Robust Energy Harvesting FD Transmission: Interference Suppression Versus Exploitation

Mahmoud T. Kabir®, Muhammad R. A. Khandaker®, and Christos Masouros

Abstract—We explore robust designs to jointly minimize the total uplink and downlink transmit power and maximize the total harvested energy in a full duplex system with imperfect channel state information. We first formulate an optimization, where multiuser interference (MUI) is suppressed. We then propose an optimization, where the MUI is rather exploited, both as useful energy and information power, for guaranteeing quality of service and energy harvesting constraints. To tackle the non-convexity of the formulations, we employ convex relaxations. Simulation results show the effectiveness of interference exploitation compared with interference suppression in terms of both power consumption and energy transfer.

Index Terms—Full duplex (FD), interference exploitation, robust design, multi-objective optimization.

I. INTRODUCTION

FULL DUALPLEX (FD) systems, have recently been brought at the forefront of 5G technologies, while major breakthroughs have been made with respect SI cancellation [1], [2]. On the other hand, simultaneous wireless information and power transfer (SWIPT) is also being considered for 5G for prolonging the lifetime of communication networks. Towards this direction research efforts have involved employing energy and information receivers (EIR) [3] as well as SWIPT relays [4]. The integration of FD with SWIPT is promising since the EIR can be simultaneously served thereby improving the spectrum and energy efficiency of the system [5]. Most relevant to the focus of this letter, in [6], the authors proposed a multi-objective optimization problem (MOOP) via the weighted Tchebycheff method to investigate the resource allocation for FD-SWIPT systems with separated EIR. Their MOOP jointly minimizes the uplink and downlink transmit power and maximizes the total energy harvested.

Accordingly, in this work, we aim to investigate preceding solutions for FD-SWIPT. Inspired by [6], here we first derive a channel state information (CSI)-robust MOOP based on suppressing interference. We then go one step further to reformulate the optimization such that the multi-user interference is exploited as a useful resource both for energy and information power. While the concept of interference exploitation has been studied thoroughly for half-duplex (HD) in [7]–[9], providing significant downlink power gains, the FD setup investigated here provides the opportunity to extend these gains to the uplink power budget.

Manuscript received May 4, 2018; accepted June 8, 2018. Date of publication June 19, 2018; date of current version September 8, 2018. This work was supported by the Engineering and Physical Sciences Research Council Project under Grant EP/R007934/1 and the Petroleum Technology Development Fund (PTDF). The associate editor coordinating the review of this paper and approving it for publication was N. Zlatanov. (Corresponding author: Mahmoud T. Kabir.)

The authors are with the Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, U.K. (e-mail: kabir.tukur.15@ucl.ac.uk; m.khandaker@ucl.ac.uk; c.masouros@ucl.ac.uk). Digital Object Identifier 10.1109/LCOMM.2018.2848929

Fig. 1. A multi-user FD SWIPT system.

II. SYSTEM MODEL

We consider a multiuser communication system defined in [6] and shown in Fig. 1. A FD base station (BS) with N transmit and N receive antennas simultaneously serves K single-antenna downlink users, J uplink users and M energy receivers (ERs). The transmitted signal by the FD BS is expressed as $t = \sum_{i=1}^{K} w_i d_i + q$, where, $w_i \in \mathbb{C}^{N \times 1}$ and d_i denote the beamforming vector and the unit data symbol for the i-th downlink user, respectively. The vector $q \in \mathbb{C}^{N \times 1}$ is the energy signal sent by the FD BS to facilitate energy transfer [6]. Let $h_i \in \mathbb{C}^{N \times 1}$, $f_j \in \mathbb{C}^{N \times 1}$ and $r_m \in \mathbb{C}^{N \times 1}$ be the channels between the FD BS and the i-th downlink user, the j-th uplink user, the m-th ER, respectively. Therefore, the received signals at the i-th downlink user, the FD BS and the m-th ER are respectively given by

$$\begin{align*}
y_{DL}^i &= h_i^H \sum_{k=1}^{K} w_k d_k + h_i^H q + \sum_{j=1}^{J} \sqrt{p_j} f_{j,i} x_j + n_i, \quad (1) \\
y_{BS} &= \sum_{j=1}^{J} \sqrt{p_j} f_{j} x_j + G t + n_j, \quad (2) \\
y_{ER}^m &= r_m^H t + n_m, \quad (3)
\end{align*}$$

