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Abstract

The healthcare process generates a vast quantity of data. Exploitation and analysis of such material might lead
discoveries and potentially improve the clinical activity. Over the last years, several studies focused on the non-
linear features exhibited by physiological signals and medical data. In general, the complex features of these signals
have been demonstrated in some studies, ranging from heartbeat time intervals to neuron spikes series. Some works
employed fractal and multifractal concepts to the analysis of such medical data. Similar evaluations of movement
patterns recorded by actigraphy devices on individuals with fibromyalgia might provide new information that can
be potentially translated into the clinical practice. Chronic pain is a condition characterised by sleep disturbances
and psychological disorders that is correlated with impairment and reduced physical activity. This work aimed to
determine the characteristics of activity series from fractal geometry concepts, in addition to evaluate the possibility
of identifying individuals with fibromyalgia. Activity level data were collected from 27 healthy subjects and 27
fibromyalgia patients, with the use of clock-like devices equipped with accelerometers, for about two weeks, all day
long. The activity series were evaluated through fractal and multifractal methods. Hurst exponent analysis exhibited
values according to other studies for both groups, however, it is not possible to distinguish between the two groups by
such analysis. Activity time series also exhibited a multifractal pattern. A paired analysis of the spectra indices for
the sleep and awake states revealed differences between healthy subjects and fibromyalgia patients. The individuals
feature differences between awake and sleep states having statistically significant differences for αq− − α0 in healthy
subjects only, suggesting that there are not differences between awake and sleep state for patients with fibromyalgia.
The approach has proven to be an option on the characterisation of such kind of signals and was able to (indirectly)
differ between both healthy and fibromyalgia groups. This outcome suggests changes in the physiologic mechanisms
of movement control.
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1. Introduction

The medical sciences and health care process generate a vast quantity of data. Data analysis in health sciences
could reveal new relationships between symptoms and physiological mechanisms [1]. The natural way to parse this
information comprehends starting with linear methodologies, such as mean and standard deviation, nevertheless linear
approaches they do not appropriately handle the enormous inter and intra-individual variability of physiological and
psychological symptoms.
Over the last years, several studies focused on the non-linear features exhibited by physiological signals, in general.
The complex features of such signals have been demonstrated in some studies, ranging from heartbeat time intervals
[2] to neuron spikes series [3]. They are expressed in heteroscedastic recordings, exhibiting huge variability over time
and across different individuals.
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Such studies provided new insights on how human control mechanisms work and how the disease processes change
these features. In an example of application, researchers evaluated long-term correlation on beat intervals and noticed
a variation on the scalling properties in patients suffering with heart diseases [2]. A further study suggested a multi-
fractal behaviour on the human heartbeat patterns [4]. In both cases, changes in physiologic mechanisms of control,
revealed by the multifractal analysis, are pointed as the cause of such changes.
The multifractal geometry is an extension of the fractal definition, that allows a better characterisation of elements
that require an infinity number of parameters to be described [5], and is a possible tool to expand knowledge about
the dynamics of physiological signals and healthcare data. A potentially eminent application of such approach is the
study of actigraphy signal patterns in humans. Such analysis could reveal underlying features of movement in activity
recordings.
Actigraphy is a technique that allows the inference of wakefulness and sleep from the presence or absence of move-
ment [6, 7, 8]. Data obtained with such technique were used to study the scaling properties on the activity time series
for healthy subjects [9]. The authors have shown that there are fractal properties in human activity, suggesting a
multi-scale mechanism of the locomotor regulation. Later, it was revealed that the activity time series for Alzheimer’s
disease patients also have scaling properties, however, with a different exponent [10]. This analysis can uncover new
properties of the movement mechanisms that were not accessible with the conventional linear methods.
Applying a multifractal approach to study movement patterns in patients with chronic pain, e.g., fibromyalgia [11, 12],
might supply valuable information about the heterogeneity in the motor behaviour of such group, providing new in-
sights that could be potentially translated into clinical practice.
The subjective diagnosis protocol and the lack of a more precise approach to identify the syndrome makes the clinical
treatment of affected patients more difficult. A better way to classify and identify potential markers of the syndrome
would improve healthcare protocols and provide a better quality of life to patients, as well as, give insights about the
aetiology of the illness.
The fatigue reported by patients with fibromyalgia (FM) is severe enough to change the kinematic limits of move-
ments, modifying their daily activities with direct impact on quality of life [13, 14]. Actigraphy has been used to
assess changes in these patterns of activity for some patients [15, 16, 17, 18, 19]. Moreover, it was shown that actig-
raphy is a useful way of studying activity levels and sleep patterns, and, have demonstrated significant differences
between fibromyalgia patients with and without comorbid depression [17]. In all these studies the methods used to
characterise the activity were always linear and conclusions based on parametric tests of motion measures.
To date, actigraphy data scaling features have not been widely studied. Monofractal properties of actigraphy signals
from patients with fibromyalgia have not been explored, so far, as well as the multifractal features of such data in both
healthy individuals and patients. This study, then, proposes to analyse these questions in detail and applies monofrac-
tal and multifractal methods to actigraphy data in patients with fibromyalgia and healthy subjects looking for markers
of the chronic condition.
The objective of this work is, then, to evaluate actigraphy data based on multifractal methods, in order to look for
motor markers of the syndrome. In this study, the Chhabra and Jensen approach [20] was used to study the scaling
properties in activity time series of healthy (HC) and patients with fibromyalgia (FM). In our hypothesis, FM patients
should exhibit different scaling properties when compared to healthy individuals.

