.39 1.57 

Blue Dextran 3.7 - - 3.8 - - 
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Figure 5-14: Batch separations of neutral monosaccharides a Dowex 50W X8 column in 

the Ca2+ form at room temperature. 100 µL injections of individual sugars (Ara, Rha and 

Gal (10 g L-1 each)) and blue dextran (1% w/v) were performed as described in Section 

2.10 with the column prepared with 20 g of resin as described in Section 2.9. Rha, 

L-rhamnose; Ara, L-arabinose; Gal, D-galactose; BD, blue dextran. 
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Figure 5-15: Batch separations of neutral monosaccharides a Dowex 50W X8 column in 

the Ca2+ form at 50°C. 100 µL injections of individual sugars (Ara, Rha and Gal (10 g L-1 

each)) and blue dextran (1% w/v) were performed as described in Section 2.10 with the 

column prepared with 20 g of resin as described in Section 2.9. Rha, L-rhamnose; Ara, 

L-arabinose; Gal, D-galactose; BD, blue dextran. 
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While, at room temperature, the 50W X8 resin in calcium form has the highest 

selectivities (Ara to Gal: 1.75, Ara to Rha: 1.98), the tailing peak shape led to this 

option being discarded. At 50°C, the peak shape is markedly improved and the 

selectivity of Rha and Gal to Ara are effectively identical (1.58 for Rha and 1.57 for 

Gal).  

As there is also some Glu in the crude SBP pectin hydrolysate (Section 1.1.4), albeit 

less than Ara, Rha or Gal, its retention time must also be considered to see if it will 

affect the separation. For various conditions and resins tested it was found that Glu 

always eluted prior to the Rha and Gal and so would have an even higher selectivity. 

As the SMB is a binary separation and the target is to purify Ara in the extract, the Glu 

will follow the same route as the Rha and Gal and elute in the raffinate. Due to its 

higher selectivity and lower concentration in the crude it was not included on the 

chromatograms in this section.  

Based on the results in this section, the 50W X8 resin in the Ca2+ form, operated in the 

Ca2+ form at 50°C, was selected for SMB separations. This resin and condition had the 

second highest selectivity values (Table 5-7), surpassed only by Monosphere 99 resin 

(Table 5-1). However, the Monosphere 99 resin was deemed unsuitable due to its poor 

peak shape (Figure 5-2) relative to the Dowex 50W X8 resin (Figure 5-15). 

5.3 Column packing comparison 

With the resin, ionic form and operating temperature selected in Section 5.2, it is next 

necessary to pack 8 identical columns in order to perform SMB separations. The 

columns were packed with 28g of dry resin as described in Section 2.11. The increased 

column length was chosen to provide a greater difference in the retention factors of 

the columns, allowing for more flexibility for optimisation in the SMB separation. The 

retention factors and selectivities should be identical with an increasing column length 

and also any variation in the dead volume. For the column packing comparison 

experiments, a larger dead volume was used to incorporate the system into the SMB 

and simplify experimental setup.  
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Table 5-8 shows the retention times of blue dextran; and the retention times, retention 

factors and selectivities of pure Rha, Ara and Gal for each of the 8 columns. The 

relative standard deviations (RSD), calculated as described in Equation 2-7 in Section 

2.11, are used to compare the columns: the retention times all have an RSD of <1%, 

the selectivities of Rha and Gal are both at an RSD of approximately 1%, and the 

retention factors all have an RSD below 2.5%. This shows a high level of similarity 

between the columns and so the columns were deemed to be sufficiently equally 

packed for SMB.
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Table 5-8: Retention times of blue dextran (t0) and retention times (ti), retention factors (ki
R) and selectivities (αR) of individual sugars at room 

temperature on 8 identical columns, packed with 28 g of Dowex 50W X8 in the Ca2+ form. The mean values (± one standard deviations) and relative 

standard deviations (RSD) are also shown. Columns are packed as described in Section 2.9. Batch experiments are performed as described in Section 

2.10, with retention factors and selectivities calculated as described in Section 2.10. The RSD is calculated as described in Section 2.11. 

Column 
t0  

(min) 

Rha  Ara  Gal 

tRha 

(min) 
𝒌𝑹𝒉𝒂

𝑹  𝜶𝑹  
tAra 

(min) 
𝒌𝑨𝒓𝒂

𝑹  𝜶𝑹  
tGal 

(min) 
𝒌𝑮𝒂𝒍

𝑹  𝜶𝑹 

1 5.6 7.5 0.34 1.92  9.3 0.66 -  7.7 0.38 1.75 

2 5.5 7.3 0.34 1.97  9.1 0.67 -  7.5 0.38 1.77 

3 5.5 7.4 0.35 1.93  9.2 0.68 -  7.6 0.39 1.76 

4 5.5 7.4 0.35 1.94  9.2 0.67 -  7.6 0.38 1.76 

5 5.6 7.4 0.34 1.95  9.2 0.65 -  7.7 0.38 1.74 

6 5.6 7.4 0.33 1.97  9.2 0.64 -  7.6 0.36 1.8 

7 5.5 7.4 0.34 1.94  9.2 0.66 -  7.6 0.38 1.76 

8 5.6 7.5 0.33 1.98  9.3 0.65 -  7.7 0.37 1.74 

Mean 5.5±0.0 7.4±0.0 0.34±0.01 1.95±0.02  9.2±0.0 0.66±0.01 -  7.6±0.1 0.37±0.01 1.76±0.02 

RSD 0.90% 0.59% 2.47% 1.06%  0.42% 1.73% -  0.69% 2.11% 0.98% 
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5.4 SMB separations 

5.4.1 General considerations 

Comparison of the retention factors and selectivities at room temperature achieved 

with the 20 g columns in Table 5-7 (Section 5.2) and the 28 g columns in Table 5-8 

(Section 5.3) shows some variation between the two column lengths (Table 5-9). There 

could be some difference in the dead volume either side of the column that is causing 

this small change in the retention factors, which should be dimensionless parameters 

independent of the amount of resin or the column dimensions. However, the magnitude 

of the difference is small and so the retention times, retention factors and selectivities 

at 50°C (also shown in Table 5-7 in Section 5.2) were used for SMB modelling without 

requiring additional batch experiments on the 28 g columns. Additionally, in all of the 

resin and condition screening experiments in Section 5.2, the retention time of blue 

dextran was effectively constant with a temperature shift from room temperature to 

50°C and so this was assumed to be the case for the 28 g columns. The average value 

shown in Table 5-8 was thus the value used for the SMB model at 50°C.  

Table 5-9: Comparison of retention factors (ki
R) and selectivities (αR) of individual sugars 

on two columns of different lengths. Experiments were performed on the Dowex 50W X8 

resin in the Ca2+ form at room temperature and prepared with 20 g (from Table 5-7 in 

Section 5.2) or 28 g of resin (average values ± one standard deviation from Table 5-8 in 

Section 5.3). 

Sugar 𝒌𝒊
𝑹 (20 g) 𝒌𝒊

𝑹 (28 g) 𝜶𝑹 (20 g) 𝜶𝑹 (28 g) 

Rha 0.32 0.34±0.01 1.98 1.95±0.02 

Ara 0.62 0.66±0.01 - - 

Gal 0.36 0.37±0.01 1.75 1.76±0.02 

On the batch columns in Section 5.2, for the resin and conditions selected (Dowex 

50W X8 at 50°C), a column length (CL) of 9.5 cm was determined. Additionally, a 

dead volume (VD) of 0.5 mL was calculated. On the longer SMB columns, a CL of 13.9 

cm was determined with a VD of 1.7 mL. These values were used for the SMB model 

at the two scales, as described in Section 2.12. 

Column lengths of 13.9 cm give a resin volume per column of approximately 28 mL 

(using a column diameter of 1.6 cm), and thus the SMB, with 8 columns, has a total 

resin volume of approximately 224 mL. 
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On the batch column, the Rha and Gal were found to have identical retention times of 

5.3 min (Table 5-7) and so this value was used to calculate a Henry constant, with the 

retention time of Ara used for the other. Following the protocol in Section 2.12 requires 

the calculation of the adjusted retention time for blue dextran (𝑡0
′ ); the adjusted 

retention times (𝑡𝑖
′) and adjusted retention factors (𝑘𝑖

𝑅′) of the two components (1, 

Rha/Gal; 2, Ara); and the void fraction of the resin (𝜖). These values were then used 

to calculate the Henry constant of each component and are shown in Table 5-10. These 

Henry constants were used to set the limits for the SMB model (Equation 5-1 from 

Equation 2-20) and the column dimensions of the longer columns for SMB were then 

used to calculate the flow rate ratios (mn) at different operating conditions as described 

in Section 2.12. 

Table 5-10: Calculated values of adjusted retention times for blue dextran (t’0), Rha/Gal 

(t’1) and Ara (t’2); adjusted retention factors for Rha/Gal (k1
R’) and Ara (k2

R’); void 

fraction (ε); Henry constants of for Rha/Gal (H1) and Ara (H2); and the adjusted 

selectivity between Rha/Gal and Ara (αR’). All values were calculated as described in 2.12 

with retention times taken from Table 5-7 for the Dowex 50W X8 resin in the Ca2+ form 

at 50°C and a dead volume of 0.5 mL.

Measurement Value 

𝑡0
′  3.55 

𝑡1
′  5.05 

𝑡2
′  5.85 

𝑘1
𝑅′ 0.42 

𝑘2
𝑅′ 0.65 

𝜖 0.37 

𝐻1 0.25 

𝐻2 0.38 

𝛼𝑅′ 1.53 

 

 𝑚1 > 0.38 > 𝑚3 > 𝑚2 > 0.25 > 𝑚4 Equation 5-1 

5.4.2 4-zone, closed loop SMB setup 

5.4.2.1 Selecting initial SMB operating conditions 

A 4-zone, closed loop setup, described in Section 2.13.2, gives 5 input variables and, 

so, it could take considerable time to find a solution with a trial and error approach. 

Thus, a method was developed that allowed for a systematic selection of appropriate 
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SMB conditions which satisfy the requirements for the flow rate ratios m1, m2, m3 and 

m4, set by the Henry constants: 

1. Select a switch time (TS). 

2. Find the recycle flow rate (QRec) range which satisfies the requirements for m4 

(H1>m4>0) and select a value. 

3. Find the minimum desorbent flow rate (QD) to satisfy the requirements for m1 

(m1>H2) and select a value. 

4. Find the extract flow rate (QE) range which satisfies m2 (H2>m2>H1) and select 

a value. 

5. Find a feed flow rate (QF) range which satisfies m3 (H2>m3>H1). 

6. If no solution is possible, return to point 4 and select a new extract flow rate. 

7. If no solution is possible, return to point 3 and select a new desorbent flow rate. 

8. If no solution is possible, return to point 2 and select a new recycle flow rate. 

9. If no solution is possible, return to point 1 and select a new switch time. 

Table 5-11 shows a number of potential operating conditions that satisfy all of the flow 

rate ratio requirements with increasing switch times. The model results show that 

increasing the switch team leads to lower flow rates on all pumps and in all zones. In 

order to increase the overall throughput per resin volume, it would be advantageous to 

operate at higher feed flow rates and, consequently, lower switch times. One limitation 

of the pumps on the Semba SMB system is that they have a maximum flow rate of 12 

mL min-1. This effectively sets a minimum switch time of 61 s to allow for an m4 above 

0. Switch times below this would not be able to achieve a suitable m4 value without a 

recycle flow rate above 12 mL min-1. 

While there are clearly a number of potential operating conditions that satisfy all of 

the required constraints, it was decided to pick a single condition and use this as a basis 

for optimisation. Model condition 2 in Table 5-11 was selected as it has a low switch 

time but is not right on the limit of operability as is the case in model condition 1. 
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Model condition 2 is shown as Experiment 1 in Table 5-12 along with the operating 

conditions of all of the 4-zone SMB experiments performed in this section.  
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Table 5-11: Example SMB variables (switch time and flow rates of the feed (QF), desorbent (QD), extract (QE) and recycle (QRec) pumps) for the 4-zone 

SMB setup based on the Dowex 50W X8 resin in the Ca2+ form at 50°C. The input variables give flow rates (Qn) and flow rate ratios (mn) in each zone 

(n) which satisfy the equilibrium theory model described in Section 2.12. 

Model Condition 1 2 3 4 5 6 7 

Switch time (s) 65 90 120 150 200 250 300 

Qfeed, (mL min-1) 1.3 1.0 0.8 0.8 0.6 0.5 0.4 

Qdesorbent, (mL min-1) 7.0 6.0 4.0 3.0 2.0 2.0 1.5 

Qextract, (mL min-1) 3.0 4.0 2.5 1.4 1.0 1.0 0.7 

Qrecycle, (mL min-1) 12.0 9.0 7.0 5.0 4.0 3.0 2.5 

Qraffinate, (mL min-1) 5.3 3.0 2.3 2.4 1.6 1.5 1.2 

Q1 (mL min-1) 19.0 15.0 11.0 8.0 6.0 5.0 4.0 

Q2 (mL min-1) 16.0 11.0 8.5 6.6 5.0 4.0 3.3 

Q3 (mL min-1) 17.3 12.0 9.3 7.4 5.6 4.5 3.7 

Q4 (mL min-1) 12.0 9.0 7.0 5.0 4.0 3.0 2.5 

m1 0.48 0.59 0.56 0.45 0.45 0.50 0.45 

m2 0.30 0.25 0.28 0.25 0.26 0.26 0.25 

m3 0.38 0.34 0.37 0.37 0.37 0.38 0.37 

m4 0.05 0.08 0.11 0.02 0.07 0.02 0.02 
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Table 5-12: Experimental conditions (switch time and flow rates of the feed (QF), desorbent (QD), extract (QE) and recycle (QRec) pumps) used for SMB 

separation using the 4-zone SMB setup. Flow rates of the raffinate (QRaf) and through each zone (Qn) are given in addition to the flow rate ratios in 

each zone (mn) and were calculated as described in Section 2.12. SMB separations were performed as described in Section 2.13.1 with details specific 

to the 4-zone setup in Section 2.13.2. 

