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ABSTRACT 

 

Purpose: Parametric imaging methods – e.g. T1 relaxation time mapping – have been shown 

to be more reproducible across time and vendors than weighted (e.g. T1-weighted) images. 

The purpose of this work was to more extensively evaluate the validity of this assertion. 

 

Methods: Seven volunteers underwent twice-repeated acquisitions of variable flip-angle T1 

mapping, including B1
+ calibration, on a 3T Philips Achieva and 3T Siemens Trio scanner. 

Intra-scanner and inter-vendor T1 variability were calculated. To determine T1 reproducibility 

levels in longitudinal settings, or after changing hardware or software, four additional 

datasets were acquired from two of the participants; one participant was scanned on a 

different 3T Siemens Trio scanner and another on the same 3T Philips Achieva scanner but 

after a software upgrade.  

 

Results: Intra-scanner variability of voxel-wise T1 values was consistent between the two 

vendors, averaging 0.7/0.7/1.3/1.4% in WM/cortical GM/subcortical GM/cerebellum, 

respectively. We observed, however, a systematic bias between the two vendors of 

10.0/7.8/8.6/10.0%, respectively. The T1 bias across two scanners of the same model was 

greater than intra-scanner variability, although still only at 1.4/1.0/1.9/2.3% respectively. A 

greater bias was identified for datasets acquired before/after software upgrade in WM/cortical 

GM (3.6/2.7%) while variability in subcortical GM/cerebellum was comparable (1.7/1.9%). 

 

Conclusion: We established intra- and inter-vendor reproducibility levels for a widely used 

T1 mapping protocol. We anticipate that these results will guide the design of multi-center 

studies, particularly those encompassing multiple vendors. Furthermore, this baseline level of 

reproducibility should be established or surpassed during the piloting phase of such studies.  

 

Key words: Reproducibility, T1 relaxation, multi-vendor, 3T, parametric imaging, bias   
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INTRODUCTION 

Magnetic resonance imaging (MRI) is ubiquitous in both clinical diagnostics and basic 

research alike, and there is an increasing demand for quantitative (qMRI) methods and 

imaging biomarkers in general (1-8). Apart from basic scientific research into the properties 

of matter, measuring relaxation times (9), magnetization transfer (MT) (10), diffusion 

constants (11) and other quantitative parameters is of interest because together they can help 

characterize the underlying micro-structural organization of the tissue. A particular 

application of qMRI methods is the construction of invertible biophysical models to access 

histological metrics directly from MRI data (5) in vivo. 

A further motivation behind the use of qMRI methods is the potential to obtain 

measures with a high degree of reproducibility across time points, scanner manufacturers, 

scanner models and sites. This is particularly attractive for multi-center studies (12).  

However, in contrast to this expectation, multiple studies have reported differences in data 

quality and analysis results from repeated scans (13-18), pointing out an immediate need for 

developing methods to investigate and quantify reproducibility (2,19-22), improving scanner 

design and optimizing qMRI acquisition methods.  

In an effort to quantify reproducibility, this paper investigates the intra- and inter-

vendor reproducibility of an established T1 relaxation time mapping protocol. Although, 

many such protocols exist (23) dating back to the invention of NMR (24,25), we will focus 

on the variable flip angle (VFA) method (26-28). This method relies on appropriately spoiled 

(9,29) gradient echo (SPGR) images (30) acquired at different flip angles, together with an 

accompanying radio-frequency transmit field (B1
+) map (31,32) to account for B1

+ 

inhomogeneities that would otherwise lead to quantification errors, particularly at higher 

magnetic field strengths. We chose this framework because it is widely used (33-36), 

extensively optimized (37-42) and because a reliable analytical framework exists (43) for the 

estimation of the voxel-wise T1 relaxation from the collected data. Few such investigations 

involving human volunteers and multiple sites (12,44) have been conducted. In particular, 

none exists in the literature that investigates T1 mapping at 3T across multiple sites, vendors 

and time points. Our work demonstrates how to run a pre-study to establish reproducibility 

levels, which could be used in the design of future multi-center trials.  

 

METHODS 

Data Acquisition 
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 Seven healthy volunteers (4 males, age = 34.3 ± 7.3 yrs) were scanned twice on two 

scanners from different vendors located at different scanning sites with maximum eight 

weeks apart between acquisitions at two sites. All scanning was performed with local ethics 

approval at each institute and a signed written informed consent was obtained before 

scanning. One scanner was a 3T Siemens Trio (henceforth referred to as S1; Siemens 

Healthcare, Erlangen, Germany) equipped with a 32-channel head coil, the other was a 3T 

Philips Achieva scanner (henceforth referred to as P1; Philips Healthcare, Best, The 

Netherlands) equipped with an 8-channel head coil. One of the seven volunteers was 

additionally scanned on another 3T Siemens Trio scanner (S2) with an identical 32-channel 

head coil and installed at the same site as S1 with 23 days apart from the test-retest scan 

mentioned above. The two scanners S1 and S2 were installed next to each other, a few years 

apart and tuned to slightly different resonance frequencies to avoid cross talk between. 