where, p_j and x_j denote the uplink transmit power and the data symbol from the j-th uplink user, respectively. $f_{j,i}$ is the channel between the j-th uplink user and the i-th downlink user. We denote $n_i \sim \mathcal{CN}(0, \sigma_i^2)$, $n_j \sim \mathcal{CN}(0, \sigma_j^2)$ and $n_m \sim \mathcal{CN}(0, \sigma_m^2)$ as the additive white Gaussian noise at the i-th user, the FD BS and the m-th ER, respectively. The matrix $G \in \mathbb{C}^{N \times N}$ denotes the SI channel at the FD BS. In order to isolate our proposed scheme from the specific implementation of any passive or active SI mitigation techniques, we consider the deterministic model to represent the residual-SI channel after cancellation, that is known imperfectly at the BS. Accordingly, the SI channel, which typically follows Rician distribution [6], is expressed as $G = G + E_G$, where G, denotes the SI channel estimate known to the FD BS which can be cancelled, and E_G represents the SI channel uncertainties, for which $\|E_G\|_F^2 \leq \epsilon_G^2$, for some $\epsilon_G \geq 0$. We denote $\|\cdot\|_F$ as the Frobenius norm.

1In the adopted system model, the ERs only receive energy from the FD BS, while we ignore the potential energy received by the uplink users for simplicity.
We define the signal-to-interference plus noise ratio (SINR) at the \(i\)-th downlink user and at the FD radio BS respectively as
\[
\Gamma_{\text{DL}}^i = \frac{|h_i^H w_i|^2}{\sum_{k \neq i} |h_k^H w_k|^2 + |h_i^H q|^2 + \sum_{j=1}^J p_j |\ell_{j,i}|^2 + \sigma_i^2},
\]
\[
\Gamma_{\text{UL}}^j = \frac{p_j |f_j^H u_j|^2}{\sum_{m \neq j} p_m |h_m^H u_j|^2 + |u_j E_{\text{CSI}}|^2 + \sigma_j^2 ||u_j||^2},
\]
where \(u_j \in \mathbb{C}^{N \times 1}\) is the receive beamforming vector for detecting the received symbol from the \(j\)-th uplink user. Following [6], we adopt zero-forcing (ZF) beamforming at the FD BS for the detection of uplink signals.

The total harvested energy at the \(m\)-th ER is modelled as [3] \(E_{\text{ER}}^m = \gamma_m |r_m^H w|^2\), where, \(0 \leq \gamma_m \leq 1\) represents the energy conversion efficiency and we assume the noise power is negligibly small compared to the power of the received signal [6].

In contrast to [6], in this letter, we focus on the case where imperfect CSI for the downlink, uplink, and CCI channels are available at the FD BS. We model these additive errors as norm-bounded, in the form \(h_i = h_i + e_{h,i}, \|e_{h,i}\| \leq \epsilon_{h,i}, \forall i, f_j = f_j + e_{f,j}, \|e_{f,j}\| \leq \epsilon_{f,j}, \forall j, \) where \(h_i, f_j, \) and \(e_{h,i}\) and \(e_{f,j}\) represent the downlink, uplink and CCI CSI uncertainties, respectively. On the other hand, the FD BS need only to know the channel gain \(r_m\) of the ERs' channel to achieve a specified energy harvesting target.