2. Methodology

An actigraphy device, attached to wrist on fifty-four individuals, collected data of physical activity. Individuals
regularly wore the devices during a period of about two weeks without interruption, except for bath time. Written
inform consent was obtained from all participants and the protocol of the study was approved by the official ethical
committee of the Government of Balearic Islands (reference: 1431/10 PI). Individuals were classified in two different
groups: patients suffering from chronic pain for more than one year (27 individuals) and healthy subjects (27 indi-
viduals). More information about the patients can be found in table 1. The series of activity were split into smaller
segments consisting of two possible states for an individual: awake and sleep. The information about the state is given
by the actigraphy device and determined by a commercial algorithm. The device registers the activity level at every 30
seconds. After the segmentation, the parts of the same state were stuck together, and then, two series, corresponding
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to both states, awake and sleep, were created for each individual. Examples of actigraphy for a healthy individual and
a patient are shown in figure 1.
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Figure 1: Actigraphy time series showing both states for a healthy control (A) and an individual with fibromyalgia (B). The recordings show
fluctuactions on the movement level in unities of acceleration (u.a.). The different states present distinct visual patterns for both subjects, being the
amplitude the most notable change.

Fractal analysis was performed on original series and multifractal analysis on the segmented states series. The
Hurst exponent was estimated with the Detrended Fluctuation Analysis (DFA) method [21], and an algorithm available
on the PhysioNet repository [22]. Parameters for the fractal analysis followed the previous ones found in literature [9],
with a window size varying from 2 to 250 minutes. For the multifractal analysis, the method developed by Chhabra and
Jensen [20] was used due to its accuracy and implementation easiness. The method enables a precise determination
of the generalized dimensions Dq and f (α) singularity spectra, avoiding disadvantages of using a Legendre transform,
employed in some methods like the Multifractal Detrended Moving Average (MFDMA) approach [23], and it is
suitable for experimental data of a system of an unknown dynamics [20].

The generalized dimensions, Dq, evaluate the qth order scaling properties of the profile and is defined in equation
1.

Dq =
1

q − 1
lim
ε→0

log
∑

iP
q
i (ε)

log ε
(1)

For q = 1, D1 becomes indeterminate and can be obtained via eq. 2 [24].