Otherwise they were configured with the same hardware and software (VB17A). Another one 

of the participants was scanned on the same 3T Philips Achieva scanner but after a software 

upgrade from Release 3.2.3 to 5.1.7 (P1u) after five months from the test-retest scan. 

The protocol to estimate T1 relaxation time includes two 3D multi-echo SPGR images 

with different flip angles (6° and 21° resulting in PD- and T1-weighted images, respectively) 

(43). Data were acquired with 0.8 mm isotropic resolution, TR = 25 ms, TE1/ΔTE = 2.34/2.3 

ms, non-selective RF excitation, and RF spoiling phase increment = 137° for all scanners. To 

achieve two different flip angles, only the duration of the RF pulse was changed while the 

amplitude remained the same to minimize RF non-linearity effects (39). Two spoiler 

gradients were used; one right after the readout in the readout direction and the other right 

before the next RF excitation in the partition direction. The spoiler gradient moments in the 

readout direction were determined to achieve at least 6 dephasing across a voxel. The 

spoiler gradient moments in partition direction was 31.20 mTms/m for all scanners. 

Differences in the SPGR sequences between the Siemens and Philips scanners are 

summarized in Table 1.  

For the correction of RF transmit field inhomogeneities, a B1
+ map was additionally 

estimated, either from a 3D echo planar imaging (EPI) acquisition of spin-echo (SE) and 

stimulated-echo (STE) with 11 different refocusing flip angles (45) (Siemens, i.e. S1 and S2) 

or from the actual flip angle imaging (AFI) method (46) (Philips, i.e. P1 and P1u). Imaging 

parameters for the SE/STE-based B1
+ mapping method were: TR = 500 ms, TE for SE/STE = 

37.1 ms, two-fold generalized autocalibrating partial parallel acquisition (GRAPPA) (47) in 
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each phase-encoded direction, and scan time = 3.0 min. The refocusing flip angles were 

decreased from 230° to 130° in steps of 10°. An additional dataset of B0 field map was 

acquired for the correction of EPI image distortions (scan time = 2.2 min). For the AFI B1
+ 

mapping method, the 3D gradient-echo images were acquired with two interleaved TRs 

(TR1/TR2 = 46/138 ms), TE = 2.2 ms, nominal flip angle = 60°, spoiler gradient moments 

for TR1/TR2 = 931.8/1971.0 mTms/m (48), RF spoiling phase increment = 39°, sensitivity 

encoding (SENSE) (49) factor = 1.7, and scan time = 5.2 min. The acquisition protocols for 

the two B1
+ maps were set to ensure similar total acquisition times. 

For each participant these three acquisitions (two SPGR images and a B1
+ map) were 

acquired twice on the same day with the participant removed from the head coil and 

repositioned in between to include more potential sources of variability. This procedure was 

repeated on each of the S1 and P1 scanners to assess the intra-scanner and inter-vendor 

test/re-test variability. One of the participants was scanned four additional times on four 

consecutive days on the S2 scanner to establish the longitudinal reproducibility as well as the 

variability between two identical scanners (i.e. S1 vs. S2), i.e. intra-vendor, inter-scanner 

variability. The acquisition protocol on scanner S2 was identical to that of scanner S1 except 

the B1
+ mapping protocol was collected first, followed by the SPGR images. Four additional 

datasets were acquired on four consecutive days from another participant to establish the 

longitudinal reproducibility on the same Philips scanner but after a software upgrade. Hence 

these data are designated as P1u. Changing the Siemens scanner and allowing a software 

upgrade in the Philips scanner during the study were considered advantageous because they 

afforded the chance to test reproducibility in more realistic settings.  

On the scanners S1 and S2, after the full calibration set that determines transmit power, 

shim setting, receiver gain and centre frequency was performed at the outset, no scanner 

calibration was performed between the three acquisitions except for the centre frequency 

readjustment for the B1
+ and B0 mapping acquisitions. Likewise, on the scanner P1 and P1u, 

the full calibration set was performed before the first acquisition and only the centre 

frequency and receiver gain were readjusted for the following acquisitions. The difference in 

the receiver gains between three acquisitions was corrected for using the scaling information 

saved in the image header (14).    

 

Data Analysis 

All data analysis was performed with custom-made functions written in MATLAB 

(The Mathworks Inc., Natick, MA, USA) and relying on SPM12 (Wellcome Trust Centre for 
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Neuroimaging, UCL, UK). In order to minimise the confounding effect of participant motion, 

two out of 38 datasets were excluded due to visible motion artifacts. The multi-echo PD- and 

T1-weighted SPGR images were averaged over the five shortest TEs to increase the signal-to-

noise ratio (SNR) (50). Because the transmit RF field map varies smoothly in space the 

estimated B1
+ maps were low-pass filtered by a 3D Gaussian kernel with full width at half 

maximum of 4 × 4 × 4 mm3 to reduce the noise level. The mean T1-weighted image and 

filtered B1
+ map were aligned to the mean PD-weighted image of the same scanning session 

by a rigid-body transformation. For the alignment of the filtered B1
+ map acquired with the 

