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1    Introduction

Early stage bioprocess development studies are typically 
taking place through the adoption of an approach based 
on Design of Experiments (DoE) [1, 2]. Such studies, fre-

quently aim to investigate ranges of the input variables, 
and to identify process relevant operating conditions to 
be explored in detail by further development activities. A 
part of these studies is also the scouting of categorical 
variables, or inputs. These may include culture media 
(e.g. [3]), or represent a choice of buffer species and chro-
matographic media (e.g. [4–6]). An alternative approach 
for performing scouting studies in early stages of bio-
process development is a grid-compatible Simplex vari-
ant [7]. Adoption of this Simplex method has been found 
to offer an attractive alternative to a DoE based approach 
for multiple case studies [7–9]. Benefits of this approach 
include its independence from the requirement of fitting 
mathematical models, the ability to deal with sparse miss-
ing values and noise levels typical of those encountered 

Research Article

Simplex-based optimization of numerical and categorical  
inputs in early bioprocess development: Case studies in HT 
chromatography

Spyridon Konstantinidis, Nigel Titchener-Hooker and Ajoy Velayudhan

The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, 
London, UK

Bioprocess development studies often involve the investigation of numerical and categorical 
inputs via the adoption of Design of Experiments (DoE) techniques. An attractive alternative is the 
deployment of a grid compatible Simplex variant which has been shown to yield optima rapidly 
and consistently. In this work, the method is combined with dummy variables and it is deployed 
in three case studies wherein spaces are comprised of both categorical and numerical inputs, a 
situation intractable by traditional Simplex methods. The first study employs in silico data and lays 
out the dummy variable methodology. The latter two employ experimental data from chromato­
graphy based studies performed with the filter-plate and miniature column High Throughput (HT) 
techniques. The solute of interest in the former case study was a monoclonal antibody whereas 
the latter dealt with the separation of a binary system of model proteins. The implemented 
approach prevented the stranding of the Simplex method at local optima, due to the arbitrary 
handling of the categorical inputs, and allowed for the concurrent optimization of numerical and 
categorical, multilevel and/or dichotomous, inputs. The deployment of the Simplex method, com­
bined with dummy variables, was therefore entirely successful in identifying and characterizing 
global optima in all three case studies. The Simplex-based method was further shown to be of 
equivalent efficiency to a DoE-based approach, represented here by D-Optimal designs. Such an 
approach failed, however, to both capture trends and identify optima, and led to poor operating 
conditions. It is suggested that the Simplex-variant is suited to development activities involving 
numerical and categorical inputs in early bioprocess development. 

Keywords: Categorical variables · Chromatography · Filter plates · High throughput bioprocess development · RoboColumns · 
Simplex optimization

Correspondence: Ajoy Velayudhan, The Advanced Centre for Biochemical 
Engineering, Department of Biochemical Engineering, University College 
London, Bernard Katz Building, Gordon Street, London WC1H 0AH, UK 
Email: a.velayudhan@ucl.ac.uk

Abbreviations: CV, column volume; Cyt, cytochrome; DoE, design of 
experiments; FF, fast flow; HT, high throughput; mAb, monoclonal antibody; 
OA, optical absorbance

Received	 01	MAR 2017
Revised	 04	MAY 2017
Accepted	 11	MAY 2017
Accepted  
article online	 12	MAY 2017

Supporting information  
available online

The copyright line was changed after for this article on 21st December 2017 
original online publication.



1700174  (2 of 14)	 © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.biotechnology-journal.com www.advancedsciencenews.com

Biotechnology
Journal

Biotechnol. J. 2017, 12, 1700174

in High Throughput (HT) studies, along with the ease of 
experimentation due to its compatibility with non-uni-
form grids via hand-coding. These are, of course, com-
bined with its ability to locate consistently optima with an 
accompanying efficiency comparable to approaches 
employing DoE techniques.

The results of a scouting study, also including categor-
ical inputs, can potentially have a significant impact on 
the outcomes of future development studies. Here, a 
choice regarding the categorical inputs may be made and 
any erroneously derived conclusions will be propagated in 
the process development train. For example, making the 
wrong choice of a chromatographic resin for the purifica-
tion of a product can render the performance of the opti-
mized process suboptimal since an alternative resin could 
outperform the chosen one. The importance of such stud-
ies and the likelihood of a DoE approach not always reach-
ing correct conclusions, especially when complex spaces 
are investigated alongside wide input ranges, have led to 
the consideration of the Simplex method for the concur-
rent optimization of numerical and categorical inputs 
defined over coarse grids.

Here, we assess the performance of the grid-compati-
ble Simplex method when deployed in case studies where 
the inputs also involve categorical variables. Three case 
studies are employed to describe the application of the 
method and to demonstrate its results. The first is based 
on in silico data and serves to demonstrate an approach 
involving the definition of dummy variables for dealing 
with the categorical inputs. The latter two were developed 
by carrying out HT studies employing, microscale, batch 
and packed bed column chromatography techniques, 
respectively. In the former case, binding conditions were 
screened so as to identify those maximizing the binding of 
a monoclonal antibody (mAb) to a selection of chromato-
graphic media. In the latter case, a linear gradient elution 
method was developed for the purification of a model sys-
tem of proteins, comprised of bovine serum albumin (BSA) 
and cytochrome c (CytC), and the Simplex method aims to 
identify the condition leading to the maximization of an 
objective function including both Throughput and Purity. 
The case studies were also investigated via the deploy-
ment of D-Optimal designs so as to represent an approach 
based on DoE methodology. This study sets out to expand 
the applicability domain of the grid-compatible Simplex 
method and represents a novel application of Simplex-
based methods in general.

2    Materials and methods

2.1    Gridded Simplex method

The Simplex algorithm is a direct search method which is 
based on the geometrical shape of a simplex [10, 11]. 
While the conventional Simplex methods accept continu-

ous inputs, a variant has been developed to be compatible 
with discrete inputs [8]. This grid-compatible variant 
employs additional movements, to those of the traditional 
method, and rules so as to search gridded spaces, typical 
of those generated during HT applications in bioprocess-
ing, while overcoming challenges relating to simplex 
degeneracy and oscillation. These render the method capa-
ble of identifying rapidly favorable areas within search 
spaces, which is then followed by their characterization 
through the encirclement of optima. These features stem 
from the nature of the modified method being a hybrid of 
the variable and fixed size Simplex methods [10, 11].

The application of this method in development stud-
ies leads to an iterative procedure wherein the method 
indicates conditions to be tested and uses the results to 
propose a new set of conditions until termination. Here, it 
is deployed retrospectively to identify optimal conditions 
on an already analyzed grid of conditions. This allows for 
the detailed assessment of the method and at the same 
time it simulates its intended iterative deployment. 

2.2    Case studies

The first case study is an in silico devised scenario which 
aims to highlight the challenges that may be met in situ-
ations wherein numerical and categorical inputs are 
investigated concurrently and how they can be dealt with 
via the deployment of the Simplex method. The remain-
ing two employ real experimental data from chromatogra-
phy based studies. Their details are given in the next two 
sections. The chemicals and proteins used in these case 
studies were from Sigma–Aldrich Ltd (Dorset, UK) unless 
specified otherwise.