Experiment 1 2 3 4 5 6 

Switch time (s) 90 90 90 90 90 90 

QF, (mL min-1) 1 2 3 2 3 2 

QD, (mL min-1) 6 6 6 7 7 6 

QE, (mL min-1) 4 4 4 4 4 3 

QRec, (mL min-1) 9 9 9 9 9 9 

QRaf, (mL min-1) 3 4 5 5 6 5 

Q1 (mL min-1) 15 15 15 16 16 15 

Q2 (mL min-1) 11 11 11 12 12 12 

Q3 (mL min-1) 12 13 14 14 15 14 

Q4 (mL min-1) 9 9 9 9 9 9 

m1 0.59 0.59 0.59 0.68 0.68 0.59 

m2 0.25 0.25 0.25 0.34 0.34 0.34 

m3 0.34 0.42 0.51 0.51 0.59 0.51 

m4 0.08 0.08 0.08 0.08 0.08 0.08 
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Figure 5-16 shows the operating conditions in Experiment 1 on the m2-m3 plane, and 

the position within the operating triangle window. 

 

Figure 5-16: The m2-m3 plane showing SMB Experiment 1 and the boundaries set by the 

Henry constants. in Equation 5-1. The area within the triangle represents operating 

conditions where the SMB model, described in Section 2.12, predicts pure raffinate and 

extract streams. m2 and m3 refer to the flow rate ratios in zones 2 and 3 respectively and 

are shown in Table 5-12. 

Looking at the results shown in Table 5-13, almost 100% of each sugar is eluted in the 

extract. A small amount of highly pure (96%) Ara is eluted in the raffinate. However, 

it would be expected the Rha and Gal to be more likely to elute in the raffinate, relative 

to the Ara, due to their faster elution times on the resin and condition screening 

experiments in Section 5.2. This effect could be a result of the increased feed 

concentration of Ara and so results in a broader peak that overlaps with the Rha and 

Gal peaks and, thus, a proportion elutes more quickly, in the raffinate. 
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Table 5-13: Concentration, purity and recovery of Rha, Ara and Gal in the Extract and 

Raffinate streams after 4-zone SMB separation using the variables defined in 

Experiment 1 in Table 5-12. SMB operation was performed as described in Section 2.13.1 

using the 4-zone setup described in Section 2.13.2. A solution of Rha, Ara and Gal at 

concentrations of 1, 13 and 3 g L-1 respectively was used as the feed and water as the 

desorbent. Concentration, purity and recovery values were calculated using ICS analysis 

as described in Section 2.13.4. 

Experiment 1 Rha Ara Gal 

Extract conc. (g L-1) 0.22 2.49 0.64 

Extract purity 7% 74% 19% 

Extract recovery 100% 98% 100% 

Raffinate conc. (g L-1) 0 0.2 0.01 

Raffinate purity  0% 96% 4% 

Raffinate recovery 0% 2% 0% 

Additionally, the Ara in the raffinate represents just 2% by weight of the total Ara 

output, with the remaining 98% eluting in the extract. The results show that, while the 

experiment fits within the operating triangle in Figure 5-16, there is not complete 

separation of the sugars with Ara in the extract and Rha and Gal in the raffinate.  

This could mean that there is some mistake in one or more of the measurements made, 

for example the dead volume calculation, and so the H1 and H2 values are, in effect, 

miscalculated and it may be necessary to operate beyond the operating triangle window 

to achieve separation. Furthermore, the triangle theory approximates the process to a 

TMB with infinite number of columns and so does not take the number of columns 

used in the SMB process into account [235]. It operates solely based on the Henry 

constants and so the large peak overlaps seen in the resin and condition screening 

experiments, in Section 5.2, could be affecting the SMB performance. However, one 

would expect at least some elution of the sugars in the raffinate if the model was 

working as intended. Further experiments were based on improving and optimising 

the separation on an experimental basis by manipulating the relative flow rates in each 

zone (m1, m2, m3 and m4). 

5.4.2.2 Optimisation by increasing feed flow rate 

With all of the sugars eluting in the extract, the feed flow rate was increased in 

Experiment 2, (from 1 mL min-1 to 2 mL min-1, see Table 5-12), in order to increase 

the zone 3 flow rate, and allow the Rha and Gal to elute in the raffinate. This increases 
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the value of m3 only (from 0.34 to 0.42), and does not affect the values of m1, m2 or 

m4. The raffinate flow rate increases from 3 mL min-1 to 4 mL min-1 as a result of the 

increase in feed flow rate. The extract flow rate stays constant at 4 mL min-1 as this is 

defined by the extract pump (Section 2.13.2). The new value of m3 pushes it above the 

H2 value (0.38) and so outside of the requirements set by Equation 5-1 and the 

operating triangle in the m2-m3 plane (Figure 5-17).  

 

Figure 5-17: The m2-m3 plane showing SMB Experiment 2 and the boundaries set by the 

Henry constants in Equation 5-1. The area within the triangle represents operating 

conditions where the SMB model, described in Section 2.12, predicts pure raffinate and 

extract streams. m2 and m3 refer to the flow rate ratios in zones 2 and 3 respectively and 

are shown in Table 5-12. 

The results, shown in Table 5-14, show some adjustments in the separation profile, 

however the results appear to get worse. Very little Rha and Gal are eluted in the 

raffinate (1-2%) but even more of the Ara is eluted there (up from 2% to 23%). The 

result is a very pure (98%) Ara stream in the raffinate, however, this is still unexpected 

behaviour with the slower eluting compound eluting in both the extract and raffinate. 

While it may be possible to use this method as an Ara purification technique by 

recycling the extract, and collecting the purer Ara in the raffinate, it would 

dramatically decrease the overall throughput per resin volume. 
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Table 5-14: Concentration, purity and recovery of Rha, Ara and Gal in the Extract and 

Raffinate streams after 4-zone SMB separation using the variables defined in 

Experiment 2 in Table 5-12. SMB operation was performed as described in Section 2.13.1 

using the 4-zone setup described in Section 2.13.2. A solution of Rha, Ara and Gal at 

concentrations of 1, 13 and 3 g L-1 respectively was used as the feed and water as the 

desorbent. Concentration, purity and recovery values were calculated using ICS analysis 

as described in Section 2.13.4. 

Experiment 2 Rha Ara Gal 

Extract conc. (g L-1) 0.48 4.52 1.51 

Extract purity 7% 69% 23% 

Extract recovery 98% 77% 99% 

Raffinate conc. (g L-1) 0.01 1.32 0.02 

Raffinate purity  1% 98% 2% 

Raffinate recovery 2% 23% 1% 

The lack of Rha and Gal in the raffinate indicates that the zone 3 flow rate may still be 

too low and so the feed flow rate was increased further to 3 mL min-1 in Experiment 3 

(detailed in Table 5-12). This further pushes up the m3 value to 0.51 (shown in Figure 

5-18) and the raffinate flow rate to 5 mL min-1 while not affecting the flow rates in any 

other zone.  
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Figure 5-18: The m2-m3 plane showing SMB Experiment 3 and the boundaries set by the 

Henry constants in Equation 5-1. The area within the triangle represents operating 

conditions where the SMB model, described in Section 2.12, predicts pure raffinate and 

extract streams. m2 and m3 refer to the flow rate ratios in zones 2 and 3 respectively and 

are shown in Table 5-12. 

The separation results, shown in Table 5-15, are markedly improved, demonstrating 

that the increase in zone 3 flow rate has helped to elute the Rha and Gal in the raffinate, 

without a large increase in the amount of Ara eluted in the raffinate. The raffinate 

recovery of Rha and Gal increases from just 1-2% in Experiment 2 (Table 5-14) to 86-

88%. The Ara extract recovery is slightly reduced from 71 to 77%, but the purity in 

the extract is increased 69 to 95%. The separation is now behaving as expected with 

the faster compounds eluting in the raffinate and the more retarded compounds 

primarily eluting in the extract. It is interesting to note that, in isocratic SMB, 

increasing the feed flow rate can result in improved separation results as well as the 

obvious benefits of increased throughput. 
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Table 5-15: Concentration, purity and recovery of Rha, Ara and Gal in the Extract and 

Raffinate streams after 4-zone SMB separation using the variables defined in 

Experiment 3 in Table 5-12. SMB operation was performed as described in Section 2.13.1 

using the 4-zone setup described in Section 2.13.2. A solution of Rha, Ara and Gal at 

concentrations of 1, 13 and 3 g L-1 respectively was used as the feed and water as the 

desorbent. Concentration, purity and recovery values were calculated using ICS analysis 

as described in Section 2.13.4. 

Experiment 3 Rha Ara Gal 

Extract conc. (g L-1) 0.09 5.77 0.23 

Extract purity 2% 95% 4% 

Extract recovery 14% 71% 12% 

Raffinate conc. (g L-1) 0.45 1.86 1.32 

Raffinate purity  12% 51% 36% 

Raffinate recovery 86% 29% 88% 

With the high purity of Ara and low recoveries of Rha and Gal in the extract, further 

optimisation was sought in other ways than increasing the flow rate. While increasing 

the flow rate could improve the purity further, it would inevitably lead to reduced 

recovery as more Ara elutes in the raffinate. It should be possible to recycle the 

raffinate back to the feed, however, this may reduce the overall throughput per column 

volume as the amount of fresh feed added to the SMB would be reduced. 

The Ara concentration in the extract is 5.77 g L-1. This value gives an overall dilution 

factor of the Ara of approximately 2.3 from its input concentration of 13 g L-1 while 

increasing the purity from 76 to 95%. This low dilution factor highlights the 

effectiveness of SMB due to the shorter solute migration distance [178]. 

5.4.2.3 Additional optimisation 

Increasing the desorbent flow rate is an alternative method of increasing the m3 flow 

rate and was explored in Experiment 4. Without adjusting the extract flow rate to 

compensate for the increased zone 1 and 2 flow rates, the increased desorbent flow 

rate is passed onto zone 3. Zone 4 is not affected as it is controlled by the recycle 

pump. Thus, increasing the desorbent flow rate therefore increases m1, m2 and m3. 

The results of Experiment 4 (in Table 5-16) show an Ara extract purity of 96% with 

an Ara extract recovery of 63%. While this is an improvement on Experiment 2 (Table 

5-14), the results do not quite compare with the results of Experiment 3 (Table 5-15) 
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which achieved 95% Ara purity, an Ara extract recovery of 71%, an increased 

throughput due to a feed flow rate of 3 mL min-1 and a higher extract concentration 

(5.77 g L-1). 

Table 5-16: Concentration, purity and recovery of Rha, Ara and Gal in the Extract and 

Raffinate streams after 4-zone SMB separation using the variables defined in 

Experiment 4 in Table 5-12. SMB operation was performed as described in Section 2.13.1 

using the 4-zone setup described in Section 2.13.2. A solution of Rha, Ara and Gal at 

concentrations of 1, 13 and 3 g L-1 respectively was used as the feed and water as the 

desorbent. Concentration, purity and recovery values were calculated using ICS analysis 

as described in Section 2.13.4. 

Experiment 4 Rha Ara Gal 

Extract conc. (g L-1) 0.03 2.86 0.08 

Extract purity 1% 96% 3% 

Extract recovery 7% 63% 6% 

Raffinate conc. (g L-1) 0.39 1.32 1.13 

Raffinate purity  14% 46% 40% 

Raffinate recovery 93% 37% 94% 

Increasing the feed flow rate to 3 mL min-1 (Experiment 5 in Table 5-12) increases the 

extract purity to 98% (shown in Table 5-17), however, the recovery of Ara in the 

extract drops to 27%, meaning that significantly more Ara is eluted in the raffinate 

stream rather than the purer extract. This is likely a result of the increased m3 value, 

causing Ara to be eluted in the raffinate. 

Table 5-17: Concentration, purity and recovery of Rha, Ara and Gal in the Extract and 

Raffinate streams after 4-zone SMB separation using the variables defined in 

Experiment 5 in Table 5-12. SMB operation was performed as described in Section 2.13.1 

using the 4-zone setup described in Section 2.13.2. A solution of Rha, Ara and Gal at 

concentrations of 1, 13 and 3 g L-1 respectively was used as the feed and water as the 

desorbent. Concentration, purity and recovery values were calculated using ICS analysis 

as described in Section 2.13.4. 

Experiment 5 Rha Ara Gal 

Extract conc. (g L-1) 0.02 2.16 0.03 

Extract purity 1% 98% 2% 

Extract recovery 2% 27% 2% 

Raffinate conc. (g L-1) 0.45 3.80 1.27 

Raffinate purity  8% 69% 23% 

Raffinate recovery 98% 73% 98% 
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Decreasing the extract flow rate increases the m2 and m3 values without adjusting m1 

or m4 and could be used as another method of shifting the Rha and Gal from the extract 

to the raffinate. Experiment 2 was adjusted by dropping the extract flow rate from 4 to 

3 mL min-1 (Experiment 6 in Table 5-12). Experiment 6a (using the same synthetic 

neutral mixture as Experiments 1-5, defined in Section 2.7.4) resulted in a high purity 

Ara (98%) extract stream with an extract recovery of 48%, shown in Table 5-18. The 

purity matches what was achieved in Experiment 5 (Table 5-17), but with a much 

higher Ara recovery. Comparing with Experiment 4 (Table 5-16), the only difference 

in the zone flow rates is a reduced zone 1 flow rate. Zone 1 desorbs the more strongly 

retained, slower eluting compounds, so slowing it down means that these compounds 

enter zone 2 later in the step and are less likely to be passed through to zone 3. While 

this allows for higher Ara extract purity than Experiment 4 (Table 5-16), the lower 

extract flow rate results in a lower recovery of Ara eluting in the extract.  