SE/STE-based B1
+ mapping method the sum of square image of all SE images was calculated 

and corrected for EPI image distortion with the B0 map. This undistorted sum of square 

image was aligned to the mean PD-weighted image and the transformation matrix obtained 

from this alignment was applied to the filtered B1
+ map. Similarly, the 3D gradient-echo 

image with TR2 was used for the alignment of AFI-based B1
+ map. The resulting three 

aligned images were used to determine voxel-wise T1 values using the equation derived from 

the rational approximation of the SPGR signal (43). To avoid a potential source of bias, the 

influence of imperfect RF spoiling was corrected using the approach proposed in Ref. (41) 

with the correction factors adapted to the SPGR acquisition parameters used here. To make a 

comparison between the estimated T1 maps from the different acquisition sessions, rigid-body 

motion correction was performed for all T1 maps from the same participant. The same-day 

scan/rescan T1 maps on each of the four scanners (i.e. S1, S2, P1 and P1u) were subtracted 

from each other and the voxel-wise difference was used to calculate a percent difference (i.e. 

100 × difference / mean) as a marker for intra-scanner reproducibility. A similar calculation 

provided the inter-scanner reproducibility measure, where the subtracted images were 

acquired on different scanners (e.g. between S1 and P1) or the same scanner before/after the 

software upgrade. 

 The automated anatomical labeling (AAL) (51) atlas was used to generate 

reproducible regions of interest (ROIs) for cortical gray matter (GM), subcortical GM, and 

cerebellum in Montreal neurological institute (MNI) space. Here, subcortical GM includes 

hippocampus, amygdala, caudate, putamen, pallidum and thalamus. These masks were then 

inverse-warped into each participant’s native space using a deformation field obtained in the 

normalization of each T1-weighted image into MNI space (52). Additionally, each R1 map in 

native space was segmented into GM and white matter (WM) using SPM12 (53). Since the 

R1 map is expected to have very little spatially varying bias field, very heavy bias 

regularization was used in the segmentation process. A conservative threshold of 0.9 was 
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used to generate the participant-specific GM and WM masks using the output probability 

maps. Finally, we multiplied the native GM mask with the three inverse-normalized ROIs 

from the AAL atlas. Together with the native WM mask this provided four ROIs that were 

used for subsequent extraction of anatomically-specific summary statistics. Given that the 

reproducibility was not normally distributed, median and interquartile range (IQR) values 

were calculated as summary metrics from the voxel-wise values of the test/re-test variability 

images within each ROI. 

 

RESULTS 

To demonstrate the quality of the T1 mapping scheme used in this work, one of the 

datasets, namely two SPGR images (averaged PD- and T1-weighted images over the five 

shortest TEs) and a B1
+ map, are shown in Fig. 1 along with the resulting T1 map for a 

representative participant.  

 Figure 2 shows the intra-scanner and inter-vendor variability for S1 and P1 scanners 

from one representative participant. Intra-scanner variability maps showed high 

reproducibility for both scanners. While the intra-scanner variability was noisier for the S1 

scanner (Fig. 2a), there was an observable level of low spatial frequency variation in the 

variability map of the P1 scanner (Fig. 2b). The actual spatial pattern of this low frequency 

variation was unique for each of the seven participants (see e.g. Fig. 5a-c). As shown in the 

inter-vendor variability map (Fig. 2c), there was a systematic global bias between T1 

measurements from S1 and P1 scanners, with T1 values from S1 being lower than those from 

P1. A similar bias was observed for the other six participants (not shown; but see histograms 

in Fig. 3). 

T1 histograms for the four ROIs are shown in Fig. 3a-d for all seven participants, 

scanned twice both on S1 (solid line) and P1 (dashed line) scanners. All T1 distributions from 

S1 were shifted towards lower T1 values relative to those from P1, which highlights a 

systematic measurement bias across the two scanners. Histograms of voxel-wise T1 

variability are shown in Fig. 3e-h. While intra-scanner variability (thin solid and dashed 

lines) for both S1 and P1 were approximately zero-centered for all ROIs/participants, the 

median of the inter-vendor variability between S1 and P1 ranged from -11.5% to -4.7%. 

Median and IQR values for the histograms shown in Fig. 3 are summarized in Table 2. 

For all ROIs and all participants the absolute median values for intra-scanner test/re-test 

variability were less than 3.0% for S1 and less than 3.8% for P1. Absolute median values for 



 8 

inter-vendor variability of all possible combinations shown in Table 2 ranged between 3.8% 

and 13.2% across the seven participants.  

Figure 4a-c show the T1 variability maps for the repeatedly scanned single participant 

(participant #6) within (Fig. 4a-b) and between (Fig. 4c) the S1 and S2 scanners. Histograms 

of two T1 maps from S1 (dashed) and four T1 maps from S2 (solid) for the four tissue 

segments are presented in Fig. 4d. Figure 4e shows histograms of voxel-wise T1 variability 

within and between S1 and S2 scanners. Histograms of intra-scanner variability (S1 – S1 and 

S2 – S2) were all centered near zero, i.e. median of -0.4/-0.7/-1.8/1.2% in S1 and 

0.1/0.9/1.5/0.4% in S2 for WM/cortical GM/subcortical GM/cerebellum, respectively. 