2.2.1    Case study 1: In silico data
Here, the gridded data were generated employing a 
sphere function (Eq. 1). The first two variables (x1, x2) are 
numerical in nature and span thirteen uniform levels in 
[–3, 3]. The inclusion of the third variable (x3) in Eq.  (1) 
aimed to simulate the effect of a categorical input with 
four levels (i.e. A–D). Hence, Eq.  (1) takes a total of 676 
values within the considered grid (i.e. 169 values for each 
level of x3) and this function is minimized through the 
deployment of the Simplex method. 
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2.2.2  �  Case study 2: Screening mAb binding conditions 
and resins

The target product in this case study was a recombinant 
mAb expressed in CHO cells. Cell culture supernatant 
was spun at 35 000 × g for 40 min in an Avanti® J-E cen-
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trifuge (Beckman Coulter Inc., CA, USA). The resultant 
supernatant was diafiltrated into 5 mM Tris pH 7.0 using 
Vivaspin™ 20 MWCO 10000 tubes (GE Healthcare, Upp-
sala, Sweden) to a mAb concentration of 1.5 mg mL–1 as 
measured by a protein G based HPLC method described 
in [12]. 

2.2.2.1    High throughput mAb CEX binding system
A Tecan Freedom Evo® 100 station, equipped with a 
8-channel liquid handling arm, 1  mL dilutors, and con-
trolled by Freedom EVOware® version 2.1 software (Tecan 
Group Ltd, Männedorf, Switzerland) was employed to 
conduct all liquid handling steps using disposable 1 mL 
tips (Molecular BioProducts Inc., California, USA). Two 
96-well PreDictor™ CIEX screening filter plates (GE 
Healthcare) were employed to assess the impact of four 
variables on the binding of mAb in duplicate. Since these 
plates contain three resins (i.e. Capto™ S, SP Sepha-
rose™ Fast Flow, and Capto MMC, all from GE Health-
care), each occupying 32 wells in a plate at volumes of 2, 
6 and 6 μL per well, respectively, one of these variables 
was set to be resin type; a categorical variable with three 
levels (i.e. A–C, respectively). The next two variables were 
pH and salt concentration in a 20  mM acetate binding 
buffer. These were both numerical with four levels each 
(i.e. 4.00, 4.25, 4.50, 4.75, and 20, 40, 60, 80 mM, respec-
tively). The fourth variable was the salt type used to 
achieve the aforementioned salt concentrations. Two salt 
species were chosen (i.e. NaCl and Na2SO4) and as such 
this variable was also categorical in nature with two levels 
(i.e. A, B, respectively). Hence, 32 binding buffers were 
tested for each of the three resins, yielding a total of 96 
conditions in the resulting grid. These buffers were pre-
pared in a 96-well deep square well plate (Fisher Scien-
tific, Loughborough, UK) by mixing stock solutions of 
acetic acid, sodium acetate (VWR International Ltd, 
Leicestershire, UK), sodium chloride and sodium sulfate 
at the desired amounts, and were used to equilibrate two 
PreDictor plates according to the manufacturer’s recom-
mendations (i.e. experiments were run in duplicate). 
Additional amounts of the buffers were employed to pre-
pare 32 feed solutions for loading the plates. For this pur-
pose, the clarified and diafiltrated cell culture supernatant 
was diluted two-fold in each of the 32 buffers in a separate 
96-well deep square well plate (Fisher Scientific). These 
feed solutions were then aliquoted to load the two 96-well 
PreDictor filter plates at different volumes so as to present 
each resin with a load challenge of 50 mg mL–1. This chal-
lenge was chosen based on previous studies exploring the 
saturation of the resins at different binding conditions 
(data not shown). Upon completion of the loading step, 
the filter plates were then incubated for a period of one 
hour while shaking on two orbital shakers at 1100  rpm 
(Eppendorf UK Ltd., Stevenage, UK). At the end of the 
incubation period the plates were evacuated via centrifu-
gation on an Avanti J-E centrifuge (Beckman Coulter 

Inc.), according to the instructions of the manufacturer, 
and the filtrates were collected in two new 96-well deep 
square well collection plates (Fisher Scientific). These 
flowthrough fractions were stored at 4°C before analysis 
using the HPLC assay described in [12]. All experiments 
were performed at room temperature. The determined 
concentrations of the analyzed fractions were employed 
in defining an objective function to be investigated by the 
deployment of the Simplex method.

2.2.3  �  Case study 3: Optimization of binary mixture 
separation on cation exchange resins

The binary mixture used in this study comprised of BSA 
(>96%, agarose gel electrophoresis) and CytC from bovine 
heart (>95%). The employed buffers were prepared using 
sodium acetate, acetic acid, and sodium chloride (VWR 
International Ltd). The miniature columns were PreDictor 
RoboColumns® (GE Healthcare) pre-packed with 600 µL of 
the cation exchange resins Capto S and Capto SP ImpRes 
(both from GE Healthcare). The RoboColumns were oper-
ated on a Tecan Freedom Evo 200 (Tecan Group Ltd) liquid 
handling station fitted with 1 mL dilutors and stainless steel 
fixed tips. The robotic station was equipped with an 
8-channel liquid handling arm and a robot manipulator arm 
and was connected to an Inifinte® Pro 200 reader (Tecan 
Group Ltd). The hardware necessary to deploy the Robo-
Columns (i.e. Te-Chrom, Te-Shuttle, 96-well array plate 
from Tecan Group Ltd) was accompanied by hotels and 
carriers used to store solutions and plates. Such plates 
included 96-well deep square well plates (Fisher Scientific), 
48-well deep square well plates (Elkay Ltd., Hampshire, UK) 
and 96-well UV transparent plates (Corning Lifesciences, 
MA, USA). The Tecan station was programmed through 
Freedom EVOware v2.6 (Tecan Group Ltd).

2.2.3.1  �  High Throughput RoboColumn 
chromatography

For the complete automated deployment of RoboColumn 
chromatography on the Tecan station, a script was coded 
which provided a framework in which custom compiled 
applications convert user-defined inputs into worklists. 
Here, eight RoboColumns were run in parallel in each 
experiment and their operation followed closely the work-
flow reported in [13]. A liquid class with a dispense flowrate 
of 5 µL s–1 was employed when dispensing into the col-
umns giving a residence time of 2 min. The fixed stainless 
steel tips were sanitized, when necessary, with a protocol 
involving their washing with system liquid and aspiration/
dispense cycles with a 0.5 M sodium hydroxide solution. 

2.2.3.2    Analytical methods
The analysis of the collected fractions and blanks involved 
the determination of the volumes of the fractions and of 
the concentration of BSA and CytC in each collected frac-
tion. The former was achieved by employing the method 
described in [14]. Upon the determination of its volume, 
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the height of a solution in a well (i.e. the pathlength of the 
absorbance measurement in cm) could also be deter-
mined and it was employed to normalize all absorbance 
measurements (i.e. OA cm–1).