Table 5-18: Concentration, purity and recovery of Rha, Ara and Gal in the Extract and 

Raffinate streams of Experiment 6a after 4-zone SMB separation. The variables used are 

defined in Experiment 6 in Table 5-12. SMB operation was performed as described in 

Section 2.13.1 using the 4-zone setup described in Section 2.13.2. A solution of Rha, Ara 

and Gal at concentrations of 1, 13 and 3 g L-1 respectively was used as the feed and water 

as the desorbent. Concentration, purity and recovery values were calculated using ICS 

analysis as described in Section 2.13.4. 

Experiment 6a Rha Ara Gal 

Extract conc. (g L-1) 0.02 2.86 0.05 

Extract purity 1% 98% 2% 

Extract recovery 3% 48% 3% 

Raffinate conc. (g L-1) 0.36 1.85 1.05 

Raffinate purity  11% 57% 32% 

Raffinate recovery 97% 52% 97% 

5.4.2.4 Recycling of the raffinate stream to increase recovery 

The raffinate from Experiment 6a contained 52% of the available Ara, therefore, the 

possibility of using this directly as a feed stream for another identical SMB operation 

was examined in order to increase the overall recovery. The concentrations and purities 

of the synthetic neutral feed, used to produce the raffinate, and the ‘raffinate feed’, 

used in Experiment 6b, are shown in Table 5-19. While the concentrations are lower, 

the purities of each sugar are broadly similar.  
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Table 5-19: Comparison of the concentrations and purity of the synthetic neutral feed 

used for Experiment 6a and the “Raffinate feed” used for Experiment 6b. This raffinate 

feed is the collected raffinate stream from Experiment 6a (Table 5-18). Concentration 

and purity values were calculated using ICS analysis as described in Section 2.13.4. 

Feed Rha Ara Gal 

Original Feed concentration (g L-1) 1 13 3 

Synthetic neutral feed purity 6% 76% 18% 

Raffinate Feed concentration (g L-1) 0.45 3.8 1.27 

Raffinate feed purity 8% 69% 23% 

The results from Experiment 6b, using this raffinate feed, are shown in Table 5-20. 

The purity achieved is not quite as high as with fresh synthetic neutral feed (dropping 

to 93%, however, the recovery in the extract is slightly higher, at 62%. The overall Ara 

extract recovery of both systems is around 81%.  

Table 5-20: Concentration, purity and recovery of Rha, Ara and Gal in the Extract and 

Raffinate streams of Experiment 6b after 4-zone SMB separation. The collected 

Raffinate from Experiment 6a (Table 5-18) is used as the feed and the variables defined 

in Experiment 6 in Table 5-12. SMB operation was performed as described in Section 

2.13.1 using the 4-zone setup described in Section 2.13.2. Water was used as the 

desorbent. Concentration, purity and recovery values were calculated using ICS analysis 

as described in Section 2.13.4. 

Experiment 6b Rha Ara Gal 

Extract conc. (g L-1) 0.01 0.68 0.03 

Extract purity 2% 93% 5% 

Extract recovery 6% 62% 5% 

Raffinate conc. (g L-1) 0.13 0.26 0.41 

Raffinate purity  17% 32% 51% 

Raffinate recovery 94% 38% 95% 

This method of using the raffinate as a feed in a tandem SMB to perform the same 

separation would likely not be practical in reality. On top of the additional capital costs 

of another SMB system, the initial separation produces raffinate at a rate of 5 mL min-1, 

and so the second SMB may need larger columns in order to process this higher feed 

flow rate. While it may be possible to find a method that results in a raffinate flow rate 

equal to that of the feed process, this places an additional restriction on the operating 

conditions. Alternatively, it may be possible to simply recycle a portion of the raffinate 

back to feed. While this would reduce the flow rate of fresh feed to the system, it would 

negate the need for a tandem SMB format. Again though, the fact that the raffinate 
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flow rate is higher than the feed flow rate makes any attempt to increase the Ara extract 

recovery difficult.  

5.4.2.5 4-zone, closed loop SMB summary 

The results in this section show that it is possible to achieve high purity Ara in the 

extract (Table 5-18) although there is an apparent trade-off with the recovery that is 

achievable. What is important to note is that it is possible to improve the separation 

performance by increasing the feed flow rate (Section 5.4.2.2), which has dramatic 

effects on the total throughput. A brief comparison of the three best SMB results 

(Experiments 3, 4 and 6a) in terms of Ara purity, Ara extract recovery and feed flow 

rates are shown in Table 5-21. 

Table 5-21: Summary of results from Experiments 3, 4 and 6a showing the Ara 

concentration, purity and recovery in the Extract; the feed and desorbent flow rates 

used; and the Table reference showing the full results from each Experiment. The feed 

flow rate is shown as an indicator of the total throughput while the desorbent flow rate 

shows the solvent usage. Concentration, purity and recovery values were calculated using 

ICS analysis as described in Section 2.13.4. 

Experiment 3 4 6a 

Ara extract concentration (g L-1) 5.77 2.86 2.86 

Ara extract purity 95% 96% 98% 

Ara extract recovery  71% 64% 48% 

Feed flow rate (mL min-1) 3 2 2 

Desorbent flow rate (mL min-1) 6 7 6 

Source Table 5-15 Table 5-16 Table 5-18 

Potentially further optimisation is still achievable. This could come in terms of using 

different switch times; or a reduced desorbent flow rate, compensated for by increasing 

the extract flow rate. This would decrease the m1 value without affecting the m2, m3 

or m4 values, while also reducing the dilution of the Ara in the extract. However, due 

to the problems experienced with the SMB model predicting separation (as shown by 

the poor separation in Experiment 1 in Section 5.4.2.1), this may require significant 

further experimental work. 

5.4.3 3-zone, open loop SMB setup 

In an effort to simplify the SMB separation, a 3-zone (open loop) SMB setup was also 

examined (Section 1.6.3). The 3-zone setup removes zone 4, allowing more of the 
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columns to be used in zones 2 and 3 for separation. It also removes a degree of freedom 

from the SMB model (Section 2.12.2.3) as there is now no recycle pump, but the flow 

rate of fresh desorbent usage will likely be higher. In this section, 2 columns are used 

in zone 1 (as in Section 5.4.2), while zones 2 and 3 contain an additional column (3 

columns each), totalling 8 columns (Figure 2-7 in Section 2.13.3).  

In Section 5.4.2, it was observed that the SMB model did not fit with the experimental 

data and that separation performance was improved with increasing the m3 value. As 

a result, the method used here aimed for an m3 value around 0.5-0.6, similar to what 

was used in Experiments 3 to 6 in Section 5.4.2. As the sum of the recycle and 

desorbent flow rates used in the 4-zone SMB are all above the pump limit of 12 mL 

min-1, the methods cannot easily be transferred. As a result, a higher switch time (225 

s) was required in order to reduce the 3-zone desorbent flow rates to below 12 mL 

min-1. The experimental conditions, zone flow rates and m values are shown in Table 

5-22.  

Table 5-22: Experimental conditions (switch time and flow rates of the feed (QF), 

desorbent (QD) and extract (QE) pumps) used for SMB separation using the 3-zone SMB 

setup. Flow rates of the raffinate (QRaf) and through each zone (Qn) are given in addition 

to the flow rate ratios in each zone (mn) and were calculated as described in Section 2.12. 

SMB separations were performed as described in Section 2.13.1 with details specific to 

the 3-zone setup in Section 2.13.3. 

Experiment 7 8 

Switch time (s) 225 225 

QF, (mL min-1) 1.00 1.00 

QD, (mL min-1) 9.50 9.50 

QE, (mL min-1) 4.50 5.00 

QRaf, (mL min-1) 6.00 5.50 

Q1 (mL min-1) 9.50 9.50 

Q2 (mL min-1) 5.00 4.50 

Q3 (mL min-1) 6.00 5.50 

m1 1.40 1.40 

m2 0.39 0.28 

m3 0.62 0.51 

The results of Experiment 7 are shown in Table 5-23 and show a very high purity of 

Ara in the extract (98%), although the Ara recovery is low, at 33%. This performance 

is between that of Experiments 5 and 6 in Section 5.4.2, however, the extract 
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concentration is 4-5 times lower than in the 4-zone system due to the reduced feed 

flow rate and the increased extract flow rate. The result shows that the separation is 

occurring as expected and can likely be improved with optimisation.  

Table 5-23: Concentration, purity and recovery of Rha, Ara and Gal in the Extract and 

Raffinate streams after 3-zone SMB separation using the variables defined in 

Experiment 7 in Table 5-22. SMB operation was performed as described in Section 2.13.1 

using the 3-zone setup described in Section 2.13.3. A solution of Rha, Ara and Gal at 

concentrations of 1, 13 and 3 g L-1 respectively was used as the feed and water as the 

desorbent. Concentration, purity and recovery values were calculated using ICS analysis 

as described in Section 2.13.4. 

Experiment 7 Rha Ara Gal 

Extract conc. (g L-1) 0.00 0.56 0.01 

Extract purity 0% 98% 1% 

Extract recovery 1% 33% 1% 

Raffinate conc. (g L-1) 0.17 0.87 0.51 

Raffinate purity  11% 56% 33% 

Raffinate recovery 99% 67% 99% 

In order to improve the recovery of Ara in the extract, the extract flow rate was 

increased from 4.5 to 5.0 mL min-1, reducing both the zone 2 and zone 3 flow rates by 

0.5 mL min-1, as shown by Experiment 8 in Table 5-22. The results, Table 5-24, show 

a slight drop in Ara extract purity from 98% to 94%, however, importantly, this is 

achieved with a 99% recovery. This high recovery allows for the Ara extract 

concentrations (2.16 g L-1) to be approximately three-quarters of their value in 

Experiments 4 and 6 (2.86 g L-1) in Section 5.4.2, despite halving the feed flow rate, 

although it is well below the value of 5.77 g L-1 in Experiment 3 (see Table 5-21). 
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Table 5-24: Concentration, purity and recovery of Rha, Ara and Gal in the Extract and 

Raffinate streams after 3-zone SMB separation using the variables defined in 

Experiment 8 in Table 5-22. SMB operation was performed as described in Section 2.13.1 

using the 3-zone setup described in Section 2.13.3. A solution of Rha, Ara and Gal at 

concentrations of 1, 13 and 3 g L-1 respectively was used as the feed and water as the 

desorbent. Concentration, purity and recovery values were calculated using ICS analysis 

as described in Section 2.13.4. 

Experiment 8 Rha Ara Gal 

Extract conc. (g L-1) 0.04 2.16 0.11 

Extract purity 2% 94% 5% 

Extract recovery 27% 99% 22% 

Raffinate conc. (g L-1) 0.10 0.02 0.33 

Raffinate purity  23% 4% 73% 

Raffinate recovery 73% 1% 78% 

It is possible that the dilution factor and the solvent usage could be reduced by 

lowering the desorbent flow rate and extract flow rates by equal amounts. This would 

reduce the m1 value but keep the m2 and m3 values constant. For example, keeping the 

switch time at 225 s and the feed flow rate at 1 mL min-1 but dropping the desorbent 

flow rate to 6.5 mL min-1 and the extract flow rate to 1.5 mL min-1 results in an m1 of 

0.70 with the same m2 and m3 values as in Experiment 8 (Table 5-22). It is clear that 

there is considerable potential for further optimisation of this SMB separation.  

While Experiment 7 is eclipsed in performance by Experiment 6, offering higher Ara 

extract concentration and recovery, and equal purity, Experiment 8 can be fairly 

compared with Experiments 3, 4 and 6. Table 5-25 shows a summary of the Ara extract 

results for Experiments 3, 4, 6 and 8, and the feed and desorbent flow rates. Experiment 

8 has the highest purity and recovery combination with both above 90%, however, the 

feed flow rate is the lowest, indicating a low throughput per resin volume, and the 

desorbent flow rate is the highest due to the lack of recycling. 

The feed flow rate is shown as an indicator of the total throughput while the desorbent 

flow rate shows the solvent usage. Feed flow rates of 1, 2 and 3 mL min-1 give 

throughputs of 4.6, 9.1 and 13.7 g L-1
resin h

-1 respectively, based on a total resin volume 

of 224 mL and a total sugars concentration of 17 g L-1.  
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Table 5-25: Summary of results from Experiments 3, 4, 6a and 8 showing the zone setup 

used; the Ara concentration, purity and recovery in the Extract; the feed and desorbent 

flow rates; and the Table reference showing the full results from each Experiment. The 

SMB method inputs for the Experiments in the 4-zone and 3-zone SMB setups are 

detailed in Table 5-12 and Table 5-22 respectively. Concentration, purity and recovery 

values were calculated using ICS analysis as described in Section 2.13.4. 

Experiment 3 4 6a 8 

3 or 4 zone setup 4 4 4 3 

Ara extract concentration (g L-1) 5.77 2.86 2.86 2.16 

Ara extract purity 95% 96% 98% 94% 

Ara extract recovery 71% 64% 48% 99% 

Feed flow rate (mL min-1) 3 2 2 1 

Desorbent flow rate (mL min-1) 6 7 6 9.5 

Table shown Table 5-15 Table 5-16 Table 5-18 Table 5-24 

It is not clear whether the improvements are a result of the 3-zone SMB system, 

allowing an additional column to be present in each the separation zones (zones 2 and 

3), or due to the use of a higher switch time, reducing the overall flow rates within the 

SMB system. Further experiments on the 4-zone SMB setup at higher switch times, 

and on the 3-zone SMB setup at lower switch times would be required distinguish 

between these possible explanations. 

Figure 5-19 and Figure 5-20 shows the RI trace of the raffinate from Experiment 7 and 

the extract from Experiment 8 as representative examples of a functioning SMB. It is 

clear that the raffinate features a steady rise in refractive index units (RIU) as sugars 

begin to elute from the end of the final column in zone 3 and then a rapid drop with 

every port switch as elution switches to a fresh column. Conversely, the extract 

features a sharp jump and then a drop in RIU with every port switch, corresponding 

with the switch to a column loaded with sugar which is gradually desorbed 

  



 

205 

 

 

 

Figure 5-19: Refractive index trace of the Extract from SMB Experiment 7 for the 

separation of Ara from Rha and Gal. SMB separation was performed in the 3-zone setup 

as described in Section 2.13 with operating conditions for Experiment 7 given in Table 

5-22. 