Medians for inter-scanner, intra-vendor variability (S1 – S2) were somewhat larger 

(1.4/1.0/1.9/2.3% in WM/cortical GM/subcortical GM/cerebellum, respectively).  

Figure 5 summarizes results for the two datasets from P1 and the four datasets from P1u 

that were collected on participant #1. Figure 5a and 5b show T1 variability maps within P1 

and P1u, i.e. before and after the software upgrade, respectively. An exemplar T1 variability 

map between P1 and P1u is shown in Fig. 5c. Histograms for voxel-wise T1 relaxation time 

and its variability maps within WM/cortical GM/subcortical GM/cerebellum are shown in 

Fig. 5d and 5e, respectively. While all four T1 maps from P1u had reproducible histograms, 

each showed a consistent bias with respect to the T1 maps from P1 (i.e. before the software 

upgrade). Histograms of voxel-wise T1 variability for P1 and P1u were approximately zero-

centered (median of -0.2/-0.3/-0.3/0.2% for P1 and 0.2/0.2/0.1/0.4% for P1u in WM/cortical 

GM/subcortical GM/cerebellum, respectively), indicating that four additional measurements 

on four consecutive days were reproducible. However, a small—but consistent—bias was 

observed between P1 and P1u datasets, i.e. median offset of -3.6/-2.7/-1.7/-1.9% in 

WM/cortical GM/subcortical GM/cerebellum, respectively. 

 

DISCUSSION 

We have quantified the level of variability for a T1 mapping acquisition protocol by 

comparing data acquired repeatedly from two 3T scanner models made by two different 

manufacturers. The average of absolute medians for intra-scanner test/re-test variability 

across the seven participants and both scanners (i.e. S1 and P1) were 0.7/0.7/1.3/1.4% in 

WM/cortical GM/subcortical GM/cerebellum, respectively, whereas that for inter-vendor 

variability was larger (10.0/7.8/8.6/10.0%) across the seven participants. We also noted that a 
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difference could exist between two scanners of the same model or even between the same 

scanner with different software versions. 

We observed a consistent bias in our comparison in that T1 relaxation time estimates 

were 8 to 10% higher on average when calculated from data acquired on the Philips scanner 

compared to that from the Siemens scanner (Figs. 2 and 3). Some of this bias can be 

corrected by subtraction. For example, an approximately 1.4% bias in T1 relaxation time is 

expected (54) due to the slightly lower main magnetic field of the Siemens scanner (2.89 

versus 3.00 Tesla for the Philips scanner) and hence be corrected for. One potential source of 

the remaining bias could be the B1
+ mapping protocol. It has been shown previously (31) that 

the 3D EPI SE/STE method produces ~5% higher B1
+ estimates than the AFI method. 

Considering that the estimated T1 relaxation time is inversely proportional to the square of 

B1
+ estimates, this difference in the B1

+ estimates would make the T1 estimates with the 3D 

EPI SE/STE method ~10.6% lower compared to the T1 estimates with the AFI method. This 

reasoning is in line with our experimental results. Full implementation and testing of both B1
+ 

mapping methods on both scanners is beyond the scope of the present article, but such work 

is considered an important aspect for future efforts toward investigating or eliminating this 

bias.  

The B1
+ maps were smoothed by a 3D Gaussian kernel to reduce the noise level. This 

could be problematic at brain edges due to the nearby signal loss outside of the GM. To 

ensure that this issue does not cause any difference in our main results, we applied edge-

preserving smoothing to the B1
+ map and compared it to the B1

+ map with the simple 

smoothing. Only ~3%/~1% of the GM voxels had larger than 2% absolute difference between 

these two B1
+ maps for the datasets from S1/P1. In addition, the T1 maps calculated with 

these two B1
+ maps had almost the same histograms of T1 variability (data not shown). 

Overall, the T1 maps from S1 were noisier than those from P1 (see Fig. 2). This is likely 

due to the differences in acquisition schemes whereby parallel imaging with a factor of 4 was 

used on S1, whereas only a factor 2 was used on P1. The different filtering processes for the 

alleviation of the ringing artifacts and/or different implementations of unfolding algorithms 

by the two scanners might also introduce further differences in relative SNR during the 

closed-source image reconstruction steps. These factors would appear to outweigh the 

expected benefit of having acquired the data with a 32-channel coil on S1, as compared to 

only an 8-channel coil on P1.  

Despite similar test/re-test intra-scanner variability distributions across sites (Fig. 3), 

we observed greater low-frequency spatial variability in the reproducibility of data collected 
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on the Philips scanner (Fig. 2b). A large number of potential sources exist for such a spatial 

pattern, e.g. shimming performance, RF transmit voltage, center frequency and other 

differences in calibration settings determined by the system at the outset of scanning. Testing 

each of these factors in controlled experiments is beyond the scope of this work. In any event, 

such factors are often not under the control of the experimenter (e.g. limited information on 

shimming procedure is available from scanner manufacturers) and therefore will contribute to 

the variability in typical imaging scenarios. 