For the determination of the BSA and CytC amounts 
in the collected fractions, a method employing dual wave-
length measurements was devised. Here, single compo-
nent calibration curves were prepared for each of the 
analytes and by solving numerically a system of two equa-
tions with two unknowns (Eq. 2 and 3) their concentra-
tions in a mixture were determined.
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where λ1 and λ2 (nm) are two wavelengths at which 
absorbance measurements are taken, λ1

OA  and λ2
OA  are 

the blank corrected absorbances of a mixture of the two 
analytes at λ1 and λ2, b is the pathlength (cm), and finally, 
[BSA] and [CytC] are the concentrations (mg mL–1) of BSA 
and CytC, respectively, in a mixture. The coefficients a 
and b were those obtained from the single component 
quadratic calibration curves for BSA and CytC, respec-
tively, at 280 nm (λ1) and 530 nm (λ2). These were esti-
mated by preparing standards in 20 mM acetate, pH 4.5, 
20 mM NaCl over a concentration range of 0.05 mg mL–1 
to 10  mg  mL–1 for each protein (data not shown). The 
consideration of quadratic curves and the measurements 
at 530 nm were implemented to extend the working range 
of the assay. The method was validated by quantifying 
the two proteins in prepared unknown samples prior to its 
deployment (data not shown).

2.2.3.3    Linear salt gradient elution studies
The RoboColumn set up was employed in bind and elute 
mode to study the impact of four variables on the salt 
gradient elution separation of BSA (80% w/w) and CytC 
(20% w/w) mixtures. All runs were performed employing 
20 mM acetate buffers, pH 4.5 at various sodium chloride 
concentrations. This particular pH was chosen since it 
was found to result in similar retention of both solutes on 
the employed cation exchange resins making their sepa-
ration, via salt gradients, challenging and representative 
of real mixtures (data not shown). The first three consid-
ered variables were the starting sodium chloride concen-
tration of the gradient (Cs), the slope of the gradient rang-
ing from Cs to 1 M of NaCl (S), and the column load (L). The 
fourth variable was resin type and was categorical in 
nature with two levels (i.e. A, B for Capto SP ImpRes and 
Capto S, respectively). Four levels were chosen for each of 
the three numerical variables (i.e. 20, 60, 100 and 140 mM 
for Cs; 70, 120, 170 and 220 mM CV–1 for S; and 5, 10, 15 
and 20 mg mL–1 for L) and their combination yielded 64 

test conditions per resin. For each of these conditions and 
resin, two chromatograms were generated (i.e. experi-
ments were performed in duplicate) based on a method 
which included the handling of the columns according to: 
(i) equilibration for five column volumes (CVs) with a 
pH 4.5, 20 mM acetate buffer at the desired Cs level; (ii) 
wash with a pH 4.5, 20 mM acetate buffer at the desired 
Cs level for 5 and 4  CVs for the Capto S and Capto SP 
ImpRes resins, respectively; (iii) strip with a pH  4.5, 
20 mM acetate 1 M NaCl buffer for 4 and 2 CVs for the 
Capto S and Capto SP ImpRes resins, respectively; (iv) 
regeneration with a 1 M NaOH, 0.5 M NaCl solution for 5 
and 3 CVs for the Capto S and Capto SP ImpRes resins, 
respectively; and finally (v) the flushing of the columns 
with a 20% ethanol solution for 3  CVs. For the runs 
employing the Capto S resin, the columns were loaded for 
2 CVs and the desired loads were achieved by manipulat-
ing the concentration of the feed solutions. Conversely, for 
the runs employing the Capto SP ImpRes resin, the feed 
solution had a constant concentration (i.e. 10 mg mL–1) 
and the desired loads were achieved by manipulating the 
loaded volume. The duration of the elution gradient in a 
run was determined by the specified Cs and S. The feed 
solutions were prepared by dissolving the required 
amounts of the proteins in the corresponding equilibra-
tion (and wash) buffer. The RoboColumns were flushed 
with system liquid prior to the initialization of a run and 
prior to the flushing of the columns with the storage solu-
tion. The nominal volumes of the fractions collected by 
these runs were determined automatically by the deployed 
script and were at least of 150 μL in volume.

The total of 256 runs (i.e. 64 test conditions per resin 
assessed in duplicate) was completed in 32 experiments 
wherein eight RoboColumns were run in parallel. Upon 
their completion, the application of the analytics described 
in Section 2.2.3.2 allowed for the calculation of volume 
balances (%VBs) and mass balances (%MBs), via Eq. (4) 
and (5), respectively. Furthermore, Eq.  (6)–(8) were also 
applied to calculate the Purity, Yield and Throughput 
associated with a product pool per tested condition. 

∑
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where n is the nth pool out of the possible N product pools 
starting and ending at fraction numbers i and I, respec-
tively. In Eq. (4), Vmeasured,i and Vnominal,i correspond to the 
measured and nominal fraction volumes, respectively, in 
the ith fraction. In Eq. (5), Massi corresponds to the calcu-
lated mass of a protein in the ith fraction (i.e. protein 
concentration in fraction multiplied by Vmeasured,i) and 
Mass in is the amount of a protein loaded to a column. In 
Eq. (4) and (5) the summation is over the total number of 
fractions in a run. In Eq.  (8), the denominator of the 
Throughput (mg  s–1) was calculated as the number of 
column volumes at the end point of the nth pool (CVI) 
offset by the duration of the load and wash stages in a 
given run (i.e. CVLoad and CVWash, respectively). This was 
multiplied by 120 since the residence time was set to 
2 min for all runs. Eq.  (6)–(8) were further employed to 
obtain an objective function to be optimized by the 
deployment of the Simplex method.

2.3    �Deployment of the grid compatible  
Simplex method

2.3.1    Pre-processing
Prior to the deployment of the Simplex method, replicated 
measurements were averaged for each test condition for 
Case studies 2 and 3 so as to reduce experimental noise. 
Missing data were assigned highly unfavorable objective 
function values as a surrogate. The levels of the different 
variables in an optimization problem were hand-coded 
into ordered integers which increased monotonically with 
the levels of the variables. This was also applied in the 
case of categorical variables for the numerical assignment 
of their levels so as to include them in the method. For 
example, in Case study 1, the A–D levels of the third vari-
able were hand-coded to levels 1–4 respectively, whereas 
in Case study 2 the A–C levels of the resin type input were 
hand-coded to levels 1–3. Alternative permutations of the 
possible level assignments for the categorical inputs were 
also assessed.

2.3.2    Objective function definition
In Case study 1, the Simplex method was deployed to 
minimize the function described by Eq. (1). Likewise, in 
Case study 2, the Simplex method was employed to 
minimize the concentration of the mAb in the flow-
through fractions (i.e. CmAb in flowthrough). In both case stud-
ies, the minimization of the objective functions was 
achieved by maximizing the negative objective functions 
since the coded Simplex method acted as a maximizer. 
The objective function employed in Case study 3 was a 
composite function consisting of the product of Through-
put (Eq. 8) and Purity (Eq. 7) (i.e. Throughput × Purity). 