 

Figure 5-20: Refractive index trace of the Raffinate from SMB Experiment 8 for the 

separation of Ara from Rha and Gal. SMB separation was performed in the 3-zone setup 

as described in Section 2.13 with operating conditions for Experiment 8 given in Table 

5-22. 
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5.5 Chapter summary 

The work presented in this chapter demonstrates the application of simulated moving 

bed chromatography to the isolation of Ara from a synthetic neutral mixture of sugars 

comprising Ara, Gal and Rha. Simulated moving bed technology can be used at very 

large scales (Section 1.6.4) with high throughputs and the results in this chapter show 

the potential for it to be used for isolating sugars from a purified hydrolysate stream. 

The aim of this chapter was to develop a method for isolating L-arabinose from a 

synthetic neutral mixture of the neutral sugars in hydrolysed SBP pectin using SMB. 

The main conclusions of this chapter are: 

• Various resins and temperatures were screened based their retention times, 

selectivities and peak shapes of individual sugar injections. Dowex 50W X8 

resin in the Ca2+ form at 50°C was selected as the optimal resin and condition 

for the isolation of Ara (Figure 5-15), providing selectivities to Ara of 1.57 and 

1.58 for Rha and Gal respectively (Table 5-7).  

• Glucose was found to elute prior to the Rha and Gal and so would have a higher 

selectivity to Ara. In SMB, the glucose would likely elute in the raffinate 

stream with the Rha and Gal. 

• Column packing of the 8 columns for SMB showed relative standard deviations 

within 1% of the mean for retention times; within 2.5% of the mean for 

retention factors; and within 2% of the mean for selectivities (Table 5-8). 

• The SMB equilibrium theory model was found to not provide sufficient 

separation, with almost all of the components eluting in the Extract (Table 

5-13). 
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• SMB separation was improved in the 4-zone, closed loop setup by increasing 

the feed flow rate and thus increasing the flow rate ratio in zone 3 (Table 5-14 

and Table 5-15). 

• Using the 4-zone, closed loop, SMB it was possible to achieve an extract with 

95-98% pure L-arabinose with a recovery of 71-48% (Table 5-21). Feed flow 

rates of 2-3 mL min-1 were used, giving throughputs of 9.1-13.7 g L-1
resin h

-1. 

• Using the 3-zone, open loop, SMB it was possible to achieve an extract with 

94% pure L-arabinose with a recovery of 99% and a feed flow rate of 1 mL 

min-1, giving a throughput of 4.6 g L-1
resin h

-1 (Table 5-25). 

• For both the 4-zone and 3-zone SMB setups there remains a larger amount of 

possible further optimisation in terms of L-arabinose purity and recovery, feed 

throughput, and desorbent usage. 

The next chapter will look at the isolation of D-galacturonic acid from a synthetic 

crude mixture and develop pretreatment methods, including decolourising resins and 

activated carbon, for the complete processing of the crude hydrolysate.  
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 Development of methods for crude pretreatment 

and the isolation of D-galacturonic acid towards SMB 

separation with crude hydrolysates 

6.1 Introduction, aims and objectives 

As described in Section 5.1, it would be necessary to isolate the GA and remove 

contaminants from the crude hydrolysate prior to isolation of the Ara using SMB. In 

this chapter, the isolation of GA will be considered from both a synthetic crude mixture 

of sugars (Section 2.5) and the crude hydrolysate. Furthermore, the removal of 

contaminants and coloured compounds will be examined that could impact on both the 

GA and SMB separations. 

The ionic nature of GA (Figure 1-4) means that it could interfere with the cation 

exchange columns used in SMB (Section 5.2) and affect the isolation of Ara from Gal 

and Rha. As GA is ionic and the neutral sugars are not, a method was sought to isolate 

the GA from the neutral sugars so that it can then be used for further applications 

(Section 1.1.6) and the neutral sugars can be separated on the SMB using the method 

described in Chapter 5. An anion exchange chromatography method will be examined 

for isolating the GA from a synthetic crude mixture, binding the galacturonate ions 

while allowing the neutral sugars to pass through unimpeded. The neutral sugars could 

then be run on an SMB separation from Chapter 5 to assess the impact of the anion 

exchange step on SMB separation performance. In addition, pretreatment using resins 

and activated carbon (Section 1.3) will be examined for decolourisation and 

contaminant removal from the crude SBP hydrolysate. Finally, the effects of the 

pretreatment methods will be examined on the isolation of GA and SMB separation of 

Ara from the crude hydrolysate in order to move towards a complete bioprocessing 

strategy for use within an integrated SBP biorefinery (Section 1.1.1). 

The aim of this chapter is to develop a method of isolating D-galacturonic acid from a 

synthetic crude mixture and develop pretreatment methods to move towards complete 

processing of the crude hydrolysate. The specific objectives of this chapter are to: 
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• Screen for an anion exchange resin that both allows D-galacturonic acid to bind 

and readily elute. 

• Determine the dynamic binding capacities of the resins and perform 

preparative separations for the isolation of D-galacturonic acid from neutral 

sugars in a synthetic crude mixture of sugars. 

• Perform simulated moving bed chromatography on the neutral sugars, after D-

galacturonic acid removal, according to the 3-zone SMB method developed in 

Chapter 5. 

• Develop methods of decolourising the crude hydrolysate using resins or 

activated carbon while minimising losses of sugar. 

• Assess the effect of decolourisation on D-galacturonic acid isolation from 

decolourised crude hydrolysate. 

6.2 D-galacturonic acid isolation from neutral sugars 

6.2.1 Screening of resin ionic form 

A method of isolating GA from a synthetic crude mixture of GA, Ara, Rha and Gal 

(defined in Section 2.7.5) was first explored using anion exchange resins in different 

ionic forms as detailed in Section 2.14.2. Using the resins in the hydroxide form, it 

was found that the galacturonate bound easily, however, it was not readily eluted with 

NaOH, but could be eluted with NaCl (data not shown). The neutral sugars did not 

bind to the column and eluted in the solvent front. While this method demonstrates the 

potential of anion exchange chromatography for the isolation of GA from the neutral 

sugars, it would require a large amount of desorbent in what would likely be a six step 

process: 
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1. Load: Synthetic crude mixture is loaded onto the column in the OH- form. The 

GA binds and the neutral sugars flow through. 

2. Wash: Water is passed through the column to remove any unbound sugars. 

3. Elute: NaCl is passed through the column, exchanging with the GA which 

elutes from the column. 

4. Wash: Water is passed through the column to remove any residual salts. 

5. Regeneration: Large volumes of NaOH are passed through the column to 

exchange the binding sites back to the OH- form for further GA loading. 

6. Wash: Water is passed through the column to remove any residual salts. 

A preferable process, in terms of desorbent usage, would be to combine the elution 

and regeneration steps and remove one of the wash steps. However, this can only occur 

if the elution salt is the same ionic form as the regeneration salt and depends on the 

selectivity of the salt [164]. Too high a selectivity and the GA will not bind to the 

column; too low a selectivity and the GA will not easily be removed from the column; 

at an intermediate selectivity, the GA can both bind to the column and easily be eluted. 
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A proposed four step process based on an ionic form (X-) of intermediate selectivity is 

outlined below:  

1. Load: Synthetic crude mixture is loaded onto the column in the X- form. The 

GA binds and the neutral sugars flow through. 

2. Wash: Water is passed through the column to remove any unbound sugars. 

3. Elution/regeneration: A salt containing X is passed through the column, 

exchanging for GA, which elutes from the column and converts the column 

back into the X- form. 

4. Wash: Water is passed through the column to remove any residual salts. 

Knowing that NaCl was capable of eluting the GA from the resin, it was explored if 

the GA could bind to the resin in the Cl- form. However, it was found that GA eluted 

immediately from the column with the neutral sugars. Thus, the Cl- form was deemed 

to have too high a selectivity for GA binding and, so, an anionic form with a selectivity 

that is intermediate of OH- and Cl- was sought.  

Based on work in the literature on separating uronic acids (galacturonic acid from 

glucuronic acid) on acetate ion exchangers [162]; and analytical ion chromatography 

methods where GA does not elute in the OH- form with a NaOH eluent, but elutes in 

the acetate form with a NaOAc eluent [163]; the acetate form was next considered. 

According to DOW [164], the acetate form has a type 1 anion exchange selectivity of 

3.2, higher than OH-
 (1.0) and lower than Cl- (22), and so could fall into this 

intermediate selectivity range, allowing GA to bind to the column, and elute with an 

acetate salt.  

Separation in the acetate form, as detailed in Section 2.14.2, showed that it was capable 

of binding the GA, allowing the neutral sugars to flow through. Furthermore, elution 

with NaOAc showed that GA was readily eluted from the column, and the column was 

thus easily regenerated back into the acetate form ready for further loading. 

6.2.2 Screening for resins 

Multiple resins (Table 2-4) in the acetate form were compared for their capacity based 

on the breakthrough curve and relative dynamic binding capacities, as detailed in 
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Section 2.14.3, by continuously adding GA until it overloads the column. Figure 6-1 

shows the breakthrough curves using an RI detector in order to view all of the salts 

eluting from the column.  

The results for each resin show that there are four clear stages and each can be mapped 

based on the presence of GA in samples collected at various time points. The four 

stages of the RI-time profile are given with times based on the Dowex 1x8 resin 

profile:  

1. 0-5 min: GA binds to column, exchanging acetate ions off the column which 

begin to elute, forcing up the RI intensity – no GA detected 

2. 5-16 min: RI intensity levels off as acetate ions exchange at the same rate as 

GA is fed into the column – no GA detected 

3. 17-28 min: RI intensity increases as breakthrough is reached and GA begins to 

elute from the column – (small amounts of GA detected) 

4. 29-40 min: RI intensity levels off as the column reaches maximum capacity 

and no more GA binds to the column. GA concentration of the outlet is equal 

to the GA concentration of the feed. 

 

Figure 6-1: Refractive index profile of the breakthrough curves of D-galacturonic acid 

(GA) on different resins. GA was loaded at a flow rate of 5 mL min-1 and a concentration 

of 10 g L-1 onto anion exchange columns packed with 3 g of different resins prepared in 

the acetate form. Columns were prepared and packed as described in Section 2.14.1. 

Experiments were performed as described in Section 2.14.3. 
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It is evident that the Dowex 1x8 resin has significantly later breakthrough than the 

other resins. It has a fully developed binding step, with initial breakthrough of GA 

after approximately 17 min and a steeper breakthrough curve. Conversely, the other 

resins begin to elute GA after approximately 5 min, and feature gentler breakthrough 

curves. Based on these breakthrough times, the 1x8 column has approximately 3 times 

the dynamic binding capacity of the other resins and was used for further studies. It is 

possible that the advantage of this resin lies predominantly in the smaller particle size 

(Table 2-4 in Section 2.14.3), an effect that would not have been detected using a batch 

static binding capacity experiment.  

The columns here were packed with just 3 g of resin and it is possible that longer 

columns may cause an increased pressure drop using the 1x8 resin due to its smaller 

particle size. However, due to the high selectivity of the separation, the column length 

is not envisaged to be an important factor for separation. Furthermore, by utilising 

continuous processing in a simultaneous multicolumn chromatography (SMCC) 

method, it will be possible to use shorter column lengths and achieve increased 

throughputs by utilising the column capacity above the DBC. The effect of column 

length is examined in Section 6.2.4 and an SMCC process method is proposed in 

Section 6.2.5. 

While it is difficult to make detailed comparisons of the other resins, some 

observations can be made. Marathon A, Marathon A2 and Amberlite IRA-400 each 

reach a breakthrough point at around 5 min. The Marathon A and A2 resins are broadly 

similar resins but contain different anion exchanger types (A, type 1 anion exchanger; 

A2, type 2 anion exchanger). The Marathon A2 resin shows a steeper curve than 

Marathon A, reaching full capacity the soonest of all of the resins examined. This could 

be a result of the anion exchanger type, with type 2 anion exchangers exhibiting lower 

affinity for galacturonate. This is supported by work from the DOW Chemical 

Company that type 1 anion exchange resins have a greater affinity for weak acids than 

type 2 anion exchange resins [236]. 

Dowex 1x8 was selected for further development based on its apparent higher DBC, 

likely a result of its smaller particle size. Quantitative values of the DBC are measured 

in Section 6.2.3. 
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6.2.3 Quantification of dynamic binding capacities 

Having selected the Dowex 1x8 resin, a quantitative DBC was determined for the same 

column by overloading a 3 g column with the synthetic crude mixture (defined in 

Section 2.7.5) as described in Section 2.14.4. Fractions were then analysed by ICS to 

determine the GA concentration and the area of the combined neutral sugars peak as 

described in Section 2.14.4. DBC values were calculated using Equation 2-30 and 

Equation 2-31 in Section 2.14.4. 