Although care was taken to match acquisition parameters on the two scanners, some 

differences remained (Table 1).  

a) The native parallel imaging method was SENSE (49) on the Philips platform while 

GRAPPA (47) was used on the Siemens platform.  

b) Siemens data were acquired with a 32-channel head coil whereas Philips data were 

received with an 8-channel head coil. The different number of channels could affect the 

data quality especially when parallel imaging is used. The acceleration factor on the 

Siemens platform was also twice as high as on the Philips platform. It is also worth 

noting that to maintain a comparable scan time, the Philips platform, having only an 

8ch coil, used a partial Fourier acquisition in one of the phase encoding directions as 

opposed to the two-by-two GRAPPA acceleration on Siemens.  

c) Philips scanners offer a product AFI B1
+ mapping sequence (46), which is not natively 

available on Siemens scanners; thus, a previously validated, in-house B1
+ mapping 

method (31,35,36,45) was utilized. As previously discussed, discrepancies between the 

two B1
+ mapping approaches might be responsible for the observed systematic bias 

between the two scanners.  

d) The exact shimming procedure performed on each scanner is largely unknown to the 

end-user. It is therefore possible that they are different for each scanner type. Even if 

the procedure was identical, the quality of the shim may be variable due to the fact that 

the magnet as well as the static shimming implementation as well as the linear and 

higher order shimming gradient designs differ between the two manufacturers. 

e) Siemens Trio scanners utilize a tube amplifier for RF transmission while Philips 

scanners are equipped with a solid-state variant. The inherent stability and linearity can 

be expected to differ between both design types.  

It is possible that the low-frequency spatial variability on test/re-test measures for the Philips 

scanner (compare for example Fig. 2a and Fig 2b) or the consistent bias across the two 

scanners (Fig 2c and Table 2) stem from some combination of the differences listed above. 
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By recording additional information at scan time, it may be possible to implement correction 

schemes for some of these. For example, collecting k-space data and reconstructing offline 

would enable the use of a common unfolding algorithm across data types, the B1
+ mapping 

procedure could also be harmonized, or the same head coil could be used for the two different 

scanners. Any resulting improvement in reproducibility would need to be evaluated. Indeed it 

may be true that if the above differences in the acquisition procedures were eliminated the 

bias between the two manufacturers would also disappear. 

It is also important to note that with scanner-specific shimming procedures, RF 

optimization and hardware design, most users—including expert ones—might need to 

concede that some aspects of this T1 mapping protocol will not be possible to fully 

harmonize. This has important consequences for multi-center studies, which are often 

motivated by the premise that several sites can recruit the required number of individuals 

more efficiently for a given study. Here, we show how the results presented above may be 

used to optimize the design of multi-center studies, by considering an example ROI in the 

precentral gyrus (i.e. primary motor cortex). Based on the variability across the participants 

(i.e. standard deviation of 32-44 ms), the required sample size would be 3-5 for either the S1 

or the P1 scanner to identify a 5% difference in the mean between two groups (a significance 

level of 0.05 and a power of 0.80). If both S1 and P1 were used in conjunction to form a 

multi-center setting, a sample size of 9-19 would be required to identify the same difference 

in the mean T1 relaxation time between two groups (the standard deviation being 58-84 ms). 

This substantial increase in the required number of participants is due to the often-ignored but 

yet significant variance originating from the inherent difference that may occur between 

measurements made on scanners at different sites. In the present case, this additional variance 

was dominated by a systematic bias between two scanners, but it may equally be a random 

factor in case of other scanners. In cases where a consistent systematic bias is detected, it 

could be partially eliminated before analyzing datasets, by subtracting/adding the bias 

averaged over participants. In the above example, if the systematic bias of -5.4% measured 

inside precentral gyrus was removed, the standard deviation would go down to 29-50 ms, 

resulting in the required sample size of 2-7. Please note however that due to the dependence 

between the bias in B1
+ and the true T1 relaxation time this correction cannot be complete.  

 In WM and cortical GM the impact of the software upgrade on P1 was higher than the 

intra-scanner or the intra-vendor/inter-scanner (i.e. S1 vs. S2) variabilities although it was 

lower than the inter-vendor variability. However, in subcortical GM and the cerebellum the 

bias introduced by a software upgrade on the P1 scanner was comparable to variability 
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introduced by changing from S1 to S2. Given that no hardware was changed and that the 

same sequence settings were used before and after the upgrade, these differences likely stem 

from the image reconstruction or the preparation steps before the acquisition (e.g. the way B1 

is calibrated, the way optimal shim values are found, etc), which are not accessible to the 

end-users. This bias highlights the importance of software configurations of the scanner. For 

example, image reconstructions in multi-center study could be harmonized by using open-

source, vendor-independent platforms (55) to alleviate such an inter-vendor bias. 