D1 = lim
ε→0

∑
i Pi(ε) log Pi(ε)

log ε
(2)

Where Pi(ε) represents the probability of the measure in the ith segment of size ε, calculated by dividing the sum
of the activity value in the segment i by the sum in the whole support length. q acts as a filter for large measures
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Table 1: Patient information. The painkillers, anxiolytics, and antidepressants columns state if drugs of each category were taken by each individual.
F: Female. HC: Healthy Controls. FM: Fibromyalgia Patients. BMI: Body Mass Index. NA: Not Available

Patient Gender Age BMI Group Painkillers Anxiolytics Antidepressants
000 F 28.76 23.53 HC No No No
030 F 35.86 22.50 HC No No No
040 F 24.68 21.63 HC No No No
050 F 25.01 18.96 HC No No Yes
060 F 30.29 20.94 HC No No No
070 F 36.02 20.76 HC No No No
080 F 26.33 20.69 HC No No No
100 F 44.70 24.84 HC No No No
110 F 41.88 21.49 HC No No No
120 F 31.94 18.71 HC No No No
140 F 48.69 25.56 HC No No No
150 F 42.61 18.86 HC No No No
160 F 46.66 24.51 HC No No No
001 F 56.97 25.59 HC No No No
011 F 57.69 23.59 HC No No Yes
021 F 54.64 25.63 HC No No No
031 F 56.14 22.31 HC No No No
041 F 71.75 24.34 HC No No No
051 F 57.25 26.78 HC No No No
061 F 58.78 25.63 HC No No No
071 F 57.34 NA HC No No No
091 F 70.11 NA HC No No No
101 F 61.36 21.23 HC No No No
111 F 57.26 20.40 HC No Yes Yes
121 F 58.97 20.20 HC No No No
141 F 57.26 21.22 HC No No No
151 F 57.40 23.71 HC No No No
500 F 43.17 29.02 FM Yes Yes Yes
510 F 41.81 30.48 FM Yes Yes Yes
520 F 40.98 27.92 FM Yes No Yes
530 F 31.13 29.03 FM Yes Yes Yes
560 F 41.71 20.58 FM Yes Yes No
570 F 34.51 23.71 FM Yes No No
580 F 29.97 23.34 FM Yes No No
600 F 38.52 NA FM NA NA NA
610 F 41.99 24.45 FM Yes Yes Yes
620 F 37.56 35.42 FM Yes Yes Yes
630 F 46.57 20.90 FM Yes Yes Yes
640 F 49.04 23.62 FM No No No
650 F 46.12 27.04 FM Yes Yes Yes
501 F 60.71 20.03 FM Yes Yes Yes
511 F 61.83 22.84 FM Yes Yes Yes
521 F 50.47 24.97 FM NA NA NA
531 F 58.99 25.54 FM Yes Yes Yes
541 F 56.39 25.89 FM Yes Yes Yes
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Patient Gender Age BMI Group Painkillers Anxiolytics Antidepressants
551 F 52.24 25.53 FM No Yes Yes
561 F 46.62 27.64 FM Yes Yes Yes
571 F 58.31 34.93 FM Yes No Yes
581 F 50.50 36.15 FM Yes Yes Yes
601 F 56.45 28.00 FM Yes Yes Yes
611 F 60.93 23.05 FM Yes Yes Yes
621 F 54.94 27.82 FM Yes Yes Yes
631 F 57.63 39.04 FM Yes Yes Yes
641 F 56.95 26.04 FM Yes No No

(q > 0) and for small measures (q < 0). For q = 0, D0 indicates the capacity dimension, representing the scaling
of how measures are distributed in the support. In actigraphy data this index characterises the irregularity of how
individuals move or not independently of the intensity.
The f (α) singularity spectra are defined parametrically in q as f (q) and α(q). In order to estimate the multifractal
spectra, the qth order normalised probability measures µi(q, ε) are derived according to the equation 3.

µi(q, ε) =
[Pi(ε)]q∑
i [Pi(ε)]q (3)

The Chhabra and Jensen [20] definitions can be expressed as shown in the equations 4 and 5.