Figure 6-2 shows the neutral sugars (given as the area of the combined neutral sugars 

peak) rapidly eluting in the initial fractions showing no effective retention on the 

column. No GA is detected until 38 min (190 mL), and the GA concentration reaches 

above 0.5 mg mL-1 (10% of the loading concentration) after 42 min (210 mL). This 

gives a DBC0% of 1.49 mmol g-1
resin and a DBC10% of 1.65 mmol g-1

resin.
 The resin 

reaches 100% breakthrough at 60 min (300 mL).  
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Figure 6-2: Breakthrough curve and elution profile of a synthetic crude mixture of 

D-galacturonic acid and neutral sugars on a Dowex 1x8 column in the acetate form. A 

column containing 3 g of Dowex 1x8 resin in the acetate form was used, packed as 

described in Section 2.14.1. The separation consisted of 4 steps: load (400 mL of synthetic 

crude mixture), wash (50 mL of deionised water), elute (100 mL of 200 mM NaOAc), and 

wash (50 mL of deionised water) detailed in Section 2.14.4. Fractions were collected every 

10 mL and analysed for GA concentration and the combined neutral sugar peak area as 

described in Section 2.14.4.  
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The loading step was stopped after 80 min (400 mL) and flushed with deionised water 

for 10 min (50 mL). It is clear that all of the residual neutral sugars and unbound GA 

were washed out within this time before the start of the elution step from 90 min (450 

mL). During the elution step, no neutral sugars were eluted, indicating that none was 

bound to the column. The GA was rapidly eluted, peaking at a concentration above 42 

g L-1. An important point to note here is that this method to isolate GA will only 

marginally dilute the neutral sugars (during the start of the load step and the wash 

step), but will allow for concentration of the GA.  

A batch process is thus proposed for the separation of neutral sugars and GA using this 

column and was found to give neutral sugars with no detectable GA in the collected 

load fraction, and GA with no detectable neutral sugars in the collected elution 

fraction: 

1. 38 min (190 mL) load step leading up to initial breakthrough of GA. 

2. 10 min (50 mL) wash step to flush all residual sugars from the load step. 

3. 25 min (125 mL) elution step with NaOAc to elute the GA. 

4. 10 min (50 mL) wash step to flush out all residual salts from the elution step. 

6.2.4 Effect of column length 

The column explored in Section 6.2.3 uses just 3 g of resin creating a very short bed 

length (1.8 cm, ~3.6 mL in the acetate form) in the XK16 column. A longer column 

using 14 g of resin was used to give a more representative operating condition as well 

as increase the capacity of the column for preparative separations. This gave a bed 

length of 8.5 cm and a column volume of 17 mL in the acetate form. The quantitative 

DBC experiment performed in Section 6.2.3 was repeated on the longer 14 g column 

with the same synthetic crude mixture (detailed in Section 2.14.2). The method is 

detailed in Section 2.14.4 and outlined as follows: 

1. Load for 325 min (1600 mL) 

2. Wash with water for 20 min (100 mL) 

3. Elution with 200 mM NaOAc for 50 min (250 mL) 

4. Wash with water for 20 min (100 mL). 
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To reduce the amount of ICS analysis required in order to assess the separation, the 

conductivity was used as a metric for comparison between the 3 g and the 14 g 

columns. Figure 6-3 shows the GA concentration on the 3 g column (from Figure 6-2) 

overlaid with the conductivity profile. The profile begins with an increase in 

conductivity to (0.24 mS cm-1) as GA exchanges with the acetate bound to the column 

which is consequently eluted. The trace then follows a similar rise as GA breakthrough 

begins and levels off (at 0.98 mS cm-1) once the column reaches saturation. The 

conductivity then drops with the GA concentration during the water wash step at 400 

mL. It is during the elution step where the conductivity profile begins to differ slightly 

from the GA concentration due to the use of NaOAc as an eluent. The conductivity 

rapidly increases as GA is eluted from the column and then doesn’t drop with GA 

concentration but, after a small step, begins to rise again and quickly levels off (at 13.5 

mS cm-1) as the NaOAc elutes from the column. The conductivity rapidly drops at the 

end of the profile as the final water wash step begins. It is clear from this comparison 

that the conductivity profile can be used to demonstrate the breakthrough curve and 

elution profile of GA. 

 

Figure 6-3: Comparison of D-galacturonic acid concentration and conductivity from a 

synthetic crude mixture applied to a Dowex 1x8 column in the acetate form. The column 

was packed with 3 g of resin as described in Section 2.14.1. The separation consisted of 4 

steps: load (400 mL of synthetic crude mixture), wash (50 mL of deionised water), elute 

(100 mL of 200 mM NaOAc), and wash (50 mL of deionised water) detailed in Section 

2.14.4. Fractions were collected every 10 mL and analysed for GA concentration, and the 

conductivity was measured online as described in Section 2.14.4. 
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The conductivity profile on a 14 g column is shown in Figure 6-4, with noise filtered 

out as described in Section 2.14.4. The profile is broadly similar to the conductivity 

profile on the 3 g column, with a clear breakthrough curve and more developed two-

step profile in the elution step.  
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Figure 6-4: Conductivity profile showing the breakthrough and elution of D-galacturonic 

acid from a synthetic crude mixture applied to a Dowex 1x8 column in the acetate form. 

Noise reduction was performed with a 21 point symmetric moving average as described 

in Section 2.14.4. The column was packed with 14 g of the resin as described in Section 

2.14.1. The separation consisted of 4 steps: load (1600 mL of synthetic crude mixture), 

wash (100 mL of deionised water), elute (250 mL of 200 mM NaOAc), and wash (100 mL 

of deionised water) detailed in Section 2.14.4. 

The breakthrough curve begins at approximately 944 mL, giving a DBC0% of 1.59 

mmol g-1
resin (1.31 mmol mL-1

resin). The 10% breakthrough volume can also be 

estimated, assuming a linear response between the conductivity and the GA elution. 

Prior to breakthrough is a conductivity of 0.24 mS.cm-1 and at 100% breakthrough is 

0.98 mS cm-1, therefore, 10% breakthrough correlates to a conductivity of 0.31, with 

a volume of 949 mL giving a DBC10% of 1.60 mmol g-1
resin (1.32 mmol mL-1

resin). 

For direct comparison, the conductivity method for determining the DBC should also 

be performed on the shorter 3 g column. This gives an initial breakthrough of 186 mL 

(37.2 min), giving a DBC0% of 1.46 mmol g-1
resin; and a 10% breakthrough volume of 
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197 mL (39.4 min), giving a DBC10% of 1.55 mmol g-1
resin. The results of these 

conductivity determined DBC values are given in Table 6-1. 

Table 6-1: Comparison of dynamic binding capacities and breakthrough curves for the 

binding of D-galacturonic acid on two columns of Dowex 1x8 in the acetate form at 

different lengths. Columns were packed as described in Section 2.14.1. Experiments were 

performed as described in Section 2.14.4 and values were determined using the 

conductivity profiles. 

Mass of resin 

(gresin) 

DBC0% 

(mmol g-1
resin) 

DBC10% 

(mmol g-1
resin) 

Breakthrough 

volume per mass of 

resin (mL g-1
resin) 

Breakthrough 

curve length 

(mL) 

3 1.46 1.55 62 127 

14 1.59 1.60 67 158 

The longer column appears to have a slightly higher DBC, considering an almost 5 

times longer column. Looking at the initial breakthrough volume per mass of resin, 

Table 6-1, shows a similar result with only a small increase in the breakthrough volume 

per mass of resin. Additionally, the length of the breakthrough curve is longer on the 

14 g column. The variations in both the breakthrough volume per mass of resin and 

the breakthrough curve length are small, considering an almost 5 times increase in 

resin mass, indicating that the effect could be associated purely with experimental 

error, such as a small change in feed concentration. A constant breakthrough curve 

length and a breakthrough volume proportional to the column length are important 

observations when selecting a column length for a large-scale batch system or for the 

design of a continuous process such as SMCC. 

Examining the elution step on the conductivity profile shows a much more defined 

stepwise profile than on the 3 g column. This is simply a result of the longer column 

length allowing the GA elution profile to fully develop before the elution begins to 

complete and acetate is eluted from the column. The required length of the elution step 

can be calculated on both columns from the start of the conductivity rise to the 

balancing out of conductivity during acetate elution. The 3 g column gives an elution 

volume of ~50 mL while the 14 g column gives an elution volume of 150 mL. It 

appears that the elution volume required per mass of resin decreases with increased 

resin mass (from ~17 mL g-1
resin on the 3 g column to ~11 mL g-1

resin on the 14 g 

column). However, due to the shortage in data points it is not possible to comment on 

the trend beyond 14 g, for example, if it tends towards a certain value with increasing 
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column length. It may be useful to add additional volume to the elution step, or an 

independent regeneration step, in order to ensure total regeneration of the column to 

the acetate form. 

Looking at the GA concentration of the fractions collected on the 3 g column gives an 

elution time of approximately 70 mL from the first to the last observed GA in the 

collected fractions, however, this may overstate the elution volume due to the 

relatively large fraction volume of 10 mL.  

It is thus possible to generate an idealised batch separation method for the 14 g column. 

The load step is more than 3 times as long as the remaining steps combined. There is 

therefore an obvious opportunity for the process to benefit from SMCC, further 

discussed in Section 6.2.5. 

1. Load step: 940 mL of feed 

2. Wash: 50 mL water 

3. Elution: 150 mL 200 mM NaOAc 

4. Regeneration: 50 mL 200 mM NaOAc 

5. Wash: 50 mL water 

6.2.5 Proposed SMCC process 

A possible SMCC operation is proposed in Table 6-2 with the 14 g column split into 

4 smaller (3.5g) columns, with 1 undergoing the first wash, elution, regeneration and 

second wash steps; and the other 3 in the load step. 
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Table 6-2: A proposed simulated multicolumn chromatography setup with a four step 

cycle consisting of 4 columns.  

Cycle Step Column1 Column2 Column3 Column4 

Step 

volume 

(mL) 

Cycle1 Step1 Load1 Load2 Load3 Wash 50 

Cycle1 Step2 Load1 Load2 Load3 Elute 59.5 

Cycle1 Step3 Load1 Load2 Load3 Regenerate 50 

Cycle1 Step4 Load1 Load2 Load3 Wash 75.5 

Cycle2 Step1 Wash Load1 Load2 Load3 50 

Cycle2 Step2 Elute Load1 Load2 Load3 59.5 

Cycle2 Step3 Regenerate Load1 Load2 Load3 50 

Cycle2 Step4 Wash Load1 Load2 Load3 75.5 

Cycle3 Step1 Load3 Wash Load1 Load2 50 

Cycle3 Step2 Load3 Elute Load1 Load2 59.5 

Cycle3 Step3 Load3 Regenerate Load1 Load2 50 

Cycle3 Step4 Load3 Wash Load1 Load2 75.5 

Cycle4 Step1 Load2 Load3 Wash Load1 50 

Cycle4 Step2 Load2 Load3 Elute Load1 59.5 

Cycle4 Step3 Load2 Load3 Regenerate Load1 50 

Cycle4 Step4 Load2 Load3 Wash Load1 75.5 

As only 3 of the columns are in the load step, the step is reduced by a quarter from 940 

to 705 mL, which gives a cycle volume of 235 mL between column switches. Keeping 

the wash and regeneration steps as 50 mL and reducing the elution step from 11 mL 

g-1
resin to 17 mL g-1

resin (as in the 3 g column) gives an elution volume of 59.5 mL and 

a total cycle volume of 209.5 mL. The second wash step was therefore increased from 

50 mL to 75.5 mL to maintain the volumetric flow rate across all steps, giving a cycle 

volume of 235 mL, equal to the column switch time volume. 

The SMCC process effectively allows for a higher proportion of the resin to be active 

in the separation of the neutral sugars from GA. In the batch process, the throughput 

is 940 mL of feed for every 248 min (3.8 mL min-1). In the proposed SMCC process, 

the throughput is 940 mL of feed for every 188 min (5 mL min-1) as the feed is always 

being loaded onto some of the columns. 

The SMCC process can theoretically be improved further by using the length of the 

mass transfer zone (the breakthrough curve volume) to determine the column length. 

This allows for the use of 3 columns, reducing the required resin volume, with one 
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becoming saturated, one containing the breakthrough curve and one undergoing the 

wash, elution and regeneration steps. 

6.3 Crude pretreatment 

6.3.1 Crude D-galacturonic acid isolation 

The isolation of GA from the crude hydrolysate was examined using the 14 g Dowex 

1x8 column in the acetate form described in Section 6.2.4. No pretreatment was 

performed prior to the separation with the crude hydrolysate loaded directly onto the 

column using the method outlined in Section 2.14.5. By loading 350 mL of crude onto 

the column there was no apparent binding of the GA which eluted in the load step. 

Furthermore, a portion of the coloured compounds bound to the column. It is possible 

that the coloured compounds have a higher selectivity for the resin than the GA and so 

preferentially exchange. Washing the column sequentially with 2 M NaCl and 1 M 

NaOH reduced the colouration on the resin, exchanging to Cl- and OH- respectively, 

however, some colour remained on the resin, indicating permanent adsorption. Smaller 

load steps of 10 mL also resulted in no GA binding onto the column. It is clear that 

some form of pretreatment is required in order for the D-galacturonic acid isolation 

method developed in Section 6.2 to be successful when separating the crude 

hydrolysate. The next sections examine pretreatment methods for the decolourisation 

of the crude in order to allow for further processing to recover the GA and neutral 

sugars via anion exchange and simulated moving bed chromatography respectively. 

6.3.2 Resin decolourisation 

Resins are routinely used for decolourisation of crude feedstocks, generally as 

alternatives to activated carbon as they can be more easily regenerated. They tend also 

tend to be ion exchange resins, operating based on reversible exchange onto the resin. 

Various ion exchange resins (both anion and cation) were explored in batch 

experiments (described in Section 2.15.1) to determine their decolourisation 

performance. The Cl- form was used as it has been shown in Section 2.14 to not allow 

exchange of GA. 
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Figure 6-5 shows the UV profiles of the crude before and after pretreatment with a 

range of different resins. There are clear differences in the effectiveness of the different 

resins at removing the UV absorbing compounds. However, they tend to show a 

similar profile, absorbing similar proportions across the range 230-400 nm (as shown 

in Figure 6-6). The mean average value across the range 230-400 nm appears to be 

representative of the UV absorption and so was used for numerical observations. The 

UV range is shown as it was difficult to get quantifiable data in the visible range, 

however, the reductions in the UV absorbance correlated with a visible reduction in 

colouration. The level of decolourisation was calculated as described in Section 2.15.1.  
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Figure 6-5: Decolourisation of crude hydrolysate using different resins. Decolourisation 

was performed with a resin loading of 200 mg mL-1 of resin and a contact time of 16 

hours as described in Section 2.15.1. UV analysis was performed as described in Section 

2.15.1. 
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Figure 6-6: Decolourisation of crude hydrolysate at different wavelengths using different 

resins. Decolourisation was performed with a resin loading of 200 mg mL-1 of resin and 

a contact time of 16 hours as described in Section 2.15.1. UV analysis was performed as 

described in Section 2.15.1. 