Prior to assigning an objective function value to each of 
the tested conditions, a screening process of the N pools 
per condition took place so as to identify the best prod-
uct pool. In this process, Eq. (6)–(8) were applied to all N 
pools per condition and the product Throughput × Purity 
was calculated. For those pools where the calculated 
Purity was less than 85%, the product was set to zero. 
When none of the pools satisfied this constraint on 
Purity, then for such a condition, the objective function 
was assigned a highly unfavorable value as a surrogate, 
similar to the treatment of missing values. Otherwise, 
the pool leading to the highest product over all N pools 
was selected and the objective function value for this 
condition was set to be equal to that product. The Sim-
plex method was then deployed to maximize the com-
posite objective function Throughput × Purity.

2.3.3    Evaluation of performance of Simplex method
To assess the performance of the Simplex method in the 
considered case studies, a population of results was gen-
erated by deploying the method from 150 randomly 
defined initial simplices (or starting points) in each case 
study. These did not include an optimum as one of the 
vertices of an initial simplex. Each of these 150 searches 
was continued until the termination of the method and 
upon their completion the reached optimum was record-
ed along with its associated objective function value and 
the number of conditions evaluated. These results were 
employed in determining the success of the method in 
identifying optimal conditions and its efficiency. Visual 
tools, including histograms and mesh plots, were also 
employed for displaying the trends in the data from the 
case studies.

Finally, a brief comparison is made between the 
Simplex-based approach and an approach employing 
response surface methodology. For this purpose, the data 
from the case studies were fitted by employing regres-
sion models with their model matrix originating from 
D-Optimal designs [15, 16]. The fitted models included up 
to second order terms. Such designs were employed as 
they allow for a flexible selection of the calibration set and 
the inclusion of categorical variables. 

The Simplex method was encoded in MATLAB 
2015a (The MathWorks® Incorporated, MA, USA) on a 
dual Intel Xeon E5-2650 CPU workstation with 32 GB of 
RAM running Windows Server 2003 (Microsoft Corpo-
ration, WA, USA). The application of the method with 
the Parallel Computing Toolbox (MathWorks) allowed 
for the deployment of 30 simplex searches in a parallel 
fashion, with each lasting, typically, well below 1 min 
in real time. The system of linear equations (Eq. 2 and 
3) was solved numerically employing MATLAB’s 
‘fsolve’ function. D-Optimal designs were built through 
the PLS Toolbox (v7.9.5) (Eigenvector Research Inc., 
WA, USA).



1700174  (6 of 14)	 © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.biotechnology-journal.com www.advancedsciencenews.com

Biotechnology
Journal

Biotechnol. J. 2017, 12, 1700174

3    Results and discussion

3.1    Simplex method deployment

3.1.1    Case study 1
Having preprocessed the in silico data, which included 
the numerical assignment of the levels of x3 (i.e. A–D 
assigned values of 1–4 respectively), the Simplex method 
was deployed from 150 randomly generated starting 
points to identify the combination of the three inputs 
leading to the minimum of the objective function (Eq. 1). 
For this, first, permutation, the resulting response surface 
(Figs. 1A–D) contained a single and well defined optimum 
(i.e. (▫) in Fig. 1A). As a result, each search converged to 
the condition (1, 0, A or 1) (i.e. () in Fig. 1A) leading to a 

100% success rate (permutation #1 in Table 1). This is due 
to the fact that with the chosen assignment of the levels 
of x3, a monotonic relationship is imposed between the 
levels of the categorical input and the objective function 
value (Supporting information, Fig. S1A). This monotonic-
ity was also maintained when the levels of x3 are assigned 
values 1–4 in reverse order (i.e. D–A, respectively). Here, 
the underlying response surface also has a single and well 
defined optimum, but at a different coded level of the 
categorical input (i.e. (1, 0, A or 4), and the deployment of 
the method from an additional 150 random starting points 
led to the identification of this optimum with a success 
rate of 100% (permutation #2 in Table 1).

In both of these cases, the described treatment of the 
categorical input leads to a simplification of the optimiza-

Figure 1. Mesh plot of the objective func­
tion value from Eq. (1) in Case study 1. 
Each of (A)–(D) corresponds to each of 
the four levels (i.e. A–D) of the categori­
cal input x3. (▫) annotates the global opti­
mum. () annotates the optimum identi­
fied by 100, 100, 72, 61.33 and 96% of 
the simplex searches for permutations 
#1–#5, respectively; () annotates the 
optimum identified by the remaining 
simplex searches for permutations, 
#3–#5 respectively; All searches con­
verged to () when the dummy variable 
approach was employed; (d) corre­
sponds to the predicted optimum based 
on the estimations of a quadratic model 
calibrated on a D-Optimal design with a 
sample size of 77.

Table 1. Success rate of Simplex method in locating the global optimum in Case studies 1–3. Nine permutations are investigated for assigning values to 
the levels of the categorical inputs x3 (A–D) in Case study 1 and resin type in Case studies 2 and 3 (A–C and A–B, respectively). Results are based on 150 
searches initializing from random points.

Case study Permutation Levels % Success rate

A B C D

1 1 1 2 3 4 100.00
2 4 3 2 1 100.00
3 1 4 3 2  72.00
4 4 1 2 3  61.33
5 3 1 4 2  96.00

2 6 1 2 3 NA 100.00
7 1 3 2 NA  92.67
8 2 1 3 NA  63.33

3 9 1 2 NA NA 100.00
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tion problem due to the monotonic trend. However, for a 
categorical variable with four levels, a total of 4! permuta-
tions can be assessed for the numerical assignment of the 
levels. For an additional three of these permutations (i.e. 
permutations #3–#5 in Table  1), the monotonicity was 
disrupted and additional spurious optima emerged along 
the categorical input. For permutations #3 and #4, the two 
optima were on either end of the categorical input (Sup-
porting information, Figs.  S1B and S1C, respectively) 
whereas for permutation #5 the two optima were one 
level apart (Fig. S1D). For these permutations, the Simplex 
method was less successful in identifying the optimum 
(Table  1). Here, searches that did not converge at the 
global optimum were instead stranded at a local optimum 
(i.e. () in Fig. 1B). The greater success rate of the method 
for permutation #5 is due to the fact that in this case the 
two optima lay close to each-other (Fig. S1D) and were 
less well separated compared to permutations #3 and #4. 
As a result, the encirclement movements that the method 
carries out once an optimum is identified led to a higher 
chance of locating the global optimum once the local opti-
mum had been reached for permutation #5. 

These results highlight the impact of the treatment of 
the categorical inputs in an arbitrary fashion on the 
method; additional, spurious, optima may emerge and as 
a result the identification of optimal conditions can 
become more challenging. To counter this challenge, an 
alternative approach was adopted for dealing with the 
categorical inputs and it was based on the definition of 
dummy variables.

3.1.1.1  �  Categorical input consideration  
via dummy variables

Dummy variables are adopted in regression analysis 
when dealing with categorical inputs [17]. Here, a cate-
gorical input with ζ levels is converted to ζ-1 dummy 
binary variables (dζ-1). For example, a categorical input 
with three levels (i.e. A–C) is converted according to: 
A → (0,0), B → (1,0), and C → (0,1). Hence, the input space 
is expanded by one dimension since the categorical input 
is replaced by three coordinates of (d1, d2). Such coding 
enforces the comparison of one reference level against the 
remaining ones without assuming the existence of an 
order in the levels of the categorical variable. 