With the data collected it was possible to estimate also the relative proton density (rPD) 

maps (i.e. we normalized all voxels so that the mean rPD inside WM would be 69%). These 

maps were used to assess reproducibility analogously to that for T1 relaxation time and 

investigate whether the biases found in these two measures are correlated. Please see 

Supporting Information for the details. 

Reproducibility has been assessed by many others in the past (13-18). While these 

reports are significant in raising awareness of the issues on reproducibility, none of them 

focused in T1 mapping specifically. Reproducibility of T1 mapping was investigated across 

several vendors but at 1.5T (44) or at 3T but on identical scanners installed at different sites 

(12). Making direct comparisons between these previous findings and our results is difficult 

however for several reasons. E.g. at 1.5T transmit field inhomogeneity is a much more 

benign issue and therefore Deoni et al. (44) proceed without a B1
+ mapping sequence in their 

protocol. Nevertheless, the intra-site coefficient of variation they reported in Table 4 was 

higher for all of their seven participants than the percent differences we found in any of the 

four ROIs (Table 2). This is particularly notable because the variability of B1
+ maps is a 

significant contributor to variability in T1 maps (48). Had they collected a B1
+ map it is 

possible that their coefficient of variance would have been even higher. An exhaustive 

comparison to the study of Weiskopf et al. (12) is also difficult because their study design 

was significantly different (i.e. used a single scanner model and did not scan repeatedly on 

the same scanner). They reported that the inter-site bias was lower than 3.1%, which is 

comparable to the observation we made on a single subject (i.e. 1.4/1.0/1.9/2.3% for 

WM/cortical GM/subcortical GM/cerebellum respectively and please see Fig. 4) that was 

scanned twice on two Siemens scanners (i.e. S1 and S2).  

It may be considered a limitation of this study that other manufacturers (e.g. GE) were 

not involved. Indeed, in light of the present results, establishing both intra- and inter-vendor 

reproducibility levels for some or all other scanner models would be extremely beneficial. 

However, including one or more scanner models would not change the main results of the 
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present study - that the reproducibility of (multi-center) studies that involve scanners from 

different manufacturers could suffer from significant biases. Apart from involving only two 

scanners, the sample size is also small and therefore our results are not generalizable. 

Nevertheless, our aim was simply to point out that reproducibility across scanner types may 

be worse than the reproducibility on any given scanner. Therefore, we recommend 

conducting a pre-study on the specific scanners involved, before embarking on a full-scale 

investigation involving multiple scanner types (note: both hardware and software differences 

can be relevant). Please note that the longitudinal scans and hence the biases we reported 

between S1 and S2 as well as between P1 and P1u were performed on a single subject. 

Therefore, statistical significance for these biases cannot be established and should be taken 

here as an indication only. 

In conclusion, the present study reported on test/re-test reproducibility measures for a 

widely used T1 mapping protocol, which on average returned approximately 1% intra-

scanner, 1% intra-vendor/inter-scanner and 8-10% inter-vendor variability across the whole 

brain. While already indicating a high level of reproducibility for the intra-scanner and intra-

vendor/inter-scanner scenarios, future developments in acquisition and data processing will 

likely result in further improvements for both intra-scanner and, more particularly, inter-

vendor reproducibility. At present these results represent the most comprehensive study of T1 

mapping variance across 3T scanner types using a variable flip-angle protocol. It is 

recommended that multi-center studies consider such level of variance in both study design 

and result interpretation. Our demonstration of a consistent bias of approximately 3% 

between T1 values measured before and after a scanner software upgrade indicates the 

importance of not only considering hardware stability but also software configurations. 

Therefore, even when using a single scanner, care must be taken to ensure system 

consistency, both in terms of hardware and software, for the duration of each study. Further 

work across the community, encompassing both researchers and manufacturers, is needed to 

more extensively investigate and ultimately enhance reproducibility.  
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FIGURE LEGEND 

Figure 1. A representative example of SPGR images with two different flip angles (i.e. 

averaged PD- and T1-weighted images over the five shortest TEs), a B1
+ map and the 

resulting T1 map.  

 

Figure 2. (a-b) Intra-scanner test/re-test variability of T1 maps acquired on (a) S1 and (b) P1 

scanners. (c) Inter-vendor variability of T1 maps between S1 and P1 scanners. Four different 

inter-vendor variability maps can be calculated from the two datasets acquired on each 

scanner. One of these is shown here. The other three maps are not displayed but Table 2 

summarizes those results separately for each combination.  

 

Figure 3. Histograms of voxel-wise test/re-test T1 estimates (a-d) acquired on the S1 and P1 

scanners and their voxel-wise variability (e-h) inside each of four ROIs (i.e. WM (a/e), 

cortical GM (b/f), subcortical GM (c/g), and cerebellum (d/h)) for all seven participants. 

Different colors represent different participants (abbreviated as Parti in figure legend). In 

total, there are 2 (S1 and P1) x 2 (number of repetitions) x 7 (number of participants) = 28 
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curves in (a-d) and 3 (two intra-scanner and one inter-scanner variabilities) x 7 (number of 

participants) = 21 curves in (e-h). Note: the x and y axes are scaled differently for each 

subplot and each histogram contains the results of all possible combinations of the four 

datasets acquired on the S1 and P1 scanners. 