Figure 6-5 also shows the UV profile of the synthetic crude mixture. The profile is 

much lower than the crude indicating that the UV profile is caused by other compounds 

in the crude and not by the sugars, which have very little UV absorbance. 

While it is clear that Marathon MSA facilitates the highest decolourisation, it is 

necessary to look at whether there is any loss of sugars during the pretreatment step. 

Figure 6-7 shows the decrease in concentration of each sugar and the level of 

decolourisation across the 230-400 nm range. It can be seen that the concentration of 

all the sugars decreases, generally less than 15%. This effect is unlikely to be an ion 

exchange one, particularly as the only ionic sugar (GA) has similar decreases to the 

neutral sugars, and appears to be equally affected by the cation exchange resin 

(Marathon C). It could be a simple hydrophilic interaction with the resin or some effect 

caused by the resin hydration, as the resins were not hydrated prior to use. 

Furthermore, it was seen in Section 6.2.1 that neutral sugars and GA eluted 

immediately from the Dowex 1x8 resin in the Cl- form in a column setup. As such it 

was assumed that the concentration decrease for the sugars was insignificant and the 

Marathon MSA resin was selected based on its superior decolourisation. 
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Figure 6-7: Decrease in colour and sugar concentrations of crude hydrolysate after 

decolourisation with different resins. Decolourisation was performed with a resin loading 

of 200 mg mL-1 of resin and a contact time of 16 hours as described in Section 2.15.1. UV 

analysis was performed as described in Section 2.15.1. Sugar concentrations were 

calculated using ICS for both GA and neutral sugars as described in Section 2.8.3. 

Next, the kinetics of the decolourisation step were examined and the UV profiles are 

shown in Figure 6-8. The rate of change slows dramatically from 40-90 min, however, 

it does not reach zero and the decolourisation continues such that at 960 min 

(overnight), it is significantly further reduced (see Figure 6-9). The reasons for this are 

unclear, however, it shows that, a long contact time may be necessary to maximise the 

decolourisation and the kinetics will be an important factor in any process design. In 

addition, the concentration of sugars was found not to be affected by the contact time, 

further demonstrating that the variation in concentration may not be a binding effect. 
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Figure 6-8: Decolourisation of crude hydrolysate using Marathon MSA resin at different 

contact times. Decolourisation was performed with a resin loading of 200 mg mL-1 and 

varying the contact time as described in Section 2.15.1. UV analysis was performed as 

described in Section 2.15.1. 
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Figure 6-9: Effect of contact time on the average level of crude hydrolysate 

decolourisation performed with a Marathon MSA resin. Decolourisation was performed 

on the Marathon MSA resin with a loading of 200 mg mL-1 and varying the contact time 

as described in Section 2.15.1. UV analysis was performed as described in Section 2.15.1. 
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Subsequently, the impact of resin loading was examined to ascertain the maximum 

decolourisation achievable. Figure 6-10 shows the UV traces of increasing resin 

loading relative to the original crude, while Figure 6-11 shows the tailing off of the 

level of decolourisation at approximately 90%.  
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Figure 6-10: Decolourisation of crude hydrolysate using Marathon MSA resin at 

different resin loadings. Decolourisation was performed on the Marathon MSA resin 

with a varying resin loading and a contact time of 16 hours as described in Section 2.15.1. 

UV analysis was performed as described in Section 2.15.1. 
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Figure 6-11: Effect of resin loading on the decolourisation and decrease in sugar 

concentrations. Decolourisation was performed on the crude hydrolysate using the 

Marathon MSA resin with a varying resin loading and a contact time of 16 hours as 

described in Section 2.15.1. UV analysis was performed as described in Section 2.15.1.  
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The percentage decrease in sugar concentration for each sugar in the supernatant are 

also shown in Figure 6-11. The trends show a steady linear increase in losses for all 

sugars, with higher loadings resulting in a reduced sugar concentration. The constant 

rate between all sugars helps to further justify that the effect may be non-binding, and 

could be a dilution or hydration effect caused by the resin and indicates that the effect 

would unlikely be of importance in a column format. 

The results show that the Marathon MSA resin could be an effective method for 

decolourising the crude up to 90%, however this may require long contact times and 

large amounts of resin. Further work needs to focus on column experiments for 

decolourisation to demonstrate the decolourisation effect; impact of the sugar 

‘binding’ in column runs; and effectiveness of column regeneration. In the next 

section, the possibility of using activated carbon was examined for decolourisation of 

the crude.  

6.3.3 Activated carbon decolourisation 

Activated carbon is an effective decolourising agent and capable of the adsorption of 

a wide range of compounds (Section 1.3.2). They are widely used in water purification 

for industrial wastewaters and drinking water [139] and have been used for the 

decolourisation of sugar liquors [143], indicating that they are capable of removing 

contaminating compounds without significant adsorption of the sugars Batch activated 

carbon decolourisation of the crude hydrolysate was explored based on the colour 

removal and the changes in sugar concentration and compared with the resins 

examined in Section 6.3.2 

Figure 6-12 shows the effect of activated carbon on the overnight decolourisation 

compared with the original crude hydrolysate, the synthetic crude mixture and the 

Marathon MSA resin from Section 6.3.2. Activated carbon decolourisation was 

performed as described in Section 2.15.1. The effect of activated carbon loading was 

also examined. At a loading of 20 mg mL-1, the activated carbon performance is similar 

to that of the Marathon MSA resin at a loading of 200 mg mL-1). At equal loading (200 

mg mL-1), the activated carbon shows superior decolourisation with the UV profile 

similar to that of the synthetic crude mixture. 
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Figure 6-12: Decolourisation of crude hydrolysate with different decolourising agents 

and loadings. Decolourisation was performed with activated carbon at loadings of 20 and 

200 mg mL-1, and Marathon MSA at 200 mg mL-1, as described in Section 2.15.1 with a 

contact time of 16 hours. The UV profile of a synthetic crude mixture is shown for 

comparison. Decolourisation experiments were performed with a contact time of 16 

hours as described in Section 2.15.1. UV analysis was performed as described in Section 

2.15.1. 

Figure 6-13 shows the decreases in sugar concentrations and levels of decolourisation 

of activated carbon decolourisation at the two loadings, alongside the values for 

Marathon MSA decolourisation, from Figure 6-7. At the higher loading there is a clear 

adsorption of the neutral sugars, although interestingly not of GA. At the lower 

loading, only Ara is adsorbed, with a 28% decrease in concentration. This is higher 

than the values observed in Marathon MSA. At this low loading, the other sugars 

appear to show a small increase in sugar concentration. It is possible that there is some 

exclusion of the sugars while the water hydrates the activated carbon, and it has a 

specific adsorption for L-arabinose. These activated carbon experiments were 

equilibrated overnight although visual observations show the decolourisation 

occurring within minutes.  
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Figure 6-13: Effect of different decolourising agents and loadings on the decolourisation 

and decrease in sugar concentrations. Decolourisation was performed on the crude 

hydrolysate with activated carbon at loadings of 20 and 200 mg mL-1, and Marathon 

MSA resin at 200 mg mL-1, as described in Section 2.15.1, with a contact time of 16 hours. 

UV analysis was performed as described in Section 2.15.1. Sugar concentrations were 

calculated using ICS for both GA and neutral sugars as described in Section 2.8.3. 

Negative values indicate an apparent increase in sugar concentration. 

Using an intermediate activated carbon loading of 100 mg mL-1 and a reduced contact 

time of 10 min gives an average decolourisation (230-400 nm) of 97%, identical to the 

200 mg mL-1 loading. Additionally, the Ara concentration is only reduced by ~15%, 

lower than either loading on the overnight experiments, while the other sugars have 

very little change in concentration. This indicates that the kinetics of decolourisation 

is fast, occurring completely in 10 min to a maximum of 97%, and the adsorption of 

sugars is much slower. 

It is clear that optimisation is possible and it is likely possible to perform the 

decolourisation with less reduction of L-arabinose concentration. Additionally to the 

loading and contact time, it may be useful to look at the effects of temperature and pH 

on the level of decolourisation and sugar concentrations. The 10% activated carbon 

loading with a contact time of 10 min was used for scale-up experiments in Section 

6.3.4. 

6.3.4 Scaling up activated carbon decolourisation 

Scaling up the 10% activated carbon loading and 10 min contact time from 100 mg of 

activated carbon with 1 mL of crude to 5g of activated carbon with 50 mL of crude 
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was performed as described in Section 2.15.2. The scale-up yielded similar results, 

with 96% decolourisation, a decrease in Ara concentration of 14%, and negligible 

changes in the concentrations of the other sugars. Figure 6-14 shows the visual effect 

of decolourisation from the crude on the left to the decolourised sample on the right. 

This decolourised crude hydrolysate was used for GA isolation experiments with 

decolourised crude hydrolysate in Section 6.3.5. 

 

Figure 6-14: Visual comparison of the crude hydrolysate (left) and the decolourised 

crude hydrolysate (right). Decolourisation was performed as described in Section 2.15.2. 

6.3.5 D-galacturonic acid isolation using decolourised crude hydrolysate 

The decolourised crude hydrolysate prepared in Section 6.3.4 was then used for GA 

isolation experiments on a 14 g Dowex 1x8 column in the acetate form as described in 

Section 2.15.3. Initially, 350 mL of the decolourised crude hydrolysate was loaded 

onto the column, but resulted in no binding of the GA to the column, with both neutral 

sugars and GA eluting in the loading step, including in the first 50 mL fraction.  

Next, a much smaller, 10 mL injection was attempted. This resulted in approximately 

55% of the GA being bound to the column and eluted in the elution step, with the 

remaining 45% eluting in the loading step with the neutral sugars. Reducing the 

injection volume further to 5 mL resulted in 79% of the GA bound to the column and 

eluted in the elution step, while for a 1 mL injection, the value rose to 88%. In both 

instances 100% of the neutral sugars eluted in the load step. In order to verify the lack 

of GA binding was caused by the decolourised crude hydrolysate and not some damage 

to the column, a 10 mL synthetic crude mixture sample (described in Section 2.7.5) 

was injected and resulted in complete binding of the GA, and elution in the elution 

step.  
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After the loading of multiple decolourised crude hydrolysate samples onto the column, 

a small section at the top of the column began to darken. This could be a result of the 

incomplete decolourisation, with the remaining coloured compounds binding to the 

column. It is noted that some additional column cleaning may be necessary for 

processing large volumes of decolourised crude hydrolysate. 

The problem with the GA not binding, particularly for larger sample volumes could be 

to do with the presence of other salts in the crude. The acid hydrolysis with H2SO4 and 

subsequent neutralisation with NaOH will result in the presence of Na+ and SO4
2- ions. 

These salts are unlikely to be removed by the activated carbon pretreatment and the 

sulphate ions could be binding to the anion exchange column more selectively than the 

GA. The sulphate anion is reported to have a selectivity coefficient of 85 on type 1 

anion exchangers, demonstrating that it is much more selective than the chloride anion 

(22) and the acetate anion (3.2) [164]. Given that GA was found to not bind to anion 

exchangers in the chloride form but could bind in the acetate form and be eluted with 

NaOAc indicates a selectivity coefficient somewhere around 3.2. It is therefore likely 

that the sulphate ions present in the decolourised crude hydrolysate, with a selectivity 

coefficient of 85, preferentially bind to the column and readily exchange with any GA 

that does bind. 

Comparing the conductivities of the synthetic crude mixture, crude hydrolysate and 

decolourised crude hydrolysate (Table 6-3) can help to indicate the quantity of salts in 

the samples. It was found that the crude hydrolysate had a significantly higher 

conductivity than the synthetic crude mixture and that the decolourisation process with 

activated carbon did not affect the conductivity. This indicates that the coloured 

compounds removed in the decolourisation process are non-ionic, or have low relative 

conductivities. 
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Table 6-3: Conductivities of different samples. The decolourised crude hydrolysate was 

prepared as described in Section 2.15.2. The synthetic crude mixture was a solution of 

GA, Ara, Rha and Gal (5, 13, 1, 3 g L-1 respectively). Conductivity was determined as 

described in Section 2.8.4. 

Sample 
Conductivity  

(mS cm-1) 

Synthetic crude mixture 1.0 

Crude hydrolysate 45.3 

Decolourised crude hydrolysate 45.3 

It is likely that the presence of these additional salts is prohibiting the binding of GA 

to the anion exchange column in the acetate form. As a result, it may be necessary to 

find an alternative method to isolate the GA and neutral sugars. For example, it may 

be possible to completely demineralise the decolourised crude hydrolysate through a 

two-step series of cation and anion exchange resins in the H+ and OH- forms 

respectively, and collecting the mixture of neutral sugars for SMB operation. It may 

then be possible to isolate the GA from the anion exchange column in a gradient or 

sequential stepwise elution method.  

The pretreatment methods discussed in this chapter could also be of benefit to the crude 

CPC separations in Chapter 4. For example, decolourisation using activated carbon 

could allow for an increased sample load without affecting separation performance. 

Furthermore, if an effective demineralisation method could be found, it could allow 

for more flexibility in the CPC sample preparation, allowing for increases in sample 

concentration, separation performance and throughput. 