III. ROBUST DESIGN WITH INTERFERENCE SUPPRESSION

The system design objective is to jointly minimize the total downlink and uplink transmit power while maximizing the total harvested energy subject to QoS constraints (4) and (5), where multi-user interference is treated as harmful signal. This can be mathematically formulated as
\[
P_1 : \min_{w_i, q, p_j} c_1 \cdot \left(\sum_{k=1}^K \|w_k\|^2 + \|q\|^2 \right) + c_2 \cdot \sum_{j=1}^J p_j - c_3 \cdot \sum_{m=1}^M E_{\text{ER}}^m
\]
\[
\text{s.t. } A1 : \Gamma_{\text{DL}}^i \geq \Gamma_i, \forall i, \|e_{h,i}\|^2 \leq \epsilon_{h,i}^2, \|e_{f,j}\|^2 \leq \epsilon_{f,j}^2, \forall j, A2 : \Gamma_{\text{UL}}^j \geq \Gamma_j, \|E_{\text{CSI}}\|^2 \leq \epsilon_{f,j}^2, \|e_{f,j}\|^2 \leq \epsilon_{f,j}^2, \forall j, A3 : \gamma_m r_m \left(\sum_{k=1}^K \|w_k\|^2 + \|q\|^2 \right) \geq Q_m, \forall m,
\]
\[
A4 : \sum_{k=1}^K \|w_k\|^2 + \|q\|^2 \leq p_{\text{DL}}^\text{max}, A5 : p_j \leq p_{\text{UL}}^\text{max}, \forall j,
\]
where \(c_1 + c_2 + c_3 = 1\) are the weights given to each of the system's design objectives, respectively. Constraints A1 and A2 ensure that the minimum SINR, \(\Gamma_i\) and \(\Gamma_j\), is achieved for the \(i\)-th downlink user and \(j\)-th uplink user, respectively. Constraint A3 ensures that the minimum harvested energy, \(P_{\text{m,\text{min}}}\), for the \(m\)-th ER is achieved while A4 and A5 denote the maximum downlink and uplink transmit power constraints, respectively. The evidently non-convex problem (6) can be solved by formulating it as a semi-definite program (SDP) which can be transformed into linear matrix inequalities (LMI) by using the S-procedure. Accordingly, by defining \(W_i = w_i w_i^H, Q = q q^H\) and \(U_j = u_j u_j^H\), Constraint A1 can be expressed as the following two constraints
\[
(\hat{h}_i + e_{h,i})^H Y_i (\hat{h}_i + e_{h,i}) - \Gamma_i (\sigma_i^2 + L_i) \geq 0, \forall i,
\]
\[
\sum_{j=1}^J p_j (\hat{\ell}_{j,i} + e_{j,i})^H (\hat{\ell}_{j,i} + e_{j,i}) \leq L_i, \forall i,
\]
where we introduce auxiliary variable \(L_i \geq 0\) and \(Y_i = W_i - \Gamma_i \left(\sum_{k \neq i} W_k + Q \right)\). For constraint A2, we define two vectors \(\bar{f}_j = [f_j^H, \ldots, f_j^H]^H \in \mathbb{C}^{N J \times 1}\) and \(\bar{e}_j = [e_{f,j}^H, \ldots, e_{f,j}^H]^H \in \mathbb{C}^{N J \times 1}\). Hence, we can define any \(\hat{f}_j = B_j \bar{f}_j\) and \(e_{f,j} = B_j \bar{e}_j\), for \(j = 1, \ldots, J\), with \(B_j \in \mathbb{R}^{N \times NJ}\) defined as \(B_j = [B_{j,1}, \ldots, B_{j,J}]\), where \(B_{j,i} = I_N\) and \(B_{j,n} = 0_N\), for \(n = 1, \ldots, J, n \neq j\). We have \(I_N\) and \(0_N\) to be an \(N \times N\) identity matrix and zero matrix, respectively. Hence, A2 can be rewritten as
\[
p_j \left((B_{j,} \bar{f}_j + B_{j} \bar{e}_j)^H U_j (B_{j,} \bar{f}_j + B_{j} \bar{e}_j) \right) \geq \sigma_j^2, \forall j,
\]
\[
\sum_{n \neq j} p_n (B_n \bar{f}_j + B_n \bar{e}_j)^H U_j (B_n \bar{f}_j + B_n \bar{e}_j) + S_j \geq \sigma_j^2, \forall j,
\]
where \(S_j = \text{Tr} \left\{ E_{\text{CSI}} \left(\sum_{k=1}^K W_k + Q \right) E_{\text{CSI}}^H U_j \right\} + \sigma_j^2 \text{Tr} \{ U_j \} \). Furthermore, we introduce \(Z_j = \sum_{n \neq j} p_n B_n^H U_j B_n^H + \sum_{n \neq j} U_n^H B_n^H U_n^H + S_j\), such that (9) can be written as the following two constraints
\[
(\bar{f} + \bar{e})^H Z_j (\bar{f} + \bar{e}) \geq \sigma_j^2, \forall j,
\]
\[
\text{Tr} \left\{ E_{\text{CSI}} \left(\sum_{k=1}^K W_k + Q \right) E_{\text{CSI}}^H U_j \right\} + \sigma_j^2 \text{Tr} \{ U_j \} \leq \sigma_j^2, \forall j.
\]
Thus, using \(\text{Tr} \{ \text{ABCD} \} = \text{vec} (A^H (D^T \otimes B) \text{vec} (C))\), and defining \(P = \text{diag} (p_1, \ldots, p_J), \ell_i = [\ell_{i,1}, \ldots, \ell_{i,J}]^T, e_{h,i} = [e_{h,i,1}, \ldots, e_{h,i,J}]^T\) and \(e_q = \text{vec}(E_{\text{CSI}}^H)\), where \text{vec}(\cdot) stacks the columns of a matrix into a vector and \(\otimes\) stands for Kronecker product, constraints (7),(8), (10) and (11) can be expanded and transformed to LMIs using S-procedure as shown in (12) and (13), as shown at the top of the next page, respectively. Thus, (6) can be re-expressed as
\[
P_2 : \min_{w_i, q, p_j, s_{ij}, \mu_j, \rho} \text{Tr} \left\{ \sum_{k=1}^K W_k + Q \right\} \left(c_1 - c_3 \sum_{m=1}^M \gamma_m r_m \right),
\]
\[
+ c_2 \cdot \sum_{j=1}^J p_j
\]
\[
\text{s.t. } A1a, A1b, A2a, A2b, A4, A5,
\]
\[
A3 : \gamma_m r_m \text{Tr} \left\{ \sum_{k=1}^K W_k + Q \right\} \geq Q_m, \forall m,
\]
\[
W_i \succeq 0, \forall i, Q \succeq 0, \mu_j \geq 0, \forall j, \rho \geq 0,
\]
where we have dropped the rank constraints on $W_i, \forall i$. Note that the problem (14) is a relaxed form of (6). While it is difficult to prove analytically, our simulations have shown that problem (14) always returns rank-one solutions. Still, in the unlikely case of a non-rank-one solution, valid solutions can always be obtained by randomization.