α(q) = lim
ε→0

∑
i µi(q, ε) log Pi(ε)

log ε
(4)

f (q) = lim
ε→0

∑
i µi(q, ε) log µi(q, ε)

log ε
(5)

Multifractal indices are powerful tools for characterising scaling properties of time series. The difference (αmax −

αmin) is used to examine the heterogeneity in the scaling properties. For monofractals profiles, this difference is
approximately zero. In actigraphy measures, this difference indicates the heterogeneity of how smooth or jerky move-
ments are.
Low values of α are related with jerking movements and high values with smooth ones. f (α) estimate the scal-
ing exponent for each singularity α. This heterogeneity index can be divided in two indices: for low values of α,
(αq+ − α0) and for high values (α0 − αq−), where αq− and αq+ are the α values for the minimum and maximum value
of q considered, respectively. A diagram illustrating the indices meaning is presented in figure 2.

For this method, in order to estimate the partition function, a range of scales (ε) between 4 and 512 points was
chosen. It corresponds to a time interval between 2 and 256 minutes. The q value varied from -25 to 25 in steps of
0.3. Values of q featuring fittings with R2 < 0.7 were rejected. The multifractal indices (αmax − αmin), (α0 − αq+),
(αq− − α0), D0, D1 and D2, were estimated for each activity state (awake and sleep) for every subject. A paired t-test
was then performed to verify statistical differences between awake and sleep states in both HC and FM.

The original scripts used in this work are available in the public software repository GitHub [25]. In addition, the
following software packages were used: R [26], reshape [27], stringr [28], RColorBrewer [29], cowplot [30], ggplot2
[31], and boot [32, 33].

3. Results

3.1. Monofractal analysis
The monofractal analysis revealed a persistent behaviour (H > 0.5) for both groups (H = 0.98 ± 0.04 for healthy

subjects and H = 0.97 ± 0.03 for fibromyalgia patients). However, it is not possible to differ between fibromyalgia
patients and healthy subjects by a monofractal analysis, as it can be seen in figure 3. A t-test was performed to compare
the monofractal indices for both groups and has not shown significant differences in the results with p = 0.303 and
T = −1.04.
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Figure 2: Multifractal spectrum and meaning of the multifractal indices. (αmax − αmin) measures the heterogeneity in the time series, as (αq+ − α0)
and (α0 − αq−) assess such quantity for high and low singularities, respectively.

3.2. Multifractal analysis
The multifractal spectra derived with the Chhabra-Jensen method revealed wide and distinct shapes for the differ-

ent states. Moreover, such curves presented variability between the individuals, i.e., visually they do not seem to be
defined by the group - HC or FM - but by each individual. The spectra obtained for every person of both groups can
be seen in figure 4.

No differences were found on comparing the healthy subjects and fibromyalgia patients group, however, when
comparing the difference between states of daytime activity and sleep in the same subject, in a paired t-test, α0 − αq+,
D0, D1, and D2 showed statistically significant differences between the awake and sleep states for both HC and FM
groups. The spectrum width αq− −αq+ has not shown any differences for either groups. The right side of the parabola,
however, only shows statistically significant differences between awake and sleep states for healthy controls with
p = 0.021. Figure 5 and table 2 show the results for a paired t-test comparing these multifractal indices. For healthy
(HC) subjects, exclusively, there are significant differences between daytime and sleep activity for smooth movements
(αq−−α0). A bootstrap performed with a 1000 resamples (with repetion) [32, 33] resulted in 11% of p-values p < 0.05
for patients with fibromyalgia, whilst healthy individuals returned 70% of the resamples with p < 0.05.

4. Discussion

Monofractal analysis results, for both groups, exhibit a value according to literature [9], however, it is not possible
to differ between the two populations by such analysis. The monofractal evaluation is not sensitive to the changes in
the movement activation pattern; the result indicates the need of a new framework, such as multifractal analysis, that
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Figure 3: Monofractal analysis of actigraphy data for both healthy and fibromyalgia groups. (A) Roughness versus scale for two individuals (one
of each group). (B) The distributions are similar, i.e., they have approximate mean, and present values on the persistent behaviour exponents range.