6.3.6 SMB separations with synthetic GA removed 

Although it was not possible to isolate the GA using the decolourised crude 

hydrolysate with this method, the impact of successful GA isolation on the 

performance of SMB separation of the neutral sugars (described in Chapter 5) was 

studied. Experiment 8 in Chapter 5 (Section 5.4.3) was repeated with a synthetic crude 

mixture that had been passed through the 14 g anion exchange column (from Section 

6.2.4) to remove the GA from the remaining neutral sugars. 5 mM Ca2+ ions, in the 

form of calcium (CaCl2) was added to the desorbent in order to compensate for the 

presence of any H+ or Na+ ions present in the feed as a result of the anion exchange, 

GA removal step. All other conditions were kept identical. This method resulted in a 
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93% Ara purity in the extract with a recovery of 99%, comparable with the synthetic 

neutral mixture performed in Section 5.4.3 (Table 5-25).  

These results show that the GA removal is a viable option prior to the SMB neutral 

sugars separations proposed in Chapter 5. It may also not be necessary to add CaCl2 to 

the desorbent if the neutral sugars solution is demineralised by passing through a cation 

exchange column in the H+ form and an anion exchange column in the OH- form. 

Furthermore, if the correct pretreatment methods can be found, this sequential anion 

exchange chromatography and SMB method could be an effective, high throughput 

and scalable separation path for the isolation of monosaccharides from an SBP 

hydrolysate. 

6.4 Chapter summary 

This chapter demonstrates the effectiveness of anion exchange resins for the isolation 

of D-galacturonic acid from a synthetic crude mixture. The isolation of L-arabinose 

from the remaining neutral sugars using simulated moving bed chromatography was 

also shown to be successful. Decolourisation methods were explored in order to move 

from processing synthetic crude mixtures to real crude hydrolysed sugar beet pulp. 

The aim of this chapter was to develop a method of isolating D-galacturonic acid from 

a synthetic crude mixture and develop pretreatment methods to move towards 

complete processing of the crude hydrolysate. 

The main conclusions of this chapter are: 

• Anion exchange resins in the acetate form are highly effective at binding 

D-galacturonic acid with no retention of the neutral sugars in synthetic crude 

mixtures. The bound D-galacturonic acid can be readily eluted with sodium 

acetate. 

• A Dowex 1x8 resin was selected and resulted in a dynamic binding capacity 

for D-galacturonic acid of 1.59 mmol g-1
resin (Figure 6-2). This allows 944 mL 

of a synthetic crude mixture to be loaded onto a 14 g column with complete 

separation of the D-galacturonic acid from the neutral sugars (Figure 6-4). 
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• The method developed for synthetic crude mixtures did not translate to the 

isolation of D-galacturonic acid from the crude hydrolysate, thus some 

pretreatment method was sought. 

• Activated carbon was found to be much more effective at decolourisation than 

resins but may result in larger irretrievable sugar losses than resins (Figure 

6-13). An activated carbon treatment of 100 mg of activated carbon per mL of 

crude and a contact time of 10 min was capable of 97% decolourisation with a 

15% loss of Ara and was scalable up to 50 mL of crude in a single batch. 

• While decolourisation reduced the amount of irreversible binding to the 

column, it failed to allow for isolation of the D-galacturonic acid. This could 

be related to the high levels of other salts present in the crude and decolourised 

crude hydrolysate. 

• L-arabinose can successfully be isolated from the remaining neutral sugars 

after removal of the D-galacturonic acid from a synthetic crude mixture using 

the simulated moving bed method developed in Chapter 5. 

In the final chapter the SMB approach proposed in Chapter 5 and Chapter 6 will be 

compared to CPC separation from Chapter 3 and Chapter 4. Overall conclusions of 

this thesis will be presented along with proposals for future work. 
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 Conclusions and future work 

7.1 Overall conclusions 

The overall aim of this thesis was to establish novel scalable separation pathways for 

the isolation of the component monosaccharides from crude hydrolysed sugar beet 

pulp pectin (Section 1.7). Two possible process routes have been developed, both of 

which show the potential for the isolation of monosaccharides from SBP pectin 

hydrolysates within an integrated, whole crop biorefinery. The first, utilising CPC to 

separate the sugars from the crude hydrolysate in a single step process was described 

in Chapter 4, with phase system development in Chapter 3. The second involved 

utilising SMB to isolate L-arabinose from neutral sugars (Chapter 5), with ion 

exchange chromatography to isolate the D-galacturonic acid (Section 6.2) but required 

pretreatment of the crude hydrolysate steps prior to the separations (Section 6.3). An 

overview of the two process paths is shown in Figure 7-1. 
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Figure 7-1: Overview of the two process paths established in this thesis. This figure also 

illustrates the isolated sugar beet pectin fractions obtained from each path. 

 

Chapter 3 examined possible two-phase systems for the separation of a model synthetic 

mixture of sugars using a novel CPC approach. Pure solvent based phase systems and 

ion exchange phase systems were ruled out due to poor partition coefficients and 

extreme settling times respectively. Alcohol-salt phase systems provided promising 

partition coefficients and were studied in detail, primarily focussed on ethanol : 

aqueous ammonium sulphate two-phase systems with various modifiers. The highly 

polar phase system ethanol : DMSO : aqueous ammonium sulphate (300 g L-1) 

(0.8:0.1:1.8 v:v:v) was selected for CPC separations (phase system XV in Table 3-3) 

and gave a stationary phase retention of 57% with a rotational speed of 1000 rpm and 

8 mL min-1 in the ascending mode (Figure 3-5). Using these conditions, a model 

synthetic mixture of Rha, Ara, Gal and GA was separated into three fractions with high 

purity: Rha (>90%); Ara (76%) and Gal; and GA (>90%) (Figure 3-8). 
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Chapter 4 modified the CPC method developed in Chapter 3 to the processing of a 

crude SBP hydrolysate and scale-up of the separation. DMSO was removed from the 

phase system as it was shown to have only a minor impact on separation performance 

(Table 4-2) and complicates further processing. The crude sample was prepared in the 

stationary phase (LP) to allow for full solubilisation of the sample and showed 

improved separation performance to the model synthetic mixture (Figure 4-5) while 

simultaneously removing the coloured contaminants in an early elution fraction. 

Throughput maximisation was achieved by increasing the sample volume from 4 to 

16% of the column volume (Figure 4-10) and applying the elution-extrusion mode 

(Section 4.6) to extrude the final GA fraction and regenerate the column (Figure 4-11). 

Linear scale-up of the sample injection volume and flow rate based on the column 

volume allowed for comparable separation performance and a final throughput of 1.9 

g L-1
column h

-1 of monosaccharides and 9.4 g L-1
column h

-1 of total dissolved solids. Ara 

was purified to 94% purity with a recovery of 98% while GA was purified to 96% 

purity with a recovery of 95% from the crude SBP hydrolysate (Section 4.7). 

Having established the feasibility of CPC as a novel technology for the isolation of 

monosaccharides from crude hydrolysates, Chapter 5 demonstrated SMB 

chromatography, an existing technology used in industrial sugar separations, as a 

potential method for purifying Ara from a synthetic neutral mixture of sugars (Ara, 

Gal and Rha). A number of different resins, ionic forms and operating conditions were 

examined in a batch column format. After these initial results a Dowex 50W X8 resin 

in the Ca2+ form at 50°C was selected for SMB experiments based on the selectivities 

and the peak shapes. Selectivities to Ara of 1.57 and 1.58 were found for Rha and Gal 

respectively. An equilibrium theory SMB model was used to determine initial SMB 

operating conditions with 8 columns (Section 5.4.1). A 4-zone, closed-loop SMB 

(Section 5.4.2) purified Ara to 95-98% purity with 71-48% recovery in the extract and 

feed flow rates of 2-3 mL min-1 (Table 5-21) giving throughputs of 9.1-13.7 g L-1
resin 

h-1. A 3-zone, open-loop SMB (Section 5.4.3) purified Ara to 94% purity with 99% 

recovery and a feed flow rate of 1 mL min-1, giving a total throughput of 4.6 g L-1
resin 

h-1 (Table 5-25). 

Finally, Chapter 6 examined methods for isolating GA from neutral sugars in a 

synthetic crude mixture. Anion exchangers in the acetate form were found to allow 
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binding of GA and simple elution with sodium acetate while not interacting with the 

neutral sugars (Section 6.2.1). Anion exchange resins were then screened for the 

qualitative binding capacity of GA and Dowex 1x8 was selected. The quantitative 

dynamic binding capacity was determined to be 1.59 mmol g-1
resin (Figure 6-2) 

allowing 944 mL of the synthetic crude mixture to pass through a 14 g column and 

fully separate the neutral sugars and GA (Figure 6-4).  

Chapter 6 also examined crude pretreatment methods in order to allow for crude 

hydrolysate processing of the GA anion exchange isolation and SMB purification of 

neutral sugars steps. Various resins and activated carbon were examined for their 

decolourising ability and the impact they had on sugar concentrations. Marathon MSA 

was found to be capable of 83% decolourisation with minimal sugar losses; however, 

long contact times were required. Activated carbon was found to be capable of more 

effective and rapid decolourisation (97% in 10 min), however, 15% of the Ara was 

irretrievably lost. While a large amount of the coloured contaminants were removed 

in this decolourised crude hydrolysate, it did not allow for subsequent GA isolation 

and additional pretreatment may be required. After the removal of GA from a synthetic 

crude mixture using anion exchange, the remaining neutral sugars were run on an SMB 

with comparable performance to the synthetic neutral mixture used in Chapter 5, 

indicating that the SMB separation performance is not affected by the anion exchange 

step. 

The most direct comparisons of these processes would be to a batch chromatography 

system for SMB, and a liquid-liquid extractor such as a Podbielniak contactor for the 

CPC. Batch chromatography does not look practical for these monosaccharide 

separations due to the poor separation efficiency and resolutions achieved in Section 

5.2. To compete with the throughput of SMB (4.6 g L-1 h-1), a single 20 mL column 

(as in Section 5.2)) would be required to process 92 mg h-1. Assuming a run time of 

10 minutes, the mass loading required becomes 15.3 mg per injection (or ~0.9 mL at 

the feed concentration used for SMB). The chromatograms in Section 5.2 show the 

separation performance based on sample injections of 0.1 mL is poor, indicating that 

purities and recoveries would be far from those achieved in SMB even with a much 

reduced sample volume. While adjusting the column geometry may provide improved 
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separation performance, it is unlikely that it would be able to overcome the 

shortcomings in purity, recovery and throughput when operated in batch mode.  

Countercurrent extractors such as the Podbielniak contactor may be a useful addition 

to the process but are unlikely to be able to compete with CPC as they act as a 

traditional liquid-liquid extraction process. The difficulties associated with the highly 

hydrophilic nature of the target monosaccharides make an extraction of targets into 

different phases difficult except as a potential prepurification step to remove less 

hydrophilic impurities from the crude. 

With over 8 million tonnes of sugar beet grown in the UK each year, giving 

approximately 448,000 tonnes of dried sugar beet pulp [237], supply of SBP would 

likely outstrip the demand for value added products . Processing 1 % of the dried SBP 

would give a total of 4,480 tonnes per year, or 13.6 tonnes per day based on a 330 day 

operating year. Ignoring the impact of any pre-processing, estimates were made for the 

operating scales required to process 13.6 tonnes of dried sugar beet pulp per day. 

Based on a total monosaccharides throughput of 4.6 g L-1
resin h

-1 for a 3-zone SMB 

from Chapter 5, 1 tonne per day would require a total volume of ~9 m3 (~1.1 m3 per 

column). To reach an operating throughput of 13.6 tonnes per day would thus require 

a total volume of ~123 m3 (15.4 m3 per column). While SMB is almost unhindered by 

scale considerations, the current generation of CPC machines have a maximum 

working volume of 50 L [238]. Working with a total dissolved solids throughput of 

9.4 g L-1 h-1 (Chapter 4) would give a total throughput of ~11.3 kg per day. To process 

13.6 tonnes per day would thus require ~1206 machines. While this ignores any 

potential benefits that may be achieved by scaling up further to these machines 

(Appendix B), it is clear that with the current generation of CPC machines, a fleet of 

machines would be required in order to process this quantity of material reducing the 

practicality relative to SMB.  

However, if a smaller amount of material was required, CPC may become more 

desirable. To match the throughput of a single 50 L CPC a much smaller SMB would 

be required (~12.7 L per column), however, the operational complexities of operating 
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an SMB would remain and may make the process less favourable at a smaller scale. 

Therefore, CPC may prove to be a simpler and more robust option at smaller scales. 

Process purities are also an important factor to consider. Current generation CPC may 

struggle to dramatically increase the purity of Ara from 84% to >95% without 

compromising on process throughput. SMB on the other hand could conceivably 

purify Ara to >99% purity with additional optimisation and without applying 

significant constraints to throughput. As a result, the purity requirements of further 

processes would play a major role in process selection and SMB may be able to 

provide higher purities.  

In summary, both CPC and SMB have been established as potential scalable separation 

methods for the isolation of monosaccharides from crude hydrolysates in a biorefinery 

context. CPC has been developed as a novel separation technology for preparative 

biorefinery separations and has been shown to allow separation of the crude 

hydrolysate in a single step, isolating multiple fractions to high purity. However, 

additional aspects still need to be considered such as additional scale-up to industrial 

scales, as well as potential limits to scalability, and phase system recycling. On the 

other hand, SMB is a more established technology for large scale separations with 

potential for high throughput, high purity separations and has fewer scalability 

problems. However, SMB is operationally complex and requires a multistep process, 

with pretreatment and isolation of the D-galacturonic acid prior to SMB separation, 

and further work is needed on these aspects to establish a complete crude processing 

option.  

7.2 Future work 

7.2.1 CPC separations 

The CPC method developed in Chapter 3 and Chapter 4 allows for direct separation of 

the crude hydrolysate with no prior pretreatment or additional processing. However, 

while the final sugar fractions are isolated from the coloured contaminants, they 

contain ethanol and ammonium sulphate from the phase system. The extrusion step, 

used to rapidly elute the GA fraction, uses a higher concentration of ammonium 

sulphate, but a lower concentration of ethanol. Future work will need to examine 
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methods for demineralisation of the collected fractions to remove the ammonium 

sulphate and drying to remove the ethanol. Demineralisation could be performed by 

passing the fractions through a sequence of anion and cation exchange columns (in the 

OH- and H+ forms respectively) [142][239]. GA would likely bind to any 

demineralisation column (as seen by the anion exchange behaviour in Chapter 6) and 

so may require selective elution to obtain a pure GA sample. These demineralisation 

problems would also be an issue for both fractions of the GA isolation: the neutral 

sugars fraction, containing acetate exchanged off the column; and the GA, containing 

acetate from the elution step.  