IV. Robust Design With Interference Exploitation

We design our system to exploit interference rather than suppressing it as in Section III. Constructive interference (CI) is the interference that pushes the received signal away from the detection thresholds [7]. The concept of CI has been thoroughly studied in the literature for both PSK and QAM modulation in [7] and references therein, where analytical criteria are also derived. For notational convenience, we focus on PSK here. To reformulate (6) for interference exploitation, we first write the received signal at the i-th downlink user as

$$
\tilde{y}_i = \left(h_i + e_{h,i}\right)^H \left(\sum_{k=1}^{K} w_k e^{j(\phi_k - \phi_i)} + q e^{-j\phi_i}\right) = \left(h_i + e_{h,i}\right)^H a,
$$

(15)

where we have omitted the noise term, $a = \sum_{k=1}^{K} w_k e^{j(\phi_k - \phi_i)} + q e^{-j\phi_i}$, and the unit-energy PSK symbol for the i-th downlink user is represented as $d_i = e^{j\phi_i}$.

As detailed in [7], for any given PSK constellation point, to guarantee CI, \tilde{y}_i must fall within the CI region of the constellation. The size of the region is determined by $\theta = \pm \frac{\pi}{2}$, which is the maximum angle shift within the CI region for a modulation order B. Accordingly, the downlink SINR constraint that guarantees CI at the i-th downlink user [7] is

$$
|\Im(\tilde{y}_i)| \leq \sqrt{\Gamma_i} \sum_{j=1}^{J} p_j |\tilde{f}_{j,i} + e_{j,i}|^2 + |\Gamma_i^2| \tan\theta,
$$

(16)

where \Re and \Im are the real and imaginary parts, respectively. In a similar fashion to Section III, the robust system design for CI can be formulated as

$$
P3: \min_{a, \{p_j\}} c_1 \cdot ||a||^2 + c_2 \cdot \sum_{j=1}^{J} p_j - c_3 \cdot \sum_{m=1}^{M} \zeta_m r_m ||a||^2
$$

s.t. B1: (16), \quad \forall ||e_{h,i}||^2 \leq e_{h,i}^2, \quad \forall ||e_{j,i}||^2 \leq e_{j,i}^2, \quad \forall i,

B2: $\Gamma^UL \geq \Gamma_i, \forall |E_G||^2 \leq 2 e_{j,i}^2, \forall j$,

B3: $\zeta_m r_m ||a||^2 \geq F_{m}^\min, \quad \forall m$,

B4: $||a||^2 \leq p_{max}^UL$, B5: $p_j \leq p_{max}^UL, \forall j$.