The impact of this approach, for dealing with categori-
cal inputs, on the performance of the Simplex method was 
considered by deploying an additional 150 randomly initial-
ized searches in Case study 1. For this purpose, three 
dummy variables were defined (d1, d2, d3) and the four 
levels of x3 were assigned as follows: A → (0,0,0), B  (1,0,0), 
C → (0,1,0), and D → (0,0,1). As a result the 3D grid was 
converted to a 5D grid. Since the Simplex method is appli-
cable to grids, and the definition of the three dummy vari-
ables led to 23 combinations of their levels, the existing grid 
was complemented by the missing coordinates in this new 
5D grid. For these conditions, the objective function was 

set to a highly unfavorable value as a surrogate. Hence, a 
5D grid was generated with 13 × 13 × 2 × 2 × 2 = 1352 
conditions from which half were treated as missing values 
and which included a single optimum at the coordinate 
(1, 0, 0, 0, 0) (i.e. (1, 0, A) in the original 3D grid). With the 
inclusion of the dummy variables, the Simplex method 
reached the optimum with a success rate of 100% which 
was as expected since in this scenario no false optima 
emerged from the handling of the categorical input x3.

Such a result serves to demonstrate the applicability 
of an approach employing dummy variables in dealing 
with categorical inputs during the deployment of the 
Simplex method and the ability of the latter to locate 
optima consistently in spaces involving such inputs. 

3.1.2    Case study 2
The second case study aimed to investigate the condi-
tions leading to the strongest binding of a mAb on three 
resins as a function of the pH, salt concentration ([Salt]) 
and salt type (Fig.  2). For this purpose, the duplicated 
concentrations of the mAb in the 96 flowthrough fractions 
were averaged for assessing trends and for deploying the 
Simplex method, as described in Section 2.3.1. Coeffi-
cients of variation were predominately below ≈5% with a 
few exceptions reaching to ≈10%.

Within the spanned ranges of pH and [Salt], stronger 
binding was observed for resin Capto S (Figs. 2A and 2D) 
than for resins SP Sepharose FF (Figs.  2B and 2E) and 
Capto MMC (Figs. 2C and 2F) for both of the considered 
salt species, i.e. NaCl (Figs. 2A–C) and Na2SO4 (Figs. 2D–F). 
For both salts, conditions of low [Salt] and pH led to a 
reduced binding of the mAb to the Capto S resin (Figs. 2A 
and 2D). This indicates a binding mechanism similar to 
the one observed in [18, 19]. This trend is more pro-
nounced for Na2SO4 (Fig. 2D) since the response surface 
has a ridge along the pH/[Salt] plane with the strongest 
binding occurring at high pH (4.75) and low [Salt] (20 mM) 
(i.e. (▫) in Fig.  2D). This is consistent with the higher 
ionic strength of this salt compared to NaCl. For the latter 
salt species, the binding trends on Capto S were also 
complex since two optima occur; one at an intermediate 
pH and high [Salt], and a second one at a high pH and low 
[Salt] (i.e. () and (f) in Fig. 2A, respectively). These bind-
ing trends were weakly emulated by the second cation 
exchange resin, SP Sepharose FF (Figs. 2B and 2E) where-
as the third considered resin, Capto MMC, a multimodal 
chromatography resin, exhibited different binding trends 
even if only the ionic interactions were active in the 
employed conditions (Figs. 2C and 2F). Hence, the results 
of this case study represent a complex system wherein 
there is a clear trend regarding the impact of the categor-
ical input resin type, whereas the trends regarding the 
remaining three inputs are less apparent; there exist mul-
tiple optima along the pH and salt concentration plane 
and one salt does not clearly lead to better or worse bind-
ing compared to the other.
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The Simplex method was deployed to identify the 
combination of the two numerical (pH and [Salt]) and two 
categorical (salt type and resin type) inputs minimizing 
the average mAb concentration in the flowthrough frac-
tions (i.e. CmAb in flowthrough). The impact of the treatment of 
the resin type input was also assessed by adopting three 
different permutations for the assignment of values to its 
three levels, A–C, corresponding to Capto S, SP Sepha-
rose FF and Capto MMC, respectively (permutations 
#6–#8 in Table 1). This was not implemented for the salt 
type input since only two levels were present (i.e. NaCl or 
A and Na2SO4 or B) and it was treated as a dichotomous 
categorical input (i.e. for this input, levels A and B were 
assigned values of 1 and 2 respectively). For this purpose, 
150 searches were deployed from random starting points 
for the three permutations considered in this case study. 

The results in Table 1 for Case study 2 demonstrated 
further the importance of the treatment of the categorical 
inputs for the performance of the Simplex method since 
its success rate varied from ≈63% to 100%. High success 
rates in locating the global optimum (i.e. (▫) in Fig. 2D) 
were returned for those cases wherein the first level of the 
categorical input resin type (i.e. A or Capto S) was placed 
on the boundary of the searched space (i.e. permutations 
#6 and #7). In the first case, all searches reached to a con-
dition coinciding with the global optimum (i.e. () in 

Fig. 2D) whereas in the second case, ≈7% of the simplex 
searches became stranded at a local optimum (i.e. () in 
Fig. 2E) for which the resin type input was at level B (or 
SP Sepharose FF). The remaining searches also con-
verged to the global optimum (i.e. () in Fig. 2D). By con-
trast, the lowest success rate corresponded to the permu-
tation placing the first level of the categorical input resin 
type within the boundaries of the searched space (i.e. 
permutation #8 in Table 1). Here, ≈63% of the searches 
converged to the same condition as the global optimum 
whereas the remaining ones converged to one of the best 
two binding conditions observed for Capto S and NaCl 
(i.e. () and () in Figs. 2D and 2A, respectively). 

The difference in the ability of the Simplex method to 
converge to the global optimum for permutations #6 and 
#7 (Table 1) was attributed to the loose similarity of the 
binding trends between Capto S and SP Sepharose FF 
and the dissimilarity of their trends to those observed for 
Capto MMC. For permutation #7, starting a search from 
an initial simplex spanning only the Capto MMC and SP 
Sepharose FF resins, and in particular with most of its 
vertices lying on the pH/[Salt] plane of the SP Sepharose 
FF resin for either salt, prevented the method from follow-
ing a gradient leading to the pH/[Salt] plane of the Capto 
S resin; the uniformity of the binding trends was dis-
rupted by the intermediate level of the resin type input 

Figure 2. Mesh plot of the negative aver­
age mAb concentrations in the flow­
through fractions (CmAb flowthrough) in Case 
study 2. Each of (A)–(F) corresponds to a 
combination of the categorical inputs salt 
type and resin type: (A) NaCl salt and 
Capto S resin; (B) NaCl salt and SP 
Sepharose FF resin; (C) NaCl salt and 
Capto MMC resin; (D) Na2SO4 salt and 
Capto S resin; (E) Na2SO4 salt and SP 
Sepharose FF resin; (F) Na2SO4 salt and 
Capto MMC resin. (▫) annotates the 
global optimum; () annotates the opti­
mum identified by 36.67% of the simplex 
searches for permutation #8 whereas 
(f) annotates a local optimum for the 
salt type and resin type combination in 
(A); () annotates the optimum identi­
fied by 100, 92.67, and 63.33% of the 
simplex searches for permutations 
#6–#8, respectively; () annotates the 
optimum identified by the remaining 
simplex searches for permutation #7;  
All searches converged to () when the 
dummy variable approach was employed; 
(d) corresponds to the predicted opti­
mum based on the estimations of a 
quadratic model calibrated on a D-Opti­
mal design with a sample size of 66.
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being Capto MMC in permutation #7. This is similar to the 
behavior in Case study 1 where the monotonicity of the 
objective function values was disrupted depending on the 
coding of the levels of the categorical input (e.g. Support-
ing information, Figs. S1B and S1C). 