During the demineralisation steps, particularly for the CPC fractions, it may be 

possible to recover a large proportion of the ammonium sulphate during regeneration 

of the demineralisation columns, however, the presence of any other salts in the crude 

may complicate this. Recovery of the ethanol may also be possible during the drying 

steps, particularly due to the presence of existing bioethanol facilities at sugar beet 

refineries such Wissington. 

7.2.2 CPC Scale-up 

CPC scale-up has been demonstrated successfully in Chapter 4 without detriment to 

separation performance. However, the scale-up was performed on similar size 

equipment with a similar rotor geometry. In order to scale-up significantly from here, 

larger equipment can adopt new rotor geometries, allowing for retention of the 

stationary phase without significant increases in hydrostatic pressure. Appendix B 

contains a preliminary experimental study on the scale up of a model synthetic mixture 

to a 2 L RotaChrom CPC which is capable of operating 50 L columns. Additional 

development of the method will be required in transferring to this new type of 

equipment. In a more general sense, further scale-up of CPC is dependent on 

innovations by equipment manufacturers for industrial scale machines, which are 

beginning to enter the market. 

7.2.3 SMB optimisation 

In Chapter 5, the equilibrium theory model did not accurately predict the SMB 

separation results (Table 5-13), with all of the compounds eluting in the extract, and 
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optimisation was performed purely experimentally. Future work should focus on 

understanding why the equilibrium theory model failed, such that it could be used for 

additional optimisation and developing scale up models. Further experimental 

optimisation could also be performed, aimed at further improving Ara purity or 

recovery, or feed flow rates in both the 4-zone, closed loop SMB and the 3-zone open 

loop SMB. 

Furthermore, longer columns could be explored for the SMB using the Monosphere 

99 Ca/320 resin. Longer columns provide higher Stanton numbers which reduce peak 

tailing, which could allow the superior retention factors of this resin to be effective. 

However, this may be hardware limited, as longer columns would require increased 

flow rates, and the SMB pumps are limited to a maximum of 12 mL min-1.  

In addition, when scaling up, it may be necessary to use a column with a larger mesh 

size (such as the Dowex 50W X8 resin at 16-50 mesh, or the Monosphere 99 Ca/320 

resin) in order to prevent excessive backpressure in an SMB system. The long term 

effects on the resin lifetime and separation performance should also be examined. 

7.2.4 Sequential multicolumn chromatography 

In Chapter 7 a sequential multicolumn chromatography process is proposed for the 

continuous isolation of GA from neutral sugars and should be tested experimentally. 

It could also be further improved by reducing the number of columns from 4 to 3 by 

utilising the length of the mass transfer zone in the column length, reducing the amount 

of resin required. 

7.2.5  Decolourisation 

In Chapter 7 it was shown that activated carbon was highly effective at rapidly 

decolourising the crude hydrolysate, but did remove 15% of the Ara. Future work 

could look at alternative activated carbons, and the effects of temperature and pH as 

well as additional studies into the carbon loading and contact time in order to reduce 

the losses of Ara. While decolourisation was not examined at volumes higher than 50 

mL of crude per batch, suitable scale-up methods may also need to be examined to 

increase the scale further. 
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Resins may be beneficial due to their simple regeneration and it may be useful to use 

multiple resins in series to improve the decolourisation, however, the required contact 

time was the primary issue and would need to be dramatically improved for resin 

decolourisation to be feasible. Additionally, resin lifetime and reductions in capacity 

would need to be examined. 

7.2.6 Additional pretreatment and crude processing 

It was also seen in Chapter 7 that the GA isolation method using anion exchange 

chromatography was not successfully transferred from the synthetic crude mixture to 

the decolourised crude hydrolysate. Future work should focus on additional 

pretreatment methods, looking at reducing the salt concentrations without affecting the 

sugars. 

It could also be useful to examine whether the pretreatment processes developed for 

reducing the coloured contaminants and the salts could be used to improve the 

throughput of the CPC methods. Synthetic separations in Chapter 3 were successful 

with sugar concentrations as high as 100 g L-1 and, removing contaminants could allow 

for concentration of the crude from ~20 g L-1 to closer to 100 g L-1. 

7.2.7 Process route selection 

After the process optimisation and further scale-up options described in this future 

work section, it will be important to compare the two main process options: CPC or 

SMB. This could be performed based on mathematical process modelling of the two 

routes, incorporating capital expenditure, operating costs, throughput requirements 

and the potential value of the isolated monosaccharides. The analysis would allow for 

a costed decision on which technology would be most suited for biorefinery 

applications of sugar beet pulp pectin. 
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Appendix A HPLC and ICS chromatograms 

Calibration curves for analytical HPLC and ICS methods were performed daily in 

order to ensure accurate concentration calculations due to some variations in retention 

times over multiple sample injections. All chromatograms in this section were 

performed as described in Section. Example calibrations and example separations are 

shown in this Appendix, with a list shown in Table A-1. 

Table A-1: List of chromatograms and calibration curves shown in this Appendix for 

HPLC-RI and ICS analyses. 

System Separation/calibration Figure 

HPLC-RI Retention times of all sugars Figure A-1 

HPLC-RI Calibration of all sugars Figure A-2 

HPLC-RI Lower phase and upper phase composition Figure A-3 

HPLC-RI Calibration of Ethanol and DMSO Figure A-4 

ICS Neutral sugars calibration on CarboPac PA1 Figure A-5 

ICS GA calibration on CarboPac PA1 Figure A-6 

ICS GA separation on CarboPac PA1 Figure A-7 

ICS Neutral sugars calibration on AminoPac PA10 Figure A-8 

ICS Neutral sugars separation on AminoPac PA10 Figure A-9 

ICS GA separation on AminoPac PA10 Figure A-10 

ICS Neutral sugars calibration on AminoPac PA10 Figure A-11 

ICS GA calibration on AminoPac PA10 Figure A-12 
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Figure A-1: Example HPLC-RI analysis of the sugars D-galacturonic acid, L-rhamnose, 

D-galactose and L-arabinose. The analytical methods used are detailed in Section 2.8.1. 

 

Figure A-2: Example HPLC-RI calibration curves of the sugars Ara, Gal, Rha and GA. 

The analytical methods used are detailed in Section 2.8.1. 
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Figure A-3: HPLC-RI analysis of the upper phase and lower phase of the phase system 

ethanol : DMSO : ammonium sulphate (300 g L-1) (0.8:0.1:1.8) showing peaks for 

ammonium sulphate, Ara, ethanol and DMSO. The analytical methods used are detailed 

in Section 2.8.1. 

 

Figure A-4: Example HPLC-RI calibration curves of the ethanol and DMSO. The 

analytical methods used are detailed in Section 2.8.1. 
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Figure A-5: ICS calibration of neutral sugar standards (Rha, Ara and Gal) on the 

CarboPac PA1 column using 15 mM NaOH. The analytical methods used are detailed in 

Section 2.8.3. 

 

Figure A-6: ICS calibration of GA on the CarboPac PA1 column, using 250 mM NaOAc. 

The analytical methods used are detailed in Section 2.8.3. 

 

Figure A-7: Example ICS chromatogram showing the combined neutral sugars peak (1) 

and GA (2) on the CarboPac PA1 column, using 250 mM NaOAc. The analytical methods 

used are detailed in Section 2.8.3. 
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Figure A-8: ICS calibration of neutral sugars (Rha, Ara, Gal and Glu) using the 

AminoPac PA10 column with 7.5 mM NaOH. The analytical methods used are detailed 

in Section 2.8.3. 

 

Figure A-9: Example ICS chromatogram showing neutral sugars (Ara, Gal, Glu) using 

the AminoPac PA10 column with 7.5 mM NaOH. The analytical methods used are 

detailed in Section 2.8.3. 
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Figure A-10: Example ICS chromatogram showing the combined neutral sugars peak 

(1) and GA (2) on the AminoPac PA10 column, using 50 mM NaOAc. The analytical 

methods used are detailed in Section 2.8.3. 

 

Figure A-11: Example ICS calibration curves of the sugars Rha, Ara and Gal performed 

on the AminoPac PA10 using the neutral sugars method. The analytical methods used 

are detailed in Section 2.8.3. 
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Figure A-12: Example ICS calibration curves of GA performed on the AminoPac PA10 

using the GA method. The analytical methods used are detailed in Section 2.8.3. 
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Appendix B Industrial scale CPC 

B.1 Introduction 

Industrial scale CPC is generally limited by operating pressures which increase with 

increasing scale due to the hydrostatic nature of the devices. Laboratory preparative 

devices generally have a maximum column volume of 1 L and a new piece of 

equipment is required for larger scale systems. Kromaton offer two industrial scale 

CPC devices based on a similar operating principle to their laboratory scale CPC, 

utilising a scaled up version of the disks shown in Figure 1-6. These devices are 

available at 5 L and 18 L scales. An alternative to these devices has been developed 

by RotaChrom (Dabas, Hungary) utilising a novel cell design (Figure B-1) attached to 

a modular cell stack on the rotor (Figure B-2). This cell stack design allows for a 

variable number of cells to be used for the separation, allowing for adjustment of the 

column volume from 2 L to 50 L. 

In this Appendix, the potential for larger scale CPC separations is examined on a 2 L 

RotaChrom rCPC, based on scale-up of the CPC separations performed in Chapter 

3and Chapter 4.  

 

Figure B-1: Individual cells (~18.75 mL) for the RotaChrom CPC. 
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Figure B-2: RotaChrom rCPC with two cell stacks containing 32 cells each. 

B.2 Materials and Methods 

CPC separation was performed on a RotaChrom rCPC with a total volume of 2 L, 96 

cells with a total cell volume of 1.8 L. The cells were set up in the ascending mode and 

a rotational speed of 450 rpm (RCF of 120 g) was used. An ethanol : aqueous 

ammonium sulphate (300 g L-1) (0.8:1.8 v:v) phase system was used in the ascending 

mode, as in Chapter 3. A model synthetic mixture was prepared by dissolving the 

sugars in the LP (stationary phase) and consisted of: Rha, 1.3 g L-1; Ara, 13.4 g L-1; 

Gal 2.2 g L-1; GA, 3.2 g L-1; total dissolved sugars, 20.1 g L-1. A 100 mL sample was 

injected directly onto the column with no prior equilibration at a flow rate of 200 mL 

min-1 (0.5 min).  

The elution-extrusion mode (Section 1.2.7) was used with a flow rate of 150 mL min-1 

throughout. The mobile phase (UP) flow began immediately after sample injection and 

extrusion was performed 36 min later. In the elution step, fractions were collected 

every 150 mL (1 min) with the first fraction collected 12 min after sample injection 

had finished. In the extrusion step, fractions were collected every 90 seconds (225 mL 
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fractions). Fractions were analysed on ICS using the AminoPac PA10 column as 

described in Section 2.8. 

B.3 Results 

The CPC separation was scaled up beyond the values given by a linear scale up. 950 

mL to 2 L gives a scale-up factor of ~2.1. Thus, a flow rate 63.8 mL min-1 should have 

been used based on linear scale-up criteria. Instead, the flow rate was increased almost 

by a factor of 5 from 30.4 mL min-1 to 150 mL min-1. Initial breakthrough occurred 

after 580 mL of elution, giving a stationary phase retention of 61% using Equation 2-3, 

with a VC of 2000 mL, and a VD of 200 mL. This is increased from a stationary phase 

retention of 50% on the preparative 1 L column in Chapter 4 (Table 4-8), indicating 

that the RotaChrom rCPC may have superior stationary phase retention in spite of the 

increased mobile phase flow rate. 

The results, in Figure B-3, show good separation between the various solutes. The Rha 

peak eluted earlier than expected and so was not fully collected, however, it appears 

that the separation between Rha and Ara is comparable to that observed in the 

Kromaton CPC device on the preparative (950 mL) column (Figure 4-14). 

Additionally, the GA and Gal peaks are better separated from the Ara peak. This 

superior separation performance indicates that it may be possible to achieve an 

additional fraction with further optimisation, separating the sugars into four fractions 

from a single separation: Rha, Ara, Gal and GA. The increased stationary phase 

retention could be a key factor in the apparent improvement in separation performance, 

however, it is difficult to specifically link this due to the differences in cell design and 

geometry. Another caveat is that this separation was performed using a model 

synthetic mixture with a total sugars concentration of 20 g L-1. Model synthetic mixture 

separations were performed previously in Chapter 3 and Chapter 4 using a sugars 

concentration of 100 g L-1 to match the total dissolved solids concentrations in the 

crude. 
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Figure B-3: CPC separation of a 100 mL model synthetic mixture sample performed on 

a 2 L RotaChrom rCPC column. A mobile phase flow rate of 150 mL min-1 was used. 

Extrusion was performed 36 min (5400 mL) after sample injection. Full experimental 

methods are described in Section B.2 in Appendix B. 

Overall the separation performance appears to be superior at this larger scale, however, 

full quantification has not been performed and additional work needs to be performed 

to transfer the method to the crude hydrolysate and increase the sample loading to the 

levels seen in Chapter 4. Furthermore, the 2 L column is the minimum column volume 

that is achievable on the RotaChrom rCPC and the unique cell design allows for 

additional cells to be added to increase the total column volume while providing the 

potential for increased separation performance. Larger cells are also available on the 

industrial scale RotaChrom iCPC which has a potential column volume of 50 L. The 

work in this Appendix demonstrates the potential of these larger, industrially scalable 

machines 
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