(17)

Problem (17) is a non-convex problem. To solve (17), we transform each constraint to a convex form separately in the following. Let’s consider the downlink SINR constraint B1, which can be rewritten as the following two constraints

$$
|\tilde{h}_i + e_{h,i}||H| a - |(\tilde{h}_i + e_{h,i})^H a - \sqrt{\Gamma_i L_i^{CI}}| \tan\theta \leq 0, \quad \forall i,
$$

(18)

$$
\sum_{j=1}^{J} \sqrt{\Gamma_j} |\tilde{f}_{j,i} + e_{j,i}|^2 + \sigma_i^2 \leq L_i^{CI}, \quad \forall i.
$$

(19)

Accordingly, (18) can be relaxed to the following two robust formulations

$$
\hat{\bar{h}}_i^H [a - \Pi a \tan\theta] + e_{h,i}||H| a - \Pi a \tan\theta||
$$

(20)

$$
\hat{\bar{h}}_i^H (-a - \Pi a \tan\theta) + e_{h,i}||H| a - \Pi a \tan\theta||
$$

(21)

where $a = [\Re(a)^H \Im(a)^H]^H, \quad \Pi = \begin{bmatrix} 0_N & -I_N \\ I_N & 0_N \end{bmatrix}$, $\tilde{h}_i = [\Im(\tilde{h}_i)^H \Re(\tilde{h}_i)^H]^H, \quad \varphi_{h,i} = [\Im(e_{h,i})^H \Re(e_{h,i})]^H$. Furthermore, by using the inequality $\sqrt{x^2 + y^2} \leq |x| + |y|$, (19) can be relaxed to the following robust formulation

$$
\sum_{j=1}^{J} \sqrt{\Gamma_j} |\tilde{f}_{j,i} + e_{j,i}|^2 + |\sigma_i| \leq L_i^{CI}, \quad \forall i.
$$

(22)

Next, we consider the uplink SINR constraint B2, which can be written as

$$
p_j \left(\tilde{f}_j + e_{f,j}||H| u_j\right)^2
$$

$$
\geq \Gamma_j \sum_{n \neq j} p_n \left|f_n + e_{f,n}\right||H| u_j\right|^2 + |u_j E_G a|^2 + \sigma_j^2 ||u_j||^2
$$

(23)

which can be relaxed using the inequality $||x + y||^2 \leq (||x|| + ||y||)^2$ to give the following robust formulation

$$
p_j \left(|\tilde{f}_j||H| u_j\right|^2 + e_{f,j}||u_j\right|^2
$$

$$
\geq \Gamma_j \sum_{n \neq j} p_n \left(\tilde{f}_n||H| u_j\right|^2 + e_{f,n}||u_j\right|^2
$$

$$
+ (c_2 ||u_j|| ||a||^2 + \sigma_j^2 ||u_j||^2)
$$

(24)

Accordingly, from (20) we have

$$
\frac{-\hat{\bar{h}}_i^H (I - \Pi \tan\theta) a + \sqrt{\Gamma_i L_i^{CI}} \tan\theta}{e_{h,i} ||I - \Pi \tan\theta||} \leq ||a||.
$$

(25)
We model the channels to the uplink and downlink users as uniformly distributed between the distance of 2m and 10m. By Friis equation, we have an estimate channel gain $h_{i} = \frac{G_{t}G_{r}}{4\pi d_{i}^{2}}$, where G_{t} and G_{r} are the transmit and receive antenna gains, respectively, and d_{i} is the distance between the BS and the ith user.

The interference reduction aims to lower the SI power at the ERs. From the interference suppression (IS) scheme, it is clear that P_{DL}^{min} increases. This occurs because less power is required to satisfy the downlink and uplink QoS constraints for the IS scheme compared to the interference suppression (IS) scheme, hence, more power is available to be harvested by the ERs. Furthermore, Fig. 2b shows the average harvested energy for different minimum harvested energy thresholds. Clearly, the CI scheme is less sensitive to the P_{DL}^{min} threshold values since more transmit power is being saved from exploiting interference, while for the IS scheme less energy can be harvested. In Fig. 2c, we show the average harvested energy with respect to the distance between uplink and downlink users, that determines the CCI. The CI scheme is less sensitive to CCI compared to the IS schemes, which further highlights the effectiveness of the interference exploitation approach.

VI. CONCLUSION

In this letter, we studied the CSI-robust transmit power and harvested energy optimization problem in a multiuser FD SWIPT system. The proposed CI scheme shows a significant performance improvement over the conventional interference cancellation-based scheme.

REFERENCES