The higher success rates in locating the global opti-
mum for permutations #6 and #7 compared to permutation 
#8 (Table 1) was attributed to the fact that in the former 
two, the global optimum lies at the boundary of the search 
space and there exists a clear improvement in the objective 
function as the level of the resin type input changes from 
its intermediate value (i.e. 2) to its lower limit (i.e. 1). Hence, 
the method follows a gradient that guides the deployed 
searches towards the boundary of the space which then 
leads to a detailed sampling of the corresponding sub-
space. This behavior is described by Fig. S2 (Supporting 
information); the first and second bars indicate that the 
majority of the vertices of the formed simplices, across all 

150 searches, lie on levels A, B and A, C for permutations 
#6 and #7, respectively. Likewise, Figs. S3A and S4A show 
the conditions selected by two searches converging to the 
global optimum for permutations #6 and #7, respectively. 
Here, the majority of the evaluated conditions in the two 
grids lie on the first two assigned levels (i.e. 1 and 2) of the 
input resin type. Conversely, in the case of permutation #8, 
the simplex searches distributed the evaluated conditions 
more uniformly across the three levels of the resin type 
input (i.e. third bar in Fig. S2 and S4B) since here the opti-
mum lies within the boundaries of the searched space 
along the input resin type.

The adoption of the dummy variable approach in this 
case study also resulted in a uniform distribution of the 
evaluated conditions across the levels of the resin type input 
(Supporting information, fourth bar in Fig. S2 and S3B). Here, 
the three levels of the resin type input were converted into 
two dummy variables according to A (or Capto S) → (0,0), B 

Figure 3. Mesh plot of the average com­
posite objective function Throughput × 
Purity in Case study 3. Each of (A)–(H) 
corresponds to a combination of the 
inputs Cs and resin type: (A) Cs of 20 mM 
and Capto SP ImpRes resin; (B) Cs of 
60 mM and Capto SP ImpRes resin; (C) 
Cs of 100 mM and Capto SP ImpRes 
resin; (D) Cs of 140 mM and Capto SP 
ImpRes resin; (E) Cs of 20 mM and Capto 
S resin; (F) Cs of 60 mM and Capto S 
resin; (G) Cs of 100 mM and Capto S 
resin; (H) Cs of 140 mM and Capto S 
resin. (▫) annotates the global optimum; 
() annotates the optimum identified by 
100% of the simplex searches for permu­
tation #9; (f) annotates the optimum 
for the Cs and resin type combination in 
(A); (d) corresponds to the predicted 
optimum based on the estimations of a 
quadratic model calibrated on a D-Opti­
mal design with a sample size of 42.  
The low objective function values in (C) 
for a slope, S, of 170 mM CV–1 was due 
to a gross experimental error in the prep­
aration of the employed buffers.
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(or SP Sepharose FF) → (1,0) and C (or Capto MMC) → (0,1). 
Similar to Case study 1, the existing 4D grid in Case study 2 
was consequently expanded to a 5D grid and it was comple-
mented by the addition of 32 surrogate points to ensure its 
completeness. While the distribution of the evaluated condi-
tions is similar to the one observed for permutation #8, the 
incorporation of the two dummy variables in the Simplex 
method led to a 100% success rate since all searches con-
verged to the same condition as the global optimum (i.e. () 
in Fig. 2D). Hence, as was the case for the in silico data in 
Case study 1, this approach was also found to be highly suc-
cessful in this case study, which employed real data, while 
eliminating the impact of the numerical assignment of the 
levels of the resin type input.

3.1.3    Case study 3
The last study investigated the separation of a binary 
mixture of model proteins (BSA and CytC) with the Robo-
Column microscale HT chromatography technique. A 
total of 128 chromatograms were developed for each of the 
two resins (i.e. 64 conditions in duplicate for resins Capto 
S and Capto SP ImpRes). The calculated volume balances 
(Eq. 4) across all runs, per resin, were found to be on aver-
age 95.3 ± 2.0% and 96 ± 2.9% for resins Capto S and SP 
ImpRes, respectively. Good closure was also observed, on 
average, for the mass balances (Eq. 5) for both BSA (i.e. 
88.7 ± 5.1 and 90.8 ± 5.9% for Capto S and SP ImpRes, 
respectively) and CytC (i.e. 98.6 ± 7.5 and 96.3 ± 4.9% for 
Capto S and SP ImpRes, respectively). The better mass 
balance closures for CytC compared to BSA were attrib-
uted to the better sensitivity of the dual wavelength 
method (Section 2.2.3.2) for the former solute due to its 
specific absorbance at 530 nm. 

Upon the application of Eq. (7) and (8), and the screen-
ing of the candidate product pools as described in Section 
2.3.2, the composite objective function Throughput × Purity 
was calculated (subject to a purity constraint of 85%) for 
each condition (Fig. 3). The objective function values for 
each of the two resins appear to be comparable (i.e. 
Figs. 3A–D and 3E–H for Capto SP ImpRes and Capto S, 
respectively) with the Capto S resin delivering the highest 
objective function value (i.e. (▫) in Fig. 3E) at a low initial 
salt concentration (i.e. 20 mM in Cs), intermediate gradi-
ent slope (i.e. 170  mM  CV–1 in S) and high load (i.e. 
20 g L–1 in L) (Fig. 4B). The condition returning the highest 
Throughput × Purity value for the Capto SP ImpRes resin 
(i.e. (f) in Fig. 3A and 4A) differed from the aforemen-
tioned one since here intermediate and high values were 
needed for L (i.e. 15 g L–1) and S (i.e. 220 mM CV–1) respec-
tively, whereas the starting salt concentration was the 
same (i.e. Cs at 20 mM). Since the product pools associ-
ated with the two conditions, as depicted in the denomi-
nator of Eq. (8), were approximately of equal size (i.e. 3.50 
and ≈3.52 CVs in Figs. 4A and 4B, respectively; a zoomed 
in version of Fig. 4 and the product pools can be found in 
Supporting information, Fig.  S5) the differences in the 

achieved Throughput were attributed to the BSA amount 
present in the product pool (i.e. numerator in Eq. 8). This 
amount was part of a trade-off affecting the value of the 
composite objective function; for Capto SP ImpRes, a high 
purity was preferred over a high BSA amount whereas for 
Capto S the opposite was true. This trade-off is expressed 
through the relationship between the load (L) and the 
gradient slope (S) since the response surface in Fig.  3 
gave evidence of both a significant interaction between 
the two inputs and a quadratic trend for either input. 