 

Figure 4. The results from four longitudinal datasets on the S2 scanner and comparison to the 

two datasets on the S1 scanner (different participant from Fig. 2). (a) Intra-scanner variability 

map for the S1 scanner. (b) Intra-scanner variability between the first two maps from the 

longitudinal datasets acquired on the S2 scanner. (c) Intra-vendor, inter-scanner variability 

between S1 and S2. (d) Histograms of the voxel-wise two T1 estimates from two acquisitions 

on S1 (dashed) and four acquisitions on S2 (solid), inside the WM (black), cortical GM 

(blue), subcortical GM (red) and cerebellum (cyan). There are 6 (two repetitions on S1 and 

four repetitions on S2) x 4 (four ROIs) = 24 curves in total. (e) Histograms of the voxel-wise 

intra-scanner T1 variability on the S1 (thin solid lines) and S2 (dashed lines), as well as the 

voxel-wise intra-vendor, inter-scanner T1 variability between S1 and S2 (thick solid lines). 

There are 3 (two intra-scanner and one intra-vendor, inter-scanner variability) x 4 (four ROIs) 

= 12 curves in total. Note: The histograms of S1 – S2 contain the eight different intra-vendor, 

inter-scanner T1 variability maps calculated from two T1 maps on S1 and four T1 maps on S2. 

 

Figure 5. The results from four longitudinal datasets on P1u and comparison to the two 

datasets on P1 for participant #1. (a) Intra-scanner variability map for the P1 scanner. (b) 

Intra-scanner variability map from the first two T1 maps acquired on the P1u scanner. (c) 

Intra-scanner, inter-software version T1 variability between P1 and P1u. (d) Histograms of 

two T1 maps from P1 (dashed lines) and four T1 maps from P1u (solid lines), for the WM 

(black), cortical GM (blue), subcortical GM (red) and cerebellum (cyan) segments (24 curves 

in total). (e) Histograms of intra-scanner T1 variability on the scanner P1 (thin solid lines) and 

P1u (dashed lines), and intra-scanner, inter-software version T1 variability between P1 and 

P1u (thick solid lines) for the four ROIs. Eight different intra-vendor, inter-software version 

T1 variability maps were calculated from two T1 maps on P1 and four T1 maps on P1u and 

combined for the histograms of P1 – P1u (12 curves in total). 
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SUPPORTING INFORMATION 

Supporting Figure S1. Intra-scanner (a,b) and inter-vendor variability (c) of rPD maps for 

participant #1. 

 

Supporting Figure S2. The histograms of rPD (a-d) and rPD variability (e-h) inside four 

ROIs for all seven participants. Note that all histograms for rPD variability were centered 

near 0, which means that intra-scanner and inter-vendor reproducibility were high for rPD 

maps. 

 

Supporting Figure S3. The relationship between T1 variability and rPD variability for intra-

scanner (S1 – S1 and P1 – P1) and inter-vendor (S1 – P1) settings. 

 

TABLES 

Table 1. Comparison of acquisition parameters for SPGR images 

 
Siemens Philips 

# of slices 224 sagittal partitions 204 sagittal partitions 

# of echoes 8 5 

Spoiler gradient in 

readout direction 
88.10 mT/m⋅ ms 93.34 mT/m⋅ ms 

Parallel imaging Four-fold GRAPPA (2×2) Two-fold SENSE 

Half Fourier none 0.625 in partition direction 

RF excitation pulse 
sinc with 2 zero-crossings 

and TBW
a

 = 6 

sinc with 1 zero-crossing and 

TBW
a

 = 4.3 

Readout bandwidth 488 Hz/pixel 497.1 Hz/pixel 

Total scan time 7.1 min 7.6 min 
aTBW: time-bandwidth product 

 

  

  



 21 

Table 2. Median ± IQR of voxel-wise test/re-test T1 variability [%] 

 
Intra-scanner variability [%] Inter-vendor variability [%] 

S11st – S12nd P11st – P12nd S11st – P11st S11st – P12nd S12nd – P11st S12nd – P12nd 

P
ar

ti
ci

p
an

t 
#

1
 WM -0.43 ± 12.30 -0.21 ± 9.54 -10.90 ± 12.30 -11.07 ± 12.52 -10.53 ± 11.65 -10.72 ± 11.68 

Cortical GM 0.21 ± 12.14 -0.18 ± 10.13 -7.95 ± 13.38 -8.10 ± 13.15 -8.18 ± 13.30 -8.28 ± 12.87 

Subcor GMa 2.32 ± 16.90 -0.30 ± 13.09 -8.09 ± 15.21 -8.30 ± 16.13 -10.46 ± 15.09 -10.69 ± 15.06 

Cerebellum 0.67 ± 17.97 0.26 ± 13.82 -11.12 ± 19.36 -10.84 ± 19.41 -12.05 ± 18.52 -11.64 ± 18.27 