Table 2: Results of paired t-tests comparing multifractal spectrum measures α0 − αq+, αq− − α0, αq− − αq+, D0, D1, and D2 for both awake and
sleep states, in healthy subjects and individuals with fibromyalgia. FM and HC show similar results all the quantities, except the spectrum width
αq− − αq+, and the right side of the parabola (αq− − α0) for individuals with fibromyalgia. In this case, only healthy individuals show statistically
significant differences. *p < 0.05, ***p < 0.001.

Index FM HC
α0 − αq+ p = 6.925x10−6*** T = −5.60 p = 0.004x10−1*** T = −4.08
αq− − α0 p = 0.293 T = 1.07 p = 0.021* T = 2.45
αq− − αq+ p = 0.383 T = −0.89 p = 0.686 T = 0.41

D0 p = 0.003x10−1*** T = −4.16 p = 0.020* T = −2.48
D1 p = 2.212x10−7*** T = 6.95 8.639x10−7*** T = 6.41
D2 p = 9.394x10−10*** T = 9.30 2.337x10−9*** T = 8.89

has been extensively employed on physiological signals studies [5].
Such approach might provide important practical diagnostic and prognostic not obtainable with the canonical meth-
ods. The versatility of the technique when it comes to the wide range of different types of signal to which it can be
applied is another important feature [5].
The multifractal approach was applied in different studies on physiologic signals, e.g., in human heartbeat dynamics
[4], evidencing differences between healthy individuals and patients with heart disease; seizure occurrence [34], on a
trial to build a detection protocol; and in postural sway study [35].
In this study, the multifractal spectra derived with Chhabra-Jensen method [20] exhibited a large variability across
different individuals, suggesting an individual component of the scaling properties in actigraphy recordings and, con-
sequently, in physiologic mechanisms of control. A paired analysis, comparing both states, was employed to bypass
the limitations associated with the individual variability. Such analysis should be able remove the individual features
that difficult the characterisation of the phenomenon and exhibit changes caused by the syndrome. The results present
differences between FM patients and healthy individuals, when comparing awake and sleep states. In summary, FM
and HC show similar results when it comes to α0 − αq+, αq− − α0, αq− − αq+, D0, D1, and D2 measures, i.e., both
groups exhibit significant differences between awake and sleep segments. Furthermore, neither of these groups the
width of the spectrum αq− − αq+ but show distinct features when it comes to the right side of the parabola. In this
measure, only healthy controls show differences between awake and sleep states.
The right side of the parabola (αq− − α0) is associated with heterogeneity in small singularities, and, in this work,
with heterogeneity in smooth movements. The results might suggest that the awake state presents more heterogeneity
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Figure 4: Multifractal spectra derived for both groups (HC (A and B) and FM (C and D) and states (awake (A and C) and sleep (B and C)). The
main feature is the variability of the curves, i.e, individuals present different spectral shapes regardless of their groups. The curves for sleep state
show more symmetrical shapes.

in smooth movements than sleep in healthy group. The lack of difference between these two states, for FM, could
be associated with sleep dysfunctions, a common complaint in these patients [11] and might be connected to this
commonly known issue in the sleep of this patients, previously reported in literature [11].

5. Conclusions

Actigraphy data exhibited a multifractal pattern and it was possible to (indirectly) find differences between healthy
and fibromyalgia group by multifractal indices. Multifractal techniques, when applied to actigraphy signal, were able
to reveal patterns in movement activation and smoothness heterogeneity. The characterisation of such patterns repre-
sents a new way to evaluate activity data, bringing key information about motor behaviour in subjects with chronic
pain.
In the case of this study, the distinct features of awake and sleep states were able to show dissimilarities between a
healthy group and patients with fibromyalgia, suggesting that sleep disturbances, reported literature, could be evi-
denced by movement patterns and heterogeneity.
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