Despite the existence of these two optima and the 
non-linear trends in the response surface, the deployment 
of the Simplex method in this case study led to a 100% 
success rate since all simplex searches converged to a 
grid point occupied by the global optimum (i.e. () in 
Fig.  3E). Here, the categorical variable, resin type, had 
two levels (A and B), similar to the categorical variable salt 
type in Case study 2, and was therefore also treated as a 
dichotomous variable; no dummy variable approach was 
implemented, instead levels A and B were assigned val-
ues of 1 and 2 respectively (permutation #9 in Table 1). 

3.2    D-Optimal based DoE analysis

The performance of the Simplex method in locating opti-
ma in the investigated spaces was compared against a 
DoE approach. For this purpose, D-Optimal response 
surface designs were employed. Here, the model matrix 
was set to include up to quadratic terms and the categor-
ical inputs were treated with dummy variables unless 
they were dichotomous. The sample size of these designs, 
for each case study, was set to 77, 66 and 42; the average 
number of conditions evaluated by the deployment of the 
Simplex method with the dummy variable approach, 
where applicable, in the three case studies (Supporting 
information, Figs.  S6A to S6C for Case studies 1 to 3, 
respectively). In the first case study, the regression model 
yielded excellent results, as expected, since all variance 
was accounted for by its predictions. Hence, it captured 
entirely accurately the trends of the response and the 
location of the optimum (i.e. (d) in Fig.  1A). The cali-
brated regression models were less successful in predict-
ing the objective function values across the whole space 
for Case studies 2 and 3. In Case study 2 the capacity of 
the model to capture trends was low since a coefficient of 
determination (%R2) of ≈63% was obtained due to the 
inability of the model to characterize the curvature in the 
data (Fig. S7). The predicted optimum (i.e. (d) in Fig. 2A) 
lay on the correct salt concentration, pH and resin type, 
but indicated the use of NaCl instead of Na2SO4 salt. 
Hence, follow-up experiments would focus on the wrong 
salt and would result in suboptimal binding of the mAb to 
the Capto S resin. Conversely, in the third case study, the 
model captured the trends in the data more accurately 
(Supporting information, Fig.  S8), as indicated by a 
returned %R2 of ≈82%. However, the higher accuracy of 
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the model was not accompanied by an accurate charac-
terization of the optimum. Here, the model predicted that 
the optimal separation of the two proteins employed resin 
Capto SP ImpRes instead of Capto S (i.e. (d) in Fig. 3A). 
Furthermore, the model indicated that the separation on 
this resin could be improved by increasing the load and 
the gradient slope and consequently it did not approxi-
mate the optimal separation on Capto SP ImpRes (i.e. (f) 
in Fig. 3A) either. Hence, similar to the observations from 
Case study 2, the adoption of a D-Optimal design and 
regression modeling would guide additional development 
work towards sub-optimal directions by failing to yield 
reliable results.

3.3    �Evaluation of the Simplex method and  
the dummy variable approach

3.3.1    Identification of optima
The results in Table  1 indicate the impact of arbitrary 
level assignments of the categorical inputs on the perfor-
mance of the method. This was clearly demonstrated by 
Case study 1 where the monotonic behavior between the 
objective function values and the levels of the input x3 
could be severely disrupted. The same, but less evidently, 
applied for Case study 2 between the objective function 
values and the categorical input resin type since here 
assigning adjacent numerical levels to Capto S and SP 
Sepharose FF, both resins being ion exchangers, led to a 
higher convergence to the global optimum compared to 
the alternative (Table 1). 

To overcome this challenge, an alternative approach 
was adopted wherein the categorical inputs were replaced 
by dummy variables. In Case study 1, three such dummy 
variables were defined, due to the four levels of the cate-
gorical input, and the deployment of the Simplex method 
was entirely successful in locating the real optimum. In 
the second case study the deployment of the method led 
to a 100% success rate while dealing seamlessly with 
dummy variables, due to the resin type input, a dichoto-
mous input (i.e. salt type), and numerical inputs. The last 
case study included a single, dichotomous, categorical 
input (i.e. resin type). As a result, a dummy variable 
approach was not necessary and the deployment of the 
method still identified the global optimum with a 100% 
success rate. 

By comparison, the implementation of a regression 
analysis approach, employing a response surface D-Opti-
mal design, was not entirely successful in Case studies 2 
and 3, where real data where employed; in both case stud-
ies the models’ estimations failed to at least point towards 
the correct levels of the categorical inputs. Hence, plan-
ning future development activities based on the predic-
tions of these models would be wasteful; they would 
employ wrongly chosen salts and resins and would need 
to be repeated upon the elucidation of the correct selec-
tion. This observation is similar to conclusions drawn 
from other studies wherein higher order regression mod-
els were also considered [9]. 

Figure 4. Chromatograms obtained from running the RoboColumns at conditions maximizing the objective function Throughput × Purity, subject to a purity 
constraint of 85%, for the separation of the BSA (black – and -- lines for each replicate) and cytochrome c (red – and -- lines for each replicate) mixture on 
resins: (A) Capto SP ImpRes; and (B) Capto S. In both (A) and (B): Left y-axis shows the mass of each protein in each fraction; Right y-axis shows the 
employed NaCl linear gradient approximated by a series of steps (green line); x-axis shows the run duration in column volumes based on the nominal frac­
tion volumes (CVnominal); Vertical blue lines indicate the start and end points of the selected product pool. The text at the top of A and B summarizes the 
corresponding condition in terms of load (L), gradient slope (S) and starting salt concentration (Cs), and the returned BSA amount, Yield, Purity and 
Throughput (± 1 standard deviation) from the product pool. 
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3.3.2    Simplex method efficiency
The adoption of a dummy variable approach, when multi-
level categorical inputs are involved, leads to an increase 
in dimensionality and an accrued increase in the average 
number of conditions evaluated by the method compared 
to the situation where no dummy variables are defined (i.e. 
white bars of Group 1 versus Groups 2–6, and white bars 
of Group 8 versus groups 9–11 in Fig. 5 for Case studies 1 
and 2, respectively). This increase is, however, attributed 
to the encirclement movements that the method carries 
out prior to its termination. If the method was terminated 
once the optimum had been reached, and hence did not 
engage in its encirclement, then the adoption of the 
dummy variable approach is directly comparable to those 
cases where no dummy variables are employed (i.e. grey 
bars of Group 1 versus Groups 2–6, and grey bars of Group 
8 versus groups 9–11 in Fig. 5 for Case studies 1 and 2, 
respectively). This is in agreement with the features of the 
Simplex methods in general since the addition of inputs (or 
dimensions) in an optimization problem does not affect 
significantly the number of points evaluated by the meth-
od; only the initialization of the method and the shrink 
movements are affected by the increased dimensionality. 
At the same time, it needs to be highlighted that the inclu-
sion of dummy variables led to a more balanced search of 
a space across the categorical inputs, as indicated by 
Figs. S2 and S3B (Supporting information), but at the same 
time, the Simplex method still maintains its ability to 
screen out unfavorable conditions rapidly since, for exam-
ple, in Fig. S3B only a narrow range of the numerical inputs 
is sampled. Therefore, any increase in the number of 
selected conditions cannot be considered as wasteful.