P
ar

ti
ci

p
an

t 
#

2
 WM -0.28 ± 10.59 0.11 ± 8.08 -6.93 ± 10.48 -6.82 ± 10.53 -6.66 ± 10.11 -6.56 ± 9.99 

Cortical GM 0.28 ± 10.31 -0.49 ± 8.79 -4.32 ± 11.74 -4.77 ± 11.80 -4.60 ± 11.40 -5.06 ± 11.45 

Subcor GMa 2.04 ± 14.93 0.81 ± 10.31 -4.67 ± 13.51 -3.79 ± 13.80 -6.77 ± 13.41 -5.91 ± 13.50 

Cerebellum -0.63 ± 16.16 -0.79 ± 12.00 -4.58 ± 16.71 -5.37 ± 16.14 -4.03 ± 17.56 -4.83 ± 17.03 

P
ar

ti
ci

p
an

t 
#

3
 WM -2.33 ± 11.07 0.74 ± 8.98 -12.44 ± 11.11 -11.68 ± 10.91 -10.12 ± 10.57 -9.38 ± 10.19 

Cortical GM -1.24 ± 11.71 0.85 ± 9.69 -9.35 ± 12.88 -8.42 ± 12.87 -7.99 ± 11.89 -7.12 ± 11.43 

Subcor GMa 0.40 ± 14.95 1.11 ± 12.99 -9.77 ± 14.66 -8.61 ± 14.82 -10.07 ± 14.01 -8.99 ± 13.72 

Cerebellum 0.74 ± 20.91 1.25 ± 12.31 -11.21 ± 18.73 -9.95 ± 19.20 -12.05 ± 18.29 -10.71 ± 17.79 

P
ar

ti
ci

p
an

t 
#

4
 WM 0.06 ± 11.98 0.11 ± 9.71 -8.95 ± 13.26 -8.91 ± 13.45 -9.02 ± 12.04 -8.95 ± 12.25 

Cortical GM 0.13 ± 13.99 -0.05 ± 10.61 -8.19 ± 15.27 -8.31 ± 15.59 -8.18 ± 14.08 -8.28 ± 14.27 

Subcor GMa 1.97 ± 15.99 0.84 ± 13.37 -7.68 ± 15.66 -6.71 ± 15.82 -9.37 ± 15.87 -8.63 ± 15.78 

Cerebellum 1.79 ± 21.43 2.06 ± 13.27 -11.44 ± 22.15 -9.60 ± 22.47 -13.35 ± 21.58 -11.49 ± 21.74 

P
ar

ti
ci

p
an

t 
#

5
 WM 1.18 ± 12.34 -0.63 ± 9.52 -10.24 ± 12.36 -10.89 ± 12.05 -11.52 ± 11.74 -12.12 ± 11.96 

Cortical GM 1.27 ± 12.4 0.52 ± 10.07 -8.12 ± 13.85 -7.52 ± 13.65 -9.44 ± 13.43 -8.83 ± 13.78 

Subcor GMa 2.78 ± 17.51 -0.15 ± 12.2 -9.76 ± 16.79 -9.81 ± 15.81 -12.75 ± 15.29 -12.75 ± 15.91 

Cerebellum 2.96 ± 17.68 -0.80 ± 16.70 -9.34 ± 20.81 -10.00 ± 18.24 -12.66 ± 20.72 -13.18 ± 19.29 

P
ar

ti
ci

p
an

t 
#

6
 WM -1.31 ± 11.73 2.35 ± 11.06 -11.89 ± 12.25 -9.55 ± 11.62 -10.60 ± 12.91 -8.32 ± 12.22 

Cortical GM -0.65 ± 13.48 2.23 ± 13.15 -9.63 ± 14.34 -7.33 ± 14.45 -9.00 ± 15.53 -6.76 ± 15.64 

Subcor GMa -0.75 ± 17.34 1.50 ± 14.42 -9.68 ± 15.99 -8.23 ± 16.08 -8.76 ± 17.80 -7.46 ± 17.49 

Cerebellum 1.66 ± 20.80 3.79 ± 16.40 -11.29 ± 19.24 -7.39 ± 18.48 -13.20 ± 21.14 -9.23 ± 21.21 

P
ar

ti
ci

p
an

t 
#

7
 WM -0.17 ± 11.61 0.26 ± 10.89 -11.47 ± 11.90 -11.37 ± 12.39 -11.35 ± 11.69 -11.19 ± 11.81 

Cortical GM 0.61 ± 11.26 1.45 ± 11.80 -9.34 ± 13.05 -7.89 ± 13.86 -9.88 ± 12.93 -8.52 ± 13.46 

Subcor GMa 1.22 ± 16.39 -1.96 ± 13.62 -6.51 ± 15.80 -8.46 ± 16.49 -7.81 ± 15.33 -9.74 ± 15.33 

Cerebellum -0.29 ± 17.27 2.49 ± 15.68 -11.35 ± 19.37 -9.11 ± 19.26 -11.22 ± 19.21 -8.95 ± 18.73 

aSubcor GM: subcortical gray matter 