Figure 5 also assesses a different regime of the deploy-
ment of the Simplex method in cases wherein categorical 
inputs are present. This is the separation of the consid-
ered space into subspaces, according to the levels of the 
categorical inputs, and the separate deployment of the 
method for each such subspace. For example, in Case 
study 1, four sub-spaces could be defined (one for each 
level of the x3 input) whereas in Case study 2 six spaces 
can be distinguished due to the two and three levels of the 
salt and resin type categorical inputs (i.e. 2 × 3 = 6 com-
binations). Then, an overall average number of conditions 
evaluated by the method can be obtained by summing 
over the results of the deployments for each space. This is 
indicated by Groups 7, 11 and 14 in Fig. 5 for Case studies 
1 to 3, respectively. Comparing Groups 2–6, 9–10 and 13 
to the aforementioned three groups in Fig. 5, and in par-
ticular the grey bars (i.e. early termination of method 
without optimum encirclement), shows that the concur-
rent consideration of all levels of the categorical inputs 
can lead to a more efficient deployment of the method. 
This behavior is more apparent when the number of the 
levels of the categorical inputs is high (i.e. Groups 2–6 
versus Group 7 and Groups 9, 10 versus Group 11 in Fig. 5 
for Case studies 1 and 2, respectively), whereas when the 
overall number of levels is low, the efficiency of the two 
approaches is similar (i.e. Group 13 versus Group 14 in 
Fig. 5 for Case study 3). For Case studies 1 and 2 such a 
regime can also be compared against the dummy variable 
approach (i.e. Group 1 versus Group 7 and Group 8 versus 
Group 12 in Fig. 5 for Case studies 1 and 2, respectively) 
and similar conclusions can be drawn.

Figure 5. Bar plot of the average number of unique conditions (±1 standard deviation) selected by the 150 simplex searches per case study and assessed 
assignment of values to the levels of the categorical inputs. The groups in the x-axis are summarized in the right hand side table. White bars calculated 
based on continuing a search until termination. Grey bars calculated based on terminating a search once the global optimum has been identified. Groups 
7, 12 and 14 simulate a scenario in which an experimental space is divided into sub-spaces according to the levels of the categorical inputs and their indi­
vidual exploration by the Simplex method. For these groups the bars and error bars are calculated as a sum of means and a square root of sum of vari­
ances, respectively. These are obtained from 150 random searches per sub-space (i.e. four in Case study 1, six in Case study 2 and two in Case study 3).
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Finally, a brief comparison can be made between the 
efficiency of the Simplex method and an approach employ-
ing response surface methodology. While a D-Optimal 
design was employed previously, alternative designs, such 
as central composite designs, could also be employed in the 
presence of categorical inputs. This would require however 
the generation of such a design for each combination of the 
levels of the categorical variables. Hence in Case study 2, six 
composite designs could be employed which would require 
a total of 54 conditions for evaluation whereas 30 conditions 
would be required in Case study 3 for two composite 
designs. These are both lower than the conditions required 
by the Simplex method with the dummy variables through-
out the majority of the simplex searches (Supporting infor-
mation, Figs. S6B and S6C). However, by preventing the 
method from encircling the located optima, ≈80% of the 
deployed searches evaluate less than 54 and 30 conditions 
for Case studies 2 and 3, respectively (Figs. S6D and S6E, 
respectively). Hence, while the Simplex method would be 
less efficient than the described DoE based approach, if left 
to terminate naturally, it is within the ability of the method 
to be at least as efficient as such an approach by preventing 
it from encircling the located optima.

4    Conclusions

Experimental studies during the early stages of bio-
process development are tasked with identifying promis-
ing operating conditions from a large range of alterna-
tives. Such studies often focus on both numerical and 
categorical inputs. Examples of the latter include buffer 
species, solvents, media etc. and their inclusion aims to 
select an appropriate system which will be part of future 
experiments. Making such a selection with confidence at 
an early stage of the development train is therefore of 
critical importance. The applicability of the grid-compat-

ible Simplex method for concurrent investigation of cat-
egorical and numerical inputs was investigated through 
three case studies; one employing in silico data and two 
based on experimental data. It was observed that the 
combination of the method with an approach dealing 
with the categorical inputs via the definition of dummy 
variables led to the identification of optimal conditions 
with high success rates and in an efficient fashion. The 
inclusion of dummy variables was shown to avoid the 
generation of spurious optima, which may emerge from 
arbitrary level assignments of the categorical inputs, and 
the method allowed for seamless consideration of numer-
ical inputs along with various types of categorical inputs 
(i.e. multi-level and/or dichotomous). By contrast, an 
approach employing response surface designs, such as 
D-Optimal designs, failed to capture the data trends and 
to identify the optima accurately. The results presented 
here further support the view that the grid compatible 
Simplex variant is an attractive approach for early-phase 
bioprocess development and demonstrate its suitability 
for deployment in studies employing both numerical and 
categorical variables. This enhances the wide applicabil-
ity of the method and represents a novel development for 
Simplex methods since they are not traditionally applica-
ble to such mixed optimization problems.
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Nomenclature

%MB	 ( – )	 Mass balance
%R2	 ( – )	 Coefficient of determination
%VB	 ( – )	 Volumetric balance
[Salt]	 (mM)	 Salt concentration in binding buffer
A	 ( – )	 First level of categorical input
a	 ( – )	 Standard curve coefficients for BSA
B	 ( – )	 Second level of categorical input
b	 ( – )	 Standard curve coefficients for Cytochrome C
BSA Massi	 (mg)	 BSA mass in ith fraction
C	 ( – )	 Third level of categorical input
CmAb in flowthrough	 (g L–1)	 mAb concentration in flowthrough 
Cs	 ( – )	 Starting salt concentration in gradient
CVI	 ( – )	 End point of product pool in column volumes 
CVLoad	 ( – )	 Duration of column load in column volumes
CVnominal	 ( – )	 Duration of run in column volumes
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CVWash	 ( – )	 Duration of column wash in column volumes
CytC Massi	 (mg)	 Cytochrome C mass in ith fraction
D	 ( – )	 Fourth level of categorical input
d	 ( – )	 Dummy variable
i	 ( – )	 Start fraction number of product pool 
I	 ( – )	 End fraction number of product pool
L	 (g L–1)	 Load 
b	 (cm)	 Pathlength
Mass in	 (mg)	 Protein mass in column load
Massi	 (mg)	 Protein mass in ith fraction
n	 ( – )	 nth product pool
N	 ( – )	 Number of possible product pools
resin type	 ( – )	 Categorical input in Case studies 2 and 3
S	 (mM CV–1)	 Gradient slope
salt type	 ( – )	 Categorical input in Case study 2
Vmeasured,i	 (mL)	 Determined volume in ith fraction
Vnominal,i	 (mL)	 Nominal volume in ith fraction
x1	 ( – )	 Numerical input in Case study 1
x2	 ( – )	 Numerical input in Case study 1
x3	 ( – )	 Categorical input in Case study 1
ζ	 ( – )	 Number of levels in categorical input
λ	 (nm)	 Wavelength


